
14

Mechanism: Address Translation

In developing the virtualization of the CPU, we focused on a gen-
eral mechanism known as limited direct execution (or LDE). The
idea behind LDE is simple: for the most part, let the program run di-
rectly on the hardware; however, at certain key points in time (such
as when a process issues a system call, or a timer interrupt occurs),
arrange so that the OS gets involved and makes sure the “right” thing
happens. Thus, the OS, with a little hardware support, tries its best to
get out of the way of the running program, to deliver an efficient vir-
tualization; however, by interposing at those critical points in time,
the OS ensures that it maintains control over the hardware. Efficiency
and control together are two of the main goals of any operating sys-
tem.

In virtualizing memory, we will pursue a similar strategy, attain-
ing both efficiency and control while providing the desired virtual-
ization. Efficiency dictates that we make use of hardware support,
which at first will be quite rudimentary (e.g., just a few registers) but
will grow to be fairly complex (e.g., TLBs, page-table support, and
so forth, as you will see). Control implies that the OS ensures that
no application is allowed to access any memory but its own; thus, to
protect applications from one another, and the OS from applications,
we will need help from the hardware here too. Finally, we will need
a little more from the VM system, in terms of flexibility; specifically,
we’d like for programs to be able to use their address spaces in what-
ever way they would like, thus making the system easier to program.
And thus arrive at the refined crux:

1

2 MECHANISM: ADDRESS TRANSLATION

THE CRUX:
HOW TO EFFICIENTLY AND FLEXIBLY VIRTUALIZE MEMORY

How can we build an efficient virtualization of memory? How do
we provide the flexibility needed by applications? How do we main-
tain control over which memory locations an application can access,
and thus ensure that application memory accesses are properly re-
stricted?

The generic technique we will use, which you can consider an ad-
dition to our general approach of limited direct execution, is some-
thing that is referred to as hardware-based address translation, or
just address translation for short. With address translation, the hard-
ware transforms each memory access (e.g., an instruction fetch, load,
or store), changing the virtual address provided by the instruction to
a physical address where the desired information is actually located.
Thus, on each and every memory reference, an address translation
is performed by the hardware to redirect application memory refer-
ences to their actual locations in memory.

Of course, the hardware alone cannot virtualize memory, as it just
provides the low-level mechanism for doing so efficiently. The OS
must get involved at key points to set up the hardware so that the
correct translations take place; it must thus manage memory, keep-
ing track of which locations are free and which are in use, and judi-
ciously intervening to maintain control over how memory is used.

Once again the goal of all of this work is to create a beautiful il-
lusion: that the program has its own private memory, where its own
code and data reside. Behind that virtual reality lies the ugly physical
truth: that many programs are actually sharing memory at the same
time, as the CPU (or CPUs) switches between running one program
and the next. Through virtualization, the OS (with the hardware’s
help) turns the ugly machine reality into something that is a useful,
powerful, and easy to use abstraction.

14.1 Assumptions

Our first attempts at virtualizing memory will be very simple, al-
most laughably so. Go ahead, laugh all you want; pretty soon it will
be the OS laughing at you, when you try to understand the ins and

OPERATING

SYSTEMS ARPACI-DUSSEAU

MECHANISM: ADDRESS TRANSLATION 3

DESIGN TIP: INTERPOSITION

Interposition is a generic and powerful technique that is often used to
great effect in computer systems. In virtualizing memory, the hard-
ware will interpose on each memory access, and translate each vir-
tual address issued by the process to a physical address where the
desired information is actually stored. However, the general tech-
nique of interposition is much more broadly applicable; indeed, al-
most any well-defined interface can be interposed upon, to add new
functionality or improve some other aspect of the system. One of
the usual benefits of such an approach is transparency; the interpo-
sition often is done without changing the client of the interface, thus
requiring no changes to said client.

outs of TLBs, multi-level page tables, and other technical wonders.
Don’t like the idea of the OS laughing at you? Well, you may be out
of luck then; that’s just how the OS rolls.

Specifically, we will assume for now that the user’s address space
must be placed contiguously in physical memory. We will also as-
sume, for simplicity, that the size of the address space is not too
big; specifically, that it is less than the size of physical memory. Finally,
we will also assume that each address space is exactly the same size.
Don’t worry if these assumptions sound unrealistic; we will relax
them as we go, thus achieving a realistic virtualization of memory.

