51

Interlude: Process API

In this interlude, we discuss process creation in UNIX systems. UNIX
presents one of the most intriguing ways to create a new process
with a pair of system calls: fork () and exec (). A third routine,
wait (),canbe used by a process wishing to wait for a process it has
created to complete. We now present these interfaces in more detail,
with a few simple examples to motivate us.

ASIDE: INTERLUDES
Interludes will cover more practical aspects of systems, including
a particular focus on operating system APIs and how to use them. If
you don’t like practical things, you could skip these interludes. But
you should like practical things, because, well, they are generally
useful in real life.

The fork () System Call

The fork () system call is used to create a new process [C63].
However, be forewarned: it is certainly the strangest routine you will
ever call !. More specifically, you have a running program whose
code looks like what you see in Figure 5.1.

Well, OK, we admit that we don’t know that for sure; who knows what routines
you call when no one is looking? But fork () is pretty odd.



INTERLUDE: PROCESS API

OPERATING
SYSTEMS

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int
main (int argc, char xargv[])
{
printf ("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) {
// fork failed; exit
fprintf (stderr, "fork failed\n");
exit (1);
} else if (rc == 0) {
// child (new process)
printf ("hello, I am child (pid:%d)\n", (int) getpid());
} else {
// parent goes down this path (original process)
printf ("hello, I am parent of %d (pid:%d)\n",
rc, (int) getpid());
}

return 0;

Figure 5.1: The code for p1.c

When you run this program (called pl.c), what you see is the
following:

prompt> ./pl

hello world (pid:29146

hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)

prompt>

Let us understand what happened in more detail in p1.c. When
it first started running, the process prints out a hello world message;
included in that message is its process identifier, also known as a
PID. The process has a PID of 29146; in UNIX systems, the PID is used
to name the process if one wants to do something with the process,
such as (for example) stop it from running. So far, so good.

Now the interesting part begins. The process calls the fork ()
system call, which the OS provides as a way to create a new process.
The odd part: the process that is created is an (almost) exact copy of
the calling process. That means that to the OS, it now looks like there

ARPACI-DUSSEAU



INTERLUDE: PROCESS API 3
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>
int
main (int argc, char xargv(]
{
printf ("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) {
// fork failed; exit
fprintf (stderr, "fork failed\n");
exit (1);
} else if (rc == 0) {
// child (new process)
printf ("hello, I am child (pid:%d)\n", (int) getpid());
} else {
// parent goes down this path (original process)
int wc = wait (NULL);
printf ("hello, I am parent of %d (wc:%d) (pid:%d)\n",
rc, wc, (int) getpid());
}
return 0;
}
Figure 5.2: The code for p2.c
are two copies of the program p1 running, and both are about to re-
turn from the fork () system call. The newly-created process (called
the child, in contrast to the creating parent) doesn’t start running at
main (), like you might expect (note, the “hello, world” message
only got printed out once); rather, it just comes into life as if it had
called fork () itself.

You might have noticed: the child isn’t an exact copy. Specifi-
cally, although it now has its own copy of the address space (i.e., its
own private memory), its own registers, its own PC, and so forth, the
value it returns to the caller of fork() is different. Specifically, while
the parent receives the PID of the newly-created child, the child is
simply returned a 0. This differentiation is useful, because it is sim-
ple then to write the code that handles the two different cases (as
above).

You might also have noticed: the output is not deterministic.
When the child process is created, there are now two active processes
in the system that we care about: the parent and the child. Assuming

THREE
EAsy
ARPACI-DUSSEAU PIECES

(v0.5)



INTERLUDE: PROCESS API

5.2

OPERATING
SYSTEMS

we are running on a system with a single CPU (for simplicity), then
either the child or the parent might run at that point. In our exam-
ple (above), the parent did and thus printed out its message first. In
other cases (not shown), the opposite might happen. We'll see a lot
more of this type of non-determinism when we study concurrency
in the future.

Adding wait () System Call

So far, we haven’t done much: just created a child that prints out
a message and exits. Sometimes, as it turns out, it is quite useful for
a parent to wait for a child process to finish what it has been doing.
This task is accomplished with the wait () system call (or its more
complete sibling waitpid ()); see Figure 5.2.

In this example (p2 . c), the parent process calls wait () to delay
its execution until the child finishes executing. When the child is
done, wait () returns to the parent.

Adding a wait () call to the code above makes the output deter-
ministic. Can you see why? Go ahead, think about it.

Now that you have thought a bit, here is the output:

prompt> ./p2

hello world (pid:29266)

hello, I am child (pid:29267)

hello, I am parent of 29267 (wc:29267) (pid:29266)
prompt>

With this code, we now know that the child will always print first.
Why? Well, it might simply run first, as before, and thus print before
the parent. However, if the parent does run first, it will immediately
call wait (); this system call won’t return until the child has run and
exited 2. Thus, even when the parent runs first, it politely waits for
the child to finish running, then wait () returns, and then the parent
prints its message.

2There are a few cases where wait () returns before the child exits; read the man
page for more details, as always.

ARPACI-DUSSEAU



53

INTERLUDE: PROCESS API

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/wait.h>

int
main (int argc, char xargv([])
{
printf ("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) |
// fork failed; exit
fprintf (stderr, "fork failed\n");
exit (1);
} else if (rc == 0) {
// child (new process)
printf ("hello, I am child (pid:%d)\n", (int) getpid());
char *myargs([3];

myargs[0] = strdup ("wc"); // program: "wc" (word count)
myargs[1l] = strdup("p3.c"); // argument: file to count
myargs[2] = NULL; // marks end of array
execvp (myargs[0], myargs); // runs word count
printf ("this shouldn’t print out");

} else {

// parent goes down this path (original process)
int wc = wait (NULL) ;
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",
rc, wc, (int) getpid());
}

return 0;

Figure 5.3: The code for p3.c

Finally, the exec () System Call

A final and important piece of the process creation API is the
exec () system call’. This system call is useful when you want to
run a program that is different from the calling program. For ex-
ample, calling fork () in p2.c is only useful if you want to keep

3Act‘ually, there are six variants of exec (): execl (), execle(), execlp(),
execv (),and execvp (). Read the man pages to learn more.

