
4

Abstraction: The Process

In this note, we discuss one of the most fundamental abstractions
that the OS provides to users: the process. The definition of a pro-
cess, informally, is quite simple: it is a running program [V+65,B70].
The program itself is a lifeless thing: it just sits there on the disk, a
bunch of instructions (and maybe some static data), waiting to spring
into action. It is the operating system that takes these bytes and gets
them running, transforming the program into something useful.

It turns out that one often wants to run more than one program at
once; for example, consider your desktop or laptop where you might
like to run a web browser, mail program, a game, a music player, and
so forth. In fact, a typical system may be seemingly running tens or
even hundreds of processes at the same time. Doing so makes the
system easy to use, as one never need be concerned with whether a
CPU is available; one simply runs programs. Hence our challenge:

THE CRUX OF THE PROBLEM:
HOW TO PROVIDE THE ILLUSION OF MANY CPUS?

Although there are only a few physical CPUs available, how can
the OS provide the illusion of a nearly-endless supply of said CPUs?

The OS creates this illusion by virtualizing the CPU. By running
one process, then stopping it and running another, and so forth, the
OS can promote the illusion that many virtual CPUs exist when in
fact there is only one physical CPU (or a few). This basic technique,
known as time sharing of the CPU, allows users to run as many

1



2 ABSTRACTION: THE PROCESS

TECHNIQUE: TIME SHARING (AND SPACE SHARING)
Time sharing is one of the most basic techniques used by an OS to
share a resource. By allowing the resource to be used for a little while
by one entity, and then a little while by another, and so forth, the
resource in question (e.g., the CPU, or a network link) can be shared
by many. The natural counterpart of time sharing is space sharing,
where a resource is divided (in space) among those who wish to use
it. For example, disk space is naturally a space-shared resource, as
once a block is assigned to a file, it is not likely to be assigned to
another file until the user deletes it.

concurrent processes as they would like; the potential cost is perfor-
mance, as each will run more slowly if the CPU(s) must be shared.

To implement virtualization of the CPU, and to implement it well,
the OS will need both some low-level machinery as well as some
high-level intelligence. We call the low-level machinery mechanisms;
mechanisms are low-level methods or protocols that implement a
needed piece of functionality. For example, we’ll learn below how
to implement a context switch, which gives the OS the ability to stop
running one program and start running another on a given CPU; this
time-sharing mechanism is employed by all modern OSes.

On top of these mechanisms resides some of the intelligence in
the OS, in the form of policies. Policies are algorithms for making
some kind of decision within the OS. For example, given a number
of possible programs to run on a CPU, which program should the OS
run? A scheduling policy in the OS will make this decision, likely
using historical information (e.g., which program has run more over
the last minute?), workload knowledge (e.g., what types of programs
are run), and performance metrics (e.g., is the system optimizing for
interactive performance, or throughput?) to make its decision.

4.1 The Abstraction: A Process

The abstraction provided by the OS of a running program is some-
thing we will call a process. As we said above, a process is simply
a running program; at any instant in time, we can summarize a pro-
cess by taking an inventory of the different pieces of the system it
accesses or affects during the course of its execution.

OPERATING

SYSTEMS ARPACI-DUSSEAU



ABSTRACTION: THE PROCESS 3

DESIGN TIP: SEPARATION OF POLICY/MECHANISM

In many operating systems, a common design paradigm is to sepa-
rate high-level policies from their low-level mechanisms [L+75]. You
can think of the mechanism as providing the answer to a how ques-
tion about a system; for example, how does an operating system per-
form a context switch? The policy provides the answer to a which
question; for example, which process should the operating system
run right now? Separating the two allows one easily to change poli-
cies without having to rethink the mechanism and is thus a form of
modularity, a general software design principle.

To understand what constitutes a process, we thus have to under-
stand its machine state: what a program can read or update when it
is running. At any given time, what parts of the machine are impor-
tant to the execution of this program?

One obvious component of machine state that comprises a pro-
cess is its memory. All instructions lie in memory; the data that the
running program reads and updates sits in memory as well. Thus the
memory that the process can address (sometimes called its address
space) is part of the process.

