Week 9

Interrupt Interface of 8088 and 8086
processors,
8259 Interrupt controller

Interrupt Mechanisms, Types, and Priority

INTERRUPT TYPES SHOWN WITH DECREASING PRIORITY
ORDER

 Reset

* Internal interrupts and exceptions
« Software interrupt
 Nonmaskable interrupt

« Hardware interrupt

All the interrupts are serviced on priority basis. The higher priority
Interrupt is served first and an active lower priority interrupt service
IS Interrupted by a higher priority one. Lower priority interrupts will
have to wait until their turns come.

The section of program to which the control is passed called Interrupt-
service routine (e.g. printer driver)

Interrupt Vector Table

4650 CHAPTER 12

FIGURE 122 (a) The
interrupt vector table for the
microprocessor. and (b)) the
contents of an INnterrupt vector.

Twpe 1

INTERRUPTS
Type 32 — 255
User interrupt vectors
os80H
Type 14 — 31
Reserved
e

Type 16

P Coprocessor error
Type 15

o3 Unassigned
Type 14

ozaH Page Ffauit
Type 13

Oosar Seneral protection
Type 12

PR Stack segrment overrun
Type 11

o= Segment not present
Type 10

P Invalid task state segment

Type 9
Coprocessor segrment owverrun

oZarH
Type 3
G20 Double fault
Type 7
o1cH Coprocessaor not available
Tyvpe &
o184 Undefimed opcode
Twvpe S
o1 BOUND
Tyvpe <4
o10H Overflow (INTO)
Type 3
oocH 1-byte breakpoint
Type =2 Any interrupt vector
cosH ™A pin = Seagment (high)
Type 1
QO Single-step =2 Segment (Jow)
B Offset (high)
Tyvpe O
00O H Divide error fe) Offset (low)
=) (=)
Singlc-stop or Trap—Occurs afiter the exocution of cach instruction it the trap
(TE)Y Mag bit is set. Upon accepting this interrupt, the TF bit i cleared so that the
Ntcrrupt scrvice procedure executes at full speaed. (More detail is provided about

this interrupt later in this section of the chapter.)

Interrupt Vector Table

Type 1

Type 2

Type 3

Type d

Type 5

Type 6

Type 7

Type B

Single-step or Trap—0Occurs after the execution of each instruction if the trap
{TF) flag bit is set. Upon accepting this interrupt, the TF bit is cleared so that the
Non-maskable Hardware Interrupt—A result of placing a logic 1 on the NMI
input pin to the microprocessor. This input is non-maskable, which means that it
cannot be disabled.

One-Byte Interrupt—A special one-byte instruction (INT 3) that uses this vector
to access its inlerrupt-service procedure, The INT 3 instruction s often used to
store a breakpoint in a program for debugging.

Overflow—A special vector used with the INTO instruction. The INTO
instruction interrupts the program if an overflow condition exists, as reflected by
the overflow flag (OF).

BOUND—AnR instruction that compares a register with boundaries stored in the
memory. If the contents of the register are greater than or equal to the first word
in memory and less than or equal to the second word, no interrupt occurs hecause
the contents of the register is within bounds. If the contents of the register are
out-of-bounds, a type 5 interrupt ensues.

Invalid Opcode—Occurs whenever an undefined opeode is encountered in a
program.

Coprocessor Not Available—Occurs when a coprocessor is not found in the
system, as dictated by the machine status word (MSW) coprocessor control bits.
If an ESC or WAIT instruction executes and the coprocessor is not found, a type
T exception or interrupt occurs.

Double Fault—Activated whenever two separate interrupts occur during the
same instruction.

Interrupt Vector Table

Type 9

Type 10

Type 11
Type 12

Type 13

Type 14

Type 16

Type 17

Type 18

Coprocessor Segment Overrun—Occurs if the ESC instruction (coprocessor
opeode) memory operand extends beyond offset address FFFFH.

Invalid Task State Segment—Occurs if the TSS is invalid because the segment
limit field is not O02BH or higher. In most cases, this is caused because the TSS
is not initialized.

