
Mariana Goranova

Information Technologies 1

In ordinary programming languages the declarations
and executable statements are all part of one
language. In the database world, however, it is
common to separate the two functions of declaration
and computation into two different languages. While
in an ordinary program data exists only while the
program is running, in a database system, the data
persists and may be declared once and for all.

Database LanguagesDatabase Languages Data Definition Languages (DDL)
The data definition language is not a procedural
language. It is used when the database is designed
and when that design is modified. It is not used for
obtaining or modifying the data itself. The data
definition language has statements that describe, in
somewhat abstract terms what the physical layout of
the database should be. Detailed design of the
physical database is done by compiled statements in
the data definition language.
The description of subschemes and their
correspondence to the conceptual scheme requires a
subscheme data definition language, which is often
quite similar to the data definition language itself.

Data Manipulation Language (DML)
Operations on the database require a specialized
language, called a data manipulation language or
query language.
Host Languages
Often, manipulation of the database is done by an
application program, written in advance to perform a
certain tasks. For example, a program used to book
reservations needs to make a decision: are there
enough seats available?
Thus, programs to manipulate the database are
commonly written in a host language, which is a
conventional programming language such as C, C++,
Java, C#, or even COBOL. The host language is used
for decisions, for displaying questions, and for
reading answers; in fact, it is used for everything but
the actual querying and modification of the database.

Relational Query Languages
Relational query languages are used in systems built
upon the relational model of data. A language that
can (at least) simulate safe tuple calculus, or
equivalently, relational algebra or safe domain
calculus, is said to be complete. DML have
capabilities of relational algebra or calculus; they
include insertion, deletion, and modification
commands; they have some additional features:

Arithmetic capability. Atoms in calculus
expressions or selections in algebraic expressions
can involve arithmetic computations as well as
comparisons, e.g., A<B+3. Note that + and other
arithmetic operators appear in neither relational
algebra nor calculus.

1.

Assignment and print commands. Languages
generally allow the printing of the relation
constructed by an algebraic or calculus
expressions and the assignment of a computed
relation to be the value of a relation name.

Aggregate functions. Operations such as average,
sum, min, or max can often be applied to columns
of a relation to obtain a single quantity.

2.

3.

The Query Language SQL (Structured Query
Language)

SQL, formerly knows as SEQUEL is the most
commonly implemented relational language. It is
developed by IBM in San Hose, originally for use in
the experimental database system known as System
R.

The SELECT Statement

SELECT Ri1.A1,...,Rir.Ar
FROM R1,...,Rk
WHERE Ψ;

Here, R1,...,Rk is a list of relation names, and
Ri1.A1,...,Rir.Ar is a list of component references to be
printed; R.A refers to the attribute A of relation R. If
only one relation in the list following the keyword
FROM has an attribute A, then we may use A in place
of R.A in the selected list. Ψ is a formula involving
logical connectives AND, OR, and NOT, and
comparison operators =, <=, and so on.
The meaning of query is most easily expressed in
relational algebra as:

()()kARAR
RR

rrii
××Π Ψ ...1'.,.,.,. 11

σ

Mariana Goranova

Information Technologies 2

We take the product of all the relations in the FROM-
clause, select according to the WHERE-clause (Ψ is
replaced by an equivalent expression Ψ’, using the
operators of relational algebra, and finally project
onto the attributes of the SELECT-clause.
Example: Print the names of customers with negative
balances.
SELECT CNAME
FROM CUSTOMERS
WHERE BALANCE<0;
Here, since there is only one relation in the FROM-
clause, thus, we did not have to prefix attributes by
their relation names. However, we could have
written:
SELECT CUSTOMERS.CNAME
FROM CUSTOMERS
WHERE CUSTOMERS.BALANCE<0;

Had we wanted another header for the column, we
could have provided an alias for CNAME by writing
that alias immediately after the AS clause in the
SELECT-clause. Thus,
SELECT CNAME AS CUSTOMER
FROM CUSTOMERS
WHERE BALANCE<0;
Had we wished to print the entire tuple for customers
with a negative balance, we could have written

SELECT CNAME, CADDR, BALANCE
FROM CUSTOMERS
WHERE BALANCE<0;
or just
SELECT *
FROM CUSTOMERS
WHERE BALANCE<0;

Example: Print the suppliers who supply at least one
item ordered by Zack Zebra.
Microsoft Access uses brackets surrounded a name
if the name contains a space or a special character.

