
Preface

To Everyone

Welcome to this book! We hope you’ll enjoy reading it as much as we
enjoyed writing it. The book is called Operating Systems: Three Easy Pieces,
and the title is obviously an homage to one of the greatest sets of lecture notes
ever created, by one Richard Feynman on the topic of Physics [F96]. While
this book will undoubtedly fall short of the high standard set by that famous
physicist, perhaps it will be good enough for you in your quest to understand
what operating systems (and more generally, systems) are all about.

The three easy pieces refer to the three major thematic elements the book
is organized around: virtualization, concurrency, and persistence. In dis-
cussing these concepts, we’ll end up discussing most of the important things
an operating system does; hopefully, you’ll also have some fun along the way.
Learning new things is fun, right? At least, it should be.

Each major concept is divided into a set of chapters, most of which present
a particular problem and then show how to solve it. The chapters are short,
and try (as best as possible) to reference the source material where the ideas
really came from. One of our goals in writing this book is to make the paths
of history as clear as possible, as we think that helps a student understand
what is, what was, and what will be more clearly. In this case, seeing how the
sausage was made is nearly as important as understanding what the sausage
is good for1.

There are a couple devices we use throughout the book which are proba-
bly worth introducing here. The first is the crux of the problem. Anytime we
are trying to solve a problem, we first try to state what the most important
issue is; such a crux of the problem is explicitly called out in the text, and
hopefully solved via the techniques, algorithms, and ideas presented in the
rest of the text.

1Hint: eating! Or if you’re a vegetarian, running away from.

iii



iv

We also use one of the oldest didactic methods, the dialogue, throughout
the book, as a way of presenting some of the material in a different light.
These are used to introduce the major thematic concepts (in a peachy way, as
we will see), as well as to review material every now and then. They are also
a chance to write in a more humorous style, which we greatly enjoy. Whether
you enjoy it, well, that’s another matter entirely.

At the beginning of each major section, we’ll first present an abstraction
that an operating system provides, and then work in subsequent chapters on
the mechanisms, policies, and other support needed to provide the abstrac-
tion. Abstractions are fundamental to all aspects of Computer Science, so it is
perhaps no surprise that they are also essential in operating systems.

Throughout the chapters, we try to use real code (not pseudocode) where
possible, so for virtually all examples, you should be able to type them up
yourself and run them. Running real code on real systems is the best way to
learn about operating systems, so we encourage you to do as much of this as
possible.

In various parts of the text, we have sprinkled in a few homeworks to en-
sure that you are understanding what is going on. These homeworks are usu-
ally little simulations of various pieces of an operating system; you should
download the homeworks, and run them to quiz yourself. The homework
simulators have the following feature: by giving them a different random
seed, you can generate a virtually infinite set of problems; the simulators can
also be told to solve the problems for you. Thus, you can test and re-test
yourself until you have achieved a good level of understanding.

The most important addendum to this book is a set of projects in which
you learn about how real systems work by designing, implementing, and
testing your own code. All projects (as well as the code examples, mentioned
above) are in the C programming language [KR88]; C is a simple and power-
ful language that underlies most operating systems, and is thus worth adding
to your tool-chest of languages with which you are familiar. Two types of
projects are available (ideas for which are provided in the appendix). The first
type is based on what you would call systems programming; these projects
are great for those who are new to C and Unix and want to learn how to do
low-level C programming on such systems. The second type is based on a real
operating system kernel developed at MIT called xv6 [CK+08]; these projects
are great for students that already have some C background and really want
to get their hands dirty inside the operating system. At Wisconsin, we’ve run
the course in three different ways: either all systems programming, all xv6
programming, or a mix of both.

OPERATING

SYSTEMS ARPACI-DUSSEAU



v

To Educators

If you are an instructor or professor who wishes to use these notes, please
feel free to do so. As you may have noticed, they are free and available on-line
from the following web page:

http://www.cs.wisc.edu/˜remzi/OSTEP

At some point, you will be able to purchase a printed copy from a self-
publishing site such as lulu.com. Look for it soon! Details will also be on
the web page above.

The proper reference to the book is as follows:

Operating Systems: Three Easy Pieces
Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau
Version 0.5, June 2012
http://www.cs.wisc.edu/˜remzi/OSTEP

The course divides fairly well across a 15-week semester, in which you can
cover most of the topics within at a reasonable level of depth. Cramming the
course into a quarter probably requires dropping some detail from each of the
pieces. There are also a few chapters on virtual machine monitors, which we
usually squeeze in sometime during the semester, either right at end of the
large section on virtualization, or near the end as an aside.

