
Mariana Goranova

Information Technologies 1

The relational model (E. Codd, 1970) supports
powerful, simple and declarative languages with
which operations on data are expressed. We define
operations on relations whose results are themselves
relations.

The The Relational DataRelational Data ModelModel
Domain

A domain is a set of values.
Examples:
• a set of integers is a domain
• set of character strings
• set of character strings of length 20
• set of real numbers
• set {0,1}

Cartesian Product

The Cartesian product (or just product) of domains
D1,D2,...,Dk, written D1xD2x...xDk, is the set of all k-tuples
(d1,d2,...,dk) such that d1 is in D1, d2 is in D2, and so on.
Example:
k=2 D1={0,1} D2={a,b,c}
D1xD2 = {(0,a),(0,b),(0,c),(1,a),(1,b),(1,c)}

Relation

A relation is any subset of the Cartesian product of
one or more domains. We shall assume that a
relation is finite unless we state otherwise.
Example:
{(0,a),(0,c),(1,b)} – subset of D1xD2

The members of a relation are called tuples. Each
relation that is a subset of some product D1xD2x...xDk
of k domains is said to have arity (or degree) k. A
tuple (d1,d2,...,dk) has k components: the ith component
is di. A tuple with k components is called a k-tuple.
It helps to view a relation as a table, where each row
is a tuple and each column corresponds to one
component. The columns are often given names,
called attributes. The set of attributes names for a
relation is called the relation scheme. If we name a
relation REL, and its relation scheme has attributes
A1,A2,...,Ak, we often write the relation scheme as
REL (A1,A2,...,Ak).

The collection of relation schemes used to represent
information is called a (relational) database scheme,
and the current values of the corresponding relations
form the (relational) database.

EMPS

ENAME SALARY

WORKS_IN

isa MANAGERS

MANAGES

DEPTS
DNAME

DEPT#

CARRIES ITEMS SUPPLIES PRICE

SUPPLIERSINAME ITEM#

SNAME SADDR

INCLUDES

PLACED_BY

QUANTITYORDERS

CUSTOMERS

O#

DATE

BALANCE

CNAME

CADDR

The data of an entity-relationship diagram is
represented by two sorts of relations:

1. An entity set E can be represented by a relation
whose relation scheme consists of all the
attributes of the entity set. Each tuple of the
relation represents one entity in the current
instance of E.
Example: The entity set CUSTOMERS is
represented by the relation
CUSTOMERS (CNAME, CADDR, BALANCE)

Mariana Goranova

Information Technologies 2

If E is an entity set whose entities are identified
through a relationship with some other entity set F,
then the relational scheme also has the attributes of
F that are needed for the key of E.
Example: The relation for entity set MANAGERS has
only one attribute, ENAME, which is the key for
MANAGERS. The value of ENAME for a given manager
is the name of the employee entity that is this
manager.
MANAGERS (ENAME)

2. A relationship R among entities E1,E2,...,Ek is
represented by a relation whose relational scheme
consists of the attributes in the keys for each of
E1,E2,...,Ek. By renaming attributes if necessary, we
make certain that no two entity sets in the list
have attributes with the same name, even if they
are the same entity set.

The relation scheme for the entity sets is (each
entity set has the same name as the relation):

1. EMPS (ENAME, SALARY)
2. MANAGERS (ENAME)
3. DEPTS (DNAME, DEPT#)
4. SUPPLIERS (SNAME, SADDR)
5. ITEMS (INAME, ITEM#)
6. ORDERS (O#, DATE)
7. CUSTOMERS (CNAME, CADDR, BALANCE)

Now let us consider the relationships. We should not
create a relation for the isa relationship, since it
would just consist of the ENAME attribute repeated
(and renamed in one repetition). And would hold
exactly the same information as the MANAGES
relation; that is, it would list the names of all those
employees who are managers. The other six
relationship yield the following relation schemes:

8. WORKS_IN (ENAME, DNAME)
9. MANAGES (ENAME, DNAME)

10. CARRIES (INAME, DNAME)
11. SUPPLIES (SNAME, INAME, PRICE)
12. INCLUDES (O#, INAME, QUANTITY)
13. PLACED_BY (O#, CNAME)

In each case, the set of attributes is the set of keys
for the entity sets connected by the relationship of
the same name as the relation.

Example: SUPPLIES connects SUPPLIERS, ITEMS, and
PRICE, which have keys SNAME, INAME, and PRICE,
respectively, and it is these three attributes we see
in the scheme for YVCB.
SUPPLIES (SNAME, INAME, PRICE)

The two relations MANAGES and WORKS_IN have the
same set of attributes, but of course their meaning
are different. The tuple (e, d) in MANAGES means that e
manages department d, while the same tuple in
WORKS_IN means that e is an employee in department
d.