14.2 An Example

To understand better what we need to do to implement address
translation, and why we need such a mechanism, let’s look at a sim-
ple example. Imagine there is a process whose address space as
indicated in Figure 14.1. What we are going to examine here is a
short code sequence that loads a value from memory, increments it
by three, and then stores the value back into memory. You can imag-
ine the C-language representation of this code might look like this:

void func()

int x;

...

x = x + 3; // this is the line of code we are interested in

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

4 MECHANISM: ADDRESS TRANSLATION

The compiler turns this line of code into assembly, which might
look something like this (in x86 assembly). Use objdump on Linux
or otool on Mac OS X to disassemble it:

128: movl 0x0(%ebx), %eax ;load 0+ebx into eax

132: addl $0x03, %eax ;add 3 to eax register

135: movl %eax, 0x0(%ebx) ;store eax back to mem

This code snippet is relatively straightforward; it presumes that
the address of x has been placed in the register ebx, and then loads
the value at that address into the general-purpose register eax using
the movl instruction (for “longword” move). The next instruction
adds 3 to eax, and the final instruction stores the value in eax back
into memory at that same location.

In Figure 14.1, you can see how both the code and data are laid out
in the process’s address space; the three-instruction code sequence
is located at address 128 (in the code section near the top), and the
value of the variable x at address 15 KB (in the stack near the bottom).
In the figure, the initial value of x is 3000, as shown in its location on
the stack.

When these instructions run, from the perspective of the process,
the following memory accesses take place.

• Fetch instruction at address 128
• Execute this instruction (load from address 15 KB)
• Fetch instruction at address 132
• Execute this instruction (no memory reference)
• Fetch the instruction at address 135
• Execute this instruction (store to address 15 KB)

From the program’s perspective, its address space starts at ad-
dress 0 and grows to a maximum of 16 KB. All memory references
it generates should be within these bounds. However, to virtualize
memory, the OS wishes to place this process somewhere else in phys-
ical memory, not necessarily starting at address zero. Thus, we have
the problem: how can we place this process somewhere else in mem-
ory in a way that is transparent to the process? In other words, how
can provide the illusion of a virtual address space starting at address
0, when in reality the address space of the program is located at some
other physical address?

OPERATING

SYSTEMS ARPACI-DUSSEAU

MECHANISM: ADDRESS TRANSLATION 5

16KB

15KB

14KB

4KB

3KB

2KB

1KB

0KB

Stack

(free)

Heap

Program Code

128
130
133

movl 0x0(%ebx),%eax
addl 0x03, %eax
movl %eax,0x0(%ebx)

3000

Figure 14.1: A Process And Its Address Space

An example of what physical memory might look like once this
process’s address space has been placed in memory is found in Fig-
ure 14.2. In the figure, you can see the OS using the first slot of
physical memory for itself, and that it has relocated the process from
the example above into the slot starting at physical memory address
32 KB. The other two slots are free (16 KB-32 KB and 48 KB-64 KB).

14.3 Dynamic (Hardware-based) Relocation

To gain some understanding of hardware-based address transla-
tion, we’ll first discuss its first incarnation. Introduced in the first
time-sharing machines of the late 1950’s is a simple idea referred to
as base and bounds (the technique is also referred to as dynamic
relocation; we’ll use both terms interchangeably) [SS74].

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

6 MECHANISM: ADDRESS TRANSLATION

64KB

48KB

32KB

16KB

0KB

(not in use)

(not in use)

Operating System

Stack

Code
Heap

(allocated but not in use)

R
e
lo

c
a
te

d
 P

ro
c
e
s
s

Figure 14.2: Physical Memory with a Single Relocated Process

Specifically, we’ll need two hardware registers within each CPU:
one is called the base register, and the other the bounds (sometimes
called a limit register). This base-and-bounds pair is going to allow
us to place the address space anywhere we’d like in physical mem-
ory, and do so while ensuring that the process can only access its own
address space.

In this setup, each program is written and compiled as if it is
loaded at address zero. However, when a program starts running,
the OS decides where in physical memory it should be loaded and
sets the base register to that value. In the example above, the OS de-
cides to load the process at physical address 32 KB and thus sets the
base register to this value.

