
21

Beyond Physical Memory: Policies

In a virtual memory manager, life is easy when you have a lot of
free memory. A page fault occurs, you find a free page on the free-
page list, and assign it to the faulting page. Hey, Operating System,
congratulations! You did it again.

Unfortunately, things get a little more interesting when little mem-
ory is free. In such a case, this memory pressure forces the OS to start
paging out pages to make room for actively-used pages. Deciding
which page (or pages) to evict is encapsulated within the replace-
ment policy of the OS; historically, it was one of the most important
decisions the early virtual memory systems made, as older systems
had little physical memory. Minimally, it is an interesting set of poli-
cies worth knowing a little more about. And thus our problem:

THE CRUX: HOW TO DECIDE WHICH PAGE TO EVICT

How can the OS decide which page (or pages) to evict from memory?
This decision is made by the replacement policy of the system, which
usually follows some general principles (discussed below) but also
includes certain tweaks to avoid corner-case behaviors.

1



2 BEYOND PHYSICAL MEMORY: POLICIES

21.1 Cache Management

Before diving into policies, we first describe the problem we are
trying to solve in more detail. Given that main memory holds some
subset of all the pages in the system, it can rightly be viewed as a
cache for virtual memory pages in the system. Thus, our goal in
picking a replacement policy for this cache is to minimize the number
of cache misses; that is, to minimize the number of times that we
have to go to disk to fetch the desired page. Alternately, one can
view our goal as maximizing the number of cache hits, the number
of times a page that is accessed is found in memory.

Knowing the number of cache hits and misses let us calculate the
average memory access time (AMAT) for a program (a metric com-
puter architects compute for hardware caches [HP06]). Specifically,
given these values, we can compute the AMAT of a program as fol-
lows: (Hit% · TM ) + (Miss% · TD), where TM is the cost of accessing
memory, and TD the cost of accessing disk.

For example, let us imagine a machine with a (tiny) address space:
4KB, with 256-byte pages. Thus, a virtual address has two compo-
nents: a 4-bit VPN (the most-significant bits) and an 8-bit offset (the
least-significant bits). Thus, a process in this example can access 24

or 16 total virtual pages. In this example, the process generates the
following memory references (i.e., virtual addresses): 0x000, 0x100,
0x200, 0x300, 0x400, 0x500, 0x600, 0x700, 0x800, 0x900. These virtual
addresses refer to the first byte of each of the first ten pages of the ad-
dress space (the page number being the first hex digit of each virtual
address).

Let us further assume that every page except virtual page 3 are
already in memory. Thus, our sequence of memory references will
encounter the following behavior: hit, hit, hit, miss, hit, hit, hit, hit,
hit, hit. We can compute the hit rate (the percent of references found
in memory): 90%, as 9 out of 10 references are in memory. The miss
rate is obviously 10%.

To calculate AMAT, we simply need to know the cost of access-
ing memory and the cost of accessing disk. Assuming the cost of
accessing memory (TM ) is around 100 nanoseconds, and the cost of
accessing disk (TD) is about 10 milliseconds, we have the following
AMAT: 0.9 · 100ns + 0.1 · 10ms, which is 90ns + 1ms, or 1.00009 ms,
or about 1 millisecond. If our hit rate had instead been 99.9%, the
result is quite different: AMAT is 10.1 microseconds, or roughly 100

OPERATING

SYSTEMS ARPACI-DUSSEAU



BEYOND PHYSICAL MEMORY: POLICIES 3

times faster. As the hit rate approaches 100%, AMAT approaches 100
nanoseconds.

Unfortunately, as you can see in this example, the cost of disk
access is so high in modern systems that even a tiny miss rate will
quickly dominate the overall AMAT of running programs. Clearly,
we need to avoid as many misses as possible or run slowly, at the
rate of the disk. One way to help with this is to carefully develop a
smart policy, as we now do.

21.2 The Optimal Replacement Policy

To better understand how a particular replacement policy works,
it would be nice to compare it to the best possible replacement pol-
icy. As it turns out, such an optimal policy was developed by Be-
lady many years ago [B66] (he originally called it MIN). The opti-
mal replacement policy leads to the fewest number of misses overall.
Belady showed that a simple (but, unfortunately, difficult to imple-
ment!) approach that replaces the page that will be accessed furthest
in the future is the optimal policy, resulting in the fewest-possible
cache misses.

Hopefully, the intuition behind the optimal policy makes sense.
Think about it like this: if you have to throw out some page, why not
throw out the one that is needed the furthest from now? By doing
so, you are essentially saying that all the other pages in the cache are
more important than the one furthest out. The reason this is true is
simple: you will refer to the other pages before you refer to the one
furthest out.

Let’s trace through a simple example to understand the decisions
the optimal policy makes. Assume a program accesses the follow-
ing stream of virtual pages: 0, 1, 2, 0, 1, 3, 0, 3, 1, 2, 1. Table 21.1
shows what the optimal policy would do for this reference stream,
assuming a cache that fits only three pages.

