
Mariana Goranova

Information Technologies 1

Information Technologies
Lectures 30 hours

Labs 30 hours

Exam

Lecturers: Assoc. Prof. Mariana Goranova, PhD
Assoc. Prof. Rajna Pavlova, PhD j ,
Department of Programming and
Computer Technologies
Technical University of Sofia

Room: 2304

Е-mail: mgor@tu-sofia.bg

URL: pct.tu-sofia.bg/Moodle001/
Username: student Password: pktt

Database Systems

Bibliography
1. C. Y. Date. An Introduction to Database Systems,

Addison-Wesley, Philippines, 1987.
2. Jeffrey D. Ullman, Principles of Database and

Knowledge Base Systems, Volume I, Computer
Science Press, 1988.

3. John C. Shepherd, Database Management Theory
and Application, Richard Irwin, Inc., Boston, 1990.

4. Thomas Connolly, Carolyn Begg and Anne
Strachan, Database Systems, A Practical
Approach to Design, Implementation and
Management, Addison-Wesley Publishing
Company, Inc., 1996.

5. Евлоги Георгиев, Научете сами SQL,
Ръководство за работа с бази данни, част I и II,
Express Design, София, 1998.

1. The ability to manage persistent data – there is a
database which exists permanently and the
system accesses and manages the contents of
this database

A database system is an important type of
programming system, used today on the biggest
and the smallest computers. There are two
qualities that distinguish database systems from
other sorts of programming systems:

this database.
2. The ability to access large amounts of data

efficiently – the file system also manages
persistent data, but does not provide fast access
to the data; simple access techniques such as
linear scans of the data, are usually not
adequate.

Other capabilities of database systems:
1. Support for at least one data model –

mathematical abstraction through which the
user can view the data.

2. Support for certain high-level languages that
allow the user to define the structure of data,
access data, and manipulate data.

3. Transaction management, the capability to
provide correct, concurred access to the
database by many users at once.

4. Access control, the ability to limit access to data
by unauthorized users, and the ability to check
the validity of data.

5. Flexibility, the ability to recover from system
failures without losing data.

Levels of Abstraction in a Database
System

user group 1

user group 2

.

.
.
.

conceptual
database physical

database

view 1

view 2

user group n

..

definition and
mapping written

in subscheme data
definition language

definition and
mapping written

in data
definition language

implemented
on physical

devices

view n

Mariana Goranova

Information Technologies 2

• The Physical Database Level
A collection of files and the indices or other storage
structures used to access them efficiently is termed
a physical database. The physical database resides
permanently on secondary storage devices, such as
disks, and many different physical databases can be
managed by the same database management system
software.

• The Conceptual Database Level• The Conceptual Database Level
The conceptual database is an abstraction of the
real world as it pertains to the users of the database.
A database system provides a data definition
language, or DDL, to describe the conceptual scheme
and the implementation of the conceptual scheme by
the physical scheme (in terms of a “data model”).

The conceptual database is intended to be a unified
whole, including all the data used by a single
organization. The advent of database management
systems allowed an enterprise to bring all its fields
of information together.

The fundamental data models are:
• an entity-relationship model
• relational data model
• network data model
• hierarchical data model
• object-oriented data model.

• The View Level
A view or subscheme is a portion of the conceptual
database or an abstraction of part of the conceptual
database. Most systems provide a facility for
declaring views, called a subscheme data definition
language and a facility for expressing queries and
operations on the views, which would be called a
subscheme data manipulation language.
In a sense, the construction of views is the inverse In a sense, the construction of views is the inverse
of the process of database integration; for each
collection of data that contributed to the conceptual
database, we may construct a view containing just
that data. Views are also important for enforcing
security in a database system, allowing subsets of
the data to be seen only by those users with a need
or privilege to see it.

Example: We examine arrays – an analogy from the
programming languages world.
1. Conceptual level – we might describe an array by a

declaration such as
#define N 100
#define M 50
int A[N][M];
2. Physical level – we might see the array A as stored

in a block of consecutive storage locations, by the g , y
rule:
A[i][j] is in location ao+sizeelement(Mi+j)

3. A view of the array A might be formed by declaring
a function f(i) to be the sum from j=0 to M-1 of A[i][j].
In this view, we not only see A in a related but
different form, as a function rather than an array,
but we have obscured some of the information,
since we can only see the sums of rows, rather
than the rows themselves.

Schemes and Instances

When the database is designed, we are interested in
plans for the database; when it is used, we are
concerned with the actual data present in the
database.
The current contents of a database we term as
instance of the database (or extension of the
d t b d t b t t)database or database state).
Plans for a database tell us of the types of entities
that the database deals with, the relationship among
these types of entities, and the ways in which the
entities and relationships at one level of abstraction
are expressed at the next lower (more concrete)
level.