Interesting things start to happen when the process is running.
Now, when any memory reference is generated by the process, it is
translated by the processor in the following manner:

physical address = virtual address + base

Each memory reference generated by the process is a virtual ad-
dress; the hardware in turn adds the contents of the base register to
this address and the result is a physical address that can be issued to
the memory system.

OPERATING

SYSTEMS ARPACI-DUSSEAU

MECHANISM: ADDRESS TRANSLATION 7

ASIDE: SOFTWARE-BASED RELOCATION

In the early days, before hardware support arose, some systems per-
formed a crude form of relocation purely via software methods. The
basic technique is referred to as static relocation, in which a piece
of software known as the loader takes an executable that is about
to be run and rewrites its addresses to the desired offset in physical
memory.

For example, if an instruction was a load from address 1000 into a
register (e.g., movl 1000, %eax), and the address space of the pro-
gram was loaded starting at address 3000 (and not 0, as the program
thinks), the loader would rewrite the instruction to offset each ad-
dress by 3000 (e.g., movl 4000, %eax). In this way, a simple static
relocation of the process’s address space is achieved.

However, static relocation has numerous problems. First and most
importantly, it does not provide protection, as processes can gener-
ate bad addresses and thus illegally access other process’s or even OS
memory; in general, hardware support is likely needed for true pro-
tection [WL+93]. A smaller negative is that once placed, it is difficult
to later relocate an address space to another location [M65].

To understand this better, let’s trace through what happens when
a single instruction is executed. Specifically, let’s look at one instruc-
tion from our earlier sequence:

128: movl 0x0(%ebx), %eax

The program counter (PC) is set to 128; when the hardware needs
to fetch this instruction, it first adds the value to the the base register
value of 32 KB (32768) to get a physical address of 32896; the hard-
ware then fetches the instruction from that physical address. Next,
the processor begins executing the instruction. At some point, the
process then issues the load from virtual address 15 KB, which the
processor takes and again adds to the base register (32 KB), getting
the final physical address of 47 KB and thus the desired contents.

Transforming a virtual address into a physical address is exactly
the technique we refer to as address translation; that is, the hard-
ware takes a virtual address the process thinks it is referencing and

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

8 MECHANISM: ADDRESS TRANSLATION

transforms it into a physical address which is where the data actually
resides. Because this relocation of the address happens at runtime,
and because we can move address spaces even after the process has
started running, the technique is often referred to as dynamic relo-
cation [M65].

Now you might be asking: what happened to that bounds (limit)
register? After all, isn’t this supposed to be the base-and-bounds ap-
proach? Indeed, it is. And as you might have guessed, the bounds
register is there to help with protection. Specifically, the processor
will first check that the memory reference is within bounds to make
sure it is legal; in the simple example above, the bounds register
would always be set to 16 KB. If a process generates a virtual address
that is greater than the bounds, or one that is negative, the CPU will
raise an exception, and the process will likely be terminated. The
point of the bounds is thus to make sure that all addresses generated
by the process are legal and within the “bounds” of the process.

We should note that the base and bounds registers are hardware
structures kept on the chip (one pair per CPU). Sometimes people
call the part of the processor that helps with address translation the
memory management unit (MMU); as we develop more sophisti-
cated memory-management techniques, we will be adding more cir-
cuitry to the MMU.

A small aside about bound registers, which can be defined in one
of two ways. In one way (as above), it holds the size of the address
space, and thus the hardware checks the virtual address against it
first before adding the base. In the second way, it holds the physical
address of the end of the address space, and thus the hardware first
adds the base and then makes sure the address is within bounds.
Both methods are logically equivalent; for simplicity, we’ll usually
assume that the bounds register holds the size of the address space.

HARDWARE SUPPORT: DYNAMIC RELOCATION

With dynamic relocation, we can see how a little hardware goes
a long way. Namely, a base register is used to transform virtual
addresses (generated by the program) into physical addresses. A
bounds (or limit) register ensures that such addresses are within the
confines of the address space. Together, they combine to provide a
simple and efficient virtualization of memory.

