Computing

Lectures
Labs
Lecturer: Assoc. Prof. Mariana Goranova, PhD
Department of Programming and
Computer Technologies
Faculty of Computer Systems and
Control
Technical University of Sofia

Room: 2304

E-mail: mgor@tu-sofia.bg
URL: http://pct.tu-sofia.bg/moodle001/

http://pct.tu-sofia.bg/moodle001/

Course categories \Longrightarrow Computing - M. Goranova

```
computing - M. Goranova
    Teacher: доц. д-р Мариана Горанова
```Topic outline
\(\square\) News

1 Lectures
싱 Introduction to Computer Technologies
신 Software. File System. DOS Commands
생 Introduction to Algorithms. Indroduction to C Programming Language
색 Control Flow
신 Loops

Labs
싀 Introduction to C Programming Language

\section*{Bibliography}
1. Brian W. Kernighan, Dennis M. Ritchie, The C Programming Language, Prentice-Hall, Englewood Cliffs, 1988.
2. Tanenbaum A., Structured Computer Organisation, Prentice-Hall, 1990.
3. Herbert Schildt, \(C\) : The Complete Reference, Third Edition, Osborne McGraw-Hill, 1995.
4. Herbert Schildt, C++: The Complete Reference, McGraw-Hill, Inc., 1995.
5. Bjarne Stroustrup, The C++ Programming Language, Third Edition, Addison Wesley Longman, Inc., 1997.

\section*{Introduction to Computer Technologies}

\title{
Information, Information Technologies and \\ \\ Information Systems
} \\ \\ Information Systems
}

Information = data + value
Information technologies use computer based technologies for information saving, manipulation and transfer.

Information systems include human and other resources based on information technologies in a common system for information saving, manipulation and transfer.

\section*{Computer System}

Computer system consists of hardware and software that work in concern to help us solve problems.
1. Hardware - physical pieces that support the computing effort: chips, boxes, wires, keyboards, speakers, disks, cables, plugs, printers, mice, monitors, and so on.
2. Software - programs and the data those programs use.
- Program - series of instructions that the hardware executes one after another.

\section*{Computer Architecture}

\section*{Program Execution}
1. Store the program on secondary memory device (hard disk)
2. Copy the program from secondary memory to main memory
3. CPU repeats
- reads the program instruction one at a time from main memory
- brings data from secondary memory or reads from an input device (keyboard)
- executes the program instruction one at a time
- displays information to an output device (monitor)
until the program ends

\section*{Hardware Components}
1. Central Processor Unit (CPU) - executes a program's instructions one at a time.
- Control Unit - controls and coordinates the processing steps
- Main Memory - stores programs and data
- Arithmetic and Logic Unit (ALU) - performs calculations and makes decisions
- Registers - provide small storage space in the CPU itself
2. Peripherals - devices that operate at the periphery
- Input/output devices and secondary memory devices - they have controllers that coordinate their activities
- Data transfer devices - send and receive data between computers (modems)
Information travels between components across a group of wires called bus.

\section*{Main Memory}

Main memory is made up of series of small, consecutive memory locations. Each memory location has a unique number called an address.

Address - a unique number associated with each memory location, used when storing and retrieving data from memory.
Write data to a memory location - overwrites and destroys any information that was previously held in that location.

Read data from a memory location - leaves the value in memory unaffected.

Each memory location holds 1 byte \(=8\) bits of information.

Bit is a single binary digit (0 or 1).
Word is a consecutive bytes and depends on the computer.
2-bytes word = 16 bits 4-bytes word = 32 bits
8-bytes word = 64 bits

Storage capacity of a device - the total number of bytes it can hold.
\begin{tabular}{|l|c|l|}
\hline \multicolumn{1}{|c|}{ Unit } & Symbol & \multicolumn{1}{c|}{ Number of Bytes } \\
\hline byte & B & \(2^{0}=1\) \\
\hline kilobyte & KB & \(2^{10}=1024\) \\
\hline megabyte & MB & \(2^{20}=1,048,576\) \\
\hline gigabyte & GB & \(2^{30}=1,073,741,824\) \\
\hline terabyte & TB & \(\mathbf{2}^{40}=1,099,511,627,776\) \\
\hline
\end{tabular}

Units of binary storage
Main memory is volatile - the stored information is only maintained as long as electric power is supplied.