The term scheme is used to refer to plans, so we talk
of a conceptual scheme as the plan for the
conceptual database, and we call the physical
database plan a physical scheme. The plan for the
view is often referred to simply as a subscheme (or
intention).
Example: We can continue with the array analogy.
The description of arrays and functions given in that
example was really schema information.
1. Physical scheme is the statement, that the array A

is stored beginning at location ao, and that A[i][j]
appears in word
ao+sizeelement(Mi+j).

2. Conceptual scheme is the declaration
int A[N][M].

3. Subscheme is the definition of the function f(i),
that is,

() ∑
=

=
M-1

j
if

0
A[i][j]

Mariana Goranova

Information Technologies 3

As an example of an instance of this conceptual
scheme, we could let n=m=3 and let A be the “magic
square” matrix:

8 1 6
3 5 7
4 9 2

Then, the physical instance would be the nine words
starting at location containing in orderstarting at location , containing, in order,

8 1 6 3 5 7 4 9 2.

Finally, the view instance would be the function

f(1)=f(2)=f(3)=15.

The chain of abstraction, from view to conceptual to
physical database, provides two levels of “data
independence”. Most obviously, in a well-designed
database system the physical scheme can be
changed without altering the conceptual scheme or
requiring a redefinition of subschemes. This

Data Independence

requiring a redefinition of subschemes. This
independence is referred to as physical data
independence. It implies that modifications to the
physical database organization may affect the
efficiency of application programs, but it will never
be required that we rewrite those programs just
because the implementation of the conceptual
scheme by the physical scheme has changed.

An illustration, references to the array A should work
correctly whether the physical implementation of
arrays is row-major (row-by-row, as in the examples)
or column-major (column-by-column).

The relationship between views and the conceptual
database also provides a type of independence
called logical data independence. As the database is
used, it may become necessary to modify the
conceptual scheme, for example, by adding conceptual scheme, for example, by adding
information about different types of entities or extra
information about existing entities. Many
modifications to the conceptual scheme can be made
without affecting existing subschemes, and other
modifications to the conceptual scheme can be made
if we redefine the mapping from the subscheme to
the conceptual scheme.

Again, no change to the application programs is
necessary. The only kind of change in the conceptual
scheme that could not be reflected in a redefinition
of a subscheme in terms of the conceptual scheme
is the deletion of information that corresponds to
information present in the subscheme. Such changes
would naturally require rewriting or discarding some
application programs.

A data model is a mathematical formalism with two
parts:
1. A notation for describing data, and
2. A set of operations used to manipulate that data.

The EntityThe Entity--Relationship ModelRelationship Model

Data ModelsData Models

The purpose of the entity-relationship model is to
allow the description of the conceptual scheme of an
enterprise to be written down without the attention
to efficiency or physical database design. The entity-
relationship diagram will be turned later into a
conceptual scheme in one of the other models, e.g.,
the relational model.

Entity
An entity is a thing that exists and is distinguishable;
that is, we can tell one entity from another. For
example, each person is an entity, and each
automobile is an entity.
Entity Set
A group consisting of all “similar” entities forms an
entity set. Examples of entity sets are: 1) All
persons; 2) All red-haired persons; 3) All studentspersons; 2) All red-haired persons; 3) All students.
Entity set is the current subset of all members of a
given entity set that are present in the database.
Example: The Technical University of Sofia may
design its database scheme to have an entity set
STUDENTS. In the current instance of that entity set
are all students presently studied in TU, not all
students in Bulgaria or all the students that could
ever exist.

Mariana Goranova

Information Technologies 4

Attributes are entity sets properties, which associate
with each entity in the set a value from a domain of
values for that attribute. The domain for an attribute
is a set of integers, real numbers, or character
strings.
Example: The entity set of students may be declared
to have attributes such as name (a character string),

Attributes and Keys

to have attributes such as name (a character string),
faculty number (an integer number), and so on.

An attribute or set of attributes whose values
uniquely identify each entity in an entity set is called
a key for that entity set. Often an arbitrary serial
number is supplied as an attribute to serve as a key.

Example: An entity set that included only students
from the TU could use the single attribute “faculty
number” as a key. However, suppose we wished to
identify uniquely members of an entity set including
students of many universities. We could not be sure
that two universities do not use the same faculty
numbers, so an appropriate key would be the pair of
attributes FACULTY_NO and UNIVERSITY.

