
Мариана Горанова

Информатика 1 1

Introduction to
Algorithms

Steps in Problem-solving
1. Understanding the problem.
2. Mathematical description.
3. Choose a numeric method.
4. Algorithm specification.
5. Coding the program.
6. Program execution.

• Editing.
• Compiling.
• Linking.
• Running.

7. Test the solution and fix problems.

Steps 6-7

Errors?

Editing

Compiling

Linking

Errors?

Running

Test the solution

End

Yes

Yes

No

No

No

Yes

filename.C
filename.CPP

(source file)

filename.OBJ
(object module)

filename.exe.
(execution module)

Start

Satisfied?

Algorithm - Definition,
Characteristics, Types,

Presentation
1. Definition

Algorithm is a problem-solving method suitable
for implementation as computer program.

2. Characteristics
• Definiteness.
• Discretion.
• End.
• Input data.
• Output results.
• Mass.

• Pseudo code.

4. Types
• Linear.
• Selection.
• Iterations.

No

Calculation Data input Data output

Begin

End

Yes
Condition

?

1

1

3. Presentation
• Word presentation.
• Block diagrams.

Introduction to C
Programming Language

Мариана Горанова

Информатика 1 2

Programming language defines a set of rules that
determines exactly how a programmer can code
the algorithms and data structures into a program.

C was designed for and implemented by Dennis
Ritchie in the 1970s on a DEC PDP-11 that used
the UNIX operating system.

C is a middle-level language – combines the best
elements of high-level languages with the control
and the flexibility of assembly language.

C code is portable.

C is a structured language.

Getting Started
Example: Print a sentence

Hi! Welcome at the TU!

#include <stdio.h>

int main ()
{

printf ("Hi! Welcome at the TU!\n");
return 0;

}

include information about standard library

define a function main without arguments

statements of main are enclosed in braces

main calls library function printf to
print the sequence of characters;
\n represents the newline character

return the control to the operating system

Exercise: What is the output of the program?

#include <stdio.h>
int main ()
{

printf ("Hi! ");
printf ("Welcome ");
printf ("at ");
printf ("the ");
printf ("TU!");
printf ("\n");
return 0;

}

Exercise: Try to call the function printf like

printf ("Hi! Welcome at the TU!
");

Exercise: Experiment to find out what happens
when printf’s argument string contains \a.

Identifiers
Identifier
• sequence of letters, digits, and underscore (_)
• begins with a letter
• upper and lower case letters are distinct

product Product
gradeOfGroup grade_of_group
X1 x1
Max max

Comments
Comment begins with /* and terminates with */.

/* First program: Print a sentence */

Data Types and Sizes

double-precision floating pointdouble

single-precision floating pointfloat

an integerint

a single byte, capable of holding one
character in the character set

char

Types, Operators, and Expressions

Мариана Горанова

Информатика 1 3

-2147483648÷ 2147483647
0÷4294967295

-2147483648÷ 2147483647

0÷4294967295
-32768÷32767
0÷65535

Range

4long int
4unsigned long

4
(1 word)

int

4
(1 word)

unsigned int
2short int
2unsigned short

Size
[bytes]

Type

15 digits

7 digits

Precision

+/-1.2Е4932

+/-1.7Е308

+/-3.4Е38

Range

10long double

8
(2 words)

double

4
(1 word)

float

Size [bytes]Type

0÷255

-128÷127
-128÷127

Region

1unsigned char

1signed char
1char

Size [bytes]Type Constants

char'x' '1' '+'

double
float
long double

123.4 or 1.234e2 or 1.234E2
123.4F or 123.4f
123.4L or 123.4l

int
long int
unsigned
unsigned long
octal integer (leading 0)
hexadecimal integer
(leading 0x or 0X)

1234
1234L or 1234l
1234U or 1234u
1234UL or 1234ul
0123 0123L 0123U 0123UL
0x123 or 0X123
0x123L 0x123U 0x123UL

Escape sequences – two characters representing
only one character

Define symbolic constant

#define name replacement_text

#define VTAB '\013' /* vertical tab as octal number */

#define VTAB '\xb' /* vertical tab as hexadecimal number */

backslash
question mark
single quote
double quote
octal number
hexadecimal number

alert (bell)
backspace
formfeed
newline
carriage return
horizontal tab
vertical tab

\\
\?
\'
\"
\0oo
\xhh

\a
\b
\f
\n
\r
\t
\v

comments

Constant expression – involves constants

#define SIZE 100
int array[SIZE]; /* integer array with SIZE elements */

String constant (string literal) – sequence of zero
or more characters surrounded by double quotes.

"I am a student" /* string constant */
"" /* empty string */

Enumeration constant – set of named constants;
the first name has value 0, the next 1, and
so on, unless explicit values are specified.

enum name {constant1, …, constantn};

enum months {JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG,
SET, OCT, NOV, DEC};

Мариана Горанова

Информатика 1 4

Variables

Variable is a named location in memory that is
used to hold a value.

