
Functions

23-11-20101 DD@PCT

Modular Programming

• Breaking the solution into small,
manageable program pieces – modules

• Modules are separately designed and
sequentially executed

• Top-down design

23-11-20102 DD@PCT

Advantages
• Since modules are small parts of the solution, they are

simple and easy to be created and tested.

• Modules design could be done in parallel for large projects.

• Once tested, modules are reusable in one or more
programs and can be stored in libraries for further
implementation.

• When a program is written in modules it is much more
readable and understandable for people.

• When modules for computing values or performing single
actions are available the programmer has the freedom to
operate at higher level of abstraction while solving the
problem.

23-11-20103 DD@PCT

Modules in C Language

• Functions

– relatively independent parts of the program

– which have unique name and

– can perform specific operations

• One program consists of one or more
functions

• The first one is called main()

23-11-2010DD@PCT4

Functions

• The main() function calls, or invokes, the
other functions

• The other functions can call each other,
too

• A function may return one result to the
calling function

23-11-2010DD@PCT5

Program Structure

23-11-2010DD@PCT6

Standard Library Functions
• Preliminary designed, developed and stored in

standard libraries of the C environment

• These functions are called library functions

• When such a function is needed in a program
it is just invoked by its name and specification
of arguments

• The programmer doesn’t have to take care
about the function design and syntax.

23-11-2010DD@PCT7

Examples

• bx = sin(x)*sin(x);

• y = exp(x);

• z = pow(3.0, 2.0);

• ch = toupper(ch);

23-11-2010DD@PCT8

Implementation

• The programmer needs to know:

– the location of the function, to include an
appropriate header file;

– the correct name, for identification;

– the number and the type and the ordering of
arguments, to send the adequate argument
values;

– the type of its returned result, to place it into
an appropriate type variable or expression.

23-11-2010DD@PCT9

Implementation

• The argument can be given as an
expression of the appropriate type

• The result of the function has to be
assigned to a variable of appropriate type

• Examples:

x1 = (-b + sqrt(b * b - 4 * a * c))/(2 * a);

y = pow(cos(x), 2.0);

printf("%c", toupper(ch));

23-11-2010DD@PCT10

Programmer Defined Functions

• If a function doesn’t exist in any library

• A programmer designs it to

– solve a small particular problem within the
whole program

– allow invocation by name and argument
specification

– release the programmer from care about
details while designing the whole program
structure

–

–

23-11-2010DD@PCT11

Example
• The function

sin(x)
f(x) = ------

x

• can be designed as

double sinc(double x)

{

if (fabs(x) < 0.001)

return 1.0;

else return sin(x)/x;

}

• and invoked as y = sinc(x);

23-11-2010DD@PCT12

Function Definition

• One function definition consists of two
parts:

• The header is the title line of the function. It
contains an information that is important for
the link between this function and other
functions that call it.

• The body defines how the function works.

23-11-2010DD@PCT13

Function Header

23-11-2010DD@PCT14

• The header contains

– the name of the function,

– definitions of the function argument(s) and

– the type of the result it returns

• Examples

double pow(double x, double y) /* two arguments of type double */

int read() /* no arguments */

char key(void) /* no arguments */

Header
• The name of the function is a standard identifier chosen by

the programmer

• The arguments declaration represent the information
passed to the function when it is called to perform an
action

• The <result type> is a standard data type of the value
that is returned by the function

– If the function gives no result, the <result type> is void

– If the <result type> is not given, int is considered

23-11-2010DD@PCT15

Function Body

• Compound statement containing

– declarations and

– statements

– enclosed in braces

23-11-2010DD@PCT16

Declarations

23-11-2010DD@PCT17

• Define some of the variables used inside the
function

• The variables declared in the body of the
function are called local variables

• Local variables can be used locally, by the
statements inside this function

• The names of local variables are not known
outside the function in which they are declared
and their values are not valid anywhere else.