Segment not Present—COccurs when the P bit (P = 0) in a descriptor indicates
that the segment is not present or not valid.

Stack Segment Overrun—Occurs if the stack segment is not present (P = 0) or if
the limit of the stack segment is exceeded.

Gieneral Protection—Occurs for most protection vielations in the 80286-Pentium
Il protected mode system. (These errors occur in Windows as general
protection faults.) A list of these protection violations follows:

Descriptor table limit exceeded

Privilege rules violated

Invalid descriptor segment type loaded

Write to code segment that is protecied

Read from execute-only code segment

Write to read-only data segment

Segment limit exceeded

CPL = 10PL when executing CTS, HLT, LGDT, LIDT, LLDT, LMSW, or LTR
CPL = IOPL when executing CLI, IN, INS, LOCK, OUT, OUTS, and STI
Page Fault—Occurs for any page fault memory or code access in the 80386,
80486, and Pentium—Pentium 11 microprocessors.

L B NE R N R~

Coprocessor Error—Takes etfect whenever a coprocessor error (ERROR = ()
occurs for the ESCape or WAIT instructions for the 80386, 80486, and
Pentium-Pentium Il micronrocessors onlv.

Alignment Check—Indicates that word and doubleword data are addressed at an
odd memory location (or an incorrect location, in the case of a doubleword). This
interrupt is active in the 80486 and Pentium—Pentium II microprocessors.
Machine Check—Activates a system memory management mode interrupt in the
Pentium—Pentium Il microprocessors.

Interrupt Vector Table

* Interrupt vector table consists of 256 entries each containing 4
bytes.

« [Each entry contains the offset and the segment address of the
Interrupt vector each 2 bytes long.

e Table starts at the memory address O0000F.

» First 32 vectors are spared for various microprocessor families.
 The rest 224 vectors are user definable.

 The lower the vector number, the higher the priority.

The Operation of Real Mode Interrupt

1. The contents of the flag registers are pushed onto the stack.

2. Both the interrupt (IF) and (TF) flags are cleared. This disables the
INTR pin and the trap or single-step feature.

3. The contents of the code segment register (CS) is pushed onto the
stack.

4. The contents of the instruction pointer (IP) is pushed onto the stack.

5. The interrupt vector contents are fetched, and then placed into both
IP and CS so that the next instruction executes at the interrupt
service procedure addressed by the interrupt vector.

6. While returning from the interrupt-service routine by the ins. IRET,
flags return to their state prior to the interrupt and and operation
restarts at the prior IP address. The return address (CS and IP) is
not always the next instruction, with some interrupt types it is the
current instruction.

Example

At what address should vector 50, CS50, and IP50 be stored in
memory?

« Each vector requires four bytes of memory
 Address =50 x4 =200

e Converting to binary
— 200 =1100 1000b
— Address = C8h
e [P50 is stored in 00C8h

e (CS50 is stored in 00CAhO

Interrupt Vector Table

FIGURE 12-3 The pro-
tected mode interrupt 7
descriptor. Offset (A31-A16) °
5|P DIi’L 01110 OO0OH 4
3 Segment selector 2
1 Offset (A15-A0) 0
FIGURE 12-4 The flag
register. (Courtesy of Intel FLAGS Ojpj1]T]s|? A P ¢
15 1110 9 8 7 6 5 4 3 2 1 0

Corporation.)

The Operation of Protected Mode Interrupt

1. Protected mode interrupts function like the real mode interrupts,
except that the interrupt vector table is different.

2. ltis replaced by the interrupt descriptor table.

3. Each entry is 8 byte long and there are 256 of them similar to the
Interrupt vectors of the real mode.

4. This table is located by the system at a memory location described
by the Interrupt Descriptor Table Address Register (IDTR).