Declaration

Variables must be declared before use.

type variable_name [[= expression]][[, …]];

int age, top;
char c;

Variables may be initialized in its declaration.

int limit = 100;
char esc = '\\';
float eps = 1.0e-5f;

Assignment Operator =
Assignment operator sets the variable to the value
of the expression.

variable = expression;

age = 18;
c = 'A';

Input and Output

Library functions provide input and output.

Text stream is a sequence of lines; each line ends
with a newline character.

The library <stdio.h> defines the symbolic constant
EOF (end of file).

#define EOF -1

int getchar (void);

getchar reads one character at a time from the
standard input (keyboard) and returns the next
input character, or EOF when it encounters end of
file.

int putchar (int c);

putchar puts the character c on the standard output
(screen) and returns the character written, or EOF
if an error occurs.

int c;
c = getchar ();
putchar (c);

int printf (char *format, arg1, arg2…);

printf converts, formats, and prints its arguments
arg1, arg2, … on the standard output under control
of the format string; returns the number of
characters printed, or EOF if an error occurs.

format string
"% [[flag]] [[width]][[.precision]] [[interpretation]] type"

maximum number of characters
of a string, or number of digits
after the decimal point of a
floating-point value

.n.precision
minimum field widthnwidth
prints the number with + or - sign+
left adjustment-
right adjustmentflag

long doubleL
long int or doublel
short inthinterpretation

float; as %f or %eg,G

void *; pointerp
symbol %%
char *; character strings
char; single characterc

float; [-]m.dddddde±xx or [-]m.ddddddE±xxe,E
float; [-]m.ddddddf

int; unsigned hexadecimal numberx, X
int; unsigned decimal numberu
int; unsigned octal numbero
int; decimal numberd, itype

Мариана Горанова

Информатика 1 5

int scanf (char *format, &arg1, &arg2…);

scanf reads characters from the standard input,
interprets them according to the specification in
format, and stores the results through the
arguments arg1, arg2, … that must be pointers;
returns the number of successfully matched
items, or EOF when it encounters end of file or
an error occurs.

scanf stops when it exhausts its format string, or
when some input fails to match the control
specification.

scanf ignores white spaces (blanks, tabs,
newlines) in its format string.

int day, month, year;
scanf ("%d %d %d", &day, &month, &year);
printf ("Today is %d/%d/%d.\n", day, month, year);

20 1 2006
Today is 20/1/2006.

Literal characters can appear in the format string.

scanf ("%d/%d/%d", &day, &month, &year);
20/1/2006

char x, y, z;
scanf ("%c %c %c", &x, &y, &z);
printf ("%c%c%c", x, y, z);

1 2 3
1 2

Expressions and Operators
Expression consists of operands and operators.

Operands can be constants, variables, functions
or their combinations.

Operators
• Arithmetic
• Relational
• Logical
• Bitwise

Operators
• Unary
• Binary

Arithmetic Operators
+ addition
- subtraction, also unary minus
* multiplication
/ division
% modulus
++ increment (adds 1 to its operand)
-- decrement (subtracts 1 from its operand)

++x (--x) – prefix form – the operand x is
incremented/decremented by 1; the value of
the expression is the value after the
incrementation / decrementation

x++ (x--) – postfix form – the value of the
expression is the value of the operand x; after
the value is noted, the operand x is
incremented / decremented by 1

Precedence of the arithmetic operators

Highest ++ --
- (unary minus)
* / %

Lowest + -

int x, y;
x = 14;
y = 4;
x / y /* integer division */
x % y /* remainder of integer division */

3
2

Example:

/* The program converts the velocity from miles per hour into
kilometers per hour, where 1 mile = 1.60934 kilometer (km) */

#include <stdio.h>
/* Conversion constant */
#define MILES_INTO_KILOMETERS 1.60934f
int main ()
{

float velocity_mph, velocity_kmph;
printf ("Enter the velocity of the aircraft [miles/hour]: ");
scanf ("%f", &velocity_mph);
velocity_kmph = MILES_INTO_KILOMETERS * velocity_mph;
printf ("The velocity of the aircraft = %.3f [km/h]\n",

velocity_kmph);
return 0;

}

Мариана Горанова

Информатика 1 6

int x, y;
x = 5;
y = 5;
printf ("++x = %d\n", ++x);
printf ("y++ = %d\n", y++);
printf ("x = %d\n", x);
printf ("y = %d\n", y);

Results
++x = 6
y++ = 5
x = 6
y = 6

int x = -3 * 4 % -6 / 5;

Result:
x = (-3) * 4 % (-6) / 5 = (((-3) * 4) % (-6)) / 5 = ((-12) % (-6)) / 5

= 0 / 5 = 0

%

6
-*

4

5

0
5

6

0

-6-12

-3

3
3

-

0
=

x /

4

int x, z;
x = 1;
z = x++ - 1;

Result:
z = 1 - 1 = 0
x = 2

z

++

-

x

1

0

11

1

0
=

Relational and Logic Operators
Relational operators
> greater than
>= greater than or equal
< less than
<= less than or equal
== equal
!= not equal

Logical operators
&& AND
|| OR
! NOT

Logical expression uses relational or logical
operators and return 0 for false and 1 for true.

