
Mariana Goranova

Information Technologies 1

An object-oriented model supports the following:

The The ObjectObject--OrientedOriented ModelModel

Object identity. The elements with which they 
deal are typically records with unique 
addresses, just as in the network and 
hierarchical models.

Complex objects. Typically, they allow 
construction of new types by record formation 
and set formation.

Type hierarchy. They allow types to have 
subtypes with special properties.

1.

2.

3.

Object Structure

A data item of an elementary type, e.g., integer, 
real, or character string of fixed or varying length, 
is an object type T. Such a type corresponds to 
the data type for a “field” in networks or hierarchy.

If T is an object type, then SETOF(T) is an object 
type. An object of type SETOF(T) is a collection of 
objects of type T. The collection consists of 
pointers to the objects in the set.

If T1,…,Tk are object types, then 
RECORDOF(T1,…,Tk) is an object type. As with 
sets, an object of this type consists of pointers to 
one object of each of the k types in the record. 
However, if object type Ti is an elementary type, 
then the value of the object itself appears in the 
record.

1.

2.

3.

Example: For our running example, we shall, for 
simplicity, assume that the only elementary types 
are string and int. Then the type of an item can be 
represented by the record
ItemType = RECORDOF (name: string, I#: int)
Notice the convention that a field of a record is 
represented by the pair (<fieldname>:<type>).
To handle orders, we need to represent item/quantity 
pairs. Thus we need another object type
IQType = RECORDOF (item: ItemType, quantity: int)
Here, the first field is an object of a nonelementary
type, so that field should be thought of as a pointer 
to an item.
Now we can define the type of an order to be:
OrderType = RECORDOF (O#: int,

includes: SETOF (IQType))

Here, we have embedded the definition of another 
object type, SETOF (IQType), within the definition of 
OrderType. That is equivalent to writing the two 
declarations:

SIQType = SETOF (IQType)
OrderType = RECORDOF (O#: int, includes: SIQType)
Either way, the field includes of OrderType is a 
representation of a set of pointers to objects of type 
IQType, perhaps a pointer to a linked list of pointers 
to those objects.
Customers can be represented by objects of the 
following type:
CustType=RECORDOF(name:string, addr: string,

balance: int, orders: SETOF(OrderType))
while departments may be given the following 
declaration:

DeptType = RECORDOF (name: string, dept#: int, 
emps: SETOF (EmpType), mgr: EmpType,
items: SETOF (ItemType))

Notice that this declaration twice makes use of a 
type EmpType, for employyes, once as a set and 
once directly. In both case, it is not the employees or 
manager of the department that appear here, but 
pointers to the actual employee objects. Those 
objects have the following type:
EmpType = RECORDOF (name: string, salary: int,

dept: DeptType)
Here, we should notice that DeptType is the type of a 
field of EmpType, just as EmpType and SETOF 
(EmpType) are types of fields of DeptType. That 
apparent mutual recursion causes no problems 
because the references are by pointers, rather than 
physical presence.

The entire definition of types for our example is:

IQType = RECORDOF (item: ItemType, quantity: int)
OrderType = RECORDOF (O#: int,

includes: SETOF (IQType))
CustType=RECORDOF(name:string, addr: string, 

balance: int, orders: SETOF(OrderType))
DeptType = RECORDOF (name: string, dept#: int,

emps: SETOF (EmpType), mgr: EmpType,
items: SETOF (ItemType))

EmpType = RECORDOF (name: string, salary: int, 
dept: DeptType)

IPType = RECORDOF (item: ItemType, price: int)
SupType = RECORDOF (name: string, addr: string,

supplies: SETOF (IPType))



Mariana Goranova

Information Technologies 2

This database scheme is similar to, but not identical 
to the last hierarchical scheme. It includes a 
pathway from employees to their departments, since 
the field dept of EmpType is a pointer to the 
department. However, we do not have a way to get 
from items to their orders or suppliers. There is 
nothing inherit in either model that forces these 
structures. We could have added the additional 
pointers to item records by declaring
ItemType = RECORDOF (name: string, I#: int,

sups: SETOF (SupType),
orders: SETOF (OrderType))

The manager of the department is an object, not a 
set, and therefore can be only one manager of a 
department.

Classes and Methods
An object-oriented data model is not limited to the 
notation of an object type. The basic notation is 
really the class, which is an object type for the 
underlying data structure, and a set of methods, 
which are operations to be performed on the objects 
with the object-structure of that class.

Example: We can construct a class of all objects with 
the structure of EmpType. For this class we might 
create a set of methods:
GetName:

return (name)

Raise (X):
salary := salary + X

Class Hierarchies
Another essential ingredient in the object model is 
the notation of subclasses and hierarchies of 
classes, a formalization of isa relationship. There are 
two common approaches to the definition of class 
hierarchies:
1. In addition to record and set constructors for 
types, allow a third constructor, type union. Objects 
of type U(T1,T2) are either type T1 objects or type T2
objects.
2. Define a notion of subtype for given types.
The first approach is used in programming languages 
like C and Pascal. In object-oriented database 
systems, it is preferable to use the second approach, 
because

a) It does not allow the union of unrelated types to 
considered a type, a capability that is useful in 
programming languages when defining data 
structures, but it counterproductive when trying to 
develop a meaningful database scheme.
b) It extends naturally from object structures to 
classes, i.e., from types to types with methods.

