
Mariana Goranova

Computing 1 1

Loops

Loops (iteration statements) allow a set of
instructions to be repeatedly executed until a
certain condition is reached.

The condition may be predefined (for loop) or
open ended (while and do-while loop).

while Loop
initialization
while (expression)

statement

After initialization the expression is evaluated; if it is
true (≠0), statement is executed and expression is re-
evaluated. This cycle continues until expression
becomes 0, at which point execution resumes
after statement.

initialization

expression

≠0

=0

statement End

Example: The program copies its input to its output
one character at a time.

read a character
while character is not end-of-file indicator

output the character just read
read a character

/* Copy input to output #1 */
#include <stdio.h>
int main()
{

int ch;
printf ("Enter sequence of characters. For end press Ctrl/Z ");
ch = getchar ();
while (ch != EOF)
{

putchar (ch);
ch = getchar ();

}
return 0;

}

/* Copy input to output #2 */
#include <stdio.h>
int main()
{

int ch; /* character */
printf ("Enter sequence of characters. For end press Ctrl/Z ");
while ((ch = getchar ()) != EOF)
{

putchar (ch);
}
return 0;

}

Example: The program counts characters.

set number of characters to 0
read a character
while character is not end-of-file indicator

increment number of characters
read a character

print number of characters

Mariana Goranova

Computing 1 2

/* Count characters in input */
#include <stdio.h>
int main()
{

int nc; /* number of characters */
printf ("Enter sequence of characters. For end press Ctrl/Z ");
nc = 0;
while (getchar () != EOF)
{

++nc;
}
printf ("Number of characters = %d\n", nc);
return 0;

}

Example: The program counts input lines. Each line
in the sequence of lines terminates by a newline.

set number of lines to 0
read a character
while character is not end-of-file indicator

if character is newline
increment number of lines

read a character
print number of lines

/* Count lines in input */
#include <stdio.h>
int main()
{

int ch, /* character */
nl; /* number of lines */

printf ("Enter sequence of lines. For end press Ctrl/Z ");
nl = 0;
while ((ch = getchar ()) != EOF)
{

if (ch == '\n')
++nl;

}
printf ("Number of lines = %d\n", nl);
return 0;

}

Example: The program counts lines, words, and
characters. Word is any sequence of characters that
does not contain a delimiter, i.e. white space (blank,
tab or newline).

set state outside a word
set number of characters to 0
set number of words to 0
set number of lines to 0
read a character
while character is not end-of-file indicator

increment number of characters
if character is newline

increment number of lines
if character is a delimiter

set state outside a word
else if the state is outside a word

set state inside a word
increment number of words

read a character
print number of lines

/* Count lines, words, and characters. */
#include <stdio.h>
#define IN 1 /* inside a word */
#define OUT 0 /* outside a word */
int main()
{

int ch, /* character */
nl, /* number of lines */
nw, /* number of words */
nc, /* number of characters */
state; /* whether the program is */

/* currently in a word or not */
printf ("Enter sequence of lines. For end press Ctrl/Z ");
state = OUT;
nl = nw = nc = 0;

Mariana Goranova

Computing 1 3

while ((ch = getchar ()) != EOF)
{

++nc;
if (ch == '\n') /* newline */

++nl;
if (ch == ' ' || ch == '\n' || ch == '\t') /* delimiter */

state = OUT;
else if (state == OUT) /* first character of a word */
{

state = IN;
++nw;

}
}
printf ("Lines = %d\nWords = %d\nCharacters = %d\n",

nl, nw, nc);
return 0;

}

do-while Loop
do

statement
while (expression);

The statement is executed, then expression is
evaluated; if it is true (≠0), statement is evaluated
again, and so on. When the expression becomes
false (0), the loop terminates.

expression

≠0

=0

statement

End

Example: The program tests whether the input
integer number is in the given region [1,100].

do
input number

while number is out of range

/* Test the validity of the input number in the region 1 – 100. */
#include <stdio.h>
int main()
{

int number;
do
{ printf ("Enter number between 1 and 100: ");

scanf ("%d", &number);
}
while (number<1 || number>100);
return 0;

}

for Loop
for (initialization; expression; actualization)

statement

actualization

initialization

expression

≠0

=0

statement End

After initialization the expression is evaluated; if it is true
(≠0), statement is executed, actualization is evaluated and
expression is re-evaluated. This cycle continues until
expression becomes 0, at which point execution
resumes after statement.

Any of the three parts can be omitted, although
the semicolons must remain.

Infinite loop

for (; ;)
{

. . .
}

or

while (1)
{

. . .
}

Mariana Goranova

Computing 1 4

Example: The program calculates the sum of a
sequence of integers with a given number.

enter the given number
set the sum to 0
set the counter to 1
while the given number is not reached

input an integer
add integer to the sum
increment the counter

print the sum

/* Calculate sum of a given number of integers */
#include <stdio.h>
int main()
{

int n, /* number of integers */
number, /* integer number */
count, /* counter */
sum; /* sum of integers */

printf ("Enter number of integers: "); scanf("%d", &n);
sum = 0;
for (count = 1; count <= n; count++)
{ printf ("Enter integer: ");

scanf("%d", &number);
sum += number;

}
printf("Sum of integers is %d.\n", sum);
return 0;

}

