Generics (reHeTUYHU TUNoOBe)

-LlenTa e cxoaHa Ha uenute Ha OOTT - algorithm reusing . MexaHusmbT e BbBefeH B
CLR Ha .NET

-Peanusaumute aa ce otHacat 3a obekTu OT pasnuueH TUN;

-Moxe na ce cv3pape reHeTUYeH pegepeHTeH TUN' , ‘reHeTu4deH CTOUHOCTEH Tun,

'reHeTUYeH WUHTepgeiic’ U TeHeTuudeH aenerat’. Pasbupa ce u ‘reHeTUYeH meToa'.

-Heka cb3pnanem reHetuueH cnucbk: List<T> (npowusHaca ce : List of Tee ):

public class List<T> : IList<T>,6 ICollection<T>, IEnumerable<T>, IList, ICollection, IEnumerable

{ public List():
public void Add(T item);
public void Sort( IComparer<T> compare
public T[] ToArray(0):

. O6ukHoBeHO ce umeHoeat ¢ T
public Int32 Count {get:} urm Tume (Hanp TKey)

-Heka usnonssame cnucbka:
private static void SomeMethod() {
List<DateTime> dtList = new List<DateTime>();

dtList.Add(DateTime.Now); //0OK! Hama boxing
dtList.Add("2/2/2011"); //rpewka npu Komnunaumsa




TTpeaumcTea Ha reHeTuyHUTe (Nopaxaawm) Knacose:

-Pa3paboTuuKkbT He e HYXHO 3aAbIIKUTESNHO Aa Ce MPUTeXapa copca Ha reHeTUUYHUS
anroputbm ( 3a pasnuka ot C++ templates unu Java geherics) 3a aa npekomnunupa;

(TTpy wabnoHuTe, KOMNUNATOPHT reHepupa separate gource-code functions (umeHoBaHa:
specializations) npu BcAkO OTAeNHO NOBUKBAHE HA (P4UA WABNOH UNU UHCTAHLMUSA Ha

wa6noHU3UpaH Knac. )

-Type safety

- AceH Koa: paaKo ce Hanarat tape casts;
-TTonobpeHa npoussoaUTENIHOCT: NpeAn reHefuuuTe, CHUOTO Ce NOCTUrale C U3NON3saHe
Ha Object Tuna. Toea Hanara HenpekbcHATO naketupaHe (boxing), koeTo usuckea namer
W pecypc, popcupa 4ecTo BKMOUBAHe H@ c-mata 3a garbage collection. TTpu reHetuuHute
QNropuTMU HAMa naketupaHe.Tosa nNgpobpssa AeceTkU NMbTU NPOU3BOAUTENHOCTTA.

CLR cpenata reHepupa ‘native code’ 3a

BCEKU MeTOA, MbpPBUAT NMBT KOrato MeToAbT
ce MOBUKa C yKasaH TMN AaHHU. Tosa
pa3bupa ce, ysenuuaea pasmepa Ha Koaa
(npy reHeTUYHU peanusauum), HO He
Hamansasa npousBOAUTENHOCTTA




Microsoft npenopbusa nonssaHe Ha reHeTuuHu knacose ot Framework Class Library
(FCL) BmMecTO He-reHeTUYHUTE UM EKBUBASNIEHTU.

Couecteysa umnnemeHtauua (Ha Wintellect) Power Collection library, koato npexsbpns
knacosete ot crapata Standard Template Library kom CLR cpepa. Ta e free.

3a Aa ce NOAABPXKAT reHeTUYHU umnnemeHtauum, kbm .NET ce nobasuxa:

Hosu IL UHCTpyKUMMU, YeTAlM KOHKPEeTHUS TUN Ha aprymaHra;

MeTanaHHOBOTO onucaHue ce oboraTtaesa ¢ ONUCAHUE HA TUNA HA napameTpuTe;
TTpomeHsa ce cuHTakcucwT Ha C#, Visual Basic u T1.H.

TTpomeHaT ce komnunartopure;

TTpomeHsa ce JIT komnunatopsbT, Taka Ye Aa reHepupa ‘native code’ 3a Bcako nosukeaHe
C KOHKpeTeH TUM Ha aprymeHT.