\section*{Memory Types:}
1) RAM (Random Access Memory) - holds programs and data
2) ROM (Read Only Memory) - holds instruction's code
- programmable from the manufacturer
- PROM - Programmable ROM
- EPROM - Erasable PROM

UVEPROM - Ultraviolet EPROM
EEPROM - Electrical EPROM
Flash

\section*{Control Unit}

Control unit coordinates:
- the transfer data and instructions between main memory and the registers
- the execution of the circuitry in the ALU to perform a particular operation on data stored in particular registers

\section*{Registers}

Registers are set aside for special purposes:
- Instruction register - holds the current instruction being executed
- Program counter - holds the address of the next instruction to be executed

\section*{Von Neumann Architecture}

The concept of storing both program instruction and data in main memory together is the principle of the von Neumann architecture of computer design (1945).

The computers continually follow the fetch-decodeexecute cycle.

\section*{Microprocessor is a chip that realizes CPU, part of} the main circuit board.

System clock generates an electronic pulse at regular intervals, which synchronizes the events of the CPU.

The speed of the system clock indicates how fast the CPU executes instructions.

\section*{Secondary Memory Devices}

Secondary memory devices are nonvolatile - the information is retained even if the power supply is turned off.
- hard disk - direct access device
- floppy disk
- compact disk (CD)
- flash disk
- magnetic type - sequential access device

\section*{Input/Output Devices}

Input/Output devices - input data and output results
- keyboard
- mouse
- light pen
- digitizer
- bar code reader
- joystick
- trackball
- touch pad
- scanner
- microphone
- monitor
- printer
- plotter
- speaker

\section*{Computer Classification}
1. Microcomputers
- personal computers
- desktop and portable computers:
- notebook
- laptop
- palmtop
- workstations
2. Minicomputers
3. Main frame computers

\section*{Networks}

Network is two or more computers connected together to exchange information.

\section*{Network connection}
1. Point-to-point connection
- computers are connect directly
- used for two geographical close computers

2. Connection with sharing communication line
- all computers share a single communication line
- each computer has its own network address
- used for connecting many computers
- adding new computers to the network is relatively easy

File server

\section*{Local-Area and Wide-Area Networks}
1. Local-Area Network (LAN) - short distances and a relatively small number of computers (in one building, in a single room); inexpensive way to share information and resources throughout an organization
2. Wide-Area Network (WAN) - connects two or more LANs, often across long distance

\section*{Internet}

Internet (internetworking) is a network of networks
- connect many smaller heterogeneous networks together.

ARPANET - Advanced Research Projects Agency (US government organization, 1970) Network -wide-area network

Protocol - set of rules that govern how things communicate.

TCP/IP (Transmission Control Protocol/Internet Protocol) - software that governs the movement of messages across the Internet.

IP address - uniquely identifies each computer connected to the Internet.
2004.192.116.2

Internet name of computer - unique for each computer.
Internet name of computer is often referred to as its Internet address.
computer_name.domain_name
Suffix of a domain_name - indicates the country of origin or the type of organization.
tu-sofia.bg
pct.tu-sofia.bg
DNS (Domain Name System) - software that translates the Internet address to its corresponding IP address.

\section*{Electronic Mail (E-mail)}

E-mail - software that sends and receives messages with text, graphics, audio, video, attached files.

\section*{E-mail address}
user_name@computer_name.domain_name
mgor@tu-sofia.bg mania@aero.tu-sofia.bg

\section*{World Wide Web (WWW)}

World Wide Web (WWW) - software that makes sharing information across a network easy.

Hypertext - a way to organize information so that the flow of ideas was not constrained to a linear progression.
Hypermedia - organization incorporated hypertext, graphics, audio and video.

Browser - software tool that loads and formats Web documents for viewing. The documents are often written using the HyperText Markup Language (HTML).
- Mosaic
- Netscape Navigator
- Internet Explorer

\section*{Uniform Resource Locators (URL)}

Uniform Resource Locators (URL) - uniquely specifies documents and other information on the WWW for a browser to obtain and display.
protocol:/IInternet_address/file_name
If no file_name is given browsers make the default selection (default.html or default.htm).
http://www.yahoo.com
http://www.tu-sofia.bg
http://mmt.tu-sofia.bg/MGoranova/
http://www.tu-sofia.bg/elde/welcome.htm

－Dean＇s Address
－Management
－Academic Staff
－Tuition
－DegreeProgrammes
－Courses Structure
－Curriculum
－Assessment
－Accreditation
－Teaching Quality
－Relations
－Admission
－How to Apply
TU－Sofia－Home

\section*{TECHNICAL UNIVERSITY OF SOFIA}

ENGLISH LANGUAGE DEPARTMENT OF ENGINEERING （Established under European Union auspices）
\(\Rightarrow\) Third International Conference－ELDE
10th Anniversary of ELDE International conference－May 2003