We say A isa B, read “A is a B”, if entity set B
is a generalization of entity set A, or
equivalently, A is a special kind of B. The
primary purpose of declaring isa relationship
between entity sets A and B is so A can
inherit the attributes of B, but also have
some additional attributes. Each entity a in
set A is related to exactly one entity b in set

Isa Hierarchies

B

A

isa

set A is related to exactly one entity b in set
B, such that a and b are really the same
entity. No b in B can be so related to two
different members of A, but some members
of B can be related to no member of A. The
key attributes for entity set A are actually
attributes of entity set B, and the values of
those attributes for an entity a in A are
taken from the corresponding b in B.

Example: A supermarket might well have an entity
set EMPLOYEES, with attributes such as ENAME, and
SALARY. A few employees are managers. Since
managers are employees, we have an isa relationship
from MANAGERS to EMPLOYEES. To access the
salary or name of a manager, we follow the isa
relationship to the employee entity that the manager
is, and find that information in the attributes SALARY
and ENAME of EMPLOYEES.

-ENAME: string
-SALARY: double

EMPLOYEES

MANAGERS

isa

Relationships
A relationship among entity sets is an ordered list of
entity sets. A particular entity set may appear more
that once on the list. If there is a relationship R
among entity sets E1, E2, …, Ek, then the current
instance of R is a set of k-tuples. We call such a set a
relationship set.
Each k-tuple (e1, e2, …, ek) in
relationship set R implies that relationship set R implies that
entities e1, e2, …, ek, where e1 is
in set E1, e2 is in set E2 and so
on, stand in relationship R to
each other as a group. The most
common case, by far, is where
k=2, but lists of three or more
entity sets are sometimes
related.

Entity-Relationship Diagram
1. Rectangles represent entity sets.

2. Circles represent attributes. They are linked to
their entity sets by edges. Sometimes, attributes
that are part of the key for their entity set will be
underlined.

3. Diamonds represent relationship. They are linked
to their constituent entity sets by edges which to their constituent entity sets by edges, which
can be undirected edges or directed edges (arcs).

Mariana Goranova

Information Technologies 5

Example: A simple entity-relationship diagram has
three entity sets, EMPS, DEPS, and MANAGERS. The
first two are related by relationship ASSIGNED_TO and
the second and third are related by MANAGES. We
show the attributes, NAME, PHONE, and SALARY for
EMPS; NAME is taken to be the key. Departments have
attributes NAME (of the departments) and LOCATION,
while MANAGERS has only the attribute NAME.

EMPS

PHONE SALARY

NAME

ASSIGNED_TO DEPTS

LOCATION

NAME

MANAGES MANAGERS

NAME

a)

Example: Suppose we have an entity set PERSONS
and we have a relationship PARENT_OF, whose list on
entity sets is PERSONS, PERSONS. The relationship
set for relationship PARENT_OF consists of all and
only those pairs (p1, p2) such that person p2 is the
parent of person p1.
We notice two edges from PARENT_OF to PERSONS;
the first represents the child and the second – the
parent.

NAME PERSONS PARENT_OF

b)

child

parent

An alternative way of representing this information is
to postulate the existence of entity set MOTHERS and

l ti hi MOTHERS i PERSONS Thi t

Example: Suppose we have an entity set PERSONS
and we have a relationship MOTHER_OF, whose list on
entity sets is PERSONS, PERSONS. The relationship set
for relationship MOTHER_OF consists of all and only
those pairs (p1, p2) such that person p2 is the mother
of person p1.

relationship MOTHERS isa PERSONS. This arrangement
would be more appropriate if the database stored
values for attributes of mothers that it did not store
for persons in general. Then the relationship
MOTHER_OF would be the list of entity sets PERSONS,
MOTHERS. To get information about a person’s mother
as a person, we would compose the relationship
MOTHER_OF and isa.

Functionality of Relationships
We classify relationships according to how many
entities from one entity set can be associated with
how many entities of another entity set.

• One-to-One Relationship

• Many-One Relationships

• Many-Many Relationshipsy y p

• One-to-One Relationship
One-to-one relationship is the simplest and rarest
form of relationship on two sets – for each entity in
either set there is at most one associated member of
the other set. For example (a), the relationship
MANAGES between DEPTS and MANAGERS might be
declared a one-to-one relationship. In the database
we never can find more than one manager for a
department, nor can one person manage two or more department, nor can one person manage two or more
departments. It is possible that some department
has no manager at the moment, or even that
someone listed on the database as a manager
currently has no department to manage.

E1 R E2
1 1

• Many-One Relationships
In a many-one relationship, one entity in set E2 is
associated with zero or more entities in set E1, but
each entity in E1 is associated with at most one
entity in E2. This relationship is said to be many-one
from E1 to E2. For example, the relationship between
EMPS and DEPTS in (a) may well be many-one from
EMPS to DEPTS, meaning that every employee is
assigned to at most one department. It is possible g p p
that some employees, such as the company
president, are assigned to no department.