OPERATING

SYSTEMS ARPACI-DUSSEAU

MECHANISM: ADDRESS TRANSLATION 9

Example Translations

To understand address translation via base-and-bounds in more de-
tail, let’s take a look at an example. Imagine a process with an ad-
dress space of size 4 KB (yes, unrealistically small) has been loaded
at physical address 16 KB. Here are the results of a number of address
translations:

• Virtual Address 0 → Physical Address 16 KB
• VA 1 KB → PA 17 KB
• VA 3000 → PA 19384
• VA 4400 → Fault (out of bounds)

As you can see from the example, it is easy for you to simply add
the base address to the virtual address (which can rightly be viewed
as an offset into the address space) to get the resulting physical ad-
dress. Only if the virtual address is “too big” or negative will the
result be a fault (e.g., 4400 is greater than the 4 KB bounds), causing
an exception to be raised and the process to be terminated.

14.4 OS Issues

There are a number of new OS issues that arise when using base
and bounds to implement a simple virtual memory. Specifically,
there are three critical junctures where the OS must take action to
implement this base-and-bounds approach to virtualizing memory.

First, The OS must take action when a process is created, find-
ing space for its address space in memory. Fortunately, given our
assumptions that each address space is (a) smaller than the size of
physical memory and (b) the same size, this is quite easy for the OS;
it can simply view physical memory as an array of slots, and track
whether each one is free or in use. When a new process is created,
the OS will have to search a data structure (often called a free list) to
find room for the new address space and then mark it used.

An example of what physical memory might look like can be
found in Figure 14.2. In the figure, you can see the OS using the first
slot of physical memory for itself, and that it has relocated the pro-
cess from the example above into the slot starting at physical mem-
ory address 32 KB. The other two slots are free (16 KB-32 KB and
48 KB-64 KB); thus, the free list should consist of these two entries.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

10 MECHANISM: ADDRESS TRANSLATION

DATA STRUCTURE: THE FREE LIST

The OS must track which parts of free memory are not in use, so
as to be able to allocate memory to processes. Many different data
structures can of course be used for such a task; the simplest (which
we will assume here) is a free list, which simply is a list of the ranges
of the physical memory which are not currently in use.

Second, the OS must take action when a process is terminated,
reclaiming all of its memory for use in other processes or the OS.
Upon termination of a process, the OS thus puts its memory back on
the free list, and cleans up any associated data structures as need be.

Third, the OS must also take action when a context switch occurs.
There is only one base and bounds register on each CPU, after all,
and their values differ for each running program, as each program
is loaded at a different physical address in memory. Thus, the OS
must save and restore the base-and-bounds pair when it switches be-
tween processes. Specifically, when the OS decides to stop running
a process, it must save the values of the base and bounds registers
to memory, in some per-process structure such as the process struc-
ture or process control block (PCB). Similarly, when the OS resumes
a running process (or runs it the first time), it must set the values of
the base and bounds on the CPU to the correct values for this process.

We should note that when a process is stopped (i.e., not running),
it is possible for the OS to move an address space from one location in
memory to another rather easily. To move a process’s address space,
the OS first deschedules the process; then, the OS copies the address
space from the current location to the new location; finally, the OS
updates the saved base register (in the process structure) to point
to the new location. When the process is resumed, its (new) base
register is restored, and it begins running again, oblivious that its
instructions and data are now in a completely new spot in memory!

We should also note that access to the base and bounds registers is
obviously privileged. Special hardware instructions are required to
access base-and-bounds registers; if a process, running in user mode,
attempts to do so, the CPU will raise an exception and the OS will
likely terminate the process. Only in kernel (or privileged) mode can
such registers be modified. Imagine the havoc a user process could

OPERATING

SYSTEMS ARPACI-DUSSEAU

MECHANISM: ADDRESS TRANSLATION 11

wreak1 if it could arbitrarily change the base register while running.
Imagine it! And then quickly flush such dark thoughts from your
mind, as they are the ghastly stuff of which nightmares are made.

14.5 Summary

In this chapter, we have extended the concept of limited direct ex-
ecution with a specific mechanism used in virtual memory, known
as address translation. With address translation, the OS can control
each and every memory access from a process, ensuring the accesses
stay within the bounds of the address space. Key to the efficiency
of this technique is hardware support, which performs the transla-
tion quickly for each access, turning virtual addresses (the process’s
view of memory) into physical ones (the actual view). All of this is
performed in a way that is transparent to the process that has been re-
located; the process has no idea that its memory references are being
translated, making for a wonderful illusion.