Ok wn =




Open & Closed types

Tun ¢ reHeTUYHU napameTpu ce Hapuda ‘open type' THbiA kaTto He aonycka CLR
AQ KOHCTPYUPA UHCTAGHLUUU AUPEKTHO ( KaKTO e U Npu UHTeppeiscuTe)

Korato koabT ce 06bpHe KbM reHeTUYeH TUM, ce NOAABAT peaniHU NApameTpu.
Torasa TMNBT ce Hapuia Beuve ' closed type' u 3a Hero ce npaBu UHCTaHUMA.

Generic types and Inheritance

Toea cu e HopmarneH TUN U HAcnNeasemMocT e HanbnHo aonyctuma.TTpumep:

internal sealed class Node<T> {
public T m_data;
public Node<T> m_next:

public Node(T data) : this(data,nul) {}
public Node(T data, Node<T> next) {
m_data = data; m_next = next; }

}
M3nonssame B npoussoaeH Tun:
private static void SameDataLinkedList() {
Node<Char> head = new Node<Char>('C');
head = new Node<Char>('B’, head);
head = new Node<Char>(‘A’, head);

}




TToameHsHe Ha reHeTUYHU TUNOBe

C uen ynobcTeo, e YecTa MpPAKTUKA:

aKoO Umame: List<DateTime> dtl = new List<DateTime>();
Aa npeaeguHupame: internal sealed class DateTimeList : List<DateTime> {}

M Toraea moxem Aa Cb3aaAem CNUCHK OT reHeTUYeH TUN MO TPAAULIMOHHUSA HAYUUH:
DateTimeList dtl = new DateTimeList();

O6paboTka Ha reHeTuuHU TUnose: code explosion

- TIpu nosukeaHe Ha meTtoAa OT reHeTuudeH Tun, JIT KOMNUNATOPBLT NpaBU 3amMecTBAHETO U
cb3paea ' native code’ 3a TOYHO TO3U MeTOA C TOYHO Te3n NOAAAEHU NAPAMETPU.
-CLR reHepupa native code 3a Bceku metoa/Tun kombuHauua. Toea soau Ao ‘code explosion'.

-Ako BnocneacTeue, MeTOA Ce MOBUKA CHC CbLUS TUN GPrymMeHT, He ce reHepupa MOBTOpeH KO
-EaHOKpaTHO ce reHepupa U Koa B criyyauTe, KOrato aprymeHTUTe ca OT pegpepeHTeH Tun. Ha
List<String>
List<Stream>
MaKap U aprymeHTUTe BCBLWHOCT AA COMAT CbBCEM pa3nU4HU Helua.




FeHeTUYHU UHTepPpeucu

Be3 noaapbxKa Ha reHeTUYHU UHTepcpelrcu, BCeku MbT Korato le cb3pasame value Tmun, H
He-reHeTUYeH UHTepgeUc, Tpabea Aa ce cnyuu BBLTpellHO nakeTupaHe (npeobpasysaHe) Ha
aprymeHTute (boxing). ToBa e 3aryba Ha pecypc u 6bp3oaeicTeume.

ETo eavH cTaHAapTeH UHTepeiic:
public interface IEnumerator<T> : IDisposable, IEnumerator {
T Current { get:}
}
ETo knac, KOUTO UMNnemeHTUpa ropHua uHTepgeirc Haa Tun Point:
internal sealed class Triangle : IEnumerator<Point> {
private Point[] m_vetrices: P Triangle 06ekTbT MOxe Aa UTepup

public Point Current { get {... }... } npes Macuea oT TOUKW.
TTponbpTuTo Current e ot Tun Point

feHeTUYHU aeneraTtwm

CLR noaabpka U reHeTUYHU AeneraTu 3a Aa NON3Ba NPeAUMCTBATA HA FeHeTUYHUTe NpeAaBaHUs
( type-safe, 6e3 HenpekbcHaTo nakeTupaHe Hanpumep kbm Object).

THbiA KaTO Aenerar e BCHUWHOCT AePUHUPAH KNAC C HAKOSIKO MeToAa

( ToBa we 6bvAe noscHeHo B Kypca - TTporpamHu Cpeau)

KOraTo ce AePUHUpA AeflerateH TUMN, KOMNUNATOPBLT NOPAXAAG CHOTBETHUTE MeTOAU C peanHua T

napameTpu




Ouwe Hakou ocobeHOCTU OKONO reHeTuuuTte:

-Umame: reHeTUUYHU MeToAU (BCUYKO B TAX € HOPMAITHO)
-B C# properties, events, operator methods, constructors and finalizers
He MOrat Aa UMAT TUNOBU NapameTpu (He moraTt Aa ca reHeTUYHU).

