
Mariana Goranova

Programming 1

Classes

Class – prototype, that defines data and the 
methods that work on that data.

1. Defining a Class
[attributes] [modifiers] class <class_name> [:<base_class_name>]
{

// class body
}[;]

2. Class Members
• field (member variable) – holds a value;

modifiers: static, readonly, and const
• method (member function) – code that acts on 

the object’s data (field values)
• property (smart field) – method that looks like a 

field to the class’s clients
• constant – field with a value that can’t be • constant – field with a value that can t be 

changed
• indexer (smart array) – member that enables to 

work with a class that’s logically an array of 
data, as though the class itself were an aray

• event – causes some peace of code to run when 
something is happen

• operator – standard mathematical operator to a 
class via operator overloading

3. Access Modifiers

public The member is accessible from outside 
the class’s definition and hierarchy of 
derived classes.

protected The member isn’t visible outside the 
class and can be accessed by derived 
classes only.

private The member can’t be accessed outside 
the scope of the defining class and its 
derived classes (by default).

internal The member is visible only within the 
current compilation unit.

4. Method Main – the application’s entry point;
must be defined as static.

• command-line arguments – a string array type as 
its only arguments

• return value – terminates the execution of the 
method
• usually doesn’t return a value – void;

a al e of t pe int sho s an error le el to the • a value of type int – shows an error level to the 
calling application to indicate user-defined 
success or failure (for console applications)

• multiple Main methods
/main:<class_name> switch with the C# compiler 
specifies which class’s Main method to use.

5. Constructors
• are called when ever an instance of the 

class is created with new
• have the same names as a class name
• initialize objects
• don’t return values

<class> <object> = new <class> (constructor arguments)
new creates a new instance of a class:
• on the heap – reference types
• on the stack – value types

6. Static Members and Instance Members

6.1. Instance Member – a copy of that member is 
made for every instance of the class
(by default)

6.2. Static Member (static)
• only one copy of the member exists
• a static member is created when the 

application containing the class is loaded
• exists throughout the life of the application
• the member is accessible even before the 

class has been instantiated



Mariana Goranova

Programming 2

7. Constructor Initializers
All constructors first invoke the base class’s 
constructor. The constructor initializers specify 
which class and which constructor is called.

base (…) – calls the current class’s base class 
constructor

this (…) – calls another constructor defined 
within the class itself

8. Constant
• field that remain constant for the life of the 

application
• defined with the const keyword
• the constant value is set at compile time
• by default is a static

9. Read-Only Fields

readonly – constant field that value is set in the 
constructor at run time

static readonly – constant field that value is set in 
the static constructor that by default is public

Example: Class Point – instance members
using System;
class Point
{

private int x, y; // Coordinates of a point
// Default constructor without parameters
public Point ()
{{

x = 0;
y = 0;

}
// Constructor with two parameters
public Point (int initialX, int initialY)
{   x = initialX;

y = initialY;
}

// Instance method – calculates the distance to the point other
public double DistanceTo (Point other)
{

int xDiff = x - other.x;
int yDiff = y - other.y;
return Math.Sqrt (xDiff * xDiff + yDiff * yDiff);

}
// Overriding method System.Object.ToString

bli id t i T St i ()public override string ToString()
{

return "("+x+", "+y+")";
}

}

class PointApp
{

static void Main (string[] args)
{

Point origin = new Point ();
Point bottomRight = new Point (600,800);
double distance = bottomRight.DistanceTo (origin);
Console.WriteLine

("Th di t b t th i t {0} d {1} i {2} "("The distance between the points {0} and {1} is {2}.",
bottomRight, origin, distance);

}
}

Results:
The distance between the points (600, 800) and (0, 0) is 1000.

Example: Class Point – static fields
using System;
class Point
{

private int x, y;
private static int objectCount = 0;
public Point ()
{

x = 0;x 0;
y = 0;
objectCount++;

}
public Point (int initialX, int initialY)
{

x = initialX;
y = initialY;
objectCount++;

}



Mariana Goranova

Programming 3

public double DistanceTo (Point other)
{

int xDiff = x - other.x;
int yDiff = y - other.y;
return Math.Sqrt (xDiff * xDiff + yDiff * yDiff);

}
public override string ToString ()
{

return "("+x+" "+y+")";return ( +x+ , +y+ ) ;
}
public static int ObjectCount ()
{

return objectCount;
}

}

class PointApp
{

static void Main (string[] args)
{

Console.WriteLine ("The number of Point objects: {0}",
Point.ObjectCount ());

Point origin = new Point ();
Point bottomRight = new Point (600, 800);
d bl di t b tt Ri ht Di t T ( i i )double distance = bottomRight.DistanceTo (origin);
Console.WriteLine

("The distance between {0} and {1} is {2}.",
bottomRight, origin, distance);

Console.WriteLine("The number of Point objects: {0}", 
Point.ObjectCount ());

}
}

Results:

The number of Point objects: 0
The distance between (600, 800) and (0, 0) is 1000.
The number of Point objects: 2

Example:

Application that keeps a track of the 
current workstation’s IP address (the workstation 
obtains its IP address dynamically):
• with readonly field
• with static readonly field

Class System.Net.IPAddress – provides an Internet 
Protocol (IP) address. 