We have also seen one particular form of virtualization, known
as base and bounds or dynamic relocation. Base-and-bounds virtu-
alization is quite efficient, as only a little more hardware logic is re-
quired to add a base register to the virtual address and check that
the address generated by the process is in bounds. Base-and-bounds
also offers protection; the OS and hardware combine to ensure no pro-
cess can generate memory references outside its own address space.
Protection is certainly one of the most important goals of the OS;
without it, the OS could not control the machine (if processes were
free to overwrite memory, they could easily do nasty things like over-
write the trap table and soon take over the system).

Unfortunately, this simple technique of dynamic relocation does
have its inefficiencies. For example, as you can see in Figure 14.2
(back a few pages), the relocated process is using physical memory
from 32 KB to 48 KB; however, because the process stack and heap
are not too big, all of the space between the two is simply wasted. This
type of waste is usually called internal fragmentation, as the space
inside the allocated unit is not all used (i.e., is fragmented) and thus
wasted. In our current approach, although there might be enough
physical memory for more processes, we are currently restricted to

1Is there anything other than “havoc” that can be “wreaked”?

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

12 MECHANISM: ADDRESS TRANSLATION

placing an address space in a fixed-sized slot and thus internal frag-

mentation can arise2. Thus, we are going to need more sophisticated
machinery, to try to better utilize physical memory and avoid inter-
nal fragmentation. Our first attempt will be a slight generalization
of base and bounds known as segmentation, which we will discuss
next.

2A different solution might instead place a fixed-sized stack within the address
space, just below the code region, and a growing heap below that. However, this limits
flexibility by making recursion and deeply-nested function calls challenging, and thus is
something we hope to avoid.

OPERATING

SYSTEMS ARPACI-DUSSEAU

MECHANISM: ADDRESS TRANSLATION 13

References

[M65] “On Dynamic Program Relocation”
W.C. McGee
IBM Systems Journal
Volume 4, Number 3, 1965, pages 184–199
This paper is a nice summary of early work on dynamic relocation, as well as some basics on static
relocation.

[P90] “Relocating loader for MS-DOS .EXE executable files”
Kenneth D. A. Pillay
Microprocessors & Microsystems archive
Volume 14, Issue 7 (September 1990)
An example of a relocating loader for MS-DOS. Not the first one, but just a relatively modern
example of how such a system works.

[SS74] “The Protection of Information in Computer Systems”
J. Saltzer and M. Schroeder
CACM, July 1974
From this paper: “The concepts of base-and-bound register and hardware-interpreted descriptors
appeared, apparently independently, between 1957 and 1959 on three projects with diverse goals.
At M.I.T., McCarthy suggested the base-and-bound idea as part of the memory protection system
necessary to make time-sharing feasible. IBM independently developed the base-and-bound regis-
ter as a mechanism to permit reliable multiprogramming of the Stretch (7030) computer system.
At Burroughs, R. Barton suggested that hardware-interpreted descriptors would provide direct
support for the naming scope rules of higher level languages in the B5000 computer system.” We
found this quote on Mark Smotherman’s cool history pages [S04]; see them for more information.

[S04] “System Call Support”
Mark Smotherman, May 2004
http://www.cs.clemson.edu/ mark/syscall.html
A neat history of system call support. Smotherman has also collected some early history on items
like interrupts and other fun aspects of computing history. See his web pages for more details.

[WL+93] “Efficient Software-based Fault Isolation”
Robert Wahbe, Steven Lucco, Thomas E. Anderson, Susan L. Graham
SOSP ’93
A terrific paper about how you can use compiler support to bound memory references from a
program, without hardware support. The paper sparked renewed interest in software techniques
for isolation of memory references.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

14 MECHANISM: ADDRESS TRANSLATION

16KB

7KB

6KB

5KB

4KB

3KB

2KB

1KB

0KB

(free)

Heap

Stack

Program Code

Figure 14.3: A Fixed-Sized Stack Address Space

Homework

This program allows you to see how address translations are per-
formed in a system with base and bounds registers. As before, there
are two steps to running the program to test out your understanding
of base and bounds. First, run without the -c flag to generate a set of
translations and see if you can correctly perform the address transla-
tions yourself. Then, when done, run with the -c flag to check your
answers.