10

Mnemonic Meaning Format Operation Flags Affected
CLI Clear interrupt flag CLI 0 - (IF) IF
STI Set interrupt flag STI I = (IF) IF
INT n Type n software interrupt | INT n (Flags) = ((SP) - 2) TF, IF
0 - TF,IF
(CS) =~ {(SP) - 4)
(24+4-n)—+(CS)
(IP) = ((SP) — 6)
(4 * n)—=>({IP)
IRET Interrupt return [RET | {((SP)) = (IP) All
((SP) + 2) = (CS)
((SP) + 4) =+ (Flags)
(SP) + 6 = (SP)
INTO Interrupt on overflow INTO INT 4 steps TF, IF
HLT Halt HLT Wait for an external None
interrupl Or reset to oceur
WAIT Wait WAIT Wait for TEST input to None
go active
Figure 11-4 Interrupt instructions.

11

Interrupt instructions

* Interrupt enable flag (IF) causes external interrupts to be enabled.
 INT ninitiates a vectored call of a subroutine.

 |INTO instruction should be used after each arithmethic instruction
where there is a possibility of an overflow.

 HLT waits for an interrupt to occur.
o WAIT waits for TEST input to go high.

12

External hardware-interrupt Interface

[aT¥]
Bl ——0 INT,,
WH
- ——0 INT,,
ALE —0 INT,,
- :

External

l_'mr:hl.-aru
MPL -
interface

Mg | circuitry
INTR '

_—
INTA
Voo : ——

= MNMx [DOTH
OEN

i -
1 i |NTH

(@)

Figure 11-5 (2) Minimum-mode 8088 system external hardwarc-interrupt

8 l) . .

13

External hardware-interrupt Interface

ALE
— ——i— Q’NT_‘”
M/l o
R INT
. o
WR —O INT,,
External
hardware
B086 .
MPU mterface
INTR Circuilry
- ——
INTA
Vie - —
—— MN/MX DTR_)
DEN - ———O INT
{b}

Figure 11-5 (a2) Minimum-
interface. (b) Minimum-mode
face.

mode 8088 system external hardwarc-interrupt
8086 system externai hardware-interrupt inter-

External hardware-interrupt Interface

 Minimum mode hardware-interrupt interface:

8088 samples INTR input during the last clock period of each instruction
execution cycle. INTR is a level triggered input; therefore logic 1 input
must be maintained there until it is sampled. Moreover, it must be
removed before it is sampled next time. Otherwise, the same Interrupt
Service is repeated twice.

INTA goes to 0 in the first interrupt bus cycle to acknowledge the
interrupt after it was decided to respond to the interrupt.

It goes to 0 again the second bus cycle too, to request for the interrupt
type number from the external device.

The interrupt type number is read by the processor and the
corresponding int. CS and IP numbers are again read from the memory.

15

External hardware-interrupt Interface

« Maximum mode hardware-interrupt interface:
— The operation is similar with some differences.
— Now bus status codes are used to generate some signals.

— There is new signal called the bus priority lock signal LOCK . It is used
to signal to the bus arbiter that the bus is busy.

16

External hardware-interrupt Interface

CLKk —O INT,,
I INT A
AT - — |I'\IT‘,':l
1OWC . -
= Bus DTR
50'5; contraller 4=
8288 DEN
- External
ALE - hardware
6083 intarrupt
MPU Ag- A 1 interface
< '\\ circuitry
AD{.'AD? /
_ INTR
I MN/MX - LOCK :
= 0 INT

{a}

Figure 11-6 (a) Maximum-mode 8088 system external hardware interrupt

interface. (b) Maximum-mode 8086 system external hardware interrupt inter-
face.

17

External hardware-interrupt Interface

CLK
N
INTA e — lHTu
1R
— ™ ———0 INTy
1OWIC -
Bus —
cunt_.mllcr PDTR .
€ % E2RE DEN
01 —— |
External
ALE > hardware
80BO interfupt
MPU interface
circutry
< AD,-AD,
INTR
—_— —— e 7]
—_— MNMX LoC :
= e [NT 344
15]]

Figure 11-6 (a) Maximum-mode 8088 system external hardware interrupt

interface. (b) Maximum-mode 8086 system external hardware interrupt inter-
face.