Dear Applicants，
Welcome to the English Language Department of Engineering（ELDE）at the Technical University of Sofia．I would like to congratulate you on choosing us．You can apply to our 4 － year BEng course in
MANUFACTURING ENGINEERING or the 1.5 －year MEng courses in INDUSTRIAL ENGINEERING and CONTROL SYSTEMS，all taught in English．Our courses offer you many advantages．

Prof．Dr．Nikolay Kolev Dean of ELDE

The curriculum is based on the experience of some of the outstanding engineering universities in Europe－Brunel University，West London，UK， University College Dublin，Ireland and National Technical University Athens， Greece．

The courses have been accredited since 1993 by two leading engineering institutions in the UK，the Institution of Mechanical Engineers and the Institute of Measurement and Control．

\section*{Number Systems}
\[
A=a_{n} S^{n}+a_{n-1} S^{n-1}+\ldots+a_{1} S^{1}+a_{0} S^{0}+a_{-1} S^{-1}+a_{-2} S^{-2}+\ldots
\]

A - number in the number system
a - digit of the number system
\(S\) - base of the number system
i - position of digit
\(S^{i}\) - place value - determined by the base of the number system, raised to increasing powers as we move from right to left

\section*{Decimal number system}
- base-10
- 10 digits: (0 through 9)

\section*{Binary number system}
- base-2
- 2 digits (0 and 1 - bit (binary digit))

\section*{Hexadecimal number system}
- base-16
- 16 digits (0 through 15: 0,1,...,9,A,B,C,D,E,F)

Octal number system
- base-8
- 8 digits (0 through 7)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Place value & \(2^{7}=128\) & \(2^{6}=64\) & \(2^{5}=32\) & \(2^{4}=16\) & \(2^{3}=8\) & \(2^{2}=4\) & \(2^{1}=2\) \\
Position & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\
\cline { 2 - 8 } & & & 0 \\
\hline
\end{tabular}
\begin{tabular}{rl}
Place value: & \begin{tabular}{c|c|c|c|c|}
\(10^{3}=1000\) & \begin{tabular}{c}
\(10^{2}=10\) \\
0
\end{tabular} & \(10^{1}=10\) & \(10^{0}=1\) \\
Decimal number: & 8 & 4 & 2 & 7 \\
\hline
\end{tabular} \\
\begin{tabular}{cl}
8 & 4 \\
Decimal number: & \(8 * 10^{3}+4 * 10^{2}+2 * 10^{1}+7 * 10^{0}=\) \\
& \(8 * 1000+4 * 100+2 * 10+7 * 1=8427\)
\end{tabular}
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Place value: Binary number:} & \(2^{3}=8\) & \(2^{2}=4\) & \(2^{1}=2\) & \(2^{0}=1\) \\
\hline & 1 & 1 & 0 & 1 \\
\hline Decimal number: & \multicolumn{4}{|l|}{\[
\begin{aligned}
& 1 * 2^{3}+1 * 2^{2}+0 * 2^{1}+1 * 2^{0}= \\
& 1 * 8+1 * 4+0 * 2+1 * 1=13
\end{aligned}
\]} \\
\hline Place value: & \(16^{3}=4096\) & \(16^{2}=256\) & \(16^{1}=16\) & \(16^{0}=1\) \\
\hline Hexadecimal number: & 2 & A & 8 & E \\
\hline Decimal number: & \[
\begin{aligned}
& 2 * 16^{3} \\
& 2 * 4096
\end{aligned}
\] & \[
\begin{aligned}
& -10 * 16 \\
& -10 * 25
\end{aligned}
\] & \[
\begin{aligned}
& +8 * 1 \\
& +8 * 1
\end{aligned}
\] & \[
\begin{aligned}
& +14 * \\
& +14 *
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Binary (base 2) & Octal (base 8) & Decimal (base 10) & Hexadecimal (base 16) \\
\hline 0 & 0 & 0 & 0 \\
\hline 1 & 1 & 1 & 1 \\
\hline 10 & 2 & 2 & 2 \\
\hline 11 & 3 & 3 & 3 \\
\hline 100 & 4 & 4 & 4 \\
\hline 101 & 5 & 5 & 5 \\
\hline 110 & 6 & 6 & 6 \\
\hline 111 & 7 & 7 & 7 \\
\hline 1000 & 10 & 8 & 8 \\
\hline 1001 & 11 & 9 & 9 \\
\hline 1010 & 12 & 10 & A \\
\hline 1011 & 13 & 11 & B \\
\hline 1100 & 14 & 12 & C \\
\hline 1101 & 15 & 13 & D \\
\hline 1110 & 16 & 14 & E \\
\hline 1111 & 17 & 15 & F \\
\hline
\end{tabular}