In the table, you can see the following actions. Not surprisingly,
the first three accesses are misses, as the cache begins in an empty
state; such a miss is sometimes referred to as a cold-start miss (or
compulsory miss). Then we refer again to pages 0 and 1, which both
hit in the cache. Finally, we reach another miss (to page 3), but this
time the cache is full; a replacement must take place! Which begs the
question: which page should we replace? With the optimal policy,

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



4 BEYOND PHYSICAL MEMORY: POLICIES

Resulting
Access Hit/Miss? Evict Cache State

0 Miss 0
1 Miss 0, 1
2 Miss 0, 1, 2
0 Hit 0, 1, 2
1 Hit 0, 1, 2
3 Miss 2 0, 1, 3
0 Hit 0, 1, 3
3 Hit 0, 1, 3
1 Hit 0, 1, 3
2 Miss 3 0, 1, 2
1 Hit 0, 1, 2

Table 21.1: Tracing the Optimal Policy

we examine the future for each page currently in the cache (0, 1, and
2), and see that 0 is accessed almost immediately, 1 is accessed a little
later, and 2 is accessed furthest in the future. Thus the optimal policy
has an easy choice: evict page 2, resulting in pages 0, 1, and 3 in the
cache. The next three references are hits, but then we get to page
2, which we evicted long ago, and suffer another miss. Here the
optimal policy again examines the future for each page in the cache
(0, 1, and 3), and sees that as long as it doesn’t evict page 1 (which is
about to be accessed), we’ll be OK. The example shows page 3 getting
evicted, although 0 would have been a fine choice too. Finally, we hit
on page 1 and the trace completes.

We can also calculate a hit rate for the cache given this stream.
With 6 hits and 5 misses, the hit rate is Hits

Hits+Misses
which is 6

6+5
or

54.6%. You can also compute the hit rate modulo compulsory misses
(i.e., ignore the first miss to any given page), resulting in a more im-
pressive 85.7% hit rate.

Unfortunately, as we saw before in the development of scheduling
policies, the future is not generally known; you can’t build the opti-

mal policy for a general-purpose operating system1. Thus, in devel-
oping a real, deployable policy, we will have to focus on approaches
that find some other way to decide which page to evict. The optimal
policy will thus serve only as a comparison point, to know how close
we are to “perfect”.

1If you can, let us know! We can become rich together. Or, like the scientists who
“discovered” cold fusion, widely scorned and mocked.

OPERATING

SYSTEMS ARPACI-DUSSEAU



BEYOND PHYSICAL MEMORY: POLICIES 5

ASIDE: TYPES OF CACHE MISSES

In the computer architecture world, architects sometimes find it use-
ful to characterize misses by type, into one of three categories: com-
pulsory, capacity, and conflict misses, sometimes called the Three
C’s [H87]. A compulsory miss (or cold-start miss [EF78]) occurs be-
cause the cache is empty to begin with and this is the first reference
to the item; in contrast, a capacity miss occurs because the cache ran
out of space and had to evict an item to bring a new item into the
cache. The third type of miss (a conflict miss) arises in hardware be-
cause of limits on where an item can be placed in a hardware cache,
due to something known as set-associativity; it does not arise in the
OS page cache because such caches are always fully-associative, i.e.,
there are no restrictions on where in memory a page can be placed.
See H&P for details [HP06].

21.3 A Simple Policy: FIFO

Many early systems avoided the complexity of trying to approach
optimal and employed very simple replacement policies. For exam-
ple, some systems used FIFO (first-in, first-out) replacement, where
pages were simply placed in a queue when they enter the system;
when a replacement occurs, the page on the tail of the queue (the
“first-in” page) is evicted. FIFO has one great strength: it is quite
simple to implement.

Let’s examine how FIFO does on our example reference stream
from above. Table 21.2 shows the results. We again begin our trace
with three compulsory misses to pages 0, 1, and 2, and then hit on
both 0 and 1. Next, page 3 is referenced, causing a miss; the replace-
ment decision is easy with FIFO: pick the page that was the first-one
in (the cache state in the table is kept in FIFO order, with the first-in
page on the left), which is page 0. Unfortunately, our next access is
to page 0(!), thus causing another miss, and another replacement (of
page 1). We then hit on page 3, but miss on 1 and 2, and finally hit
on 3 to finish.

Comparing FIFO to optimal, FIFO does notably worse: a 36.4%
hit rate (or 57.1% excluding compulsory misses). FIFO simply can’t
determine the importance of blocks: even though page 0 had been
accessed a number of times, FIFO still kicks it out, simply because it
was the first one brought into memory.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



6 BEYOND PHYSICAL MEMORY: POLICIES

Resulting
Access Hit/Miss? Evict Cache State

0 Miss First-in→ 0
1 Miss First-in→ 0, 1
2 Miss First-in→ 0, 1, 2
0 Hit First-in→ 0, 1, 2
1 Hit First-in→ 0, 1, 2
3 Miss 0 First-in→ 1, 2, 3
0 Miss 1 First-in→ 2, 3, 0
3 Hit First-in→ 2, 3, 0
1 Miss 2 First-in→ 3, 0, 1
2 Miss 3 First-in→ 0, 1, 2
1 Hit First-in→ 0, 1, 2

Table 21.2: Tracing the FIFO Policy

21.4 Another Simple Policy: Random

Another similar replacement policy is Random, which simply picks
a random page to replace under memory pressure. Random has
properties similar to FIFO; it is simple to implement, but it doesn’t
really try to be too intelligent in picking which blocks to evict. Let’s
look at how Random does on our famous example reference stream
(see Table 21.3).