In this homework, we will assume a slightly different address
space than our canonical one with a heap and stack at opposite ends
of the space. Rather, we will assume that the address space has a
code section, then a fixed-sized (small) stack, and a heap that grows
downward right after, looking something like you see in Figure 14.3.

OPERATING

SYSTEMS ARPACI-DUSSEAU

MECHANISM: ADDRESS TRANSLATION 15

In this configuration, there is only one direction of growth, towards
higher regions of the address space.

In the figure, the bounds register would be set to 7 KB, as that
represents the end of the address space. References to any address
within the bounds would be considered legal; references above this
value are out of bounds and thus the hardware would raise an ex-
ception.

To run with the default flags, type relocation.py at the com-
mand line. The result should be something like this:

prompt> ./relocation.py

...

Base-and-Bounds register information:

Base : 0x00003082 (decimal 12418)

Limit : 472

Virtual Address Trace

VA 0: 0x01ae (decimal:430) -> PA or violation?

VA 1: 0x0109 (decimal:265) -> PA or violation?

VA 2: 0x020b (decimal:523) -> PA or violation?

VA 3: 0x019e (decimal:414) -> PA or violation?

VA 4: 0x0322 (decimal:802) -> PA or violation?

For each virtual address, either write down the physical

address it translates to OR write down that it is an

out-of-bounds address (a segmentation violation). For

this problem, you should assume a simple virtual address

space of a given size.

As you can see, the homework simply generates randomized vir-
tual addresses. For each, you should determine whether it is in bounds,
and if so, determine to which physical address it translates. Running
with -c (the “compute this for me” flag) gives us the results of these
translations, i.e., whether they are valid or not, and if valid, the re-
sulting physical addresses. For convenience, all numbers are given
both in hex and decimal.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

16 MECHANISM: ADDRESS TRANSLATION

prompt> ./relocation.py -c

...

Virtual Address Trace

VA 0: 0x01ae (decimal:430) -> VALID: 0x00003230 (dec:12848)

VA 1: 0x0109 (decimal:265) -> VALID: 0x0000318b (dec:12683)

VA 2: 0x020b (decimal:523) -> SEGMENTATION VIOLATION

VA 3: 0x019e (decimal:414) -> VALID: 0x00003220 (dec:12832)

VA 4: 0x0322 (decimal:802) -> SEGMENTATION VIOLATION

With a base address of 12418 (decimal), address 430 is within
bounds (i.e., it is less than the limit register of 472) and thus translates
to 430 added to 12418 or 12848. A few of the addresses shown above
are out of bounds (523, 802), as they are in excess of the bounds.
Pretty simple, no? Indeed, that is one of the beauties of base and
bounds: it’s so darn simple!

There are a few flags you can use to control what’s going on better:

prompt> ./relocation.py -h

Usage: relocation.py [options]

Options:

-h, --help show this help message and exit

-s SEED, --seed=SEED the random seed

-a ASIZE, --asize=ASIZE address space size (e.g., 16, 64k, 32m)

-p PSIZE, --physmem=PSIZE physical memory size (e.g., 16, 64k)

-n NUM, --addresses=NUM # of virtual addresses to generate

-b BASE, --b=BASE value of base register

-l LIMIT, --l=LIMIT value of limit register

-c, --compute compute answers for me

In particular, you can control the virtual address-space size (-a),
the size of physical memory (-p), the number of virtual addresses
to generate (-n), and the values of the base and bounds registers for
this process (-b and -l, respectively).

OPERATING

SYSTEMS ARPACI-DUSSEAU

MECHANISM: ADDRESS TRANSLATION 17

Questions

Now let’s explore a few questions with this homework simulator.

• Run with seeds 1, 2, and 3, and compute whether each virtual
address generated by the process is in or out of bounds. If in
bounds, compute the translation.

• Run with these flags: -s 0 -n 10. What value do you have
set -l (the bounds register) to in order to ensure that all the
generated virtual addresses are within bounds?

• Run with these flags: -s 1 -n 10 -l 100. What is the max-
imum value that bounds can be set to, such that the address
space still fits into physical memory in its entirety?

• Run some of the same problems above, but with larger address
spaces (-a) and physical memories (-p).

• What fraction of randomly-generated virtual addresses are valid,
as a function of the value of the bounds register? Make a graph
from running with different random seeds, with limit values
ranging from 0 up to the maximum size of the address space.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