Class System.Net.Dns – provides simple domain name 
system (DNS) resolution functionality.

Method Dns.Resolve – queries a DNS server for the IP 
address associated with a host name or IP address.
public static IPHostEntry Resolve (string hostName);public static IPHostEntry Resolve (string hostName);
IPHostEntry provides a container class for Internet 
host address information. When hostName is a DNS-
style host name associated with multiple IP 
addresses, only the first IP address that resolves to 
that host name is returned.

Property IPHostEntry.AddressList – gets/sets a list of IP 
addresses that are associated with a host.

using System;
using System.Net;
class Workstation
{   public const string HostName = "FKSU2300A-3";

public readonly string IPAddressString;
public Workstation ()
{   IPAddress ipAddress = 

Dns.Resolve(HostName).AddressList[0];
IPAddressString = ipAddress.ToString();

}
}}
class GetIpAddress
{   static void Main (string[] args)

{   Workstation workstation = new Workstation();
Console.WriteLine ("The IP address of '{0}' is {1}.",

Workstation.HostName, workstation.IPAddressString);
}

}
Results:
The IP address of 'FKSU2300A-3' is 81.161.244.49.



Mariana Goranova

Programming 4

using System;
using System.Net;
class Workstation
{   public const string HostName = "FKSU2300A-3";

public static readonly string IPAddressString;
static Workstation ()
{   IPAddress ipAddress =

Dns.Resolve(HostName).AddressList[0];
IPAddressString = ipAddress.ToString();

}}
}
class GetIpAddress
{   static void Main (string[] args)

{   Console.WriteLine ("The IP address of '{0}' is {1}.",
Workstation.HostName, Workstation.IPAddressString);

}
}
Results:
The IP address of 'FKSU2300A-3' is 81.161.244.49.

Inheritance
Inheritance – a class is built upon another class, in
terms of data or behaviour.
class <derived_class> : <base_class>

• public, protected or internal members can be 
inherited

• constructor can not be inherited – each 
subclass has to implement its constructor

• C# does not support multiple inheritance 
through derivation, but implements multiple 
interfaces

• sealed classes (sealed) – can never have any 
derived classes

Example: Class Point3D inherits the class Point
using System;
class Point
{

private int x,y;
public Point ()
{   x = 0;

y = 0;
}}
public Point (int initialX, int initialY)
{   x = initialX;

y = initialY;
}
public void Move (int dx, int dy)
{   x+=dx;

y+=dy;
}

public override string ToString ()
{

return x+","+y;
}

}
class Point3D : Point
{   private int z;

public Point3D () : base ()
{{

z = 0;
}
public Point3D (int initialX, int initialY, int initialZ) :

base (initialX, initialY)
{

z = initialZ;
}

public void Move (int dx, int dy, int dz)
{   base.Move (dx, dy);

z += dz;
}
public override string ToString ()
{

return base.ToString ()+","+z;
}

}
class PointApp
{   static void Main (string[] args)

{   Point3D point = new Point3D (600,800,1000);
point.Move (1, 1, 1);
Console.WriteLine ("({0})", point);

}
}
Results:
(601,801,1001)

Structs
Struct
• value type
• contains different data type
• is referred to as a lightweight version of a class 

1  D fi i   St t1. Defining a Struct
[attributes] [modifiers] struct <struct_name> [: <interfaces>]
{

// struct body
}[;]



Mariana Goranova

Programming 5

2. Struct Members
• constructors
• constants
• fields
• methods
• properties
• indexers
• operators• operators
• nested types

3. Limitations
• no default constructor
• defined as sealed – it can’t serve as a base 

class
• implicitly derived from System.ValueType – the 

ultimate base class of all value types

4. Usage
• contain very small data
• contain few or even no methods to access or 

modify the contained data

Example: Define the standard RGB struct with static  
fields to hold the red, green, and blue values.
using System;
struct RGB
{   public static readonly RGB RED     = new RGB (255,0,0);

public static readonly RGB GREEN= new RGB (0,255,0);
public static readonly RGB BLUE   = new RGB (0,0,255);
public static readonly RGB WHITE = new RGB (255,255,255);
public static readonly RGB BLACK = new RGB (0,0,0);
public int Red;
public int Green;
public int Blue;
public RGB (int red, int green, int blue)
{   

Red    = red;
Green = green;
Blue    = blue;

}

public override string ToString ()
{   return Red.ToString("X2") + Green.ToString("X2") + 

Blue.ToString("X2");
}

}
class StructApp
{   static void PrintRGBValue (string color, RGB rgb)

{
Console WriteLine ("The value for {0} is {1}" color rgb);Console.WriteLine ( The value for {0} is {1} , color, rgb);

}
static void Main(string[] args)
{   PrintRGBValue ("red  ", RGB.RED);

PrintRGBValue ("green", RGB.GREEN);
PrintRGBValue ("blue ", RGB.BLUE);
PrintRGBValue ("white", RGB.WHITE);
PrintRGBValue ("black", RGB.BLACK);

}
}

Results:

The value for red     is FF0000
The value for green is 00FF00
The value for blue    is 0000FF
The value for white  is FFFFFF
The value for black  is 000000

Methods
Methods (member functions) – give classes their 
behavioral characteristics.



