
Mariana Goranova

Information Technologies 1

A hierarchy is simply a network that is a forest
(collection of trees) in which all links point in the
direction from child to parent. Any entity-relational
diagram can be represented in the hierarchical
model.

We introduce virtual record types.

The The Hierarchical DataData ModelModel A Simple Network Conversion Algorithm
We must start at a node with as many incoming
links as possible and make it the root of a tree. We
attach to that tree all the nodes that can be
attached, remembering that links must point to the
parent. When we can pick up no more nodes this
way, we start with another, unattached node as a
root, and attach as many nodes to that as we can.
Eventually, each node will appear in the forest one
or more times, and at this point we have a
hierarchy.

procedure BUILD (n)
make n selected;
for each link from some node m to n do begin

make m a child of n;
if m is not selected then BUILD (m)

end
end
/* main program */
make all nodes unselected;
while not all nodes are selected do begin

pick an unselected node n;
/* prefer a node n with no links to unselected

nodes and prefer a node with many incoming
links */

BUILD (n)
end

Simple hierarchy-building procedure

Example: Consider the network of our example.
DEPTS is a good candidate to pick as the first node,
because it has three incoming links, two from EMPS
and one from ITEMS. We then consider EMPS, but
find it has no incoming links. However, ITEMS has
incoming links from ENTRIES and OFFERS. These
have no incoming links, so we are done building the
tree with root DEPTS. All the above mentioned
nodes are now selected. The remaining nodes with
no outgoing links are CUSTOMERS and SUPPLIERS.
If we start with CUSTOMERS, we add ORDERS as a
child and ENTRIES as a child of ORDERS, but can go
no further. From SUPPLIERS we add OFFERS as a
child and are done. Now, all nodes are selected, and
we are finished building the forest. The two children
of DEPTS that come from node EMPS, we have
changed one, that representing the manager of the
department, to MGR.

SUPPLIERS

OFFERS

DEPTS

EMPS MGR ITEMS

ENTRIES OFFERS

CUSTOMERS

ORDERS

ENTRIES

First attempt at a hierarchy for the YVCB database
scheme

Database Records
Hierarchies of logical record types are scheme level
concepts. The instances of the database
corresponding to a scheme consist of a collection of
trees whose nodes are records; each tree is called a
database record. A database record corresponds to
some one tree of the database scheme, and the root
record of a database record corresponds to one
entity of the root record type. If T is a node of the
scheme, and S is one of its children, then each
record of type T in the database record has zero or
more child records of type S.

Mariana Goranova

Information Technologies 2

Example:
Dept

Produce

Emp
Sharon
Sloth

Emp
George
Greed

Emp
Arnold
Avarice

Mgr
Esther

Eggplant

Item
Lettuce

Item
Tomatoes

Entry
121:1

Entry
122:3

Offer
293:$.69

Offer
294:$.75

Supplier
Ajax

Offer
293:$.69

Offer
374:$6.99

Offer
205:$1.28

(b) One
database
record for
SUPPLIERS

(a) One database
record for DEPTS

Figure (a) shows one database record for the DEPTS
tree. This database record's root corresponds to the
Produce Department, and it should be understood
that the entire database instance has database
records similar to this one for each department. The
instance also includes a database record for each
customer, with a structure that is an expansion of
the middle tree and it includes a database record for
every supplier, with the structure implied by the
rightmost tree. An example, for supplier Ajax, is
shown in (b).
We see the Produce Department record at the root
(a). There are three children of the Produce
Department record, for the three employees of that
department, Sloth, Greed, and Avarice.

Corresponding to the child MGR of DEPTS is one child
of Produce, that for Ester Eggplant, the manager of
the department. While we expect to find many
employee children, there would normally be only one
manager record, the DEPTS-MGR relationship is one-
to-one. Finally, we see two children of the Produce
record corresponding to items sold: lettuce and
tomatoes.
Each ITEMS record has some ENTRIES children and
some OFFERS children. We have shown two of each
for lettuce, but none for tomatoes – a node can
translate into zero records of that type in a given
database record. For records representing entries
and offers, we have indicated the unique identifier
that distinguishes each such record from all others of
the same type; e.g. ENTRIES record 121 has
QUNATITY 1.

Recall that entries have only a quantity, and offers
only a price as real data, and thus we cannot
differentiate among records of these types by field
values alone. Records for departments, employees,
and so on, are uniquely identified by the values in
their fields. As in networks, these unique identifiers
may be thought of as the addresses of the records.

Record Duplication
Certain record types, namely ENTRIES and OFFERS,
appear twice in the hierarchical scheme. An offer
record by supplier s to sell item i appears both as a
child of the ITEMS record for i and as a child of the
SUPPLIERS record for s. OFFERS record 293 appears
twice and we can deduce thereby that this offer is an
offer by Ajax to sell lettuce at $.69. This duplication
causes several problems:
1. We waste space because we repeat the data in the
record several times.
2. There is potential inconsistency, should we
change the price in one copy of the offer, but forget
to change it in the other.
The solution is found in virtual record types and
pointers.