Takuea , obaye, morat Aa ce AePUHUPAT BBTPe B reHeTUYeH TUN U Torasa
KOADT UM MOXe Aa NoJi3Ba TUNOBUTE NAPAMETPU Ha 06XBALLALUUS FeHeTUYeH TUMN AUPEKTHO

-OrpaHuymTenu (B reHeTUYHM TUNOBE) - TepMUHDBT e: constraints

Ypes TaX MOXe Aa ce orpaHuym 6PO$| Ha TUNOBETE, KOUTO MOraT Aa Ca 3aMecTuUTesIm B aprymeHTuTEe Ha
reHeTuyeH tmn.

public static T Min<T>(T o1, T 02) where T : IComparable

{

if(0ol.CompareTo(02) < O) return ol;
return o2;

}

AAAEXAAAAAALAAALXAAAAAALAAALXKLXALXAAXAKXAAKXKXAKRKXAKAKRKkAkKkXkKXkXkkkk




Lambda Expressions ( cMHTaKkcuCBT e OT C++ )

Many programming languages support the concept of an anonymous function. A lambda
expression is a programming technique that is related to anonymous functions.
An anonymous function is a function that has a body, but does not have a name.

A lambda expression implicitly defines a function object class and
constructs a function object of that class type.

You can think of a lambda expression as an anonymous function that maintains state
and that can access the variables that are available to the enclosing scope.

Kk kkkkkkkkkkkikikikk

function pointers and function objects have advantages and disadvantages:

- function pointers involve minimal syntactic overhead, but they do not retain state within a
scope;

- function objects.can maintain state, but they require the syntactic overhead of a class
definition.

Lambda expressions are a prog ing technique that combines the benefits of function

pointers and function objects and tha ids their disadvantages. Lambda expressions are

flexiblg and can maintain state, just like functien _objects, and their compact syntax removes

, the need for a class definition, ich function objects require.




A function object, or functor, is any type that implements operator() - “call ope

Function objects provide two main advantages over a straight function call.
1. The first is that a function object can contain state.

2. The second is that a function object is a type and therefore can be used as a template
parameter.

To create a function object, create a type and implement operator(), such as:

class Functor

{

public:
int operator()(int a, int b)
{

return a < b;

}

}

int main()

{
Functor f;
inta=05;
intb = 7;

int ans = f(a, b): \
}

The last line of the main function shows how you call the function object.
This call looks like a call to a function, but it is actually calling
operator() of the Functor type.

AEXEXAALXAELAELELELXLXAAXAKLXKLLAKLXKXLXXXAKXKAAKXKXXKAXKkKkKkKkKkKkXkXkkkkkkkx




Lambda Expression Syntax

= 7 i ol 4
-._!'_; | g-' --.?.--'I '!- ' ?-‘
[=] €¢) mutable throw() -> int
{
int m = x + y;
' X = ¥
return n;
}

1.lambda-introducer (referred to as capture clause)
2.lambda-parameter-declaration-list (referred to as parameter list)
3.mutable-specification

4 .exception-specification

5.lambda-return-type-clause (referred to as return type)
6.compound-statement (referred to as lambda body)




Capture Clause

A lambda expression can access any variable that has automatic storage duration and tha

accessed in the enclosing scope - by value or by reference: variables that have

the ampersand (&) prefix are accessed by reference and variables that do not have the &

are accessed by value. The empty capture clause, [], indicates that the body of the lambda

expression accesses ho variables in the enclosing scope.

You can specify the default capture mode in the syntax by specifying & or = as the first

element of the capture clause - & specifies that all captured variables by reference; the =

specifies that the body of the lambda expression accesses all captured variables by value.
For example, if the body of a lambda expression accesses the external variable total

by reference and the external variable £actor py value, then the following capture clauses

are equivalent:

[&total, factor]
[&, factor]
[=, &total]

Parameter List

The parameter list for a lambda expression resembles the parameter list for a function, with
the following exceptions:

- The parameter list cannot have default arguments.

- The parameter list cannot have a variable-length argument list.

- The parameter list cannot have unnamed parameters.