\section*{Conversions a Base-10 Integer Value to a Base-S Value}

\section*{Algorithm}
set the lowest digit position to zero, \(i=0\)
repeat
divide the number \(A\) by the base \(S\) and find the quotient \(\mathbf{R}=\mathbf{A} / \mathbf{S}\)
assign the remainder to the lowest digit, \(\mathbf{a}_{\mathrm{i}}=\mathbf{A}-\mathbf{R} \cdot \mathrm{A}\)
assign the quotient \(R\) to the number, \(A=R\)
set the next digit position, \(i=i+1\)
until the quotient \(R>0\)
\[
57_{10}=?_{2}
\]
\[
\mathbf{i}=0
\]
\[
R=57 / 2=28
\]
\[
a_{0}=57-28.2=1
\]
\[
A=28
\]
\[
\mathbf{i}=1
\]
\[
R=28 / 2=14
\]
\[
a_{1}=28-14.2=0
\]
\[
A=14
\]
\[
i=2
\]
\[
R=14 / 2=7
\]
\[
a_{2}=14-7.2=0
\]
\[
A=7
\]
\[
\mathbf{i}=3
\]
\[
R=7 / 2=3
\]
\[
a_{3}=7-3.2=1
\]
\[
A=3
\]
\[
i=4 \quad R=3 / 2=1
\]
\[
a_{4}=3-1.2=1
\]
\[
A=1
\]
\[
i=5
\]
\[
R=1 / 2=0
\]
\[
a_{5}=1-0.2=1
\]
\[
\mathrm{A}=0
\]
\[
\begin{aligned}
& 57_{10}=?_{16} \\
& i=0 \quad R=57 / 16=3 \\
& i=1 \quad R=3 / 16=0 \\
& 57_{10}=39_{16}
\end{aligned}
\]
\[
a_{0}=57-3 \cdot 16=9
\]
\[
A=3
\]
\[
a_{1}=3-0.16=3
\]
\[
A=0
\]

\section*{Conversion a Base-10 Regular Fraction to Base-S Regular \\ Fraction}

\section*{Algorithm}
set the highest digit position to \(\mathbf{- 1}, \mathrm{i}=\mathbf{- 1}\)
repeat
multiply the number \(A\) with the base \(S\) and find the product \(P=A . S\)
assign the integer part of the product to the highest digit, \(a_{i}=\) integer part (\(P\))
assign the fractional part of the product to the number \(A, A=\) fractional part (\(P\))
set the next digit position, \(i=i-1\)
until the number \(\mathbf{A} \boldsymbol{>} \mathbf{0}\)
\[
\begin{array}{lll}
0,25_{10}=?_{2} \\
i=-1 \quad R=0,25.2=0,5 & a_{-1}=0 & A=0,5 \\
i=-2 \quad R=0,5 \cdot 2=1,0 & a_{-2}=1 & A=0 \\
0,25_{10}=0,01_{2} & &
\end{array}
\]
\[
0,25_{10}=?_{16}
\]
\[
i=-1 \quad R=0,25.16=4,0 \quad a_{-1}=4 \quad A=0
\]
\[
0,25_{10}=0,4_{16}
\]
\(57,25_{10}=111001,01_{2}\) \(57,25_{10}=39,4_{16}\)

\section*{Shortcut Conversions}

Bases that are powers of 2 (binary, octal and hexadecimal) allow very quick conversions between them.
1. Conversion from binary to hexadecimal
- group the bits into group of four \(\left(2^{4}=16\right)\), starting from the right
- convert each group of four into a single hexadecimal digit

\[
101111110110011_{2}=5 F^{2} 2_{16}
\]
2. Conversion from hexadecimal to binary
- expand each hexadecimal digit into four binary digits
- add leading zeros to the binary version of each expanded hexadecimal digit if necessary

\(0100000011000110 \quad 40 C 6_{16}=100000011000110_{2}\)
3. Conversion from binary to octal
- group the bits into group of three \(\left(2^{3}=8\right)\), starting from the right
- convert each group of three into a single octal digit
4. Conversion from octal to binary
- expand each octal digit into three binary digits
- add leading zeros to the binary version of each expanded octal digit if necessary
5. Conversion from hexadecimal to octal - two shortcut conversions
- from hexadecimal to binary
- from binary to octal
6. Conversion from octal to hexadecimal - two shortcut conversions
- from octal to binary
- from binary to hexadecimal```