Resulting
Access Hit/Miss? Evict Cache State

0 Miss 0
1 Miss 0, 1
2 Miss 0, 1, 2
0 Hit 0, 1, 2
1 Hit 0, 1, 2
3 Miss 0 1, 2, 3
0 Miss 1 2, 3, 0
3 Hit 2, 3, 0
1 Miss 3 2, 0, 1
2 Hit 2, 0, 1
1 Hit 2, 0, 1

Table 21.3: Tracing the Random Policy
Of course, how Random does depends entirely upon how lucky

(or unlucky) Random gets in its choices. In the example above, Ran-
dom does a little better than FIFO, and a little worse than optimal.
In fact, we can run the Random experiment thousands of times and
determine how it does in general. Figure 21.1 shows how many hits
Random achieves over 10,000 trials, each with a different random
seed. As you can see, sometimes (just over 40% of the time), Random

OPERATING

SYSTEMS ARPACI-DUSSEAU



BEYOND PHYSICAL MEMORY: POLICIES 7

is as good as optimal, achieving 6 hits on the example trace; some-
times it does much worse, achieving 2 hits or fewer. How Random
does depends on the luck of the draw.

0 1 2 3 4 5 6 7
0

10

20

30

40

50

Number of Hits

F
re

q
u
e
n
c
y

Figure 21.1: Random Performance over 10,000 Trials

ASIDE: TYPES OF LOCALITY

There are two types of locality that programs tend to exhibit. The first
is known as spatial locality, which states that if a page P is accessed,
it is likely the pages around it (say P − 1 or P + 1) will also likely
be accessed. The second is temporal locality, which states that pages
that have been accessed in the near past are likely to be accessed
again in the near future. The assumption of the presence of these
types of locality plays a large role in the caching hierarchies of hard-
ware systems, which deploy many levels of instruction, data, and
address-translation caching to help programs run fast when such lo-
cality exists.

Of course, the principle of locality, as it is often called, is no hard-
and-fast rule that all programs must obey. Indeed, some programs
access memory (or disk) in rather random fashion and don’t exhibit
much or any locality in their access streams. Thus, while locality is
a good thing to keep in mind while designing caches of any kind
(hardware or software), it does not guarantee success. Rather, it is a
heuristic that often proves useful in the design of computer systems.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



8 BEYOND PHYSICAL MEMORY: POLICIES

21.5 Using History: LRU

Unfortunately, any policy as simple as FIFO or Random is likely
to have a common problem: it might kick out an important page,
one that is about to be referenced again. FIFO kicks out the page that
was first brought in; if this happens to be a page with important code
or data structures upon it, it gets thrown out anyhow, even though it
will soon be paged back in. Thus, FIFO, Random, and similar policies
are not likely to approach optimal; something smarter is needed.

As we did with scheduling policy, to improve our guess at the
future, we once again lean on the past and use history as our guide.
For example, if a program has accessed a page in the near past, it is
likely to access it again in the near future.

Resulting
Access Hit/Miss? Evict Cache State

0 Miss LRU→ 0
1 Miss LRU→ 0, 1
2 Miss LRU→ 0, 1, 2
0 Hit LRU→ 1, 2, 0
1 Hit LRU→ 2, 0, 1
3 Miss 2 LRU→ 0, 1, 3
0 Hit LRU→ 1, 3, 0
3 Hit LRU→ 1, 0, 3
1 Hit LRU→ 0, 3, 1
2 Miss 0 LRU→ 3, 1, 2
1 Hit LRU→ 3, 2, 1

Table 21.4: Tracing the LRU Policy
One type of historical information a page-replacement policy could

use is frequency; if a page has been accessed many times, perhaps it
should not be replaced as it clearly has some value. An even more
commonly-used property of a page is its recency of access; the more
recently a page has been accessed, perhaps the more likely it will be
accessed again.

This family of policies is based on what people refer to as the prin-
ciple of locality [D70], which basically is just an observation about
programs and their behavior. What this principle says, quite sim-
ply, is that programs tend to access certain code sequences and data
structures quite frequently; we should thus try to use history to fig-
ure out which pages are important, and keep those pages in memory
when it comes to eviction time.

And thus, a family of simple historically-based algorithms are
born. The Least-Frequently-Used (LFU) policy replaces the least-

OPERATING

SYSTEMS ARPACI-DUSSEAU



BEYOND PHYSICAL MEMORY: POLICIES 9

ASIDE: BELADY’S ANOMALY

Some year’s ago, Belady (of the optimal policy) and colleagues found
an interesting reference stream that behaved a little unexpectedly
[BNS69]. The memory-reference stream: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.
The replacement policy they were studying was FIFO. And now, the
interesting part: how the cache hit rate changed when moving from
a cache size of 3 to 4 pages.

