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Paging: Introduction

Remember our goal: to virtualize memory. Segmentation (a gen-
eralization of dynamic relocation) helped us do this, but has some
problems; in particular, managing free space becomes quite a pain
as memory becomes fragmented. Thus, we’d like to find a different
solution.
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Figure 17.1: A Simple 64-byte Address Space

Thus comes along the idea of paging [KE+62,L78]. Instead of
splitting up our address space into three logical segments (each of
variable size), we split up our address space into fixed-sized units
we call a page. Here in Figure 17.1 an example of a tiny address
space, 64 bytes total in size, with 16 byte pages (real address spaces
are much bigger, of course, commonly 32 bits and thus 4-GB of ad-
dress space, or even 64 bits).

Thus, we have an address space that is split into four pages (0
through 3). With paging, physical memory is also split into some
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Figure 17.2: 64-Byte Address Space Placed In Physical Memory

number of pages as well; we sometimes will call each page of physi-
cal memory a page frame. For an example, let’s examine Figure 17.2.

Paging, as we will see, has a number of advantages over our pre-
vious approaches. Probably the most important improvement will be
flexibility: with a fully-developed paging approach, the system will
be able to support the abstraction of an address space effectively, re-
gardless of how the processes uses the address space; we won't, for
example, have to make assumptions about how the heap and stack
grow and how they are used.

Another advantage is the simplicity of free-space management that
paging affords. For example, when the OS wishes to place our tiny
64-byte address space from above into our 8-page physical memory,
it simply finds four free pages; perhaps the OS keeps a free list of all
free pages for this, and just grabs the first four free pages off of this
list. In the example above, the OS has placed virtual page 0 of the
address space (AS) in physical page 3, virtual page 1 of the AS on
physical page 7, page 2 on page 5, and page 3 on page 2.

To record where each virtual page of the operating system is placed
in physical memory, the operating system keeps a per-process data
structure known as a page table. The major role of the page table
is to store address translations for each of the virtual pages of the
address space, thus letting us know where in physical memory they
live. For our simple example above, the page table would thus have
the following entries:
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Virtual Page Number  Physical Page Frame
0 3

1 7
2 5
3 2

As we said before, it is important to remember that this is a per-
process data structure’; If another process were to run in our example
above, the OS would have to manage a different page table for it, as
its virtual pages obviously map to different physical pages (modulo
any sharing going on).

Now, we know enough to perform an address-translation exam-
ple. Let’s imagine the process with that tiny address space (64 bytes)
is performing a memory access:

movl <virtual address>, %eax

Specifically, let’s pay attention to the explicit load of the data at
<virtual address> into the register eax (and thus ignore the in-
struction fetch that must have happened prior).

To translate this virtual address that the process generated, we
have to first split it into two components: the virtual page number
(VPN), and the offset within the page. For this example, because the
virtual address space of the process is 64 bytes, we need 6 bits total
for our virtual address (2° = 64). Thus, our virtual address:

Va5 | Va4 |Va3|Va2|Val|Va0

where Va5 is the highest-order bit of the virtual address, and Va0
the lowest order bit. Because we know the page size (16 bytes), we
can further divide the virtual address as follows:

VPN offset

Va5 | Va4 |Va3|Va2|Val|Va0

The page size is 16 bytes in a 64-byte address space; thus we need
to be able to select 4 pages, and the top 2 bits of the address do just

!This is generally true for most of the page table structures we will discuss; however,
for some page tables, such as the inverted page table, there is one table for all processes.
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Figure 17.3: The Address Translation Process

that. Thus, we have a 2-bit virtual page number (VPN). The remain-
ing bits tell us which byte of the page we are interested in, 4 bits in
this case; we call this the offset.