THREE
EASY
PIECES
(v0.5)

ARPACI-DUSSEAU



INTERLUDE: PROCESS API

54

OPERATING
SYSTEMS

running copies of the same program. However, sometimes you want
to run a different program; exec () does just that (Figure 5.3).

In this example, the child process calls execvp () in order to run
the program wc, which is the word counting program. In fact, it runs
wc on the source file p3. ¢, thus telling us how many lines, words,
and bytes are found in the file:

prompt> ./p3
hello world (pid:29383)
hello, I am child (pid:29384)
29 107 1030 p3.c
hello, I am parent of 29384 (wc:29384) (pid:29383)
prompt>

If fork () was strange, exec () is not so normal either. What it
does: given the name of an executable (e.g., wc), and some arguments
(e.g., p3.c), it takes the code from that executable and overwrites its
current code segment with it; the heap and stack and other parts of
the memory space of the program are reinitialized. Then the OS sim-
ply runs that program, passing in any arguments as the argv of that
process. Thus, it does not create a new process; rather, it transforms
the currently running program (formerly p3) into a different running
program (wc). After the exec () in the child, it is almost as if p3.c
never ran; a successful call to exec () never returns.

Why? Motivating the API

Of course, one big question you might have: why would we build
such an odd interface to what should be the simple act of creating a
new process? Well, as it turns out, the separation of fork () and
exec () is essential in building a UNIX shell.

The shell is just a program that is running *. You type a command
(i.e., the name of an executable program, plus any arguments) to it;
it figures out where the executable is, calls fork () to create a new
child process to run the command, calls some variant of exec () to
run the command, and then waits for the command to complete by
calling wait (). When the child completes, the shell returns from

*And there are lots of shells; tcsh, bash, and zsh to name a few. You should pick
one, read its man pages, and learn more about it; all UNIX experts do.

ARPACI-DUSSEAU



55

INTERLUDE: PROCESS API

wait () and prints out a prompt again, ready for your next com-
mand.

The separation of fork () and exec () allows the shell to do a
whole bunch of really cool things rather easily. For example:

prompt> wc p3.c > newfile.txt

In the example above, the output of the program wc is redirected
into the output file newfile.txt. The way the shell accomplishes
this is quite simple: when the child is created, before calling exec (),
the shell closes standard output and opens the file newfile.txt.
By doing so, any print outs from the soon to be running program wc
are redirected to the file instead of the screen. UNIX pipes are imple-
mented in a similar way but with the pipe () system call. There is a
lot more detail there to be learned and understood; for now, suffice
it to say that the fork () /exec () combination is a very powerful
way to create and manipulate processes.

Other Parts of the API

Beyond fork (), exec (), and wait (), there are a lot of other
interfaces for interacting with processes in UNIX systems. For ex-
ample, the kill () system call is used to send signals to a process,
including directives to go to sleep, die, and other useful things you
might want to do. In fact, the entire signals subsystem provides quite
a rich way to deliver external events to processes, including ways for
processes to receive and process those signals.

There are many command-line tools that are useful as well. For
example, using the ps command allows you to see which processes
are running; read the man pages for some useful flags to pass to ps.
The tool top is also quite helpful, as it displays the processes of the
system and how much CPU and other resources they are eating up.
Humorously, many times when you run it, top claims it is the top
resource hog; perhaps it is a bit of an egomaniac. Finally, there are
many different kinds of CPU meters you can use to get a quick glance
understanding of the load on your system; for example, we always
keep MenuMeters (from Raging Menace software) running on our
Macintosh toolbars, so we can see how much CPU is being utilized
at any moment in time. In general, the more information about what
is going on, the better.

ARPACI-DUSSEAU

THREE
EASY
PIECES
(v0.5)



INTERLUDE: PROCESS API

5.6 Summary

OPERATING
SYSTEMS

We have introduced some of the APIs dealing with UNIX process
creation: fork (), exec (), and wait (). However, we have just
skimmed the surface. For more detail, read Stevens [S92], of course,
particularly chapters 8, 9, and 10 on Process Control, Process Rela-
tionships, and Signals. There is much to extract from the wisdom
therein.

ARPACI-DUSSEAU



INTERLUDE: PROCESS API

References

[C63] “A Multiprocessor System Design”

Melvin E. Conway

AFIPS 63 Fall Joint Computer Conference

New York, USA 1963

An early paper on how to design multiprocessing systems; may be the first place the term fork ()
was used in the discussion of spawning new processes.

[DV66] “Programming Semantics for Multiprogrammed Computations”

Jack B. Dennis and Earl C. Van Horn

Communications of the ACM, Volume 9, Number 3, March 1966

A classic paper that outlines the basics of multiprogrammed computer systems. Undoubtedly had
great influence on Project MAC, Multics, and eventually UNIX.

[S92] “Advanced Programming in the UNIX Environment”

W. Richard Stevens and Stephen A. Rago

Addison-Wesley, 1992

All nuances and subtleties of using UNIX APIs are found herein. Buy this book! Read it! And
most importantly, live it.

ARPACI-DUSSEAU

THREE
EASY
PIECES
(v0.5)



