
Week 9

Interrupt Interface of 8088 and 8086
processors,

8259 Interrupt controller

2

Interrupt Mechanisms, Types, and Priority

INTERRUPT TYPES SHOWN WITH DECREASING PRIORITY
ORDER

• Reset

• Internal interrupts and exceptions

• Software interrupt

• Nonmaskable interrupt

• Hardware interrupt

All the interrupts are serviced on priority basis. The higher priority
interrupt is served first and an active lower priority interrupt service
is interrupted by a higher priority one. Lower priority interrupts will
have to wait until their turns come.

The section of program to which the control is passed called Interrupt-
service routine (e.g. printer driver)

3

Interrupt Vector Table

4

Interrupt Vector Table

5

Interrupt Vector Table

6

Interrupt Vector Table

• Interrupt vector table consists of 256 entries each containing 4
bytes.

• Each entry contains the offset and the segment address of the
interrupt vector each 2 bytes long.

• Table starts at the memory address 00000F.

• First 32 vectors are spared for various microprocessor families.

• The rest 224 vectors are user definable.

• The lower the vector number, the higher the priority.

7

The Operation of Real Mode Interrupt

1. The contents of the flag registers are pushed onto the stack.

2. Both the interrupt (IF) and (TF) flags are cleared. This disables the
INTR pin and the trap or single-step feature.

3. The contents of the code segment register (CS) is pushed onto the
stack.

4. The contents of the instruction pointer (IP) is pushed onto the stack.

5. The interrupt vector contents are fetched, and then placed into both
IP and CS so that the next instruction executes at the interrupt
service procedure addressed by the interrupt vector.

6. While returning from the interrupt-service routine by the ins. IRET,
flags return to their state prior to the interrupt and and operation
restarts at the prior IP address. The return address (CS and IP) is
not always the next instruction, with some interrupt types it is the
current instruction.

8

Example

• At what address should vector 50, CS50, and IP50 be stored in
memory?

• Each vector requires four bytes of memory

• Address = 50 x 4 = 200

• Converting to binary
– 200 = 1100 1000b

– Address = C8h

• IP50 is stored in 00C8h

• CS50 is stored in 00CAh

9

Interrupt Vector Table

10

The Operation of Protected Mode Interrupt

1. Protected mode interrupts function like the real mode interrupts,
except that the interrupt vector table is different.

2. It is replaced by the interrupt descriptor table.

3. Each entry is 8 byte long and there are 256 of them similar to the
interrupt vectors of the real mode.

4. This table is located by the system at a memory location described
by the Interrupt Descriptor Table Address Register (IDTR).

11

Interrupt instructions

12

Interrupt instructions

• Interrupt enable flag (IF) causes external interrupts to be enabled.

• INT n initiates a vectored call of a subroutine.

• INTO instruction should be used after each arithmethic instruction
where there is a possibility of an overflow.

• HLT waits for an interrupt to occur.

• WAIT waits for TEST¯ input to go high.

13

External hardware-interrupt Interface

14

External hardware-interrupt Interface

15

External hardware-interrupt Interface

• Minimum mode hardware-interrupt interface:
– 8088 samples INTR input during the last clock period of each instruction

execution cycle. INTR is a level triggered input; therefore logic 1 input
must be maintained there until it is sampled. Moreover, it must be
removed before it is sampled next time. Otherwise, the same Interrupt
Service is repeated twice.

– INTA¯ goes to 0 in the first interrupt bus cycle to acknowledge the
interrupt after it was decided to respond to the interrupt.

– It goes to 0 again the second bus cycle too, to request for the interrupt
type number from the external device.

– The interrupt type number is read by the processor and the
corresponding int. CS and IP numbers are again read from the memory.

16

External hardware-interrupt Interface

• Maximum mode hardware-interrupt interface:
– The operation is similar with some differences.

– Now bus status codes are used to generate some signals.

– There is new signal called the bus priority lock signal LOCK¯. It is used
to signal to the bus arbiter that the bus is busy.

17

External hardware-interrupt Interface

18

External hardware-interrupt Interface

19

External hardware-interrupt Interface

20

External hardware-interrupt Sequence

• Only after the interrupt processing sequence is carried out, the
interrupt acknowledge signal issued upon the result of checks.

• Note that fetching the values of CS and IP, and carrying out PUSH
and POP operations take less number of bus cycles in 8086 than
8088 because of 16 bit data bus.