When a process generates a virtual address, the OS and hard-
ware must combine to translate this virtual address into a meaning-
ful physical address. For example, let us assume the load above was
to virtual address 21:

movl 21, %eax

Turning “21” into binary form, we get “010101”, and thus we can
examine this virtual address and see how it breaks down into a vir-
tual page number (VPN) and offset:

VPN offset

0 1 0 1 0 1

Thus, the virtual address “21” is on the 5th (“0101”th) byte of vir-
tual page “01” (or 1). With our virtual page number, we can now
index our page table and find which physical page that virtual page
1 resides within. In the page table above the physical page number
(PPN) (a.k.a. physical frame number or PEN) is 7 (binary 111). Thus,
we can translate this virtual address by replacing the VPN with the
PEN and then issue the load to physical memory (Figure 17.3).
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Note the offset stays the same (i.e., it is not translated), because
the offset just tells us which byte within the page we want. Our final
physical address is 1110101 (117 in decimal), and is exactly where we
want our load to fetch data from (Figure 17.2).

DATA STRUCTURE: THE PAGE TABLE

One of the most important data structures in the memory manage-
ment subsystem of a modern OS is the page table. In general, a page
table stores virtual-to-physical address translations, thus letting the
system know where each page of an address space actually resides in
physical memory. Because each address space requires such transla-
tions, in general there is one page table per process in the system. The
exact structure of the page table is either determined by the hardware
(older systems) or can be more flexibly managed by the OS (modern
systems).

Where Are Page Tables Stored?

Page tables can get awfully large, much bigger than the small seg-
ment table or base/bounds pair we have discussed previously. For
example, imagine a typical 32-bit address space, with 4-KB pages.
This virtual address splits into a 20-bit VPN and 12-bit offset (recall
that 10 bits would be needed for a 1-KB page size, and just add two
more to get to 4 KB).

A 20-bit VPN implies that there are 2?° translations that the OS
would have to manage for each process (that’s roughly a million);
assuming we need 4 bytes per page table entry (PTE) to hold the
physical translation plus any other useful stuff, we get an immense
4MB of memory needed for each page table! That is pretty big. Now
imagine there are 100 processes running: this means the OS would
need 400MB of memory just for all those address translations!

Because they are so big, we don’t keep any special on-chip hard-
ware in the MMU to store the page table of the currently-running
process. Instead, we store the page table for each process in memory
somewhere. Let’s assume for now that the page tables live in physi-
cal memory that the OS manages. In Figure 17.4 is a picture of what
that might look like.
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page table:
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Figure 17.4: Example: Page Table in Kernel Physical Memory
What'’s Actually In The Page Table?

A small aside about page table organization. The page table is just
a data structure that is used to map virtual addresses (or really, vir-
tual page numbers) to physical addresses (physical page numbers).
Thus, any data structure could work. The simplest form is called a
linear page table. It is just an array. The OS indexes the array by
the VPN, and thus looks up the page-table entry (PTE) at that index
in order to find the desired PEN. For now, we will assume this lin-
ear page table structure; in later chapters, we will make use of more
advanced data structures to help solve some problems with paging.

As for the contents of each PTE, we have a number of different bits
in there worth understanding at some level. A valid bit is common
to indicate whether the particular translation is valid; for example,
when a program starts running, it will have code and heap at one
end of its address space, and the stack at the other. All the unused
space in-between will be marked invalid, and if the process tries to
access such memory, it will generate a trap to the OS which will likely
terminate the process. Thus, the valid bit is crucial for supporting a
sparse address space; by simply marking all the unused pages in
the address space invalid, we remove the need to allocate physical
frames for those pages and thus save a great deal of memory.

We also might have protection bits, indicating whether the page
could be read from, written to, or executed from (e.g., a code page).
Again, accessing a page in a way not allowed by these bits will gen-
erate a trap to the OS.
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There are a couple of other bits that are important but we won't
talk about much for now. A present bit indicates whether this page
is in physical memory or on disk (swapped out); we will understand
this in more detail when we study how to move parts of the address
space to disk and back in order to support address spaces that are
larger than physical memory and allow for the pages of processes
that aren’t actively being run to be swapped out. A dirty bit is also
common, indicating whether the page has been modified since it was
brought into memory.