One slightly unusual aspect of the book is that concurrency, a topic at
the front of many OS books, is pushed off herein until the student has built
an understanding of virtualization of the CPU and of memory. In our experi-
ence, students have a hard time understanding how the concurrency problem
arises, or why they are trying to solve it, if they don’t yet understand what
an address space is, what a process is, or why context switches can occur at
arbitrary points in time. Once they do understand these concepts, however,
introducing the notion of threads and the problems that arise due to them
becomes rather easy, or at least, easier.

You may have noticed there are no slides that go hand-in-hand with the
notes. The major reason for this omission is that we believe in the most old-
fashioned of teaching methods: chalk and a blackboard2. Thus, when we
teach the course, we come to class with a few major ideas in mind and use the
board to present them. In our experience, using slides encourages students to
“check out” of lecture (and log into facebook.com), as they know the material
is there (in powerpoint form) for them to digest later; using the blackboard
makes lecture a “live” viewing experience and thus (hopefully) more interac-
tive, dynamic, and enjoyable for the students in your class.

2We could say markers and a whiteboard, but that is less satisfying.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



vi

If you’d like a copy of the notes we use in preparation for class, please feel
free to drop us an email. We hope to make a version of those class-preparation
notes available online sometime.

OPERATING

SYSTEMS ARPACI-DUSSEAU



vii

To Students

If you are a student reading this book, thank you! It is a real honor for
us to provide some material to help you in your pursuit of knowledge about
operating systems. We both think back fondly towards some textbooks of
our undergraduate days (e.g., Hennessy and Patterson [HP90]) and hope this
book will become one of those good memories for you.

You may have noticed this book is free and available online. There is one
major reason for this: textbooks are generally too expensive. This book, we
hope, represents a new wave of free materials to help those in pursuit of their
education, regardless of which part of the world they come from or how much
they are willing to spend for a book.

We also hope, where possible, to point you to the original sources of much
of the material in the book: the great papers and persons who have shaped
the field of operating systems over the years. Ideas are not pulled out of
the air; they come from smart and hard-working people (including numer-
ous Turing-award winners3), and thus we should strive to celebrate those
ideas and people where possible. In doing so, we hopefully can better under-
stand the revolutions that have taken place, instead of writing texts as if those
thoughts have been ever present [K62]. Further, perhaps such references will
encourage you to dig deeper on your own.

3The Turing Award is the highest award in Computer Science; it is like the Nobel
Prize, except that you have never heard of it.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



viii

Acknowledgments

This section will contain thanks to those who helped us put the book to-
gether. The important thing for now: your name could go here! But, you
have to help. So send us some feedback and help debug this book. And you
could be famous! Or, at least, have your name in some book.

Those who have helped so far include: Abhirami Senthilkumaran*, Adam
Eggum, Ahmed Fikri*, Alex Wyler, Benita Bose, Brennan Payne, Cara Lau-
ritzen, Charlotte Kissinger, Cody Hanson, Dan Soendergaard (U. Aarhus),
Dustin Metzler, Dustin Passofaro, Emily Jacobson, Finn Kuusisto*, Guilherme
Baptista, Henry Abbey, Huanchen Zhang*, Jake Gillberg, James Perry (U.
Michigan-Dearborn)*, Jay Lim, Karl Wallinger, Kevin Liu*, Lihao Wang, Martha
Ferris, Matt Reichoff, Meng Huang, Mike Griepentrog, Murugan Kandaswamy,
Natasha Eilbert, Nathan Sullivan, Radford Smith, Ripudaman Singh, Ross
Aiken, Ryland Herrick, Seth Pollen, Sharad Punuganti, Shreevatsa R., Sivara-
man Sivaraman*, Srinivasan Thirunarayanan*, Suriyhaprakhas Balaram Sankari,
Sy Jin Cheah, Tony Adkins, Tuo Wang, Xiang Peng, and Zef RosnBrick. Spe-
cial thanks to those marked with an asterisk above,who have gone above and
beyond in their suggestions for improvement.

Also, many thanks to the hundreds students who have taken 537 over the
years. In particular, the Fall ’08 class who encouraged the first written form
of these notes (they were sick of not having any kind of textbook to read –
pushy students!).