In general, you would expect the cache hit rate to increase (get better)
when the cache gets larger, right? But in this case, when running
FIFO, it turns out that with a cache of size 3, 3 hits (9 misses) take
place, but with a larger cache of size 4, only 2 hits (10 misses) occur.
If you don’t believe it, calculate the hits and misses yourself! This
odd behavior is generally referred to as Belady’s Anomaly (to the
chagrin of his co-authors).

Some other policies, such as LRU, don’t suffer from this problem.
Can you guess why? As it turns out, LRU (and some other policies)
have what is known as a stack property [M+70]. For algorithms that
have the stack property, a cache of size N + 1 naturally includes the
contents of a cache of size N which uses the same replacement al-
gorithm. Thus, when increasing the cache size, you will never see a
decrease in hit rate – only an increase or at worst the same hit rate.
FIFO and Random (among others) clearly do not have a stack prop-
erty, and thus are susceptible to anomalous behavior.

frequently-used page when an eviction must take place. Similarly,
the Least-Recently-Used (LRU) policy replaces the least-recently-
used page. These algorithms are easy to remember: once you know
the name, you know exactly what it does.

To better understand this, let’s examine how LRU does on our
example reference stream. Table 21.4 shows the results. From the ta-
ble, you can see how LRU can use history to do better than stateless
policies such as Random or FIFO. In the example, LRU evicts page
2 when it first has to replace a page, because 0 and 1 have been ac-
cessed more recently. It then replaces page 0 because 1 and 3 have
been accessed more recently. In both cases, LRU’s decision, based on
history, turns out to be correct, and the next references are thus hits.
Thus, in our simple example, LRU does as well as possible, matching
optimal in its performance.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



10 BEYOND PHYSICAL MEMORY: POLICIES

We should also note that the opposites of these algorithms ex-
ist: Most-Frequently-Used (MFU) and Most-Recently-Used (MRU).
However, in most cases (though not all!), these policies do not work
well, as they ignore the locality most programs exhibit instead of em-
bracing it.

21.6 Workload Examples

Let’s look at a few more examples in order to better understand
how some of these policies behave. We’ll look at more complex
workloads instead just a small trace of references.

Our first workload has no locality, which means that each refer-
ence is to a random page within the set of accessed pages. In this
simple example, the workload accesses 100 unique pages over time,
choosing the next page to refer to at random; overall, 10,000 pages
are accessed. In the experiment, we vary the cache size from very
small (1 page) to enough to hold all the unique pages (100 page), in
order to see how each policy behaves over the range of cache sizes.

Figure 21.2 plots the results of the experiment for the optimal,
LRU, Random, and FIFO policies. The y-axis of the figure shows
the hit rate that each policy achieves; the x-axis varies the cache size
as described above.

We can draw a number of conclusions from the graph. First, when
there is no locality in the workload, it doesn’t matter much which re-
alistic policy you are using; LRU, FIFO, and Random all perform the
same, with the hit rate exactly determined by the size of the cache.
Second, when the cache is large enough to fit the entire workload,
it also doesn’t matter which policy you use; all policies (even opti-
mal) converge to a 100% hit rate when all the referenced blocks fit in
cache. Finally, you can see that optimal performs noticeably better
than the realistic policies; peeking into the future, if it were possible,
does a much better job of replacement.

The next workload we examine is called the “80-20” workload,
because it has locality within it. Specifically, 80% of the references
are made to 20% of the pages (you might call these pages “hot”);
the remaining 20% of the references are made to the remaining 80%
of the pages (perhaps these are the “cold” pages). In our workload,
there are a total 100 unique pages again; thus, “hot” pages (0–19) are
referred to most of the time, and “cold” pages (20-99) the remain-

OPERATING

SYSTEMS ARPACI-DUSSEAU



BEYOND PHYSICAL MEMORY: POLICIES 11

0 20 40 60 80 100
0%

20%

40%

60%

80%

100%
The No-Locality Workload

Cache Size (Blocks)

H
it
 R

a
te

OPT
LRU
FIFO
RAND

0 20 40 60 80 100
0%

20%

40%

60%

80%

100%
The 80-20 Workload

Cache Size (Blocks)

H
it
 R

a
te

OPT
LRU
FIFO
RAND

0 20 40 60 80 100
0%

20%

40%

60%

80%

100%
The Looping-Sequential Workload

Cache Size (Blocks)

H
it
 R

a
te

OPT
LRU
FIFO
RAND

Figure 21.2: The No-Locality, 80-20, and Looping Workloads

der. Figure 21.2 also shows how the policies perform with the 80-20
workload.

As you can see from the figure, while both random and FIFO do
reasonably well, LRU does better, as it is more likely to hold onto
the hot pages; as those pages have been referred to frequently in the
past, they are likely to be referred to again in the near future. Optimal
once again does better, showing that LRU’s historical information is
not perfect.

You might now be wondering: is LRU’s improvement over Ran-
dom and FIFO really that big of a deal? The answer, as usual, is “it
depends.” If each miss is very costly (not uncommon), then even a

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



12 BEYOND PHYSICAL MEMORY: POLICIES

small increase in hit rate (reduction in miss rate) can make a huge
difference on performance. If misses are not so costly, then of course
the benefits possible with LRU are not nearly as important.