The parameter list for a lambda expression is optional

Example:
int z = [=]{ return x +y: }();




Mutable Specification
The mutable specification part enables the body of a lambda expression to modify
variables that are captured by value

You can use the throw() exception specification to indicate that the lambda expression
does not throw any exceptions

The return type part of a lambda expression resembles the return type part of an
ordinary method or function. However, the return type follows the parameter list and you

must include - > before the return type.

int main()
{intm=0,n=0;
[&, n] (int @) mutable { m = ++n + a; }(4);
cout << m << endl << n << endI;

}

This example prints the following to the console:

5
0
Because the variable n is captured by value, its value remains O after

« the call to the lambda expression

§“




Lambda Expressions in C#

A lambda expression is again an anonymous function that can contain expressions and
statements. It can be used to create delegates also.

All lambda expressions use the lambda operator =>, which is read as "goes 10". The left
side of the lambda operator specifies the input parameters (if any) and the right side holds the
expression or statement block. The lambda expression x => x * x is read "x goes to x times x."
This expression can be assigned to a delegate type as follows:

delegate int del(int i):

static void Main(string[] args)

{ del myDelegate = x => x * x;
int j = myDelegate(5); //j = 25}

Example of another usage of lambda expression:

// Use a lambda expression to define an event handler:
this.Click += (s, e) => { MessageBox.Show(((MouseEventArgs)e).Location. ToString()):}:



http://msdn.microsoft.com/en-us/library/bb311046(v=vs.90).aspx

New Standard Concurrency Features in Visual C++ 11

The C++ iteration, known as C++11 and approved by the International Organization for
Standardization (ISO) in 2011, formalizes a new set of libraries and a few reserved words to
deal with concurrency- ones of the main improvements in the release. Many developers have
used concurrency in C++ before, but always through a third-party library—often directly
exposing OS APIs

we'll learn about the following:

Asynchronous tasks: those smaller portions of the original algorithm only linked by the data th
produce or consume.

Threads: units of execution administrated by the runtime environment. They relate to tasks in t
sense that tasks are run on threads.

Thread internals: thread-bound variables, exceptions propagated from threads and so on.




1. Asynchronous Tasks
Some Sequential Case Code:

int a, b, c;

int calculateA() { return a+a*b; }

int calculateB() { return a*(a+a*(a+1)): }
int calculateC() { return b*(b+1)-b; }

int main(int argc, char *argv[])

{ getUserData(): // initializes a and b

¢ = calculateA() * (calculateB() + calculateC()):

showResult();

}
The main function asks the user for some data and then submits that data to three functions:
calculateA, calculateB and calculateC. The results are later combined to produce some output
information for the user.

Imagine, the calculating functions are coded in a way such that a random delay between one an
three seconds is introduced in each. Considering that these steps are executed sequentially, thi
leads to an overall execution time—once the input data is entered—of nine seconds.

As these functions are independent, we can execute them in parallel by using the async functio

int main(int argc, char *argv[])

{ getUserData():
future<int> f1 = async(calculateB), f2 = async(calculateC):
¢ = calculateA() * (f1.get() + f2.get()):
showResult();




we've introduced two concepts here: async and future. both defined in the <fyture

header and the std n :
The first ofie receives a function, a lambda or a function object (functor) and returns a fut

You can understand the concept of a future as the placeholder for an eventual result.
Which result? The one returned by the function called asynchronously.

At some point, we'll need the results of these parallel-running functions. Calling the get method

each future blocks the execution until the value is available.
The worst-case delay of this modification is about three seconds versus nine seconds for the
sequential version.

2. Threads

The asynchronous task model presented in the previous section might suffice in some given
scenarios, but if you need a deeper handling and control of the execution of threads, C++11 comes
with the thread class. declared in the <thread> header and located in the std namespace.
Despite being a more complex programming model, threads offer better methods for
synchronization and coordination, allowing them to yield execution to another thread
wait for a determined amount of time or until another thread is finished before
continuing.

In the following example, we have a lambda function, which, given an integer
argument, prints its multiples of less than 100,000 to the console:




auto multiple_finder = [J(int n) {
for (int i = 0; i < 100000; i++)

if (i%n==0)
cout << i << " is a multiple of " << n << endl;
)
int main(int argc, char *argv[])
{ thread th(multiple_finder, 23456);
multiple_finder(34567); CUHXPOHU3UpA C
th. join(); TeKywara HUWKa

}

As you'll see in later examples, the fact that we passed a lambda to the thread is circumstantial;
a function or functor would've sufficed as well.