Keys of Relations

A set S of attributes of a relation R is a key if
1. No instance of R that represents a possible state
of the world can have two tuples that agree in all the
attributes of S, yet are not the same tuple, and
2. No proper subset of S has property (1).

Example:
In the relation SUPPLIES, SNAME and INAME together
form a key. If there are two tuples (s,i,p1) and (s,i,p2) in
SUPPLIES, then supplier s would apparently sell item i
both at price p1 and at price p2, a situation that means
our data is faulty. This observation justifies condition
(1).

Mariana Goranova

Information Technologies 3

To check (2) we have to consider the proper subset,
that is SNAME alone and INAME alone. Neither
should satisfy condition (1). For example, it is quite
possible that we find the two tuples

(Acme, Brie, 3.50)
(Acme, Perrier, 1.25)

in SUPPLIES at the same time, and although they
agree on SNAME, they are not the same tuple.
Similarly, we might find

(Acme, Brie, 3.50)
(Ajax, Brie, 3.95)

showing that INAME alone does not satisfy condition
(1).

A relation may have more than one key.
Example: Consider DEPTS (DNAME, DEPT#). We do not
give two departments the same name, and we do not
give two departments the same number, so we may
declare that DNAME is a key and DEPT# is a different
key. But it is useful to select one unique key.

Primary key is a unique key selected from among
several choices, all of which are called candidate
keys.

If a relation comes from an entity set, a set of
attributes is a key for that relation if it is a key for
the entity set.
If a relation comes from a many-many
relationship, then the key for the relation is
normally the set of all the attributes.
If a relation comes from a one-to-one relationship
between entity set E and F, than the key for E and
the key for F are both keys for the relation. That
relations, like entity sets, can have more that one
set of attributes that is a candidate key.
If a relation comes from a relationship that is
many-one from E1,E2,...,Ek-1 to Ek, then the set of
attributes that is the union of the keys for
E1,E2,...,Ek-1 is normally a key for the relation.

The rules are:

1.

2.

3.

4.

Examples:
In SUPPLIES the lone key consists of two attributes,
since the relationship is many-one from SUPPLIERS
and ITEMS to PRICE (4), and the first two entity sets
have keys SNAME and INAME, respectively. Thus,
{SNAME, INAME} forms a key for relation SUPPLIES.
The relation DEPTS has two candidate keys, each
consisting of one attribute. DNAME is a key for entity
set DEPTS, but we might well decide that DEPT# also
should be a key, since the YVCB probably does not
intend to give two departments the same number.

Relations with Common Keys
When two relations have a candidate key in common,
we can combine the attributes and receive a relation
whose set of attributes is the union of the two sets.

Example:
Relations DEPTS and MANAGES each have DNAME as
a candidate key; in once case it is the primary key
and in the other not. We may thus replace DEPTS and
MANAGES by one relation

DEPTS (DNAME, DEPT#, MGR)

The new relation has the same name DEPTS. The
attributes DNAME and DEPT# are the same as the
attributes of the same name in the old DEPTS
relation, while MGR is intended to be the attribute
ENAME from MANAGES.

Dangling Tuples
Tuples that need to share a value with a tuple in
another relation, but find no such value, are called
dangling tuples. To avoid this problem we add to the
database scheme information about existence
constraints: if a tuple v appears in attribute A of some
tuple in relation R, then v must also appear in
attribute B of same tuple in relation S. We can store
null values in certain fields. This null value may
appear if the field is not a primary key.
Example:
If the YVCB has a Wine department, whose number is
16, but that temporarily has no manager, we will
represent this data with null value for the MGR
attribute. If we add a manager Truffle of the Gourmet
department, whose number is not yet assigned, we
could represent this with null value for the DEPT#
attribute.

Mariana Goranova

Information Technologies 4

Example:
The new combined simplified list of relations:

1. EMPS (ENAME, SALARY, DEPT) 1,8
2. DEPTS (DNAME, DEPT#, MGR) 2,3,9
3. SUPPLIERS (SNAME, SADDR) 4
4. ITEMS (INAME, ITEM#, DEPT) 5,10
5. ORDERS (O#, DATE, CUST) 6,13
6. CUSTOMERS (CNAME, CADDR, BALANCE) 7
7. SUPPLIES (SNAME, INAME, PRICE) 11
8. INCLUDES (O#, INAME, QUANTITY) 12

We can see that the new relation DEPTS combines
MANAGERS, DEPTS, and MANAGES. DEPTS and MANAGES
shared the common candidate key DNAME. However,
MANAGERS, with key, ENAME, does not share a
common candidate key with these. But MANAGES is a
one-to-one relationship between ENAME and DNAME.
Hence, these two attributes are in a sense
equivalent, we may regard MANAGERS as if its
attributes were DNAME rather than ENAME.

