
Pointers

26-Oct-10DD@PCTPage 2

Variable Address

• A variable stores a value represented by the variable‟s
name, or identifier

int i = 5; i++; printf(“%d”, i);

• The variable value inhabits certain number of memory
cells

• The variable‟s name is associated with the location of
these memory cells

• The memory location is specified by memory address

• The address is considered as a hexadecimal number

26-Oct-10DD@PCTPage 3

Pointer Variable

• A pointer is a variable whose value is the address of some other
object

• The address of an object is obtained by & operator, like in

scanf(“%d”, &x);

• The object can have any valid type: int, float, struct, etc.

• The pointer variable is declared by identifier, and by type.

<type> *<identifier>

• The type of the pointer is the type of the objects whose addresses
this pointer can hold

• The identifier is the name of the pointer variable

• A pointer variable is stored in one machine word, regardless of
the variable type to which it points

26-Oct-10DD@PCTPage 4

Example

• If a pointer to an integer is declared as
int *px;

– px is the name of the pointer;

– px is a variable of type int *;

– int * means a pointer to an integer;

– the value *px is of type integer.

26-Oct-10DD@PCTPage 5

Reference and De-reference

• Since a pointer variable contains the address of another
variable, the value of that variable can be found at that
address:

main()

{

int x, *px; /* defines the pointer px */

px = &x; /* px assigns &x => address of x */

px = x; / *px => x is the value px points to */

}

26-Oct-10DD@PCTPage 6

Example Program

main()

{

int x=5, y=6, *p;

p = &x; /** pointer needs to point to something **/

printf("1. x=%d, y=%d, *p=%d\n", x, y, *p);

x = 7; printf("2. x=%d, y=%d, *p=%d\n", x, y, *p);

*p = 8; printf("3. x=%d, y=%d, *p=%d\n", x, y, *p);

p = &y; printf("4. x=%d, y=%d, *p=%d\n", x, y, *p);

*p += 10 * (x * *p);

printf("5. x=%d, y=%d, *p=%d\n", x, y, *p);

}

26-Oct-10DD@PCTPage 7

Output

1. x=5, y=6, *p=5

2. x=7, y=6, *p=7

3. x=8, y=6, *p=8

4. x=8, y=6, *p=6

5. x=8, y=486, *p=486

26-Oct-10DD@PCTPage 8

Pointer Operations

• Standard operations
– Assignment

• an address of a variable of any type, or of an array element
• a NULL constant - the pointer points to nowhere
• the address of a variable which is a pointer itself

Examples
int *p, x;
void *v:
v = &x; /* address of a variable */
p = NULL; /* NULL address */
p = (int *) 1778; /* an absolute address */
v = p;

 Pointers can not point to constants, ordinary expressions or
register variables.

26-Oct-10DD@PCTPage 9

Pointer Operations

• Specific pointer arithmetic

– adding an integer constant to a pointer (including
increment)

– subtracting an integer constant from a pointer
(including decrement)

– subtracting one pointer from another of the same
type

– comparing two pointers of the same type

26-Oct-10DD@PCTPage 10

Examples
#define NULL 0

main()

{
int x, y;
int *px=(&x); /** can initialize an automatic pointer **/
int *py;
void *pv;
py = px; /** assign to pointer of same type **/
px = (int *) pv; /** recast a (void *) pointer **/
pv = (void *) px; /** recast to type (void *) **/
py = px+2; /** for use with arrays **/
px++; /** for use with arrays **/
if (px == NULL) … /** compare to null pointer **/
py=NULL; /** assign to null pointer **/

}

26-Oct-10DD@PCTPage 11

Invalid Pointer Operations

• Adding two pointers

• Multiply and divide pointers

• Shift or mask pointers

• Add float or double numbers to a pointer

• Assign pointers of different types
without a cast

26-Oct-10DD@PCTPage 12

Wrong Examples

/** Illegal Pointer Operations **/

main()