Also part of the process’s machine state are registers; many in-
structions explicitly read or update registers and thus clearly they
are important to the execution of the process.

Note that there are some particularly special registers that form
part of this machine state. For example, the program counter (PC)
(sometimes called the instruction pointer or IP) tells us which in-
struction of the program is currently being executed; similarly a stack
pointer and associated frame pointer are used to manage the stack
for function parameters, local variables, and return addresses.

Finally, programs often access persistent storage devices too. Such
I/O information might include a list of the files the process currently
has open.

4.2 Process API

Though we defer discussion of a real process API until a subse-
quent chapter, here we first give some idea of what must be included
in any interface of an operating system.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



4 ABSTRACTION: THE PROCESS

• Create: An operating system must include some method to cre-
ate new processes. When you type something at a shell, or
double-click on an application icon, the OS is invoked to create
a new process to run the program you have indicated.

• Destroy: As there is an interface for process creation, systems
also provide an interface to destroy processes forcefully. Of
course, many processes will run and just exit by themselves
when complete; when they don’t, however, the user may wish
to kill them, and thus an interface to halt a runaway process is
quite useful.

• Wait: Sometimes it is useful to wait for a process to stop run-
ning; thus some kind of waiting interface is often provided.

• Miscellaneous Control: Other than killing or waiting for a
process, there are sometimes other controls that are possible.
For example, most operating systems provide some kind of
method to suspend a process (stop it from running for a while)
and then resume it (continue it running).

• Status: There are usually interfaces to get some status informa-
tion about a process as well, such as how long it has run for, or
what state it is in.

4.3 Process States

Now that we have some idea of what a process is (though we will
continue to refine this notion), let us talk about the different states a
process can be in at a given time. The notion that a process can be in
one of these states arose in early computer systems [V+65,DV66].

In a simplified view, a process can be in one of three states:

• Running: In the running state, a process is running on a pro-
cessor. This means it is executing instructions.

• Ready: In the ready state, a process is ready to run but for some
reason the OS has chosen not to run it at this given moment.

• Blocked: In the blocked state, a process has performed some
kind of operation that makes it not ready to run until some
other event takes place. A common example: when a process
initiates an I/O request to a disk, it becomes blocked and thus
some other process can use the processor.

OPERATING

SYSTEMS ARPACI-DUSSEAU



ABSTRACTION: THE PROCESS 5

Running Ready

Blocked

Descheduled

Scheduled

I/O: initiate I/O: done

Figure 4.1: Process: State Transitions

If we were to map these states to a graph, we would arrive at
the diagram in Figure 4.1. As you can see in the diagram, a process
can be moved between the ready and running states at the discretion
of the OS. Being moved from ready to running means the process
has been scheduled; being moved from running to ready means the
process has been descheduled. Once a process has become blocked
(e.g., by initiating an I/O operation), the OS will keep it as such until
some event occurs (e.g., I/O completion); at that point, the process
moves to the ready state again (and potentially immediately to run-
ning again, if the OS so decides).

4.4 Data Structures

The OS is a program, and like any program, it has some key data
structures that track various relevant pieces of information. To track
the state of each process, for example, the OS likely will keep some
kind of process list for all processes that are ready, as well as some
additional information to track which process is currently running.
The OS must also track, in some way, blocked processes; when an
I/O event completes, the OS should make sure to wake the correct
process and make it ready to run again.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



6 ABSTRACTION: THE PROCESS

DATA STRUCTURE: THE PROCESS LIST

Operating systems are replete with various important data struc-
tures that we will discuss in these notes. The process list is the first
such structure. It is one of the simpler ones, but certainly any OS
that has the ability to run multiple programs at once will have some-
thing akin to this structure in order to keep track of all the running
programs in the system. Sometimes people refer to the individual
structure that stores information about a process as a Process Con-
trol Block (PCB).