Let’s look at one final workload. We call this one the “looping se-
quential” workload, as in it, we refer to 50 pages in sequence, start-
ing at 0, then 1, ..., up to page 49, and then we loop, repeating those
accesses, for a total of 10,000 accesses to 50 unique pages. The last
graph in Figure 21.2 shows the behavior of the policies under this
workload.

This workload, common in many applications (including impor-
tant commercial applications such as databases [CD85]), represents a
worst-case for both LRU and FIFO. These algorithms, under a looping-
sequential workload, kick out older pages; unfortunately, due to the
looping nature of the workload, these older pages are going to be ac-
cessed sooner than the pages that the policies prefer to keep in cache.
Indeed, even with a cache of size 49, a looping-sequential workload
of 50 pages results in a 0% hit rate. Interestingly, Random fares no-
tably better, not quite approaching optimal, but at least achieving a
non-zero hit rate.

DESIGN TIP: COMPARING AGAINST OPTIMAL IS USEFUL

Although optimal is not very practical as a real policy, it is incredibly
useful as a comparison point in simulation or other studies. Saying
that your fancy new algorithm has a 80% hit rate isn’t meaningful
in isolation; saying that optimal achieves an 82% hit rate (and thus
your new approach is quite close to optimal) makes the result more
meaningful and gives it context. Thus, in any study you perform,
knowing what the optimal is lets you perform a better comparison,
showing how much improvement is still possible, and also when you
can stop making your policy better, because it is close enough to the
ideal [AD03].

21.7 Implementing Historical Algorithms

As you can see, an algorithm such as LRU can generally do a bet-
ter job than simpler policies like FIFO or Random, which may throw
out important pages. Unfortunately, historical policies present us
with a new challenge: how do we implement them?

OPERATING

SYSTEMS ARPACI-DUSSEAU



BEYOND PHYSICAL MEMORY: POLICIES 13

Let’s take, for example, LRU. To implement it perfectly, we need
to do a lot of work. Specifically, upon each page access (i.e., each mem-
ory access, whether an instruction fetch or a load or store), we must
update some data structure to move this page to the front of the list
(i.e., the MRU side). Contrast this to FIFO, where the FIFO list of
pages is only accessed when a page is evicted (by removing the first-
in page) or when a new page is added to the list (to the last-in side).
To keep track of which pages have been least- and most-recently
used, the system has to do some accounting work on every memory
reference. Clearly, without great care, such accounting could greatly
reduce performance.

One method that could help speed this up is to add a little bit of
hardware support. For example, a machine could update, on each
page access, a time field in memory (for example, this could be in
the per-process page table, or just in some separate array in memory,
with one entry per physical page of the system). Thus, when a page
is accessed, the time field would be set, by hardware, to the current
time. Then, when replacing a page, the OS could simply scan all the
time fields in the system to find the least-recently-used page.

Unfortunately, as the number of pages in a system grows, scan-
ning a huge array of times just to find the absolute least-recently-
used page is prohibitively expensive. Imagine a modern machine
with 4GB of memory, chopped into 4KB pages. This machine has 1
million pages, and thus finding the LRU page will take a long time,
even at modern CPU speeds. Which begs the question: do we re-
ally need to find the absolute oldest page to replace? Can we instead
survive with an approximation?

CRUX: HOW TO IMPLEMENT AN LRU REPLACEMENT POLICY

Given that it will be expensive to implement perfect LRU, can we
approximate it in some way, and still obtain the desired behavior?

21.8 Approximating LRU

As it turns out, the answer is yes: approximating LRU is more
feasible from a computational-overhead standpoint, and indeed it
is what many modern systems do. The idea requires some hardware

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



14 BEYOND PHYSICAL MEMORY: POLICIES

0 20 40 60 80 100
0%

20%

40%

60%

80%

100%
The 80-20 Workload

Cache Size (Blocks)

H
it
 R

a
te

OPT
LRU
FIFO
RAND
Clock

Figure 21.3: The 80-20 Workload with Clock

support, in the form of a use bit (sometimes called the reference bit),
the first of which was implemented in the first system with paging,
the Atlas one-level store [KE+62]. There is one use bit per page of
the system, and the use bits live in memory somewhere (they could
be in the per-process page tables, for example, or just in an array
somewhere). Whenever a page is referenced (i.e., read or written),
the use bit is set by hardware to 1. The hardware never clears the bit,
though (i.e., sets it to 0); that is the responsibility of the OS.

How does the OS employ the use bit to approximate LRU? Well,
there could be a lot of ways, but with the clock algorithm [C69], one
simple approach was suggested. Imagine all the pages of the system
arranged in a circular list. A clock hand points to some particular
page to begin with (it doesn’t really matter which). When a replace-
ment must occur, the OS checks if the currently-pointed to page P

has a use bit of 1 or 0. If 1, this implies that page P was recently used
and thus is not a good candidate for replacement. Thus, the clock
hand is incremented to the next page P + 1, and the use bit for P

set to 0 (cleared). The algorithm continues until it finds a use bit that
is set to 0, implying this page has not been recently used (or, in the
worst case, that all pages have been and that we have now searched
through the entire set of pages, clearing all the bits).