Mariana Goranova

Programming 6

Method Parameters

Value and Reference Parameters

1. Value-type method parameters – passing by     
value

• a copy of the value is passed to the method
• if the called method makes changes to the data g

through the value-type incoming parameters the 
changes don’t affect the variables passed down 
from the calling method

2. Reference-type method parameters – passing by 
reference

• a copy of the reference (another reference to the 
same data) is passed to the method

• if the called method makes changes to the data 
through the reference, the changes are made to 
the original data and the changes will be 
available to the calling method when the called available to the calling method when the called 
method returns

3. Returning More than a Single Value

3.1 ref Method Parameters
• ref parameters point to the same memory as 

the variables in the calling code
• if the called method modifies the values the 

calling code’s variables are modified (pointers 
in C++)

• limitation – ref parameters have to be 
initialized before calling the method

3.2 out Method Parameters
• out parameters don’t require the calling code 

to initialized the passed arguments first
• must be modified in the called method

by value
(input)

out
(output)

ref
(input/
output)

Calling 
Method
Calling 
Method

Called 
Method

Example: Passing value-type method parameters
using System;
class SomeClass
{   public void Change(int x, ref int y, out int z)

{   x += 5; // input parameter
y *= x; // input/output parameter
z = 10 * y; // output parameter

}
}
class Testclass Test
{   static void Main()

{   SomeClass sc = new SomeClass ();
int v1 = 5, v2 = 5, v3;
sc.Change (v1, ref v2, out v3);
Console.WriteLine ("v1={0}, v2={1}, v3={2}", v1, v2, v3);

}
}
Results:
v1=5, v2=50, v3=500

Пример: Passing reference-type method 
parameter
using System;
class AnotherClass
{

public int ID;
}
class SomeClass
{{

public void ChangeObject (AnotherClass x,
ref AnotherClass y, out AnotherClass z)

{   x.ID += 5;
y.ID *= x.ID;
z = new AnotherClass();
z.ID = 10 * y.ID;

}
}



Mariana Goranova

Programming 7

class Test
{ 

static void Main()
{

SomeClass sc = new SomeClass ();
AnotherClass r1 = new AnotherClass ();
r1.ID = 5;
AnotherClass r2 = new AnotherClass ();
r2.ID = 5;r2.ID  5;
AnotherClass r3;
sc.ChangeObject (r1, ref r2, out r3);
Console.WriteLine("r1.ID={0}, r2.ID={1}, r3.ID={2}", 

r1.ID, r2.ID, r3.ID);
}

}

Results:
r1.ID=10, r2.ID=50, r3.ID=500

class SomeClass
{

public void ChangeObject (AnotherClass x, ref AnotherClass y, 
out AnotherClass z)

{   
x = new AnotherClass();
x.ID += 5;
y.ID *= x.ID;
z = new AnotherClass();z  new AnotherClass();
z.ID = 10 * y.ID;

}
}

Results
r1.ID=5, r2.ID=25, r3.ID=250

Method Overloading
Method overloading – the same method name can 
be used multiple time with only the passed 
arguments changed.

1. The behavior of the method differs slightly 
depending on the value types passed.

2. Method’s parameter list must be different.

3. The method’s return type and access modifier 
must be the same.

Overloading Constructors
class Point
{

private int x = 0;
private int y = 0;
// The constructor Point (int x, int y) is implicitly compiled 
// as though it were written public Point (int x, int y) : this ().
// this () resolves to a call to public Point ().
public Point (int x int y)public Point (int x, int y)
{   this.x = x;

this.y = y;
}
public Point ()
{   x = 0;

y = 0;
}

}

Constructor Initializer list – explicitly call one
constructor from another:
public Point () : this (0, 0)
{

...
}

Inheritance and Overloading
The derived class can use overloaded method (as 
in Java).

Variable Method Parameters
The number of method arguments are known at 
run time.
The variable number of method parameters is 
specified by using the params keyword and by 
specifying an array in the method’s argument list.