Figure 4.2 shows what type of information an OS needs to track
about each process in the xv6 kernel [CK+08]. Similar process struc-
tures exist in “real” operating systems such as Linux, Mac OS X, or
Windows; look them up and see how much more complex they are.

From the figure, you can see a couple of important pieces of in-
formation the OS tracks about a process. The register context will
hold, for a stopped process, the contents of its register state. When a
process is stopped, its register state will be saved to this memory lo-
cation; by restoring these registers (i.e., placing their values back into
the actual physical registers), the OS can resume running the process.
We’ll learn more about this technique known as a context switch in
future chapters.

You can also see from the figure that there are some other states a
process can be in, beyond running, ready, and blocked. Sometimes a
system will have an initial state that the process is in when it is being
created. Also, a process could be placed in a final state where it has
exited but has not yet been cleaned up (in UNIX-based systems, this

is called the zombie state1). This final state can be useful as it allows
other processes (usually the parent that created the process) to exam-
ine the return code of the process and see if it executed successfully.
When finished, the parent will then make one final call to indicate
to the OS that it can completely forget about the now-extinct process
(the UNIX wait() system call does this).

1Yes, the zombie state. Just like real zombies, these zombies are relatively easy to
kill. However, different techniques are usually recommended.

OPERATING

SYSTEMS ARPACI-DUSSEAU



ABSTRACTION: THE PROCESS 7

// the registers xv6 will save and restore

// to stop and subsequently restart a process

struct context {

int eip;

int esp;

int ebx;

int ecx;

int edx;

int esi;

int edi;

int ebp;

};

// the different states a process can be in

enum proc_state { UNUSED, EMBRYO, SLEEPING,

RUNNABLE, RUNNING, ZOMBIE };

// the information xv6 tracks about each process

// including its register context and state

struct proc {

char *mem; // Start of process memory

uint sz; // Size of process memory

char *kstack; // Bottom of kernel stack

// for this process

enum proc_state state; // Process state

int pid; // Process ID

struct proc *parent; // Parent process

void *chan; // If non-zero, sleeping on chan

int killed; // If non-zero, have been killed

struct file *ofile[NOFILE]; // Open files

struct inode *cwd; // Current directory

struct context context; // Switch here to run process

struct trapframe *tf; // Trap frame for the

// current interrupt

};

Figure 4.2: The xv6 Proc Structure

4.5 Summary

We have introduced the most basic abstraction of the OS: the pro-
cess. It is quite simply viewed as a running program. With this
conceptual view in mind, we will now move on to the nitty-gritty:
the low-level mechanisms needed to implement processes, and the
higher-level policies required to schedule them in an intelligent way.
By combining mechanisms and policies, we will build up our under-
standing of how an operating system virtualizes the CPU.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



8 ABSTRACTION: THE PROCESS

References

[CK+08] “The xv6 Operating System”
Russ Cox, Frans Kaashoek, Robert Morris, Nickolai Zeldovich
From: http://pdos.csail.mit.edu/6.828/2008/index.html

[DV66] “Programming Semantics for Multiprogrammed Computations”
Jack B. Dennis and Earl C. Van Horn
Communications of the ACM, Volume 9, Number 3, March 1966
This paper defined many of the early terms and concepts around building multiprogrammed sys-
tems.

[H70] “The Nucleus of a Multiprogramming System”
Per Brinch Hansen
Communications of the ACM, Volume 13, Number 4, April 1970
This paper introduces one of the first microkernels in operating systems history, called Nucleus.
The idea of smaller, more minimal systems is a theme that rears its head repeatedly in OS history;
it all began with Brinch Hansen’s work described herein.

[L+75] “Policy/mechanism separation in Hydra”
R. Levin, E. Cohen, W. Corwin, F. Pollack, W. Wulf.
SOSP 1975.

[V+65] “Structure of the Multics Supervisor”
V.A. Vyssotsky, F. J. Corbato, R. M. Graham
Fall Joint Computer Conference, 1965
An early paper on Multics, which described many of the basic ideas and terms that we find in
modern systems.

OPERATING

SYSTEMS ARPACI-DUSSEAU