Note that this approach is not the only way to employ a use bit to
approximate LRU. Indeed, any approach which periodically clears
the use bits and then differentiates between which pages have use

OPERATING

SYSTEMS ARPACI-DUSSEAU



BEYOND PHYSICAL MEMORY: POLICIES 15

bits of 1 versus 0 to decide which to replace would be fine. The clock
algorithm of Corbato’s was just one early approach which met with
some success, and had the nice property of not repeatedly scanning
through all of memory looking for an unused page.

The behavior of a clock algorithm variant is shown in Figure 21.3.
This variant randomly scans pages when doing a replacement; when
it encounters a page with a reference bit set to 1, it clears the bit (i.e.,
sets it to 0); when it finds a page with the reference bit set to 0, it
chooses it as its victim. As you can see, although it doesn’t do quite
as well as perfect LRU, it does better than approaches that don’t con-
sider history at all.

21.9 Considering Dirty Pages

One small modification to the clock algorithm (also originally sug-
gested by Corbato [C69]) that is commonly made is the additional
consideration of whether a page has been modified or not while in
memory. The reason for this: if a page has been modified and is thus
dirty, it must be written back to disk to evict it, which is expensive.
If it has not been modified (and is thus clean), the eviction is free;
the physical frame can simply be reused for other purposes without
additional I/O. Thus, some VM systems prefer to evict clean pages
over dirty pages.

To support this behavior, the hardware should include a modified
bit (a.k.a. dirty bit). This bit is set any time a page is written, and
thus can be incorporated into the page-replacement algorithm. The
clock algorithm, for example, could be changed to scan for pages that
are both unused and clean to evict first; failing to find those, then for
unused pages that are dirty; etc.

21.10 Other VM Policies

Page replacement is not the only policy the VM subsystem em-
ploys (though it may be the most important). For example, the OS
also has to decide when to bring a page into memory. This policy,
sometimes called the page selection policy [D70], presents the OS
with some different options.

For most pages, the OS simply uses demand paging, which means
the OS brings the page into memory when it is accessed, “on de-

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



16 BEYOND PHYSICAL MEMORY: POLICIES

mand” as it were. Of course, the OS could guess that a page is about
to be used, and thus bring it in ahead of time; this behavior is known
as prefetching and should only be done when there is reasonable
chance of success. For example, some systems will assume that if a
code page P is brought into memory, that code page P +1 will likely
soon be accessed and thus should be brought into memory too.

Another policy determines how the OS writes pages out to disk.
Of course, they could simply be written out one at a time; however,
many systems instead collect a number of pending writes together
in memory and write them to disk in one (more efficient) write. This
behavior is usually called clustering or simply grouping of writes,
and is effective because of the nature of disk drives, which perform
a single, large write more efficiently than many small writes (as we
will see).

21.11 Thrashing

Before closing, we address one final question: what should the
OS do when memory is simply oversubscribed, and the memory de-
mands of the set of running processes simply exceeds the available
physical memory? In this case, the system will constantly be paging,
a condition sometimes referred to as thrashing [D70].

Some earlier operating systems had a fairly sophisticated set of
mechanisms to both detect and cope with thrashing when it took
place. For example, given a set of processes, a system could decide
not to run a subset of processes, with the hope that the reduced set
of processes working sets (the pages that they are using actively) fit
in memory and thus can make progress. This approach, generally
known as admission control, states that it is sometimes better to do
less work well than to try to do everything at once and make little
or no progress in all directions, a situation we often encounter in real
life as well.

More modern systems sometimes take more a draconian approach.
For example, some versions of Linux run an “out-of-memory killer”
when memory is oversubscribed; this daemon picks a random pro-
cess and kills it, thus reducing memory in a not-too-subtle manner.
While successful at reducing memory pressure, this approach has its
problem, if, for example, it kills the X server and thus renders any
applications that use the display unusable.

OPERATING

SYSTEMS ARPACI-DUSSEAU



BEYOND PHYSICAL MEMORY: POLICIES 17

21.12 Summary

We have seen the introduction of a number of page-replacement
(and other) policies, which are part of the VM subsystem of all mod-
ern operating systems. Modern systems add some tweaks to straight-
forward LRU approximations like clock; for example, scan resis-
tance is an important part of many modern algorithms, such as ARC
[MM03]. Scan-resistant algorithms are usually LRU-like but also try
to avoid the worst-case behavior of LRU, which we saw with the
looping-sequential workload. Thus, the evolution of page-replacement
algorithms continues.

However, in many cases the importance of said algorithms has de-
creased, as the discrepancy between memory-access and disk-access
times has increased. Because paging to disk is so expensive, the cost
of frequent paging is prohibitive. Thus, the best solution to exces-
sive paging is often a simple (if intellectually dissatisfying) one: buy
more memory.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



18 BEYOND PHYSICAL MEMORY: POLICIES

References

[AD03] “Run-Time Adaptation in River”
Remzi H. Arpaci-Dusseau
ACM TOCS, 21:1, February 2003
A summary of one of the authors’ dissertation work on a system named River. Certainly one
place where he learned that comparison against the ideal is an important technique for system
designers.