Mariana Goranova

Programming 8

Example:
using System;
class Point
{   public int x;

public int y;
public Point (int x, int y)
{   this.x=x;

this.y=y;
}}

}
class Polygon
{   public void DrawPolygon (params Point[] p)

{    Console.WriteLine("Polygon with vertexes: ");
for (int i=0; i<p.GetLength(0); i++)

Console.WriteLine ("{0},{1}", p[i].x, p[i].y);
}

}

class TestPolygon
{   static void Main()

{   Point p1    = new Point(5,10);
Point p2    = new Point(10,15);
Point p3    = new Point(5,20);
Polygon p = new Polygon();
p.DrawPolygon (p1, p2, p3);

}
}}
or
static void Main()
{   Point[] pts = {new Point(5,10), new Point(10,15),

new Point(5,20)};
Polygon p  = new Polygon();
p.DrawPolygon (pts);

}

Example: Parameters of any type – params 
parameter of type object.
using System;
class Point
{   public int x;

public int y;
public Point (int x, int y)
{   this.x = x;

thithis.y = y;
}

}
class OpenEnded
{   public void Foo (params object[] p)

{   for (int i=0; i<p.GetLength(0); i++)
Console.WriteLine (p[i]);

}
}

class TestOpenEnded
{

static void Main()
{

OpenEnded oe = new OpenEnded();
oe.Foo(123,456, "Hello", new Point(7,8),9.0m,true,'X');

}
}

Results:
123
456
Hello
Point
9,0
True
X

Virtual Methods
Virtual methods – modify the behavior of the base 
class in the derived class.
1. Method Overriding – using new keyword with the 

derived class’s method definition – hides the 
base class method (new is implicit default).

Example: Method overriding using newp g g
using System;
class Point
{

protected int x = 0;
protected int y = 0;
public Point (int x, int y)
{   this.x = x;

this.y = y;
}

public void Move (int dx, int dy)
{   x += dx;

y += dy;
}
override public string ToString()
{   return "("+x+","+y+")";
}

}
class SlowPoint : Pointclass SlowPoint : Point
{

private int xLimit; // -xLimit <= x <= xLimit
private int yLimit; // -yLimit <= y <= yLimit
public SlowPoint (int x, int y, int lower, int upper) : base (x, y)
{

xLimit = lower;
yLimit = upper;

}



Mariana Goranova

Programming 9

new public void Move (int dx, int dy)
{

x += dx;
y += dy;
x = Limit (x, xLimit);
y = Limit (y, yLimit);

}

private int Limit (int d int l)private int Limit (int d, int l)
{

// If the coordinate of the point d is greater than the upper 
// limit l, it becomes equal to the upper limit; if it is less than
// the lower limit –l than it becomes equal to the lower limit 
// –l.
return d > l ? l : d < -l ? -l : d;

}
}

class TestOverriding
{

static void Main (string[] args)
{   

Point p1 = new Point (10, 20);
p1.Move (5, 5);
Console.WriteLine (p1);
SlowPoint p2 = new SlowPoint (100, 200, 500, 800);

2 M (600 100)p2.Move (600, 100);
Console.WriteLine (p2);

}
}

Results:
(15,25)
(500,300)

2. Polymorphism (many forms) – define a method 
multiple times throughout the class hierarchy so 
that the runtime calls the appropriate version of 
the method for the specific object being used 

• override a method in the class hierarchy using:

• virtual keyword in the base class and

• override keyword in the derived classy

• declare an object from the base class

• runtime calls the appropriate method for the 
specific object

Example: Method overriding without polymorphism
– using new (early binding)
using System;
class Employee // Employee
{

private string name; // Name
private string address; // Address
private string phone; // Telephone number
private double payRate; // Pay rate

public Employee (string name, string address,
string phone, double payRate)

{   this.name    = name;
this.address = address;
this.phone    = phone;
this.payRate = payRate;

}
public double pay()
{{

return payRate;
}
override public string ToString()
{

return name + ", " + address + ", " + phone;
}

}

class Executive : Employee
{

private double bonus;
public Executive (string name, string address, string phone, 

double payRate, double bonus) : 
base(name, address, phone, payRate)

{
this.bonus=bonus;

}}
new public double pay() // Override pay
{

return base.pay() + bonus;
}

}



Mariana Goranova

Programming 10

class Hourly : Employee
{

private int hoursWorked;
public Hourly (string name, string address, string phone, 

double payRate, int hoursWorked) : 
base (name, address, phone, payRate)

{
this.hoursWorked = hoursWorked;

}
new public double pay() // Override pay
{

return base.pay() * hoursWorked;
}

}

class TestNotPolymorphic
{

static void Main()
{

Employee e;
e = new Executive("John","Sofia","1234567",400,100);
Console.WriteLine(e + " " + e.pay());
e = new Hourly("Maria", "Plovdiv", "765432", 20, 10);
C l W it Li ( " " ())Console.WriteLine(e + " " + e.pay());

}
}
Results:
John, Sofia, 1234567 400
Maria, Plovdiv, 765432 20

Example: Method overriding with polymorphism –
using virtual and override (late binding)
using System;
class Employee
{

private string name;
private string address;
private string phone;
private double payRate;private double payRate;
public Employee (string name, string address, 

string phone, double payRate)
{   this.name     = name;

this.address = address;
this.phone    = phone;
this.payRate = payRate;

}

virtual public double pay() // Virtual pay method
{

return payRate;
}
override public string ToString()
{

return name + ", " + address + ", " + phone;
}

}}
class Executive : Employee
{    private double bonus;

public Executive (string name, string address, string phone, 
double payRate, double bonus) : 
base(name, address, phone, payRate)

