
Mariana Goranova

Information Technologies 1

The network data model is the entity-relationship
model with all relationships restricted to be binary,
many-one relationships. This restriction allows us to
use a simple directed graph model for data. In place
of entity sets, the network data model tasks of
logical record types. A logical record type is a name
for a set of records, which are called logical records.
Logical records are composed of fields, which are
places in which elementary values such as integers
and character strings can be placed. The set of
names for the fields and their types constitute the
logical record format.

The The Network DataData ModelModel Record Identity

There is a close analogy between these terms for
networks and for relations, under the
correspondence
Logical record format Relation scheme
Logical record type Relation name
Logical record Tuple
Field Attribute

However, there is an important distinction between
tuples of relations and records of a record type. In
the relational model, tuples are the values of their
components. Two tuples with the same values for the
same attributes are the same tuple. The network
data model is object-oriented, at least to the extent
that it supports object identity.

Records of the network model may be viewed as
having an invisible key, which is in essence the
address of the record, i.e. its object identity. This
unique identifier serves to make records distinct,
even if they have the same values in their
corresponding fields. In fact, it is feasible to have
record types with no fields at all.
The reason it makes sense to treat records as having
unique identifiers, independent of their field values,
is that physically, records contain more data than
just the values in their fields. In a database built on
the network model they are given physical pointers
to other records that represent the relationships in
which their record type is involved. These pointers
can make two records with the same field values
different, and we could not make this distinction if
we thought only of the values in their fields.

Links
Instead of binary many-one relationships we talk
about links in the network model. We draw a directed
graph, called a network, which is really a simplified
entity-relationship diagram, to represent record types
and their links. Nodes correspond to record types. If
there is a link between two record types T1 and T2,
and the link is many-one from T1 to T2, then we draw
an arc from the node T1 to that for T2 and we say the
link is from T1 to T2. Nodes and arcs are labelled by
the names of their record types and links.

T1 R T2

T1 T2
R

Representing Entity Sets in the Network
Model
Entity sets are represented directly by logical record
types; the attributes of an entity set become fields of
the logical record format. The only special case is
when an entity set E forms its key with fields of some
entity set F, to which E is related through
relationship R. We do not need to place those fields
of F in the record format for E, because the records
of E do not need to be distinguished by their field
values. Rather, they will be distinguished by the
physical pointers placed in the records of E to
represent the relationship R, and these pointers will
lead from a record e of type E to the corresponding
record of type F that holds the key value for e.

Alternatively, when the relationship concerned is isa,
and the subset has no field that the superset does
not have, (as between MANAGERS and EMPS), we
could eliminate the record type for the subset, e.g.
MANAGERS, altogether, and let the relationships
between MANAGERS and other entity sets (besides
EMPS) be represented in the network model by links
involving EMPS.
The isa relationship itself could be represented by a
one-bit field telling whether an employee is a
manager. Another choice is to represent the isa
implicitly; only EMPS records that represent
managers will participate in relationships, such as
MANAGES, that involve the set of managers.

EMPS isa MANAGERS EMPS MANAGES

Mariana Goranova

Information Technologies 2

Representing Relationships
Among relationships, only those that are binary and
many-one (or one-one as a special case) are
representable directly by links. However, we can use
the following trick to represent arbitrary
relationships. Say we have a relationship R among
entity sets E1,E2,…,Ek. We create a new logical record
type T representing k-tuples (e1,e2,…,ek) of entities
that stand in the relationship R. The format for this
record type might be empty. However, there are
many times when it is convenient to add information-
carrying fields in the format for the new record type
T. In many events, we create links L1,L2,…,Lk. Link Li
is from record type T to the record type for entity set
Ei, which we shall also call Ei. The intention is that
the record of type T for (e1,e2,…,ek) is linked to the
record of type Ei for ei, so each link is many-one.

As a special case, if the relationship is many-one
from E1,E2,…,Ek-1 to Ek, and furthermore, the entity
set Ek does not appear in any other relations, then
we can identify the record type T with Ek, storing the
attributes of Ek in T.

Example: The relationship SUPPLIES is many-one
from SUPPLIERS and ITEMS to PRICE, and PRICE
participates in no relationship but this one. We may
therefore create a type T with links to ITEMS and
SUPPLIERS, and containing PRICE as a field.

T1 R T2

T1 T2

R_T1
R

R_T2

Example: A purely many-many relationship is
between courses and students with the intended
meaning that the student is taking the course. To
represent this relationship in the network model, we
would use two entity sets, COURSES and STUDENTS,
each with appropriate fields, such as

COURSES (DEPT, NUMBER, INSTRUCTOR)
STUDENTS (ID#, NAME, ADDRESS, STATUS)

We need to introduce a new record type, say
ENROLL, that represents single pairs in the
relationship set, i.e., one course and one student
enrolled in that course. There might not be any fields
in ENROLL, or we might decide to use ENROLL
records to store information that really does refer to
the pair consisting of a course and a student, e.g.,
the grade the student receives in the course.