In the main function we run this function in two threads with different parameters.
Take a look at the result (which could vary between different runs due to timings):

0 is a multiple of 23456

0 is a multiple of 34567

23456 is a multiple of 23456
34567 is a multiple of 34567
46912 is a multiple of 23456
69134 is a multiple of 34567
70368 is a multiple of 23456
93824 is a multiple of 23456




we might implement the example about asynchronous tasks in the previous section

with threads. For this, we need to introduce the concept of a promise. A promise
can be understood as a sink through which a result will be dropped when available.
Where will that result come out once dropped? Each promise hqs«ﬁn associated future.

,/

The code shown, associates three threads (instead of,tas‘ks) with promises and makes each
thread call a calculate function. Compare these details with the lighter AsyncTasks version.
-

typedef int (*calculate)(void): g
L’
void func2promise(calculate f, promise<int> &p)

{ p.set_value(f()): }

nt main(int argc, char *argv[])
{ getUserData();
promise<int> pl, p2;
future<int> f1 = pl.get_future(), f2 = p2.get_future():
thread t1(&func2promise, calculateB, std::ref(pl)),
t2(&func2promise, calculateC, std::ref(p2)):

¢ = (calculateA() + f1.get()) * f2.get():
t1.join(); t2.join():
showResult();

Mme Ha acoummpaHa ¢
HUWWKATA PYHKLMA +
napameTpu Ha
NOBUKBAHETO U




3. Thread-Bound Variables and Exceptions

In C++ you can define global variables whose scope is bound to the entire application, inclu
threads. But relative to threads, now there's a way to define these global variables such th
every thread keeps its own copy. This concept is known as thread local storage_and it's declad
as follows:

thread_local int subtotal = O;

If the declaration is done in the scope of a function, the visibility of the variable will
be narrowed to that function but each thread will keep maintaining its own static

copy.
Although thread local isn't available in Visual C++ 11, it can be simulated with a non-standard
Microsoft extension:

#define thread local __declspec(thread)

Syncing up Concurrent Execution

It would be desirable if all applications could be split into a 100 percent-independent set of
asynchronous tasks. In practice this is almost never possible, as there are at least
dependencies on the data that all parties concurrently handle. This section introduces new
C++11 technologies to avoid race conditions.

Atomic types: similar to primitive data types, but enabling thread-
safe modification.

Mutexes and locks: elements that enable us to define thread-safe critical
regions.

Condition variables: a way to freeze threads from execution until some
criteria is satisfied.




Atomic Types

The <atomic> header introduces a series of primitive types: atomic_char, atomic_int
and so on—implemented in terms of interlocking operations. Thus, these types are equivale
their homonyms without the atomic_ prefix but with the difference that all their assignmen
operators (==, ++, --, +=, *= and so on) are protected from race conditions.

In the following example there are two parallel threads (one being the main) looking for differen
elements within the same vector:

atomic_uint total_iterations;
vector<unsigned> v;
int main(int argc, char *argv[])
{ total_iterations = O; v scramble_vector(1000);
thread th(find_element, 0);
find_element(100);

th.join():
cout << total_iterations << " total iterations." << endl;
}
Ovkpuea void find_element(unsigned element)
Cper:l:’ﬁ:: a { unsigned iterations = O;
en B ofcera, find_if(begin(v), end(v), [=, &iterations](const unsigned i) -> bool {
oTroeapsy Ha ++iterations;
yCcnoemeTo return (i==element):;

D}
total_iterations+= iterations;
cout << "Thread #" << this_thread::get_id() << ": found after " <«
iterations << " iterations." << endl;




Mut(ual) Ex(clusion) and Locks

The <mutex> header defines a series of lockable classes to define critical regions. That
you can define a mutex to establish a critical region throughout a series of functions or
methods, in the sense that only one thread at a time will be able to access any member in
series by successfully locking its mutex.

A thread attempting to lock a mutex can either stay blocked until the mutex is available or
Just fail in the attempt. In the middle of these two extremes, the alternative timed_mutex
class can stay blocked for a small interval of time before failing. Allowing lock attempts to
desist helps prevent deadlocks.

A locked mutex must be explicitly unlocked for others to lock it. Failing to do so could lead to
an undetermined application behavior—which could be error-prone, similar to forgetting to
release dynamic memory. Forgetting to release a lock is actually much worse, because it might
mean that the application can't function properly anymore if other code keeps waiting on that
lock. Fortunately, C++11 also comes with locking classes. A lock acts on a mutex, but its
destructor makes sure to release it if locked.