Operations in the Hierarchical Model

In the hierarchical model links are presumed to go
only one way, from parent to child. We can find all
OFFERS children of the lettuce ITEMS record, but
how could we determine what items Ajax offers to
sell? The general operation is to find the root of a
database record with a specified key – for example
"Ajax". We can then go from the SUPPLIERS record
Ajax to all its offers, examine the entire collection of
DEPTS database records, until we find the OFFERS
record with a given unique identifier, say 293. This
solution is too time consuming and we need pointers
that lead directly where we decide they are needed.

Mariana Goranova

Information Technologies 3

Virtual Record Types

In each scheme, we insist on having only one
occurrence of any record type. Any additional places
where we would like that record to appear, we place
instead a virtual record of that type. In an instance,
instead of a physical record, we place a pointer to
the one occurrence of that physical record in the
database.

procedure BUILD (n)
make n selected;
for each link from some node m to n do

if m is not selected then begin
make m a child of n;
BUILD (m)

end
else /* m was previously selected */

make virtual m be a child of n
end

Example: The ENTRIES node in the tree for
CUSTOMERS and the OFFERS node in the tree for
SUPPLIERS will be replaced by virtual ENTRIES and
virtual OFFERS, respectively, and in database tree,
they will point to the corresponding record in the tree
for DEPTS. Thus, in place of the record 293 in (b)
would be a pointer to the record 293 in (a). This
modification immediately removes the redundancy of
records, and since we now have only one copy of any
record to update, it removes the inconsistency, as
well.

Example:

SUPPLIERS

Virtual
OFFERS

DEPTS

EMPS Virtual
EMPS

ITEMS

ENTRIES OFFERS

CUSTOMERS

ORDERS

Virtual
ENTRIES

Second attempt at a hierarchy

The nodes labeled ENTRIES and OFFERS in DEPTS
tree remain as they were, because those nodes
represent the first times these record types are
encountered by the BUILD procedure.
We have replaced the MGR node by virtual EMPS. We
use a pointer to an employee record, because we
need a reference to a particular employee record to
mark which employee is the manager of the
department.

Representation of Bidirectional Relationships
Virtual record types also solve the problem of
traversing links in both directions. If we have a many-
one relationship from record type R to record type S,
we can make R be a child of S, and then make virtual
S be a child of R. If we have a many-many
relationship between R and S, we cannot make either
a child of the other, but we can let R and S each take
their natural position in the forest, and then create a
child of each that is a virtual record version of the
other.

*S

R

S

Mariana Goranova

Information Technologies 4

Example: Reconsider example, which discussed a
many-many relationship between courses and
students.

COURSESSTUDENTS

*STUDENTS*COURSES

Representing a many-many relationship

Physical connection representing virtual records

CS101

to
Grind

Grind

to
CS101

to
Nerd

to
Grind

to
Weenie

to
Weenie

to
MATH40

to
CS101

to
MATH40

to
EE200

MATCH40 EE200

Nerd Weenie Jock

We can find the students enrolled in a given course
(such as CS101) as follows:
1.Find the courses record for CS101. Finding a root
record, given its key, is one of the typical operations
of a hierarchical system.
2.Find all the virtual STUDENTS children of CS101.
We would find pointers to the STUDENTS records for
Grind and Nerd, but at this point, we would not know
the names or anything about the students to whose
records we have pointers.
3.Follow the pointers to find the actual student
records and the names of these students.

Combined Record Types
To navigate quickly along arbitrary paths, we need
combined records consisting of some data fields, and
pointer fields that point to other record types.
Example: Suppose we want to store grades in the
enrollment records that interpose between student
and course records. We replace the Virtual COURSES
child of STUDENTS by a combined record that has a
Virtual COURSES field as well as a GRADE field. *T
stands for a virtual record type of T.

ENROLL(*COURSES,GRADE)

COURSES(DEPT,NUMBER)

*STUDENTS

STUDENTS(NAME,ADDR)

Scheme with combined record type

To find all the grades issued in CS101, we have to
find the root of the COURSES database record for
CS101, then follow all the virtual student pointers
and from them, find their enrollment children.
There are several other schemes. If we don't want to
duplicate enrollments as children of both STUDENTS
and COURSE. We can go directly from the CS101
record to its enrollments, and find the grades
directly. To find all the students taking CS101 we
need to go first to ENROLL, then to STUDENTS, via
two virtual record pointers.

STUDENTS(NAME,ADDR)

ENROLL(*STUDENTS,*COURSES,GRADE)

COURSES(DEPT,NUMBER)

*ENROLL

Another scheme for courses and students

Example: Entries, with their quantities, and offers,
with their prices, and handled by the trick of the
previous example, using combined records. We have
also added virtual ORDERS as a child of ITEMS, to
facilitate finding the orders for a given item, and we
have similarly added virtual SUPPLIERS as a child of
ITEMS to help find out who supplies a given item.

SUPPLIERS

*ITEMS/
PRICE

DEPTS

EMPS *EMPS/
MGR

ITEMS

*ORDERS *SUPPLIERS

CUSTOMERS

ORDERS

*ITEMS/
QUANTITY

Improved design for YVCB database

Mariana Goranova

Information Technologies 5

We don't add virtual DEPTS as a child of either EMPS
or MGR, because the only way to reach EMPS or MGR
records is through their DEPT, and therefore, we
shall "know" the department anyway, without
needing to follow a pointer.