External hardware-interrupt Interface

Status inputs
— - - CPU cycle E288 command
S, S, Sy
0 0 0 Interrupt acknowledge INTA
0 0 | Read 1/O port 10RC
0 | 0 Write I/O port IOWC, AIOWC
0 | | Halt None
| 0 0 Instruction fetch MRDC
| 0 | Read memory MRDC
[I 0 Write memory MWTC, AMWC
! | | Passive None

Figure 11-7 Interrupt bus status code. (Reprinted by permission of Intel Cor-

poration. Copyright/Intel Corp. 1979)

19

External hardware-interrupt Sequence

Only after the interrupt processing sequence is carried out, the
Interrupt acknowledge signal issued upon the result of checks.

Note that fetching the values of CS and IP, and carrying out PUSH
and POP operations take less number of bus cycles in 8086 than
8088 because of 16 bit data bus.

20

]

AT MDA L E DG
NTEN T

Figure 118

Interrupt
processors. {(Reprinted by permission of Intel
Corp. 1979)

SRy

I PUuSM FLAMGE I
I LET TEME = TF I
1

[CLEAMRIF & TF I

processing seguence of the S088 and 8086 micro-
Copyrigho Intel

Corporacion.

External hardware-interrupt Sequence

Ta

T3 T4 T2 T3

Lk}

+— FIRST INTERRUPT ACKNOWLEDGE BUS CYCLE —=|= **SECOND INTERRUPT ACKNOWLEDGE BUS CYCLE =
Tq T

CLK

N o U o U
T\ [
e \ /
o0 (reronrore ——

Figure 11-9 Interrupt-acknowledge bus cycle. (Reprinted by permission of
Intel Corporation. Copyright/Intel Corp. 1979)

22

Storing an Interrupt Vector in the Vector Table

In order to install an interrupt vector — sometimes called a hook — the
assembler must address absol ute memory

INT 21h
— |

Initialization Read the current
AH = 25h vector
AL = interrupt AH =35h
type number AL = interrupt
DS.DX = address type number
of new interrupt ES:BX = address
procedure stored at vector

\

Terminate and
stay resident
AH =31h

AL =00

DX = number of
paragraphs to
reserve for the
program

23

Example-storing Interrupt Vector

Storing an Interrupt Vector in the Vector Table

In order to install an interrupt vector—sometimes called a hook—the assembler must address
absolute memory. Example 12—4 shows how a new vector is added to the interrupt vector table
by using the assembler and a DOS function call. Here, INT 21H function call number 25H ini-
tializes the interrupt vector. Notice that the first thing done in this procedure is to save the old in-
terrupt vector number by using DOS INT 21H function call number 35H to read the current

vector. See Appendix A for more detail on DOS INT 21H function calls.

EXAMPLE 12-4

D100
Q0102

D1C6
0106
0107
01a7

oL1a7
0109

EB 05
Qooaaooo

CF

BC C&8
8E DB

START :

.MCODEL TINY
.CCDE

;A program that installs NEW40 at TNT 40H.

r

. STARTUP
JMP START
OLD Do ?

rnew interrupt procedure
éEW4U PROC FAR

IRET
NEW40 ENDP

MOV AX,CS ;jget data
MOV DS, AX

segment

24

Example-storing Interrupt Vector

010B
01CD
01CF
0111
C1l15

0119
0l1lc
011E
0120

0122
0125
0127
0129
012R
012D
012E
0131

B4
BO
CD
89
8C

BA
E4
EO
CD

BA
D1
D1
ol
D1
42
B3
CcD

35
40
21
1E 0102 R
06 0104 R

i

0106 R
25
40
21

0
¥

MOV
MOV
INT
MOV
MOV

MOV
MOV
MOV
INT

AH, 35H ;get old interrupt vector
AL, 40H

Z21H

WORD PTR OLD, BX

WORD PTE OLD+2,ES

rinstall new interrupt vector 40H

DX, OFFSET NEWAOQ
AR, 25H

AL, 40H

21H

rleave NEW40 in memory

r

0107 R

EA

3100
21

MOV
SHER
SHR
SHE
SHE
INC
MOV
INT
END

DX, O0FFSET START
DX, 1

DX, 1

DX, 1

DY, 1

DX

A¥,310CH

21H

25

Example

An interrupting device interrupts the microprocessor each time the

Interrupt request input has a transition from 0 to 1.