The following code defines a critical region around a mutex mx:




mutex mx;
void funcA();
void funcB():
int main()
{ thread th(funcA): funcB():
th.join():
}
This mutex is used to guarantee that two functions, funcA and funcB, can run in parallel
without coming together in the critical region.

The function funcA will wait, if necessary, in order to come to the critical region. In order to
make it do so, you just need the simplest locking mechanism—lock_guard:

void funcA()
{ for (inti=0; i<3; ++i)
{ this_thread::sleep_for(chrono::seconds(1)):
cout << this_thread::get_id() << ": locking with wait...
lock_guard<mutex> Ig(mx);
... // Do something in the critical region.
cout << this_thread::get_id() << ": releasing lock." << endl;

<< endl;

The way it's defined, funcA should access the critical region three times.
The function funcB, instead, will attempt to lock, but if the mutex is by
then already locked, funcB will just wait for a second before again
attempting to get access to the critical region.

The mechanism it uses is unique_lock with the policy try_to_lock t, as
shown:




void funcB()
{ int successful_attempts = O;
for (int i = 0; i<5; ++i)
{ unique_lock<mutex> ul(mx, try_to_lock_t()):
if (ul)
{ ++successful_attempts;
cout << this_thread::get_id() << ": lock attempt successful." << endl;
// Do something in the critical region
cout << this_thread::get_id() << ": releasing lock." << endl;
} else {
cout << this_thread::get_id() <<
": lock attempt unsuccessful. Hibernating...
this_thread::sleep_for(chrono::seconds(1)):
}
}

cout << this_thread::get_id() << ": " << successful_aﬂempts

<< endl;

" " . uncB: lock attempt successful.
: << " successful attempts." << endl; funcA: locking with wait ...
funcB: releasing lock.
The way it's defined, funcB will try up to funcA: lock secured ...
five times to enter the critical region. L“lg‘;ﬁn;:;k attempt unsuccessful.
Following are the results of the execution. FuncA: re,za;};,g lock.

funcB: lock attempt successful.
Out of the five attempts, funcB could funcA: locking with wait ...

only come to the critical region twice. funcB: releasing lock.
funcA: lock secured ...

funcB: lock attempt unsuccessful.
Hibernating ...

funcB: lock attempt unsuccessful.
Hibernating ...

funcA: releasing lock.

funcB: 2 successful attempts.
funcA: locking with wait ...
funcA: lock secured ...

funcA: releasing lock.




Condition Variables

The header <condition_variable> comes with the last facility, fundamental for those
cases when coordination between threads is tied to events.

a producer function pushes elements in a queue:

mutex mq:

condition_variable cv;

queue<int> q:

void producer()

{ for (inti = 0:i<3;++i) { ... // Produce element
cout << "Producer: element " << i <«
mq.lock(): q.push(i);: mq.unlock():
cv.notify_all():

' queued." << endl;

}
}
The standard queue isn't thread-safe, so you must make sure that nobody else is using it (that
is, the consumer isn't popping any element) when queuing.

The consumer function attempts to fetch elements from the queue when available, or it just
waits for a while on the condition variable before attempting again; after two consecutive faile
attempts, the consumer ends:




Consumer: queue not ready -> going to sleep.
Producer: element O queued.

void consumer() Consumer: fetching O from queue.
) Consumer: queue not ready -> going to sleep.
{ unique_lock<mutex> [(m); Producer: element 1 queued.
int failed _attempts = 0; Consumer: fetching 1 from queue.
while (true) { Consumer: queue not ready -> going to sleep.
) Producer: element 2 queued.
_mq'IO_Ck()’ Producer: element 3 queued.
If (q.size()) Consumer: fetching 2 from queue.
{ int elem = g.front(); Producer: element 4 queued.
q.pop(): Consumer: fetching 3 from queue.

_ Consumer: fetching 4 from queue.
mq-unka()’ Consumer: queue not ready -> going to sleep.
failed_attempts = 0; Consumer: two consecutive failed attempts -> Exiting

cout <<"Consumer: fetching " << elem <<" from queue." << endl,
... Il Consume elem

} else {
mq.unlock();
if (++failed_attempts>1)
{
cout <<"Consumer: two consecutive failed attempts -> Exiting." << endl;
break;
} else {
cout <<"Consumer: queue not ready -> going to sleep."” << endl,
cv.wait_for(l, chrono::seconds(5));
}
}
}

The consumer is to be awoken via notify all by the producer every time a
new element is available. That way, the producer avoids having the consumer sleep for
the entire interval if elements are ready.