{
this.bonus = bonus;

}

override public double pay() // Override the virtual pay
{ // method

return base.pay() + bonus;
}

}
class Hourly : Employee
{   private int hoursWorked;

public Hourly (string name, string address, string phone, 
double payRate int hoursWorked) :double payRate, int hoursWorked) : 
base (name, address, phone, payRate)

{
this.hoursWorked = hoursWorked;

}
override public double pay() // Override the virtual pay
{ // method

return base.pay()*hoursWorked;
}

}

class TestPolymorphic
{

static void Main()
{

Employee e;
e = new Executive ("John","Sofia","1234567",400,100);
Console.WriteLine (e + " " + e.pay());
e = new Hourly ("Maria","Plovdiv","765432",20,10);
Console WriteLine (e + " " + e pay());Console.WriteLine (e +   + e.pay());

}
}
Results:

John, Sofia, 1234567 500
Maria, Plovdiv, 765432 200



Mariana Goranova

Programming 11

Rules:
1. override method and virtual method must have 

the same access modifier (protected, public,
internal)

2. virtual member can not be declared as private
(can not be overridden); can be declared as 
protected (but not be used out of the class 
hierarchy).hierarchy).

Example: Overriding the class Object methods
using System;
class Point // Inherits Object by default
{   

private int x, y;
public Point ()
{

x = 0;x  0;
y = 0;

}
public Point (int initialX, int initialY)
{

x = initialX;
y = initialY;

}

// Overrides Object.Equals
public override bool Equals (Object obj)
{

// Checks for null and compares the types at run time
if (obj == null || GetType () != obj.GetType ())

return false;
Point p = (Point)obj;
return (x == p.x) && (y == p.y);

}}
// Overrides Object.GetHashCode
public override int GetHashCode ()
{

// Generates a hash code using an XOR (exclusive OR) 
// operation
return x ^ y;

}

// Overrides Object.ToString
public override string ToString ()
{

return x + "," + y;
}

}

class Point3D : Point // Inherits Point
{

private int z;
public Point3D () : base ()
{

z = 0;
}

public Point3D (int initialX, int initialY, int initialZ) : 
base (initialX, initialY)

{     z = initialZ; }
// Overrides Point.Equals
public override bool Equals (Object obj)
{

return base.Equals (obj) && z == ((Point3D)obj).z;
}
// Overrides Point GetHashCode// Overrides Point.GetHashCode
public override int GetHashCode()
{

return base.GetHashCode () ^ z;
}
// Overrides Point.ToString
public override string ToString ()
{ return base.ToString () + "," + z; }

}

class InheritancePointApp
{

static void Main (string[] args)
{  Point3D point1 = new Point3D (100, 100, 100);

Console.WriteLine ("The hash code of the point ({0}): {1}", 
point1, point1.GetHashCode());

Point3D point2 = new Point3D (10, 10, 10);
Console.WriteLine ("The hash code of the point ({0}): {1}", 

point2, point2.GetHashCode());
P i t3D i t3 P i t3D (10 10 10)Point3D point3 = new Point3D (10, 10, 10);
Console.WriteLine ("The hash code of the point ({0}): {1}", 

point3, point3.GetHashCode());
Console.WriteLine ("({0}) and ({1}) are {2}.", point1, point2,

point1.Equals (point2) ? "equal" : "not equal");
Console.WriteLine ("({0}) and ({1}) are {2}.", point2, point3,

point2.Equals (point3) ? "equal" : "not equal");
}

}



Mariana Goranova

Programming 12

Results:

The hash code of the point (100,100,100): 100
The hash code of the point (10,10,10): 10
The hash code of the point (10,10,10): 10
(100,100,100) and (10,10,10) are not equal.
(10,10,10) and (10,10,10) are equal.

Static Methods
Static method
• exists in a class as a whole, rather than in a 

specific instance of the class
• defines using the static keyword
• cannot be referenced through an instance; 

instead, it is referenced through the type 
name:name:
class.method

1. Access to Class members
• can access any static member within the 

class
• can’t access an instance member

2. Static Constructor
• a class can have only one static 

constructor
• can’t take parameters
• can’t access instance members 

(including the this pointer)
• is executed before the first instance of a 

class is createdclass is created
• public and private modifiers are not allowed
• can provide a nonstatic constructor with 

the same signature as the static 
constructor (the static constructor is 
called first)

• is executed before any static member 
(either data or function) of the class is 
accessed

Example:
using System;
class Point
{

private int x;
private int y;
private static int count;
static Point() // Static constructor
{{

count = 0;
}
public Point() // Nonstatic constructor
{

x = 0;
y = 0;
count++;

}

public Point (int x, int y) // Constructor with two parameters
{    this.x = x;

this.y =y;
count++;