E1 R E2
1M

Mariana Goranova

Information Technologies 6

• Many-Many Relationships
We also encounter many-many relationship, where
there are no restrictions on the sets of k-tuples of
entities that may appear in a relationship set. For
example, the relationship PARENT_OF in (b) is many-
many, because we expect to find two parents for
each child, and a given individual may have any
number of children.

M d t d l d t ll di t i f Many data models do not allow direct expression of
many-many relationship, instead requiring that they
be decomposed into several many-one relationships.

E1 RM E2N

Example: In the town of Yuppie Valley, a small
supermarket, the Yuppie Valley Culinary Boutique
(YVCB) has purchased a microcomputer and is about
to design a database system that will hold the
information the store needs to conduct its business.
After due consideration, the database administrator
for the system, Sally Hacker, a Sophomore at Calvin
Klein Senior High School in Yuppie Valley, who works
in the store every Thursday morning, developed the

tit l ti hi dientity-relationship diagram.

EMPS

ENAME SALARY

WORKS_IN

isa MANAGERS

MANAGES

DEPTS
DNAME

DEPT#

SUPPLIERSINAME ITEM#

SNAME SADDR

CARRIES ITEMS SUPPLIES PRICE

INCLUDES

PLACED_BY

QUANTITYORDERS

CUSTOMERS

O#

DATE

BALANCE

CNAME

CADDR

One important aspect of the YVCB business is
dealing with suppliers. The entity set SUPPLIERS has
two attributes, SNAME, the key, and SADDR. One
important fact about suppliers that cannot be stored
conveniently as an attribute is the set of items that
each supplies. Thus, we can specify an entity set
ITEMS, with two attributes, INAME and ITEM#, either of
which can serve as the key. To connect items and
suppliers there is a many-many relationship
SUPPLIES ith th i t t th t h it i l t d t SUPPLIES, with the intent that each item is related to
all the suppliers that can supply the item, and each
supplier is related to the items it can supply.

A third entity set, which we call PRICES, is involved in
the relationship. Each supplier sets a price for each
item it can supply, so we prefer to see the SUPPLIES
relationship as a ternary one among ITEMS,
SUPPLIERS, and PRICES, with the intent that if the
relationship set for SUPPLIES contains the triple (i,s,p),
then supplier s is willing to sell item i at price p.
PRICES presumably has only one attribute, the price
itself. Thus PRICES is an attribute of the relationship
SUPPLIESSUPPLIES.
We view SUPPLIES as representing item-supplier
pairs, and the price as telling something about that
pair. SUPPLIES has an arc to PRICES, reminding is that
this relationship is many-one from ITEMS and
SUPPLIERS to PRICES, i.e., given a supplier and an
item, there is a unique price at which the supplier
will sell the item.

The YVCB is organized into departments, each of
which has a manager and some employees. The
attributes of entity set DEPTS are DNAME and DEPT#.
Each department is responsible for selling some of
the items, and store policy requires that each item
can be sold by only one department. Thus, there is a
many-one relationship CARRIES from ITEMS to DEPTS.
The employees are represented by entity set EMPS,
and there is a many-one relationship WOKRS_IN from
EMPS t DEPTS fl ti th li th t l EMPS to DEPTS, reflecting the policy that employees
are never assigned to two or more departments. The
managers of departments are represented by
another entity set MANAGERS. There is a one-to-one
relationship MANAGES between MANAGERS and DEPTS.

Mariana Goranova

Information Technologies 7

The one-to-one-ness reflects the assumption that in
the YVCB there will never be more that one manager
for a department, nor more than one department
managed by one individual. Finally, since managers
are employees, we have an isa relationship from
MANAGERS to EMPS.
The attributes of the entity set CUSTOMERS of the
enterprise are CNAME, CADDR, and BALANCE.

Customers place orders for food items, which are Customers place orders for food items, which are
delivered by the YVCB. An order consists of a list of
items and quantities placed by one customer.
Attributes of the entity set ORDERS are O# (Order
number) and DATE, but the actual content of the
order is represented by a relationship INCLUDES
among ORDERS, ITEMS, and QUANTITY. The later is a
entity set whose entities are the integers.

Since a quantity has only its value as an attribute,
we show it as a circle attached to the relationship
INCLUDES. That relation is many-one from ITEMS and
ORDERS to QUANTITY, since each order can have only
one quantity of any given item. Finally, the many-one
relationship PLACED_BY from ORDERS to CUSTOMERS
tells who placed each order.