Suppose we have a class C, and we wish to define a 
subclass D. We begin with the same object structure 
for D as for C, and with the same methods for D as for 
C. We may then modify the class D as follows:
1. If the structure for C is a record type, i.e., of the 
form

RECORDOF (T1,…,Tk)

then we may add additional components to the 
record structure.
2. We may create new methods that apply only to 
subclass D.
3. We may redefine methods of class C to have a new 
meaning in D.

Example: It would be natural to define MgrType as a 
subclass of EmpType. We might give MgrType the 
additional field bonus, so the structure for MgrType
would be
MgrType = RECORDOF (name: string, salary: int,

dept: DeptType, bonus: int)
We might also create a method for MgrType that 
returned the bonus. We could even create a method 
for MgrType that returned the department. If this 
method were not defined for the class of employee, 
then we could not use it on objects that were not of 
the manager class, even though the method “made 
sense”, since all employee objects have a dept field. 
Notice that each employee, whether or not a 
manager, corresponds to exactly one object of class 
EmpType. If the employee happens to be a manager, 
then that object has extra fields and methods, but 
there are not two objects for this employee.



Mariana Goranova

Information Technologies 3

Operations in the Object Model

Methods can perform any operation on data 
whatsoever. It is essential to allow navigation from 
an object O to the objects pointed to by fields of O; 
this operation corresponds to movement from parent 
to child, or analog a pointer in a virtual field in the 
hierarchical model. It is very useful to allow 
selection on fields that are sets of objects. Thus, we 
can navigate from an object O to a designed subset 
of the objects found in some set-valued field of O. A 
language OPAL includes these features.

Database Management System (DBMS)

User
Query

Application Program Database Scheme

DDL
Compiler

Database
Description

Tables

Query
Language

Processor

Database
Manager

File
Manager

Physical
Database

Concurrent
Access
Tables

Authorisation
Tables

Diagram of a DBMS

On the right, we show the design, or database 
scheme, fed to the DDL compiler, which produces an 
internal description of the database. The 
modification of the database scheme is very 
infrequent in a large, multiuser database. This 
modification is normally the responsibility of a 
database administrator, a person or persons with 
responsibility for the entire system, including its 
scheme, subscheme (views), and authorization to 
access parts of the database.
We also see the query-language processor, which is 
given data manipulation programs from two sources. 
One source is user queries or other data 
manipulations, entered directly at a terminal. The 
second source is application programs, where 
database queries and manipulations are embedded in 
a host language and preprocessed to be run later, 
perhaps many times. 

The portions of an aplication program written in a 
host language are handled by the host language 
compiler, not shown. The portions of the application 
program that are data manipulation language 
statements are handled by the query language 
processor, which is responsible for optimization of 
these statements. 
DML statements, especially queries, which extract 
data from the database, are often transformed 
significantly by the query processor, so that they can 
be executed much more efficiently than if they had 
been executed as written. We show the query 
processor accessing the database description tables 
that were created by the DDL program to ascertain 
some facts that are useful for optimization of 
queries, such as the existence or nonexistence of 
certain indices.

Below he query processor we see a database 
manager, whose role is to take commands at the 
conceptual level and translate them into commands 
at the physical level, i.e., the level of files. The 
database manager maintains and accesses tables of 
authorization information and concurrency control 
information. Authorization tables allow the database 
manager to check that the user has permission to 
execute the intended query or modification of the 
database. Modification of the authorization table is 
done by the database manager, in response to 
properly authorized user commands.
If concurrent access to the database by different 
queries and database manipulation is supported, the 
database manager maintains the necessary 
information in a specialized table. There are several 
forms the concurrency control table can take.

For example, any operation modifying a relation may 
be granted a “lock” on that relation until the 
modification is complete, thus preventing 
simultaneous, conflicting modifications. The 
currently held locks are stored in what we referred to 
as the concurrent access tables.
The database manager translates the commands 
given it into operations on files, which are handled by 
the file manager. This system may be the general-
purpose file system provided by the underlying 
operation system, or it may be a specialized system 
modified to support the DBMS. For example, a 
special-purpose DMBS file manager may attempt to 
put parts of a file that are likely to be accessed as a 
unit on one cylinder of a disk. Doing so minimizes 
“seek time”, since we can read the entire unit after 
moving the disk head once.



Mariana Goranova

Information Technologies 4

The file manager may use the concurrent access 
tables. We can allow more processes to access the 
database concurrently if we lock objects that are 
smaller than whole files or relations. For example, if 
we locked individual blocks of which a large file was 
composed, different processes could access and 
modify records of that file simultaneously, as long 
they were on different blocks.