}
public void Move (int dx, int dy)
{    x += dx;

y += dy;
}}
override public string ToString()
{

return "(" + x + "," + y +")";
}
public static void Info() // Static method
{

Console.WriteLine("The number of points is " + count);
}

}

class TestStaticMethod
{   static void Main()

{   Point.Info ();
Point p1 = new Point ();
p1.Move(5,5);
Console.WriteLine (p1);
Point p2 = new Point (100,200);
p2.Move (50,50);
Console.WriteLine (p2);Console.WriteLine (p2);
Point.Info ();

}
}
Results:
The number of points is 0
(5,5)
(150,250)
The number of points is 2



Mariana Goranova

Programming 13

Extension Methods
Extension method

• add methods to existing types without creating 
a new derived type, or recompiling

• special kind of static method
• called by using instance method syntax

Defining and calling the extension method
1. Define a static class to contain the extension 

method. The class must be visible to client code.
2. Implement the extension method as a static method 

with at least the same visibility as the containing 
class.

3. The first parameter of the method specifies the 
type that the method operates on; it must be 
preceded with the this modifier.

4. In the calling code, add a using directive to specify 
the namespace that contains the extension method 
class. 

5. Call the methods as if they were instance methods 
on the type. The first parameter is not specified by 
calling code because it represents the type on 
which the operator is being applied. You only have 
to provide arguments for parameters 2 through n. 

using System;
namespace StringExtensionMethods
{ public static class StringExtension

{
public static int WordCount(this String str)
{

return str.Split(new char[] { ' ', '.', '?' },
StringSplitOptions.RemoveEmptyEntries).Length;

}
}

}
namespace ExtensionMethods
{ using StringExtensionMethods;

class Program
{ static void Main(string[] args)

{
string s = "This a test of  extension   methods";
int count = s.WordCount();
Console.WriteLine("Word count = " + count);

}
}

} Word count = 6

Binding Extension Methods at Compile Time
• Extension methods extend a class or interface, 

but not to override them.
• An extension method with the same name and 

signature as an interface or class method will 
never be called.

• At compile time, the compiler it first looks for a 
match in the type's instance methods. If no match 
is found, it will search for any extension methods 
that are defined for the type, and bind to the first 
extension method that it finds.

using System;
namespace ExtensionMethods
{ using StringExtensionMethods;

class Program
{

private String str;
public Program(String str)
{

this.str = str;
}
public int WordCount()
{ Console.WriteLine("Instance method call");

return str.Split(new char[] { ' ', '.', '?' }, 
StringSplitOptions.RemoveEmptyEntries).Length;;

}
static void Main(string[] args)
{ Program s = new Program("This a test of  extension   methods");

int count = s.WordCount();
Console.WriteLine("Word count = " + count);

}
}

}
Instance method call
Word count = 6

Abstract Classes
Abstract class – defines features of derived, non-
abstract classes
• cannot be instantiated
• abstract members are defined using the abstract

keyword
• abstract methods have no implementation and 

the derived classes must implement all abstract 
methods using override modifier

• provide a common definition of a base class that 
multiple derived classes can share



Mariana Goranova

Programming 14

Example: 
using System;
abstract class RoundShape  // Abstract class
{

protected class Center // Nested class
{   public int x;

public int y;
}
protected Center c = new Center();protected Center c = new Center();
protected float radius;
abstract public float Area(); // Abstract method
public RoundShape (int x, int y, float r)
{    c.x = x;

c.y = y;
radius = r;

}
}

class Circle : RoundShape
{

public Circle(int x, int y, float r) : base(x, y, r) { }
public override float Area() // Implementation of Area
{

return (float)(Math.PI*Math.Pow((double)radius, 2.0));
}

}
class Sphere : RoundShape
{

public Sphere(int x, int y, float r) : base(x, y, r) { }
public override float Area() // Implementation of Area
{

return (float)(4*Math.PI*Math.Pow((double)radius, 2.0));
}

}

class Shape
{

static void Main()
{

RoundShape shape;
shape = new Circle (5, 5, 10.0F);
Console.WriteLine ("The area of the circle is " + 

shape.Area());
h S h (5 5 10 0F)shape = new Sphere (5, 5, 10.0F);

Console.WriteLine ("The area of the sphere is " + 
shape.Area());

}
}

Results:
The area of the circle is 314,1593
The area of the sphere is 1256,637

Properties
Properties – referred to as smart fields  on the 
client side and have the same capabilities as 
accessors.