74L.S244 creates the interrupt type number 60H as a response to

INTA .

Assume:

CS=DS=1000H

SS=4000H

Main program offset is 200H

Count offset is 100H

Interrupt-service routine code segment is 2000H:0000H
Interrupt-service routine code offset is 1000H

Stack has an offset of 500H to the current stack segment
Make a map of the memory space organisation

Write a main program and a service routine to count the number of
positive interrupt transitions.

26

Example — interrupt request counter

Q CLK|«——Interrupt Request

+5V

Interrupt Type Numbers
> = 0110000,

AD}- - ADO = 2)!'4 2Ys 2?2 2y4
1y4 1y3 1¥2 1Yy

T .
: 741874
3
INTR |
. —OCLR D}—o0+5V
E 74LS244
8 :
AD; — ADg . Loy, - 2yv, gi;
| 1Y, - 1Y,
! A2
: 2A1
: B 1A4
| t(cza 1A3
Vg IMNMX INTAD | 1G 1A2
! 1A1
P
(@)

Figure 11-11 (a) Circuit for Example 11.2. (b) Memory organization. (c) Howchm
for the main program and the interrupt-service routines. (d) Main program and interrupt-

service routines.

B

EX

RESET —

INTR —=

00000H “\1
interrupt
00180H 1000H Type 60H vector
00182H 2000H vector table
_
1000H: 0000H
Program
data
1000H: 0100H } count (area
1000H: 0200H

2000H

4000H

4000H

: 1000H

: 0000H

: 0500H

Interrupt
service
routine
Stack
TOS

Main program

28

Example — interrupt request counter

PAzmiIin Froegram

Set up dats
Sl Sla o sescpmie ek,
Suvd stsck poairter

Eef o we bhie=
ey uagsL
et

LT S s

||

-

Erraksl=
interrupi=s

WWait fon
interrupet

(=0

EFRWRTR

Sawa
ERIE S S
=ftatus

"

ImcereEmeent the
ook

Fiesiorre
B TR S T
status=s

ey

Heturm

Example — interrupt request counter

; Main program, START = 1000H:0200H

START:

HERE:

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
STI
JMP

AX,1000H ;Set up data seg
DX,AX

AX,4000H ;Set up stack seg
SS,AX

SP,0500H ;Set top of stack
AX,0000H ;Seg for int. Vector table
ES,AX

AX,1000H ;Service routine offset
[ES:180H],AX

AX,2000H ;Service routine seg
[ES:182H],AX

;Enable interrupt
HERE ;Wait for interrupt

30

Example — interrupt request counter

;Interrupt service routine, SRVRTN = 2000H:1000H

SRVRTN:

PUSH AX ;save reg to be used
MOV AL,[0100H] ;get the count

INC AL ;increment the count
DAA ;,decimal adjust the count
MOV [0100H],AL ,save the updated count
POP AX ;restore the register used

IRET ;return from the interrupt

31

Interrupt circuits

sLIHE 12—11) Aocircueit
t applizs any nterrupt
stor type numbarin ra-
mse te IMTA, Here the [L}:Ir
wit is applyving vpse [
nibear 80H. 3
Md Lavww clata s
I
5
L7
L [E§L |1]
56|+ |z]|o]7l5]2
| Bkt Eratites cr e rs xy,
WOW W W W W W T4AL SRS
1 2341 23 4
Lided 1o e d 27 §
A A A A A A A A L 2
12241 234 GG I
TIT e
Ll IIJ!I MO
N A Zld|al&E)lL 507 9 T
TT &4 2 - - | L 1s
£ 4 - - 113 %
2 14
p 4 [" 115
5 12
P iy
- i 1Ly
EEERT I iy TR
Lk o foo fer o | 0 10K
tfpofafafag]a
FI3|20 L |1 &