A great debt of thanks is also owed to the brave few who took the xv6
project lab course, much of which is now incorporated into the main 537
course. From Spring ’09: Justin Cherniak, Patrick Deline, Matt Czech, Tony
Gregerson, Michael Griepentrog, Tyler Harter, Ryan Kroiss, Eric Radzikowski,
Wesley Reardan, Rajiv Vaidyanathan, and Christopher Waclawik. From Fall
’09: Nick Bearson, Aaron Brown, Alex Bird, David Capel, Keith Gould, Tom
Grim, Jeffrey Hugo, Brandon Johnson, John Kjell, Boyan Li, James Loethen,
Will McCardell, Ryan Szaroletta, Simon Tso, and Ben Yule. From Spring ’10:
Patrick Blesi, Aidan Dennis-Oehling, Paras Doshi, Jake Friedman, Benjamin
Frisch, Evan Hanson, Pikkili Hemanth, Michael Jeung, Alex Langenfeld, Scott
Rick, Mike Treffert, Garret Staus, Brennan Wall, Hans Werner, Soo-Young
Yang, and Carlos Griffin (almost).

A final debt of gratitude is also owed to Aaron Brown, who first took this
course many years ago (Spring ’09), then took the xv6 lab course (Fall ’09),
and finally was a graduate teaching assistant for the course for two years
or so (Fall ’10 through Spring ’12). His tireless work has vastly improved the
state of the projects (particularly those in xv6 land) and thus has helped better
the learning experience for countless undergraduates and graduates here at
Wisconsin. As Aaron would say (in his usual succinct manner): “Thanks.”

OPERATING

SYSTEMS ARPACI-DUSSEAU



ix

Final Words

Yeats famously said “Education is not the filling of a pail but the lighting
of a fire.” He was right but wrong at the same time4. You do have to “fill the
pail” a bit, and these notes are certainly here to help with that part of your
education; after all, when you go to interview at Google, and they ask you
a trick question about how to use semaphores, it might be good to actually
know what a semaphore is, right?

But Yeats’s larger point is obviously on the mark: the real point of educa-
tion is to get you interested in something, to learn something more about the
subject matter on your own and not just what you have to digest to get an
“A” in some class. As one of our fathers (Remzi’s) used to say, “Learn beyond
the classroom”.

We created these notes to spark your interest in operating systems, to read
more about the topic on your own, to talk to your professor about all the
exciting research that is going on in the field, and even to get involved with
that research. It is a great field(!), full of exciting and wonderful ideas that
have shaped computing history in profound and important ways. And while
we understand this fire won’t light for all of you, we hope it does for many, or
even a few. Because once that fire is lit, well, that is when you truly become
capable of doing something great. And thus the real point of the educational
process: to go forth, to study many topics, to learn and to mature, and most
importantly, to find something that lights a fire for you.

Andrea and Remzi
Married couple
Professors of Computer Science at the University of Wisconsin
Chief Lighters of Fires, hopefully 5

4If, that is, he actually said this; as with many famous quotes, the history of this gem
is murky.

5If this sounds like we are admitting some past history as arsonists, you are probably
missing the point. Probably.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



x

References

[CK+08] “The xv6 Operating System”
Russ Cox, Frans Kaashoek, Robert Morris, Nickolai Zeldovich
From: http://pdos.csail.mit.edu/6.828/2008/index.html
xv6 was developed as a port of the original UNIX version 6 and represents a beautiful, clean, and
simple way to understand a modern operating system.

[F96] “Six Easy Pieces: Essentials Of Physics Explained By Its Most Brilliant Teacher”
Richard P. Feynman
Basic Books, 1996
This book reprints the six easiest chapters of Feynman’s Lectures on Physics, from 1963. If you
like Physics, it is a fantastic read.

[HP90] “Computer Architecture a Quantitative Approach” (1st ed.)
David A. Patterson and John L. Hennessy
Morgan-Kaufman, 1990
A book that encouraged each of us at our undergraduate institutions to pursue graduate studies;
we later both had the pleasure of working with Patterson, who greatly shaped the foundations of
our research careers.

[KR88] “The C Programming Language”
Brian Kernighan and Dennis Ritchie
Prentice-Hall, April 1988
The C programming reference that everyone should have, by the people who invented the lan-
guage.

[K62] “The Structure of Scientific Revolutions”
Thomas S. Kuhn
University of Chicago Press, 1962
A great and famous read about the fundamentals of the scientific process. Mop-up work, anomaly,
crisis, and revolution. We are mostly destined to do mop-up work, alas.

OPERATING

SYSTEMS ARPACI-DUSSEAU