Statements

• Perform the operations which the
function is designed for

• The operations are performed

– on the function parameters,

– on the local variables, as well as

– on other external objects

23-11-2010DD@PCT18

The return Statement
• At least one of the statements in a function is a return

statement

– performs an action of returning the result to the routine which
has invoked this function

• When a return statement is executed, it terminates
the execution of the function and passes the control
back to the calling statement

• The general form of this statement is:

return <expression>;

• A function may have no return or more than one
returns

23-11-2010DD@PCT19

Example

• eps – local variable

23-11-2010DD@PCT20

Function Invokation

23-11-2010DD@PCT21

• Passing the control to the function

• Sending actual values to its parameters

Passing Parameters

• Actual parameters vs. formal arguments

– The actual parameters match in number,
type and order to the formal parameters

• Call-by-Value vs. Call-by-Reference

23-11-2010DD@PCT22

Function Prototype
• Declares the function which will be called by

another function and informs the compiler
about the function name and parameters
types

• can be placed

– inside the calling function, with other variable
declarations, as well

– as a global declaration, with the preprocessor
directives

• header file – contains function prototypes,
can be referenced by an include statement

23-11-2010DD@PCT23

Function Prototype

• Similar to the header of the function

• Differs:

– no names of arguments

– semicolon at the end

main()
{

double inp, out;
double sinc(double);
…

}

23-11-2010DD@PCT24

Example
#include <stdio.h>

int sqr(int); /* function prototype */

main()

{

int b;

scanf("%d", &b);

printf("%d\n", sqr(b)); /* function invocation */

}

int sqr(int b) /* function definition */

{

b = b * b;

return b;

}

23-11-2010DD@PCT25

Global Variables
• Defined outside the

function and still
available for it

• Every function can
access and change
them – side effect

int radius;

main()

{

...

}

double area()

{

return (3.1415*radius*radius);

}

double circum()

{

return (2 * 3.1415 * radius);

}

23-11-2010DD@PCT26

Example
// Global and local variables

#include <stdio.h>

int n=20; /* a global variable n */

main()

{

float vat(float);

float value; /* a local variable value, for main() only */

printf("Value ");

scanf("%f", &value);

printf("The price with VAT is %.2f lv.\n", value+vat(value));

printf("The price with VAT is %.2f lv.\n", (100.0+n)/100*value);

}

float vat(float x)

{

int n = 30; /* a local variable n, for vat() only */

return (x*n/100);

}
23-11-2010DD@PCT27

Macro Definitions

• Short functions defined in one line

#define identifier(<parameter list>) <token_string>

• The preprocessor replaces every
occurrence of identifier with the token
string, except in quoted strings

• There may be zero or more parameters
of the token string which are substituted
for in later text

23-11-2010DD@PCT28

Example
#define SQ(x) ((x) * (x))

…

printf(“%f %f”, SQ(w),SQ(5+w));

…

• When SQ(w) occurs in the program it is replaced by
(w * w), and SQ(5+w) is replaced by ((5+w)*(5+w))

• The identifier is always written in uppercase letters

• The parenthesis is placed just after the identifier

• No control of syntactic correctness

23-11-2010DD@PCT29

Recursion
• A function that calls itself

• In mathematics: the expression

n! = 1.2.3.4.5 … n can be presented as

• n(n-1)(n-2)(n-3)…3.2.1, for n >0, and

• n!=1, for n=0

• In Programming: a recursive function
int factorial(int n)

{

if (n <= 1) return 1;

else return (n * factorial(n-1));

}
23-11-2010DD@PCT30

Recursion Iterations

23-11-2010DD@PCT31

Summary (1)
• C programs begin execution with a main() function, but they can

contain other functions

• Any functions can refer to another function, defined in the same file
or in another file, or in a library

• Some functions are pre-defined and stored into libraries, others
have to be defined by the programmers.

• A programmer designed function is represented in a program by:

1. function definition (description of the operations done by this function)

2. function declaration, or prototype (introduction of the function)

3. one or more function invocations, or calls (initializing the work of this function
with particularly sent parameters to it)

• Generally, a function works with three types of variables:

– variables sent to it by the function which calls it;

– local variables;

– global variables.
23-11-2010DD@PCT32

Summary (2)
• To accept and work with variables sent by the calling function, a

function has a formal parameters list. It shows

1. the number,

2. the type and

3. the order of function parameters which have to receive values from the calling
function.

• The invocation statement contains an actual parameter list with the
same number, type and order of values to be sent

• Variables declared inside a function are for a local use only - local
variables. They have no meaning outside this function.

• Functions can operate with variables defined outside all functions -
global variables

• Short functions can be described as macro definitions.

• Functions which call themselves are called recursive.

23-11-2010DD@PCT33

Key Terms
• module

• function

• function definition

• function declaration

• function prototype

• function call

• function invocation

• library function

• programmer-defined function

• formal parameter

• actual parameter

• local variable

• global variable

• void

• macro definitions

• recursive functions

23-11-2010DD@PCT34