3130 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 131211 10 9 8 7 6 5

43210
= olEln|z
PN IEHEREEEES

Figure 17.5: An x86 Page Table Entry (PTE)

A reference bit (a.k.a. accessed bit) is sometimes used to track whether
a page has been accessed, and is useful in determining which pages
are popular and thus should be kept in memory; such knowledge is
critical during page replacement, a topic we will study in great detail
in subsequent chapters.

Figure 17.5 shows an example page table entry from the x86 ar-
chitecture [I09]. It contains a present bit (P); a read /write bit (R/W)
which determines if writes are allowed to this page; a user/supervisor
bit (U/S) which determines if user-mode processes can access the
page; a few bits (PWT, PCD, PAT, and G) that determine how hard-
ware caching works for these pages; an accessed bit (A) and a dirty
bit (D); and finally, the PFN itself.

Paging: Also Too Slow

With page tables in memory, we already know that they might be
too big. Turns out they can slow things down too. For example, take
our simple instruction:

movl 21, %eax

Again, let’s just examine the explicit reference to address 21 and
not worry about the instruction fetch. In this example, we will as-
sume the hardware performs the translation for us. To fetch the de-
sired data, the system must first translate the virtual address (21)
into the correct physical address (117). Thus, before issuing the load
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to address 117, the system must first fetch the proper page table en-
try from the process’s page table, perform the translation, and then
finally get the desired data from physical memory.

To do so, the hardware must know where the page table is for
the currently-running process. Let’s assume for now that a single
page-table base register contains the physical address of the starting
location of the page table. To find the location of the desired PTE, the
hardware will thus perform the following functions:

VPN
PTEAddr

(VirtualAddress & VPN_MASK) >> SHIFT
PageTableBaseRegister + (VPN * sizeof (PTE))

In our example, VPN_MASK would be set to 0x30 (hex 30, or bi-
nary 110000) which picks out the VPN bits from the full virtual ad-
dress; SHIFT is set to 4 (the number of bits in the offset), such that
we move the VPN bits down to form the correct integer virtual page
number. For example, with virtual address 21 (010101), and masking
turns this value into 010000; the shift turns it into 01, or virtual page
1, as desired. We then use this value as an index into the array of
PTEs pointed to by the page table base register.

Once this physical address is known, the hardware can fetch the
PTE from memory, extract the PFN, and concatenate it with the offset
from the virtual address to form the desired physical address. Specif-
ically, you can think of the PEN being left-shifted by SHIFT, and then
logically OR’d with the offset to form the final address as follows:

offset
PhysAddr

VirtualAddress & OFFSET_MASK
(PFN << SHIFT) | offset

Finally, the hardware can fetch the desired data from memory and
put it into register eax. The program has now succeeded at loading
a value from memory!

To summarize, we now describe the initial protocol for what hap-
pens on each memory reference. Figure 17.6 shows the basic ap-
proach. For every memory reference (whether an instruction fetch
or an explicit load or store), paging requires us to perform one extra
memory reference in order to first fetch the translation from the page
table. That is a lot of work! Extra memory references are costly, and
in this case will likely slow down the process by a factor of two or
more.

And now you can hopefully see that there are two real problems
that we must solve. Without careful design of both hardware and
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// Extract the VPN from the virtual address
VPN = (VirtualAddress & VPN_MASK) >> SHIFT

// Form the address of the page-table entry (PTE)
PTEAddr = PTBR + (VPN x sizeof (PTE))

// Fetch the PTE
PTE = AccessMemory (PTEAddr)

// Check 1if process can access the page

if (PTE.Valid == False)
RaiseException (SEGMENTATION_FAULT)

else if (CanAccess (PTE.ProtectBits) == False)
RaiseException (PROTECTION_FAULT)

else
// Access is OK: form physical address and fetch it
offset = VirtualAddress & OFFSET_MASK
PhysAddr = (PTE.PFN << PEFN_SHIFT) | offset

Register = AccessMemory (PhysAddr)

Figure 17.6: Accessing Memory With Paging

software, page tables will cause the system to run too slowly, as well
as take up too much memory. While seemingly a great solution for
our memory virtualization needs, these two crucial problems must
first be overcome; the next two chapters show us how to do so.