{
int x, y;
int *px, *py, *p;
float *pf;
px = &x; /** legal assignment **/
py = &y; /** legal assignment **/
p = px + py; /** addition is illegal **/
p = px * py; /** multiplication is illegal **/
p = px + 10.0; /** addition of float is illegal **/
pf = px; /** assignment of different types is illegal **/

}

26-Oct-10DD@PCTPage 13

Pointers and Arrays
• An array is a contiguous space in memory which holds a certain

number of objects of one type

• It is enough to know the address of the first cell in order to locate
the others

• The array name is considered as a pointer to the array elements

• The array and the pointer are closely related, in that
– &x[i] and (x+i) are both pointers to the i+1 element
– x[i] and *(x+i) both get the i+1 element in the array

• The array notation is a form of relative addressing, pointing the array
elements is absolute addressing

26-Oct-10DD@PCTPage 14

Pointers and Arrays

• There are differences between pointers and arrays
– array name is a constant, while a pointer is a variable, so

int x[10], *px;
px = x; px++; /** valid **/
x = px; x++; /** invalid, cannot assign a new value **/

– defining the pointer only allocates memory space for the
address, and the pointer does not point to anything, while
defining an array (int x[10];) gives a pointer to a specific
place in memory and allocates enough space to hold all the
array elements

• To allocate space for an array declared as a pointer,
use
– *malloc() or *calloc(), functions declared in <stdlib.h>
– free() to deallocate the space after has been used.

26-Oct-10DD@PCTPage 15

Memory Allocation
/*** memory_allocation for arrays referenced by pointers ***/

#include <stdlib.h>

main()

{
int n;
float *a, *b;
a = (float *) malloc(n * sizeof(float)); /** not initialized **/
b = (float *) calloc(n, sizeof(float)); /** initialized to 0 **/
if ((a == NULL) || (b == NULL))
printf("unable to allocate space");
…
…
free(a);
free(b);

}

26-Oct-10DD@PCTPage 16

Multidimensional Arrays

• Array of arrays

– everyone introduces a dimension (index)

– the elements can be referenced relatively or
absolutely

26-Oct-10DD@PCTPage 17

Multidimensional Arrays
• A single element of a two-dimensional array can be addressed at

least in four different ways by implementation of either relative or
absolute, or both referencing:
td[1][3]
(td[1] + 3)
(td + 1)[3]
((td +1) + 3)

• A pointer to a pointer can be used instead of a multidimensional
array
int **y;
– y points to a one-dimensional array whose elements are pointers, *y

points to the first row, and **y is the first value.

• When passing a two-dimensional array to a function, it can be
referenced in four ways:
– **y, as a pointer to a pointer;
– *y[], an array of pointers;
– y[][COL], an array of arrays, unspecified number of rows; or
– y[ROW][COL], an array of arrays, with the size fully specified.

26-Oct-10DD@PCTPage 18

Pointers and Functions

• Pointers as Function Arguments - Call by Value
– when a function is called, it gets a local copy of the

arguments
• it cannot affect a value passed to it, only its local copy

– if it is necessary to change the original values, not
the arguments, but their addresses can be passed
instead - Call by Reference

• the function gets a copy of the address, which gives it
access to the value itself

• the function can affect the global values

• For example, to swap two numbers:

26-Oct-10DD@PCTPage 19

Example: swap two numbers
main()

{ float x=5.0, y=6.0;
void swap_A(float *x, float *y), swap_V(float x, float y);
printf("x = %6.2f, y = %6.2f\n", x, y);
swap_V(x, y); printf("x = %6.2f, y = %6.2f\n", x, y);
swap_A(&x, &y); printf("x = %6.2f, y = %6.2f\n", x, y);

}

void swap_V(float x, float y) /** passes values of x and y **/

{
float tmp = x;
x = y;
y = tmp;

}

void swap_A(float *x, float *y) /** passes addresses of x and y **/

{
float tmp = *x;
*x = *y;
*y = tmp;