Relationships

Operations in the Relational Operations in the Relational Data ModelData Model

A relation is a set of k-tuples for some k, called the
arity of the relation. The operands of relational
algebra are either constant relations or variables
denoting relations of a fixed arity.
1. Union. The union of relations R and S, denoted
RUS, is the set of tuples that are in R or S or both. R
and S are relations of the same arity.
Example:
A B C D E F a b c
a b c b g a d a f
d a f d a f c b d
c b d b g a

R S RUS

2. Set difference. The difference of relations R and S,
denoted R-S, is the set of tuples in R but not in S. R
and S have the same arity.

Example:

A B C D E F a b c
a b c b g a c b d
d a f d a f
c b d

R S R-S

3. Cartesian product. Let R and S be relations of arity
k1 and k2, respectively. Then RxS, the product of R
and S, is the set of all possible (k1+ k2)-tuples whose
first k1 components form a tuple in R and whose last
k2 components form a tuple in S.

Example:

A B C D E F A B C D E F
a b c b g a a b c b g a
d a f d a f a b c d a f
c b d d a f b g a

R S d a f d a f
c b d b g a
c b d d a f

RxS

Mariana Goranova

Information Technologies 5

4. Projection. We take a relation R, remove some of
the components (attributes) and/or rearrange some of
the remaining components. If R is a relation of arity
k, we let Пi1,i2,...,im(R), where the ij’s are distinct
integers in the range 1 to k. If R has attributes
labeling its columns, then we may use the same
attribute names in the projected relation.

Example:

A B C C A
a b c c a
d a f f d
c b d d c

R ПC,A(R) or П3,1(R)

5. Selection. Let F be a formula involving

a) Operands that are constants or component
numbers;
b) The arithmetic comparison operators <, =, >, ≤, ≠,
and ≥, and
c) The logical operations ∧ (and), ∨ (or) and ¬ (not).
Then σF(R) is the set of tuples in R such that when,
for all i, we substitute the ith component of for any
occurrences of $i in formula F, the formula F
becomes true.

Example:

A B C A B C
a b c a b c
d a f c b d
c b d

R σ$2=b(R) or σB=b(R)

6. Intersection. Intersection R∩S is the set of tuples
that are both in R and S; it is equivalent to R-(R-S).
Example:

A B C D E F d a f
a b c b g a
d a f d a f
c b d

R S R∩S

7. Join. The Θ-join of R and S on columns i and j,
written , where Θ is an arithmetic comparison
operator (=, <, and so on), is shorthand for
σ$iΘ$(r+j)(RxS), if R is of arity r. That is, the Θ-join of R
and S is those tuples in the product of R and S such
that the ith component of R stands in relation to the
jth component of S. If Θ is =, the operation is often
call an equijoin.
Example:
A B C D E A B C D E A B C D E
1 2 3 3 1 1 2 3 3 1 1 2 3 3 1
4 5 6 6 2 1 2 3 6 2 1 2 3 6 2
7 8 9 4 5 6 3 1 4 5 6 6 2

R S 4 5 6 6 2
7 8 9 3 1
7 8 9 6 2

RxS

SR
jiΘ

∞

SR
DB<

∞

8. Natural join. The natural join is applicable
only when both R and S have columns that are named
by attributes.
a) Compute RxS.
b) For each attribute A that names both a column in
R and a column in S select from RxS those tuples
whose values agree in the columns for R.A and S.A.
c) For each attribute A above, project out the column
S.A, and call the remaining column, R.A, simply A.
Example:
A B C B C D A B C B C D A B C D
a b c b c d a b c b c d a b c d
d b c b c e a b c b c e a b c e
b b f a d b a b c a d b d b c d
c a d d b c b c d d b c e

d b c b c e c a d b
R S d b c a d b

b b f b c d
b b f b c e
b b f a d b
c a d b c d
c a d b c e
c a d a d b

RxS

R∞S

R∞S

9. Semijoin. The semijoin of relation R by relation S,
written R∝S, is the projection onto the attributes of R
of the natural join of R and S.

Example:
A B C B C D A B C D A B C
a b c b c d a b c d a b c
d b c b c e a b c e d b c
b b f a d b d b c d c a d
c a d d b c e

R S c a d b R∝S

R∞S

Mariana Goranova

Information Technologies 6

Relational Algebra as a Query Language

Example:
Consider the relation SUPPLIES. Which suppliers
supply Brie?

ПSNAME(σINAME=“Brie”(SUPPLIES))

The result will be a list of all suppliers of Brie.

Example:
What items supplier ‘Acme’ sells for less than $5, and
the prices of each?

ПINAME,PRICE(σSNAME=“Acme”∧ PRICE<5(SUPPLIES))