Interrupt circuits

FIGURE 12—11 Converting
INTR into an edge-triggered
interrupt reguesl inpul.,

Fame.trigimered

INTErMEPT TegLest

o
1 &5
T T4ALETY

J\l

3

: 24

[_ TAALSDE

L#

UaaA

I 2
RESET [:;5c

TdA L5

INTR

INTA

33

Interrupt circuits

|
b UL I et = 14 = 4 o0
e = [FArr .
= F I i [PAT [Ch
E‘- 2 o T D3
I':-: e r :I|EI| 3 PAG 1 Y3
(= Fas 20 T4,
[—t 23 1| 1y pas 22 Lra
L34 | 28 | [ae P T Tws
12 ! T 7 a7 iT iy
IORC =Py~ 2 Rn 1=,
* _—— Rn 13':'
- I 1] SR el i B! 19
e oA rR 20
mzﬁg? = e e B 1Al rRa |2l
o X HESE] PELd | A
. Lics ros | 23
Sy A 0TS o PR& | 24
FB7 25
| 14
T L2 M0
AL I g P el
Al o |”1 31 - ol L Kevhaard
: 2 i 1% T
X £ — 17 L .,_JL Pzl 14 i i
A 3 e Mo e T
Ax i § I 05 PE ;:
AE i I (14 s b1t
-— ; L e pE
AT § A i R P 7l o7 Bl [L 10
Aad .] - 12 =
e ! = :cii el FA554 2
T | LL)
16LE
a11 = haitl Kol D L
Al2
P
At = A | . —
o]
4TI |
T fri
NN EN - el B
et
| LR o811 52 Irquﬁ‘LFrw
L1 F 12222
AAAAAAAA 12
L2321 z34 GO
RERIRE 1
L:l'.-'J_-':jL = -TI- -|:_l tf I_ SRR MK
i g oy ®. 2
Az 108

aURE 1212 4An 82055 interfaced to a keyboard from the microprocessor system using interrupt vector ADH.

Description

o 8255 is decoded at 0500h, 0502h, 0504h, and 0506h
o 8255 is operated at in mode 1 (stobed input)

« Whenever a key is typed , the INTR output (PC3) becomes a logic 1
and requests an interrupt thru the INTR pin on the microprocessor

 The INTR remains high until the ASCII data are read form port A.

* In other words, every time a key is typed the 8255 requests a type
40h interrupt thru the INTR pin

 The DAV signal from the keyboard causes data to be latched into
port A and causes INTR to become a logic 1

« Data are input from the keyboard and then stored in the FIFO (first
In first out) buffer

 FIFO in our example is 256 bytes
 The procedure first checks to see whether the FIFO is full.

« A full condition is indicated when the input pointer (INP) is one byte
below the output pointer (OQUTP)

35

Example: “Read from the Keyboard routine” into FIFO

; Interrupt service routine ro read a key from the

; keyboard
PORTA EQU 500h
CNTR EQU 506h
FIFO DB 256 DUP (?)
INP DW ?
OUTP DW ?
KEY PROC FAR USES AX BX DI DX
MOV BX, CS:INP
MOV DI, CS:OUTP
INC BL
CMP BX, DI ;test for queue full
JE FULL ; iIf queue is full
DEC BL
MOV DX, PORTA
IN AL,DX ; read the key
MOV CS:[BX], AL
INC BYTE PTR INP
JMP DONE
FULL: MOV AL,8
MOV DX, CNTR
ouT DX,AL
DONE: IRET

KEY ENDP

Example contd: “Read from the FIFO into AH”

READ
EMPTY:

READ

PROC FARUSES BXDIDX
MOV BX, CS:INP

MOV DI, CS:OUTP

CMP BX,DI

JE EMPTY

MOV AH, CS:DlI

MOV AL,9 ; enable 8255 interrupt
MOV DX, CNTR

ouT DX,AL

INC BYTE PTR CS:OUTP

RET

ENDP

37