1. Defining a Property – consists of a field 
declaration and accessors used to modify that 
field’s value

[attributes] [modifiers] <type> <property_name>
{

[set
{ <accessor_body> }

]
[get
{ <accessor_body> }
]

}

• must have one of set or get method 
• read-write property – both set and get methods 

are defined
• read-only property – only get method is defined
• write-only property – only set method is defined
• can’t be used as parameters to methods (they 

are not fields)
 b  d fi d ith th  t ti difi  b t ’t • can be defined with the static modifier, but can’t 

be combined with the virtual, abstract, override, 
because they are used only for instance 
members

• afford advantage over using accessors

Example:
using System;
class Address
{   protected string city;

public string City // Read-only property
{   get {   return city;   } }
protected int telCode;
public int TelCode // Read-write property
{ get { return telCode; }{   get {   return telCode;   }

set
{   // Validate value against some data store

telCode = value;
// Update city based on validated telCode
if (telCode == 2)

city = "Sofia";
}

}
}



Mariana Goranova

Programming 15

class PropertyApp
{

static void Main()
{

Address addr = new Address();
addr.TelCode = 2;
Console.WriteLine

("The city with telephone code {0} is {1}.",
addr.TelCode, addr.City);addr.TelCode, addr.City);

}
}
Results:
The city with telephone code 2 is Sofia.

The compiler emits items for each property:
• get accessor method: get_City, get_TelCode
• set accessor method: set_TelCode
• Property definitions (always):
.property instance string City
{

.get instance string Address::get_City()
} // end of property Address::City} p p y y
.property instance int TelCode
{

.get instance int Address::get_TelCode()

.set instance void Address::set_TelCode (int)
} // end of property Address::TelCode

2. Inheriting Properties
• Overriding Inherited Properties –

the virtual modifier for the property that can be 
overridden, the override modifier on the derived 
class’s implementation the inherited property 

Example:
using System;
class Address
{

protected string city;
public string City
{

get
{

return city;
}

}

protected int telCode;
public virtual int TelCode
{

get {   return telCode;   }
set
{   telCode = value;

// Update city based on validated telCode
if (telCode == 2)

city = "Sofia";city Sofia ;
}

}
}
class FullAddress : Address
{   private string state;

public string State
{

get {   return state;   }
}

public override int TelCode // Override the inherited
{ // property

set
{

telCode = value;
// Update city based on validated telCode
if (telCode == 3592)
{

city = "Sofia";city Sofia ;
state = "Bulgaria";

}
}

}
}

class PropertyApp
{

static void Main()
{

FullAddress addr = new FullAddress();
addr.TelCode = 3592;
Console.WriteLine("Code: {0}, City: {1}, State: {2}.",

addr.TelCode, addr.City, addr.State);
}}

}
Results:
Code: 3592, City: Sofia, State: Bulgaria.



Mariana Goranova

Programming 16

• Enforcing Property Implementation via abstract
Properties

abstract class <abstract_base_class_name>
{

public abstract <type> <abstract_property_name>
{

get;
set;set;

}
}

Example:
using System;
abstract class Employee
{   protected int id;

public int Id
{

get {   return id;   }
}
protected int hoursWorked;protected int hoursWorked;
protected double hourlyCost;
public abstract double HourlyCost
{

get;
}
protected Employee (int id, int hoursWorked)
{   this.id = id;

this.hoursWorked = hoursWorked;
}

public override string ToString()
{

return "Employee (id = " + id + ") costs " + HourlyCost +
" per hour.";

}
}
class ContractEmployee : Employee
{   protected double hourlyWage;

public override double HourlyCostpublic override double HourlyCost
{

get {   return hourlyWage;   }
}
public ContractEmployee (int id, int hoursWorked,

double hourlyWage) : base(id, hoursWorked)
{

this.hourlyWage = hourlyWage;
}

}

class SalariedEmployee : Employee
{

protected double salary;
public override double HourlyCost
{

get
{

return salary / hoursWorked; 
}}

}
public SalariedEmployee(int id,int hoursWorked,double salary)

: base(id,hoursWorked)
{

this.salary = salary;
}

}

class OverrideProperties
{

static void Main()
{

Employee e;
e = new ContractEmployee (1, 40, 20);
Console.WriteLine(e);

e = new SalariedEmployee (2, 160, 400);e new SalariedEmployee (2, 160, 400);
Console.WriteLine(e);

}
}

Results:

Employee (id = 1) costs 20 per hour.
Employee (id = 2) costs 2,5 per hour.

3. Advanced Use of Properties

• provide high level of abstraction – the client 
doesn’t need to know if an accessor exists 
for the member being accessed

• provide a generic means of accessing class 
members by using the standard syntax

object.fieldj

• guarantee the additional processing of a 
particular field that is modified or accessed



Mariana Goranova

Programming 17

4. Auto-Implemented Properties

In C# 3.0 and later, auto-implemented properties 
make property-declaration more concise when no 
additional logic is required in the property accessors. 
They also enable client code to create objects.