[B66] “A Study of Replacement Algorithms for Virtual-Storage Computer”
Laszlo A. Belady
IBM Systems Journal 5(2): 78-101, 1966
The paper that introduces the simple way to compute the optimal behavior of a policy (the MIN
algorithm).

[BNS69] “An anomaly in space-time characteristics of certain programs running in a
paging machine”
L. A. Belady and R. A. Nelson and G. S. Shedler
Communications of the ACM, 12:6, June 1969
Introduction of the little sequence of memory references known as Belady’s Anomaly. How do
Nelson and Shedler feel about this name, we wonder?

[CD85] “An evaluation of buffer management strategies for relational database systems”
Hong-Tai Chou and David J. DeWitt
VLDB ’85, Stockholm, Sweden, August 1985
A famous database paper on the different buffering strategies you should use under a number of
common database access patterns.

[C69] “A paging experiment with the Multics system”
F.J. Corbato
Included in a Festschrift published in honor of Prof. P.M. Morse
MIT Press, Cambridge, MA, 1969
The original (and hard to find!) reference to the clock algorithm, though not the first usage of a
use bit. Thanks to H. Balakrishnan of MIT for digging up this paper for us.

[D70] “Virtual Memory”
Peter J. Denning
Computing Surveys, Vol. 2, No. 3, September 1970
Denning’s early and famous survey on virtual memory systems.

OPERATING

SYSTEMS ARPACI-DUSSEAU



BEYOND PHYSICAL MEMORY: POLICIES 19

[EF78] “Cold-start vs. Warm-start Miss Ratios”
Malcolm C. Easton and Ronald Fagin
Communications of the ACM, 21:10, October 1978
A good discussion of cold-start vs. warm-start misses.

[HP06] “Computer Architecture: A Quantitative Approach”
John Hennessy and David Patterson
Morgan-Kaufmann, 2006
A great and marvelous book about computer architecture. Read it!

[H87] “Aspects of Cache Memory and Instruction Buffer Performance”
Mark D. Hill
Ph.D. Dissertation, U.C. Berkeley, 1987
Mark Hill, in his dissertation work, introduced the Three C’s, which later gained wide popularity
with its inclusion in H&P [HP06]. The quote from therein: “I have found it useful to partition
misses ... into three components intuitively based on the cause of the misses (page 49).”

[KE+62] “One-level Storage System”
T. Kilburn, and D.B.G. Edwards and M.J. Lanigan and F.H. Sumner
IRE Trans. EC-11:2, 1962
Although Atlas had a use bit, it only had a very small number of pages, and thus the scanning of
the use bits in large memories was not a problem the authors solved.

[M+70] “Evaluation techniques for storage hierarchies”
R. L. Mattson, J. Gecsei, D. R. Slutz, I. L. Traiger
IBM Systems Journal, Volume 9:2, 1970
A paper that is mostly about how to simulate cache hierarchies efficiently; certainly a classic in
that regard, as well for its excellent discussion of some of the properties of various replacement
algorithms. Can you figure out why the stack property might be useful for simulating a lot of
different-sized caches at once?

[MM03] “ARC: A Self-Tuning, Low Overhead Replacement Cache”
Nimrod Megiddo and Dharmendra S. Modha
FAST 2003, February 2003, San Jose, California
An excellent modern paper about replacement algorithms, which includes a new policy, ARC,
that is now used in some systems.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



20 BEYOND PHYSICAL MEMORY: POLICIES

Homework

This simulator, paging-policy.py, allows you to play around
with different page-replacement policies. For example, let’s examine
how LRU performs with a series of page references with a cache of
size 3:

0 1 2 0 1 3 0 3 1 2 1
To do so, run the simulator as follows:

prompt> ./paging-policy.py --addresses=0,1,2,0,1,3,0,3,1,2,1

--policy=LRU --cachesize=3 -c

And what you would see is:

ARG addresses 0,1,2,0,1,3,0,3,1,2,1

ARG numaddrs 10

ARG policy LRU

ARG cachesize 3

ARG maxpage 10

ARG seed 0

Solving...

Access: 0 MISS LRU-> [0]<-MRU Replace:- [Hits:0 Misses:1]

Access: 1 MISS LRU-> [0, 1]<-MRU Replace:- [Hits:0 Misses:2]

Access: 2 MISS LRU->[0, 1, 2]<-MRU Replace:- [Hits:0 Misses:3]

Access: 0 HIT LRU->[1, 2, 0]<-MRU Replace:- [Hits:1 Misses:3]

Access: 1 HIT LRU->[2, 0, 1]<-MRU Replace:- [Hits:2 Misses:3]

Access: 3 MISS LRU->[0, 1, 3]<-MRU Replace:2 [Hits:2 Misses:4]

Access: 0 HIT LRU->[1, 3, 0]<-MRU Replace:2 [Hits:3 Misses:4]

Access: 3 HIT LRU->[1, 0, 3]<-MRU Replace:2 [Hits:4 Misses:4]

Access: 1 HIT LRU->[0, 3, 1]<-MRU Replace:2 [Hits:5 Misses:4]

Access: 2 MISS LRU->[3, 1, 2]<-MRU Replace:0 [Hits:5 Misses:5]

Access: 1 HIT LRU->[3, 2, 1]<-MRU Replace:0 [Hits:6 Misses:5]

The complete set of possible arguments for paging-policy is listed
on the following page, and includes a number of options for varying
the policy, how addresses are specified/generated, and other impor-
tant parameters such as the size of the cache.