THE CRUX:
HOW TO MAKE PAGING FASTER AND PAGE TABLES SMALLER
Paging, as we’ve described, has two big problems: the page tables
are too big, and the address translation process is too slow. Thus,
how can the OS, in tandem with the hardware, speed up translation?
How can the OS and hardware reduce the exorbitant memory de-
mands of paging?
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Homework

In this homework, you will use a simple program, which is known
as paging-linear-translate.py, to see if you understand how
simple virtual-to-physical address translation works with linear page
tables. To run the program, remember to either type just the name of
the program ./paging-linear-translate.py or possibly this
python paging-linear-translate.py. When you run it with
the [-h] (help) flag, you see:

Usage: paging-linear-translate.py [options]

Options:
-h, —--help show this help message and exit
-s SEED, --seed=SEED the random seed

-a ASIZE, --asize=ASIZE

address space size (e.g., 16, 64k, ...)
-p PSIZE, --physmem=PSIZE

physical memory size (e.g., 16, 64k, ...)
-P PAGESIZE, --pagesize=PAGESIZE

page size (e.g., 4k, 8k, ...)

-n NUM, --addresses=NUM number of virtual addresses to generate
-u USED, --used=USED percent of address space that is used
-v verbose mode

-c compute answers for me

First, run the program without any arguments:

ARG seed 0

ARG address space size 16k
ARG phys mem size 64k

ARG page size 4k

ARG verbose False

The format of the page table is simple:
The high-order (left-most) bit is the VALID bit.
If the bit is 1, the rest of the entry is the PFN.
If the bit is 0, the page is not valid.
Use verbose mode (-v) if you want to print the VPN # by
each entry of the page table.

Page Table (from entry O down to the max size)
0x8000000c
0x00000000
0x00000000
0x80000006
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Virtual Address Trace

VA 0: 0x00003229 (decimal: 12841) --> PA or invalid?
VA 1: 0x00001369 (decimal: 4969) --> PA or invalid?
VA 2: 0x00001e80 (decimal: 7808) —--> PA or invalid?
VA 3: 0x00002556 (decimal: 9558) ——> PA or invalid?
VA 4: 0x00003ale (decimal: 14878) —-—-> PA or invalid?

For each virtual address, write down the physical address it
translates to OR write down that it is an out-of-bounds
address (e.g., a segmentation fault).

As you can see, what the program provides for you is a page table
for a particular process (remember, in a real system with linear page
tables, there is one page table per process; here we just focus on one
process, its address space, and thus a single page table). The page
table tells you, for each virtual page number (VPN) of the address
space, that the virtual page is mapped to a particular physical frame
number (PFN) and thus valid, or not valid.

The format of the page-table entry is simple: the left-most (high-
order) bit is the valid bit; the remaining bits, if valid is 1, is the PFN.

In the example above, the page table maps VPN 0 to PFN Oxc
(decimal 12), VPN 3 to PEN 0x6 (decimal 6), and leaves the other two
virtual pages, 1 and 2, as not valid.

Because the page table is a linear array, what is printed above
is a replica of what you would see in memory if you looked at the
bits yourself. However, it is sometimes easier to use this simulator if
you run with the verbose flag (-v); this flag also prints out the VPN
(index) into the page table. From the example above, run with the -v
flag:

Page Table (from entry O down to the max size)
[ 0] 0x8000000c
[ 1] 0x00000000
[ 2] 0x00000000
[ 3] 0x80000006

Your job, then, is to use this page table to translate the virtual ad-
dresses given to you in the trace to physical addresses. Let’s look
at the first one: VA 0x3229. To translate this virtual address into
a physical address, we first have to break it up into its constituent
components: a virtual page number and an offset. We do this by noting
down the size of the address space and the page size. In this exam-
ple, the address space is set to 16KB (a very small address space) and
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the page size is 4KB. Thus, we know that there are 14 bits in the vir-
tual address, and that the offset is 12 bits, leaving 2 bits for the VPN.
Thus, with our address 0x3229, which is binary 11 0010 0010 1001,
we know the top two bits specify the VPN. Thus, 0x3229 is on virtual
page 3 with an offset of 0x229.