In C, true is any value other than 0. False is 0.

Truth table for the logical operators

01111
01001
11010
10000

!xx || yx && yyx

&& groups left-to-right: the first operand is
evaluated, if it is equal to 0, the value of the
expression is 0; otherwise the right operand is
evaluated , and if it is equal to 0, the
expression’s value is 0, otherwise 1.

|| groups left-to-right: the first operand is
evaluated, if it is unequal to 0, the value of the
expression is 1; otherwise the right operand is
evaluated, and if it is unequal to 0, the
expression’s value is 1, otherwise 0.

Precedence of the relational and logical operators

Highest !
> >= < <=
== !=
&&

Lowest ||

Мариана Горанова

Информатика 1 7

int x, y, z;
x = 2;
y = 1;
z = 0;
x = x && y || z;

Result:
x = (x && y) || z = (2 && y) || z = (2 && 1) || z = 1 || z = 1
y = 1
z = 0

x

&&

||

x

z

1
0

1
2

1=

1
y

int x = 1, y = 0, z = 0;
r = x++ && y++ || --z;

Result:
r = (((x++) && (y++)) || --z) = ((1 && (y++)) || --z)
= ((1 && 0) || --z) = (0 || --z) = (0 || -1) = 1

x = 2
y = 1
z = -1
r = 1

r

&&

||

z
++++

y

--

1
-1

0
0

01

1 0
x

1=

Bitwise Operators

& AND
| OR
^ exclusive OR (XOR)
~ one’s complement (NOT)
<< shift left
>> shift right

Assignment Operators
= x = y

Shorthand operators

variable operator= expression

can be rewritten as

variable = variable operator expression

+= x += y x = x + y
-= x -=y x = x - y
*= x *= y x = x * y
/= x /= y x = x / y
%= x %= y x = x % y

int x;
x = 2;
x *= 3 + 2;

Result:
x *= x * (3 +2)
x = 2 * 5
x = 10

x

x

*

3
+

10
52

3

10=

2
2 left to right&&

left to right||
right to left?:
right to left= += -= *= /= %= >>= <<= &= ^= !=
left to right,

left to right&
left to right^
left to right|

left to right== !=
left to right< <= > >=
left to right<< >>
left to right+ -
left to right* / %
right to left! ~ + - ++ -- & * (type) sizeof
left to right() [] . ->

AssociativityOperators

Precedence and Associativity of
Operators

Мариана Горанова

Информатика 1 8

Exercise: Compute the amount of soda (in liters) in
a refrigerator that is field with two-liter bottles and
12-ounce cans. Use the conversion:
1 ounce [oz] = 29.586 milliliters [mL]
1. Define constant BOTTLE_VOLUME.
#define BOTTLE_VOLUME 2.0f
2. Define constant LITER_PER_OZ.
#define LITER_PER_OZ 0.029586f
3. Define constant CAN_VOLUME.
#define CAN_VOLUME 12 * LITER_PER_OZ
4. Declare variables in main function:
int bottles, // number of bottles

cans; // number of cans
float total; // total value

5. Input number of bottles.
scanf ("%d", &bottles);
6. Input number of cans.
scanf ("%d", &cans);
7. Compute the total volume.
total = bottles * BOTLE_VOLUME + cans * CAN_VOLUME;
8. Print the results.
printf ("The total volume is %.3f [L]\n", total);

/* Compute the amount of soda [L] in a refrigerator that is
field with two-liter bottles and 12-ounce cans.
1 ounce [oz] = 29.586 milliliters [mL]

*/
#include <stdio.h>
/* Conversion constants */
#define BOTTLE_VOLUME 2.0f /* 2-liter bottles */
#define LITER_PER_OZ 0.029586f /* 1 oz = 29.586 mL */
#define CAN_VOLUME 12 * LITER_PER_OZ /* 12-oz. cans */

int main ()
{

int bottles, // number of bottles
cans; // number of cans

float total; // total value
printf ("Enter the number of bottles: ");
scanf ("%d", &bottles);
printf ("Enter the number of cans: ");
scanf ("%d", &cans);
/* compute total volume */
total = bottles * BOTLE_VOLUME + cans * CAN_VOLUME;
/* print result */
printf ("The total volume is %.3f [L]\n", total);
return 0;

}