SELECT SNAME
FROM ORDERS, INCLUDES, SUPPLIES
WHERE CUST = ‘Zack Zebra’ AND

ORDERS.[O#] = INCLUDES.[O#] AND
INCLUDES.INAME=SUPPLIES.INAME;

Here, we take the natural join of ORDERS, INCLUDES
and SUPPLIES, using equalities in the WHERE-clause
to define the join. The WHERE-clause also contains
the condition that the customer be Zack Zebra, and
the SELECT-clause causes only the supplier name to
be printed.

()()SUPPLIESINCLUDESORDERS
INAMESUPPLIESINAMEINCLUDESOINCLUDESOORDERSZebraZackCUSTSNAME ..#.#.'' ===

Π θθσ

The attribute CUST and SNAME refer to ORDERS and
SUPPLIES, respectively, so they do not have to be
prefixed by a relation name. However, O# is an
attribute of both ORDERS and INCLUDES, so it has to
be prefixed by the relations intended. The same is for
INAME.

SQL does not remove duplicates automatically. To
remove duplicates, we use the keyword DISTINCT
following SELECT:

SELECT DISTINCT SNAME

Tuple Variables
Sometimes we need to refer to two or more tuples in
the same relation. We define several tuple variables
for that relation in the FROM-clause and we use the
tuple variables aliases of the relation.

Example: Print the name and address of each
customer whose balance is lower than Judy Giraffe’s.

SELECT c1.CNAME, c1.CADDR
FROM CUSTOMERS c1, CUSTOMERS c2
WHERE c1.BALANCE<c2.BALANCE AND

c2.CNAME = ’Judy Giraffe’;

c1 and c2 are aliases of CUSTOMERS, they are tuple
variables for CUSTOMERS.

tupple variables

Pattern Matching
An operator LIKE in the WHERE-clause expresses the
condition that a certain value matches a pattern.
? Any single character.
* Zero or more characters.
Any single digit (0 - 9)
[charlist] Any single character in charlist.
[!charlist] Any single character not in charlist.

Example: Print those items that begin with “B”.

SELECT INAME
FROM SUPPLIES
WHERE INAME LIKE ‘B*’;

Mariana Goranova

Information Technologies 3

Example: Print those orders whose number is in the
range 1000-1999, i.e., those whose order members
are a “1” followed by any three characters. We
assume that order numbers are stored as character
strings, rather than integers.

SELECT *
FROM ORDERS
WHERE [O#] LIKE ‘1###’;

Set Operations in the WHERE-Clause

We can use selection conditions in a WHERE-clause.
SQL allows sets as operands; these sets are defined
by complete SELECT-FROM-WHERE statements
nested within a where-clause, and are called
subqueries. The operators IN, NOT IN, ANY, and ALL
are used, respectively, to denote membership in a
set, nonmembership, existential quantification over a
set, and universal quantification over a set.

Example: Print the suppliers who supply at least one
item ordered by Zack Zebra, using subqueries to
replace a sequence of joins by semijoins.
1. Find the set S1 of orders placed by Zebra, using
ORDERS.
2. Find the set S2 of items in set of orders S1, using
INCLUDES.
3. Find the set S3 of suppliers of the items in set S2,
using SUPPLIES.
SELECT SNAME
FROM SUPPLIES
WHERE INAME IN

(SELECT INAME
FROM INCLUDES
WHERE [O#] IN

(SELECT [O#]
FROM ORDERS
WHERE CUST = ‘Zack Zebra’));

S1

S2

S3

Example: Print each item whose price is as large as
any appearing in the SUPPLIES relation by using a
subquery to form the set S of all prices, and then
saying that the price of a given item is as large as
any in the set S. (Finding the most costly item)

SELECT INAME
FROM SUPPLIES
WHERE PRICE>=ALL

(SELECT PRICE
FROM SUPPLIES);

Aggregate Operators
SQL provides aggregate operators:
• AVG
• COUNT
• SUM
• MIN
• MAX
• STDDEV (standard deviation)
• VARIANCE (variance of a list of numbers)

agg_op (A)

where A is the attribute of the aggregate operator
agg_op.