We next look in the page table to see if VPN 3 is valid and mapped
to some physical frame or invalid, and we see that it is indeed valid
(the high bit is 1) and mapped to physical page 6. Thus, we can form
our final physical address by taking the physical page 6 and adding
it onto the offset, as follows: 0x6000 (the physical page, shifted into
the proper spot) OR 0x0229 (the offset), yielding the final physical
address: 0x6229. Thus, we can see that virtual address 0x3229 trans-
lates to physical address 0x6229 in this example.

To see the rest of the solutions (after you have computed them
yourself!), just run with the —c flag (as always):

0: 00003229 (decimal: 12841) --> 00006229 (25129) [VPN 3]
VA 1: 00001369 (decimal: 4969) —--> Invalid (VPN 1 not valid)
VA 2: 00001e80 (decimal: 7808) ——-> Invalid (VPN 1 not valid)
VA 3: 00002556 (decimal: 9558) ——-> Invalid (VPN 2 not valid)
VA 4: 00003ale (decimal: 14878) --> 00006ale (27166) [VPN 3]

Of course, you can change many of these parameters to make
more interesting problems. Run the program with the -h flag to see
what options there are:

e The -s flag changes the random seed and thus generates dif-
ferent page table values as well as different virtual addresses
to translate.

The -a flag changes the size of the address space.

The -p flag changes the size of physical memory.

The -P flag changes the size of a page.

The —n flag can be used to generate more addresses to translate

(instead of the default 5).

e The -u flag changes the fraction of mappings that are valid,
from Othat roughly 1/2 of the pages in the virtual address space
will be valid.

e The -v flag prints out the VPN numbers to make your life eas-
ier.
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Questions

e Before doing any translations, let’s use the simulator to study

how linear page tables change size given different parameters.
Compute the size of linear page tables as different parameters
change. Some suggested inputs are below; by using the -v
flag, you can see how many page-table entries are filled.

First, to understand how linear page table size changes as the
address space grows:

paging-linear-translate.py -P 1k -a 1m -p 512m -v -n O
paging-linear-translate.py -P 1k -a 2m -p 512m -v -n O
paging-linear-translate.py -P 1k -a 4m -p 512m -v -n O

Then, to understand how linear page table size changes as page
size grows:

paging-linear-translate.py -P 1k -a 1m -p 512m -v -n O
paging-linear-translate.py -P 2k -a 1lm -p 512m -v -n O
paging-linear-translate.py -P 4k -a 1lm -p 512m -v -n O

Before running any of these, try to think about the expected
trends. How should page-table size change as the address space
grows? As the page size grows? Why shouldn’t we just use re-
ally big pages in general?

Now let’s do some translations. Start with some small exam-
ples, and change the number of pages that are allocated to the
address space with the ~u flag. For example:

paging-linear-translate.py -P 1k -a 16k -p 32k -v -u O

paging-linear-translate.py -P 1k -a 16k -p 32k -v -u 25
paging-linear-translate.py -P 1lk -a 16k -p 32k -v -u 50
paging-linear-translate.py -P 1lk -a 16k -p 32k -v -u 75
paging-linear-translate.py -P 1k -a 16k -p 32k -v -u 100

What happens as you increase the percentage of pages that are
allocated in each address space?

Now let’s try some different random seeds, and some differ-
ent (and sometimes quite crazy) address-space parameters, for
variety:
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paging-linear-translate.py -P 8 -a 32 -p 1024 -v -s 1
paging-linear-translate.py -P 8k -a 32k -p 1lm -v -s 2
paging-linear-translate.py -P 1lm -a 256m -p 512m -v -s 3
Which of these parameter combinations are unrealistic? Why?

e Use the program to try out some other problems. Can you find
the limits of where the program doesn’t work anymore? For
example, what happens if the address-space size is bigger than
physical memory?
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