}

26-Oct-10DD@PCTPage 20

Pointers and Functions

• Functions Returning Pointers

– a pointer can be returned by a function

– three pointers must be of the same type (or be
recast appropriately):

• the function return-type

• the pointer type in the return statement

• the variable the return-value is assigned to

– the pointer should not point to an automatic local
variable within the function, since the variable will
not be defined after the function is exited so the
pointer value will be invalid

26-Oct-10DD@PCTPage 21

Example - I
/*** returns a pointer to the maximum value in an array ***/

int maximum_val1(int [], int);

int maximum_val2(int *, int);

int *maximum_ptr1(int *, int);

int *maximum_ptr2(int *, int);

main()

{ int i,n;
int A[100], *max;
printf("number of elements: "); scanf("%d",&n);
printf("input %d values:\n", n);
for (i=0; i<n; i++) scanf("%d", A+i);
printf("maximum value = %d\n", maximum_val1(A,n));
printf("maximum value = %d\n", maximum_val2(A,n));
max = maximum_ptr1(A,n);
printf("maximum value = %d\n", *max);

}

26-Oct-10DD@PCTPage 22

Example - II
int maximum_val1(int A[], int n)

{ int max, i;
for (i=0, max=0; i<n; i++)

if (A[i] > max) max = A[i];
return max;

}

int maximum_val2(int *a, int n)

{ int max=0;
for (; n>0 ; n--, a++)

if (*a > max) max = *a;
return max;

}

26-Oct-10DD@PCTPage 23

Example - III
int *maximum_ptr1(int *a, int n) /*** will work ***/

{ int *max = a;
for (; n>0; n--, a++)

if (*a > *max) max = a;
return max; /*** max points a cell in the array ***/

}

int *maximum_ptr2(int *a, int n) /*** won't work ***/

{ int max = *a;
for (; n>0; n--, a++)

if (*a > max) max = *a;
return &max; /*** max will not exist after function ends ***/

}

26-Oct-10DD@PCTPage 24

Strings

• Strings are represented as one-dimensional arrays of
type char

• In the memory strings are stored in a sequence of
one-or-two byte locations

• The sequence is always completed by a character „\0‟

• Example

char x[5] = { „C‟, „H‟, „A‟, „R‟ };

C H RA \0

26-Oct-10DD@PCTPage 25

Strings
• Strings can be represented by a pointer of type char to reference

its characters
– a pointer to the firs character only is needed
– all the other characters can be found at the following addresses
– the last one will be just before the character „\0‟

• Example
char *p;
p = “Good day”;
printf(“%s\n”, p);
printf(“%s\n”, p+5);

• The character „d‟ only can be referenced as *(p+5), as well as
“Good day”[5].

• The character „\0‟ is not printed, it is only used to indicate the
end of the sequence to be printed or processed

26-Oct-10DD@PCTPage 26

String Objects

• String constant
– “ some text”

• String variable
– its size is needed for declaration

• given explicitly
• especially allocated – dynamically created

– The function malloc() can be used
• parameter of malloc() is the number of bytes to be allocated
• result is a pointer to the allocated memory
• prototype of this function is in <alloc.h>

• Example:
#include <alloc.h>
char *s;
s = malloc (100);

26-Oct-10DD@PCTPage 27

• The string characters can be accessed and
modified by incrementing the pointer which
defines the string

• For protection of a string against modification,
a const modifier can apply

• Example:

char s1[] = "Day";

const char *s2 = "Night";

26-Oct-10DD@PCTPage 28

Example
// Use of pointers with the string copy

main()

{
char *t = "hello", s[100];
void strcpy(char *, char *);
strcpy(s,t);
printf("%s\n", s); /** will print 'hello' **/

}

void strcpy(char *s, char *t)

{

while (*s++ = *t++) /** while ((*s++ = *t++) != '\0') **/

;

}