Thus, we might use record format

ENROLL (GRADE)
Notice that two or more enrollment records may look
the same, in the sense that they have the same
values in their GRADE fields. They are distinguished
by their addresses, i.e., by their “object identity”.
We also need two links, one from ENROLL to
COURSES, which we shall call E_COURSE, and one
from ENROLL to STUDENTS, which we shall cal
E_STUDENT.

The link E_COURSE associates with each ENROLL
record a unique COURSES record, which we take to
be the course in which the enrollment is made.
Likewise, E_STUDENT associates with each ENROLL
record a unique STUDENTS record, that of the
student who is thereby enrolled. Each student record
is said to own the enrollment record which the link
associates to that student.

COURSES

ENROLL

STUDENTS

E_COURSE

E_STUDENT

The network

CS101

Grind

MATH40 EE200

JockNerd Weenie

A1: C2: B3: A4: A5:

E_COURSE

E_STUDENT

Physical connections representing links

For example, ENROLL record 1 represents only the
fact that student Grind is enrolled in CS101. The
record for Grind owns ENROLL records 1 and 2.
Weenie owns 4 and 5, while Jock owns no enrolled
records. CS101 owns ENROLL records 1 and 3. There
is no conflict that Grind also owns record 1, because
their ownership is through different links.

Mariana Goranova

Information Technologies 3

That is Grind is the owner of 1 according to the
E_STUDENT link and CS101 the owner of that record
according to the E_COURSE link.

Example: Let us design a network for the YVCB
database scheme. We start with logical record types
for the six entity sets that remain after excluding
MANAGERS, which as we mention above, can be
represented by the logical record type for its
superset, EMPS. Thus, we have logical record
formats:

EMPS (ENAME, SALARY)
DEPTS (DNAME, DEPT#)
SUPPLIERS (SNAME, SADDR)
ITEMS (INAME, ITEM#)
ORDERS (O#, DATE)
CUSTOMERS (CNAME, CADDR, BALANCE)

We need two more record types, because two of the
relationships, SUPPLIES and INCLUDES, are not
binary, many-one relationships. Let us use record
type ENTRIES to represent order-item-quantity facts.
It makes sense to store the quantity in the entity
record itself, because the relationship INCLUDES is
many-one from ORDERS and ITEMS to QUANTITY.
Thus, we need only links from ENTRIES to ITEMS and
ORDERS, which we call E_ITEM and E_ORDER,
respectively.
Similarly, a new record type OFFERS can serve to
represent the facts of the SUPPLIES relation. We
prefer to store PRICE as a field of OFFERS, for the
same reason as was discussed above concerning
QUANTITY. We shall use O_ITEM and O_SUPPLIER, as
the links from OFFERS to ITEMS and SUPPLIERS,
respectively.

The last two record types for our network are thus:

ENTRIES (QUANTITY)
OFFERS (PRICE)
The relationships, other than SUPPLIES and
INCLUDES, are many-one and binary. Thus, they are
directly representable by links.
The only special remark needed is that the
relationship MANAGES, originally between DEPTS
and MANAGERS, will now be between DEPTS and
EMPS, since we agreed to use EMPS to represent
managers. Since this relation is one-one, we could
have it run in either direction, and we have chosen to
have it run from EMPS to DEPTS.

EMPS

DEPTS ITEMS

ENTRIES

OFFERS

SUPPLIERS

ORDERS

CUSTOMERS

WORKS_IN MANAGES
O_SUPPLIER

O_ITEM

E_ITEM

E_ORDER

PLACED_BY

CARRIES

Comparison of Network and Relation
Schemes: Link-Following Operations on
Networks
Records can have build-in, invisible pointers that
represent declared links.

Example: One day YVCB owner Simon De Lamb gets
curious and wants to know whether some customer
has a balance that exactly equals the price of some
items. He has only to say

()SUPPLIESCUSTOMERS
PRICEBALANCECNAME =

∞П

in relational algebra.

Mariana Goranova

Information Technologies 4

However, in the network model, whose languages
only allow us to follow links, there is really no
convenient way to compare customers’ balances
with items’ prices. When we do follow links, we could
relate customers to the items they have ordered by
an expression like

PLACED_BY (E_ORDER (E_ITEM (ITEMS)))

The requirement for equality between the O# fields of
INCLUDES and ORDERS was hidden by out use of the
natural join. However, natural join can only be used
where the attributes have the same name in the
relation schemes; real relational database system do
not support the natural join directly, requiring it to be
expressed as an equijoin, with the explicit equality of
values spelled out.

There is one important advantage to the relational
model. The result of an operation on relations is a
relation, so we can build complex expressions of
relational algebra easily. However, the result of
operations on network is not a network, because the
pointers and unique identifiers for records cannot be
referred to in network query languages. Thus, new
networks cannot be constructed by queries; they
must be constructed by the data definition language.
There is an additional distinction between the
network and relational models in the way they treat
many-many relationships. In the network model there
are forbidden (they can be replaced by several many-
one relationships).