Example: Compute the average balance in the
database.

SELECT AVG (BALANCE)
FROM CUSTOMERS;

The print result is with a column header
AVG(BALANCE). To change the column header, say
AV_BAL, we could specify an alias, as in:

SELECT AVG(BALANCE) AS AV_BAL
FROM CUSTOMERS;

Mariana Goranova

Information Technologies 4

Example: Count the number of suppliers.
We must eliminate duplicates before we count.

SELECT COUNT(SNAME) AS [#SUPPS]
FROM SUPPLIES
WHERE SNAME IN

(SELECT DISTINCT SNAME
FROM SUPPLIES);

Thus, we will print the number of different suppliers
in a column headed by #SUPPS.

Example: Count the number of suppliers who sell
Brie.

SELECT COUNT(SNAME) AS [#BRIE_SUPPS]
FROM SUPPLIES
WHERE INAME = ‘Brie’;

Note it is unnecessary to remove duplicates here,
because the fact that a supplier sells Brie appears
only once, assuming {SNAME, INAME} is a key for
SUPPLIES in the database.

Example: Print each item whose price is as large as
any appearing in the SUPPLIES relation by using a
subquery to form the set S of maximum price, and
then saying that the price of a given item is as large
as the maximum once in the set S. (Finding the most
costly item)

SELECT INAME
FROM SUPPLIES
WHERE PRICE IN

(SELECT MAX(PRICE)
FROM SUPPLIES);

Aggregation by Groups
The clause

GROUP BY A1,…Ak

partitions the relation into groups, such that two
tuples are in the same group if and only if they agree
on all the attributes A1,…,Ak. The attributes A1,…,Ak
must also appear in the SELECT-clause, although
they could be given aliases for printing.

Example: Print a table of all the items and their
average prices.

SELECT INAME, AVG(PRICE) AS [Average Price]
FROM SUPPLIES
GROUP BY INAME;

If we write

GROUP BY A1,…Ak
HAVING Ψ

then the condition Ψ is applied to each relation
Ra1,...,ak that consists of the group of tuples with
values а1,...,аk for attributes А1,...,Аk, respectively.
Those groups for which satisfies Ψ are part of the
output, and the others do not appear.

Example: Print a table of those items that were sold
by more than one supplier and their average prices.

SELECT INAME, AVG(PRICE) AS [Average Price]
FROM SUPPLIES
GROUP BY INAME
HAVING COUNT(*)>1;

* stands for all attributes of the relation referred to.

Insertion
To insert new tuples into a relation we use the
statement form:

INSERT INTO R
VALUES (a1,a2,...,ak);
Here, R is a relation name and a1,a2,...,ak is a list of
values for the attributes of R. These attributes are
given a particular order when the relation R is
declared.

Example: If Ajax starts selling Country Wine at $4.50
each, we can say:

INSERT INTO SUPPLIES
VALUES (‘Ajax’, ‘Country Wine’, 4.50);
We do not have to specify values for all attributes. If
a value is not provided, NULL will be the assumed
value.

Mariana Goranova

Information Technologies 5

MS Access converts the VALUE clause to a SELECT
clause.

INSERT INTO SUPPLIES
SELECT 'Ajax', 'Country Wine', 4.50;

Example: Suppose that the attribute PRICE of
SUPPLIES may have nulls. Ajax sells Country Wine
but we don’t know the price.

INSERT INTO SUPPLIES (SNAME, INAME)
VALUES (‘Ajax’, ‘Country Wine’);

Example: Suppose we wanted a new relation

ACME_SELLS (INAME, PRICE)

that listed just the item and price components of the
SUPPLIES tuples with SNAME equal to “Acme”. The
insert command is

INSERT INTO ACME_SELL(INAME, PRICE)
SELECT INAME, PRICE
FROM SUPPLIES
WHERE SNAME = ‘Acme’;

The VALUES-clause is replaced by a SELECT-FROM-
WHERE statement that produces a relation of values.