21

External hardware-interrupt Sequence

22

External hardware-interrupt Sequence

23

Storing an Interrupt Vector in the Vector Table

In order to install an interrupt vector – sometimes called a hook – the
assembler must address absolute memory

INT 21h

Initialization
AH = 25h
AL = interrupt
type number
DS:DX = address
of new interrupt
procedure

Read the current
vector
AH = 35h
AL = interrupt
type number
ES:BX = address
stored at vector

Terminate and
stay resident
AH = 31h
AL = 00
DX = number of
paragraphs to
reserve for the
program

24

Example-storing Interrupt Vector

25

Example-storing Interrupt Vector

26

Example

• An interrupting device interrupts the microprocessor each time the
interrupt request input has a transition from 0 to 1.

• 74LS244 creates the interrupt type number 60H as a response to
INTA¯.

• Assume:
– CS=DS=1000H

– SS=4000H

– Main program offset is 200H

– Count offset is 100H

– Interrupt-service routine code segment is 2000H:0000H

– Interrupt-service routine code offset is 1000H

– Stack has an offset of 500H to the current stack segment

– Make a map of the memory space organisation

– Write a main program and a service routine to count the number of
positive interrupt transitions.

27

Example – interrupt request counter

28

Example – interrupt request counter

29

Example – interrupt request counter

30

Example – interrupt request counter

; Main program, START = 1000H:0200H

START: MOV AX,1000H ;Set up data seg

MOV DX,AX

MOV AX,4000H ;Set up stack seg

MOV SS,AX

MOV SP,0500H ;Set top of stack

MOV AX,0000H ;Seg for int. Vector table

MOV ES,AX

MOV AX,1000H ;Service routine offset

MOV [ES:180H],AX

MOV AX,2000H ;Service routine seg

MOV [ES:182H],AX

STI ;Enable interrupt

HERE: JMP HERE ;Wait for interrupt

31

Example – interrupt request counter

;Interrupt service routine, SRVRTN = 2000H:1000H

SRVRTN: PUSH AX ;save reg to be used

MOV AL,[0100H] ;get the count

INC AL ;increment the count

DAA ;decimal adjust the count

MOV [0100H],AL ;save the updated count

POP AX ;restore the register used

IRET ;return from the interrupt

32

Interrupt circuits

33

Interrupt circuits

34

Interrupt circuits

35

Description

• 8255 is decoded at 0500h, 0502h, 0504h, and 0506h

• 8255 is operated at in mode 1 (stobed input)

• Whenever a key is typed , the INTR output (PC3) becomes a logic 1
and requests an interrupt thru the INTR pin on the microprocessor

• The INTR remains high until the ASCII data are read form port A.

• In other words, every time a key is typed the 8255 requests a type
40h interrupt thru the INTR pin

• The DAV signal from the keyboard causes data to be latched into
port A and causes INTR to become a logic 1

• Data are input from the keyboard and then stored in the FIFO (first
in first out) buffer

• FIFO in our example is 256 bytes

• The procedure first checks to see whether the FIFO is full.

• A full condition is indicated when the input pointer (INP) is one byte
below the output pointer (OUTP)

36

Example: “Read from the Keyboard routine” into FIFO

; interrupt service routine ro read a key from the
; keyboard
PORTA EQU 500h
CNTR EQU 506h
FIFO DB 256 DUP (?)
INP DW ?
OUTP DW ?
KEY PROC FAR USES AX BX DI DX
MOV BX, CS:INP
MOV DI, CS:OUTP
INC BL
CMP BX, DI ;test for queue full
JE FULL ; if queue is full

DEC BL
MOV DX, PORTA

IN AL,DX ; read the key
MOV CS:[BX], AL
INC BYTE PTR INP
JMP DONE

FULL: MOV AL,8
MOV DX, CNTR
OUT DX,AL

DONE: IRET
KEY ENDP

37

Example contd: “Read from the FIFO into AH”

READ PROC FAR USES BX DI DX

EMPTY: MOV BX, CS:INP

MOV DI, CS:OUTP

CMP BX,DI

JE EMPTY

MOV AH, CS:DI

MOV AL,9 ; enable 8255 interrupt

MOV DX, CNTR

OUT DX,AL

INC BYTE PTR CS:OUTP

RET

READ ENDP