OPERATING

SYSTEMS ARPACI-DUSSEAU



BEYOND PHYSICAL MEMORY: POLICIES 21

prompt> ./paging-policy.py --help

Usage: paging-policy.py [options]

Options:

-h, --help show this help message and exit

-a ADDRESSES, --addresses=ADDRESSES

a set of comma-separated pages to access;

-1 means randomly generate

-f ADDRESSFILE, --addressfile=ADDRESSFILE

a file with a bunch of addresses in it

-n NUMADDRS, --numaddrs=NUMADDRS

if -a (--addresses) is -1, this is the

number of addrs to generate

-p POLICY, --policy=POLICY

replacement policy: FIFO, LRU, LFU, OPT,

UNOPT, RAND, CLOCK

-b CLOCKBITS, --clockbits=CLOCKBITS

for CLOCK policy, how many clock bits to use

-C CACHESIZE, --cachesize=CACHESIZE

size of the page cache, in pages

-m MAXPAGE, --maxpage=MAXPAGE

if randomly generating page accesses,

this is the max page number

-s SEED, --seed=SEED random number seed

-N, --notrace do not print out a detailed trace

-c, --compute compute answers for me

As usual, -c is used to solve a particular problem, whereas with-
out it, the accesses are just listed (and the program does not tell you
whether or not a particular access is a hit or miss).

To generate a random problem, instead of using -a/--addresses
to pass in some page references, you can instead pass in -n/--numaddrs
as the number of addresses the program should randomly generate,
with -s/--seed used to specify a different random seed. For exam-
ple:

prompt> ./paging-policy.py -s 10 -n 3

.. .

Assuming a replacement policy of FIFO, and a cache of size 3 pages,

figure out whether each of the following page references hit or miss

in the page cache.

Access: 5 Hit/Miss? State of Memory?

Access: 4 Hit/Miss? State of Memory?

Access: 5 Hit/Miss? State of Memory?

As you can see, in this example, we specify -n 3which means the
program should generate 3 random page references, which it does:

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



22 BEYOND PHYSICAL MEMORY: POLICIES

5, 7, and 5. The random seed is also specified (10), which is what
gets us those particular numbers. After working this out yourself,
have the program solve the problem for you by passing in the same
arguments but with -c (showing just the relevant part here):

prompt> ./paging-policy.py -s 10 -n 3 -c

...

Solving...

Access: 5 MISS FirstIn-> [5] <-Lastin Replace:- [Hits:0 Misses:1]

Access: 4 MISS FirstIn->[5, 4] <-Lastin Replace:- [Hits:0 Misses:2]

Access: 5 HIT FirstIn->[5, 4] <-Lastin Replace:- [Hits:1 Misses:2]

The default policy is FIFO, though others are available, includ-
ing LRU, MRU, OPT (the optimal replacement policy, which peeks
into the future to see what is best to replace), UNOPT (which is the
pessimal replacement), RAND (which does random replacement),
and CLOCK (which does the clock algorithm). The CLOCK algo-
rithm also takes another argument (-b), which states how many bits
should be kept per page; the more clock bits there are, the better the
algorithm should be at determining which pages to keep in memory.

Other options include: -C/--cachesizewhich changes the size
of the page cache; -m/--maxpage which is the largest page number
that will be used if the simulator is generating references for you; and
-f/--addressfile which lets you specify a file with addresses
in them, in case you wish to get traces from a real application or
otherwise use a long trace as input.

OPERATING

SYSTEMS ARPACI-DUSSEAU



BEYOND PHYSICAL MEMORY: POLICIES 23

Questions

• Generate random addresses with the following arguments: -s
0 -n 10, -s 1 -n 10, and -s 2 -n 10. Change the policy
from FIFO, to LRU, to OPT. Compute whether each access in
said address traces are hits or misses.

• For a cache of size 5, generate worst-case address reference
streams for each of the following policies: FIFO, LRU, and MRU
(worst-case reference streams cause the most misses possible.
For the worst case reference streams, how much bigger of a
cache is needed to improve performance dramatically and ap-
proach OPT?

• Generate a random trace (use python or perl). How would you
expect the different policies to perform on such a trace?

• Now generate a trace with some locality. How can you gener-
ate such a trace? How does LRU perform on it? How much
better than RAND is LRU? How does CLOCK do? How about
CLOCK with different numbers of clock bits?

• Use a program like valgrind to instrument a real applica-
tion and generate a virtual page reference stream. For example,
running valgrind --tool=lackey --trace-mem=yes ls

will output a nearly-complete reference trace of every instruc-
tion and data reference made by the program ls. To make this
useful for the simulator above, you’ll have to first transform
each virtual memory reference into a virtual page-number ref-
erence (done by masking off the offset and shifting the result-
ing bits downward). How big of a cache is needed for your
application trace in order to satisfy a large fraction of requests?
Plot a graph of its working set as the size of the cache increases.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)