Deletion
The form of the deletion command is

DELETE R.* FROM R
WHERE Ψ;

R is a relation name and Ψ is a condition. Every tuple
of R for which Ψ is true is deleted form R.

Example: Acme no longer sells Perrier.

DELETE SNAME, INAME FROM SUPPLIES
WHERE SNAME = ‘Acme’ AND INAME = ‘Perrier’;

Example: Delete from ORDERS relation all orders that
included Brie.

DELETE [O#] FROM ORDERS
WHERE [O#] IN

(SELECT [O#]
FROM INCLUDES
WHERE INAME = ‘Brie’);

Update
The general form of an update command is

UPDATE R
SET A1=ε1,…,Ak=εk
WHERE Ψ;

Example: Update the price Acme charges for Perrier
to $1.00.

UPDATE SUPPLIES
SET PRICE = 1.00
WHERE SNAME = ‘Acme’ AND INAME = ‘Perrier’;

Example: Lower all of Acme’s prices by 10%.

UPDATE SUPPLIES
SET PRICE = 0.9*PRICE
WHERE SNAME = ‘Acme’;

Completeness of SQL
SQL can simulate expressions of relational algebra.

To rename the attributes of the relation
S(B1,B2,...,Bm) with those of R(A1,A2,...An), we can
create a new relation Snew with the same
attributes, A1,A2,...An as R. We then copy S into
Snew by:
INSERT INTO Snew
SELECT *
FROM S;
To compute the union RUS we write
INSERT INTO T
SELECT *
FROM R;
INSERT INTO T
SELECT *
FROM S;

1.

2.

Mariana Goranova

Information Technologies 6

3.

4.

To compute the set difference T=R-S:
INSERT INTO T
SELECT *
FROM R;
DELETE FROM T
WHERE (A1,…,An) IN this list refers to T

(SELECT * subquery for S
FROM S);

For the Cartesian product T=RxS we say:
INSERT INTO T
SELECT R.A1,…,R.An,S.B1,…,S.Bm
FROM R, S;

5.

6.

The selection T=σF(R) is written
INSERT INTO T
SELECT *
FROM R
WHERE F’;
F’ is the selection condition F translated into SQL
notation.
The projection Пi1,i2,...,im(R) is written

INSERT INTO T
SELECT Ai1,…,Aim
FROM R;

Data Definition in SQL
The DML and DDL in SQL are really two sets of
commands that are part of a single language.

Create
The most fundamental DDL command is the one that
creates a new relation.

CREATE TABLE R (data typed list of attributes)

If the attribute is a primary key, we use:

CONSTRAINT name PRIMARY KEY

Example: We can define the AJAX_SELLS relation
scheme by

CREATE TABLE AJAX_SELLS
(INAME TEXT(20) CONSTRAINT MyKey PRIMARY
KEY, PRICE CURRENCY);

The two attributes are INAME (a string of up to 20
characters), that is a primary key and PRICE (a
currency).

Delete
DROP TABLE R;

Example: To delete the relation AJAX_SELLS from
the database entirely, we would write

DROP TABLE AJAX_SELLS;

Creation of Indices
Indices are used to speed up access to a relation. If
relation R has an index on attribute A, then we can
retrieve all the tuples with a given value a for
attribute A, in time roughly proportional to the
number of such tuples, rather than in time
proportional to the size of R. That is, in the absence
of an index on A, the only way to find the tuples μ in
R such that μ[A]=a is to look at all tuples in R.

CREATE INDEX I
ON R(A);

An index named I is created on attribute A of relation
R.

Example:
CREATE INDEX [O#_INDEX]
ON ORDERS ([O#]);

This creates an index on attribute O# of the relation
ORDERS.
CREATE UNIQUE INDEX [O#_INDEX]
ON ORDERS ([O#]);
The index O#_INDEX would not only speed up
process given an order number, but it would make
sure, that we never had two tuples with the same
order number.

Deletion of Indices
DROP INDEX I;
Example:

DROP INDEX [O#_INDEX];