The compiler creates a private, anonymous backing 
field that can only be accessed through the 
property's get and set accessors.

using System
public class PhoneEntry
{

public String Name { get; set; }
public long Phone { get; set; }
public static void Main()
{

PhoneEntry p = new PhoneEntry ();
p.Name = "Maria";
p.Phone = 359888881000;
Console.WriteLine(p.Name + " " + p.Phone);

}
}

The compiler automatic emits a field of type String
(according to the type of the property Name), a field
of type long (according to the type of the property
Phone) and methods get_Name, set_Name, get_Phone
and set_Phone, that get/set the field values.

using System;
class Rational
{ public int Nominator { get; set; }

public int Denominator { get; set; }
public Rational(int nominator, int denominator)
{

Nominator = nominator;
Denominator = denominator;

}
public Rational() { }
public override string ToString()
{ return Nominator + "/" + Denominator; }

}
class Program
{

static void Main(string[] args)
{

Rational r = new Rational(1, 5);
float number = (float)r.Nominator / (float)r.Denominator;
Console.WriteLine(r + " = " + number);

}
} 1/5 = 0.2

5. Object Initializers

Rational r = new Rational() { Nominator=1, Denominator=5 };
that is identical to:
Rational r = new Rational() ;
r.Nominator=1;
r.Denominator=5;
We can omit the parentheses:
Rational r = new Rational { Nominator=1, Denominator=5 };
In one statement we can construct an Rational object, 
called its constructor, initialized two public 
properties and  call ToString and ToUpper on the 
resulting expression – code in expression context.

String s=new Rational{Nominator=1, Denominator=5}.ToString().ToUpper();

6. Anonymous Types
var o = new { property1 = expression1, ..., propertyN = expressionN }

The compiler infers the type of each expressioni, 
creates: private fields of these types, public read-
only properties for each of the fields, a constructor 
that accepts all these expresions, and overrides: 
Equals, GetHashCode and ToString methods. 
var r1 = new { Nominator=1, Denominator=5 };
Console.WriteLine(r1); // {Nominator=1, Denominator=5 }

The compiler can generate anonymous type where it 
can infer the property names and types from 
variables:
int Nominator=1;
int Denominator=5;
var r2 = new {Nominator, Denominator };
Console.WriteLine(r2); // {Nominator=1, Denominator=5 }
Console.WriteLine(r1.Equals(r2)); // True

Operator Overloading
Operator overloading

• allows to be redefined existing operators so that 
one or both of the operands are of a class or struct
type

• another means of calling a method

• aids abstraction – one of the most important 
aspects of object-oriented programming



Mariana Goranova

Programming 18

Operator Overloading Syntax
op – overloading operator

public static <return_type_value> operator op
(<argument1>[,<argument2>])

{
<operator-overloading-body>
return return_value;

}

– must be defined as public and static
– <return_type_value> – any type

(commonly class or struct, Boolean value for 
true and false operator)

– for unary operator – <argument1> of type class 
or struct; 

– for binary operator – <argument1> of type class 
or struct, <argument2> – of any type

Rules and Restrictions

1. There are two categories of operator 
overloading:

• unary + - ~ ++ -- true false
• binary + - * / % & | ^ << >> == =! > < >= <=

2. Can’t be overloaded the operators:
• , [] () && || ?:
• undefined operators in C# (for example **)undefined operators in C# (for example )
• defined at run time – member access (. dot), 

member invocation, assignment (=) and new

3. Overloaded by pair (if one operator is 
overloaded, the other must be overloaded as 
well):

• == and != (must also be overloaded the Equals
and GetHashCode methods)

• < and >

4. The assignment operator can’t be overloaded, 
when a binary operator is overloaded, its 
compound assignment operator is implicitly 
overloaded – for example, if the overloaded 
operator is +, the += operator is implicitly 
overloaded.

Example: Operator + overloading in the Rational class
using System;
class Rational
{

private int numerator;
private int denominator;
public Rational (int numer, int denom)
{{

numerator = numer;
denominator = denom;
Reduce();

}

private void Reduce() 
{

int common = Gcd (Math.Abs(numerator), denominator);
numerator /= common;
denominator /= common;

}
private int Gcd (int n1, int n2) // Greater common divisor
{

while (n1 != n2)while (n1 != n2)
if (n1 > n2)

n1 -= n2;
else

n2 -= n1;
return n1;

}

// Overloading + operator
public static Rational operator+ (Rational op1, Rational op2)
{

int commonDenominator =
op1.denominator*op2.denominator;

int sum = op1.numerator*op2.denominator +
op1.denominator*op2.numerator;

return new Rational (sum commonDenominator);return new Rational (sum, commonDenominator);
}
public override string ToString()
{

return numerator + "/" + denominator;
}



Mariana Goranova

Programming 19

// Override explicit convertion from Rational to float
public static explicit operator float(Rational op)
{

return (float)op.numerator / op.denominator;
}

// Override implicit convertion from Rational to double
public static implicit operator double(Rational op)
{

t (d bl ) t / d i treturn (double)op.numerator / op.denominator;
}

}

class TestRational
{ static void Main()

{ Rational x, y, z;
x = new Rational (1, 4); y = new Rational (1, 3);
z = x + y;
Console.WriteLine (x + "+" + y + "=" + z);
Console.Write (z);
z += y;
Console.WriteLine ("+=" + y + "=" + z);
fl t f (fl t) C l W it Li (f)float f = (float)z; Console.WriteLine(f);
double r = z; Console.WriteLine(r);

}
}
Results:
1/4+1/3=7/12
7/12+=1/3=11/12
0.5833333
0.583333333333333


