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Mechanism: Limited Direct Execution

In order to virtualize the CPU, the operating system needs to some-
how share the physical CPU among many jobs running seemingly at
the same time. The basic idea is simple: run one process for a little
while, then run another one, and so forth. By time sharing the CPU
in this manner, virtualization is achieved.

There are a few challenges, however, in building such virtualiza-
tion machinery. The first is performance: how can we implement vir-
tualization without adding excessive overhead to the system? The
second is control: how can we run processes efficiently while retain-
ing control over the CPU? Control is particularly important to the
OS, as it is in charge of resources; without it, a process could simply
run forever and take over the machine, or access information that it
shouldn’t be allowed to access. Attaining performance while main-
taining control is thus one of the central challenges in building an
operating system.

THE CRUX:
HOW TO EFFICIENTLY VIRTUALIZE THE CPU WITH CONTROL

The OS must virtualize the CPU in an efficient manner, but while
retaining control over the system. To do so, both hardware and op-
erating systems support will be required. The OS will often use a
judicious bit of hardware support in order to accomplish its work
effectively.
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2 MECHANISM: LIMITED DIRECT EXECUTION

6.1 Basic Technique: Limited Direct Execution

To make a program run as fast as one might expect, not surpris-
ingly OS developers came up with a simple technique, which we call
limited direct execution. The “direct execution” part of the idea is
simple: just run the program directly on the CPU. Thus, when the
OS wishes to start a program running, it just locates its entry point
(i.e., the main() routine or something similar), jumps to it, and starts
running the user’s code.

Sounds simple, no? But it does give rise to a few problems in our
quest to virtualize the CPU. The first is simple: if we just run a pro-
gram, how can the OS make sure the program doesn’t do anything
that we don’t want it to do, while still running it efficiently? The sec-
ond: when we are running a process, how does the operating system
stop it from running and switch to another process, thus implement-
ing the time sharing we require to virtualize the CPU? In answering
these questions below, you should get a much better sense of what is
needed to virtualize the CPU. In developing these techniques, you’ll
also see where the “limited” part of the name arises from.

6.2 Problem #1: Restricted Operations

Direct execution has the obvious advantage of being fast; the pro-
gram runs natively on the hardware CPU and thus executes as quickly
as one would expect. But running on the CPU introduces a problem:
what if the process wishes to perform some kind of restricted opera-
tion, such as issuing an I/O request to a disk?

THE CRUX: HOW TO PERFORM RESTRICTED OPERATIONS

A process must be able to perform I/O and some other restricted
operations, but without giving the process complete control over the
system. How can the OS and hardware work together to do so?

One approach would simply be to let any process do whatever it
wants in terms of I/O and other related operations. However, doing
so would prevent the construction of many kinds of systems that are
desirable. For example, if we wish to build a file system that checks
permissions before granting access to a file, we can’t simply let any
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MECHANISM: LIMITED DIRECT EXECUTION 3

user process issue I/Os to the disk; if we did, a process could simply
read the entire disk and thus all protections would be lost.

Thus, the approach we take is to introduce a new processor mode,
known as user mode; any code that runs in user mode is restricted in
what it can do. For example, when running in user mode, a process
can’t issue any I/O requests; doing so would result in the processor
raising an exception; the OS would then likely kill the process.

In contrast to user mode is kernel mode, which the operating sys-
tem (or kernel) runs in. In this mode, code that runs can do what it
likes, including privileged operations such as issuing I/O requests
and executing all types of restricted instructions.

We are still left with a challenge, however: what should a user
process do when it wishes to perform some kind of privileged oper-
ation, such as reading from disk? To enable this, virtually all modern
hardware provides the ability for user programs to perform a system
call. Pioneered on ancient machines such as the Atlas [K+61,L78],
system calls allow the kernel to carefully expose certain key pieces
of functionality to user programs, such as accessing the file system,
creating and destroying processes, communicating with other pro-
cesses, and allocating more memory. Most operating systems expose
a few hundred such operations (see the POSIX standard for details
on what modern Unix systems expose [P10]); early Unix systems ex-
posed a much more concise subset of around twenty calls.

To execute a system call, a program must execute a special trap
instruction. This instruction simultaneously jumps into the kernel
and raises the privilege level to kernel mode; once in the kernel, the
system can now perform whatever privileged operations are needed
(if allowed), and thus do the required work for the calling process.
When finished, the OS calls a special return-from-trap instruction,
which, as you might expect, returns into the calling user program
while simultaneously reducing the privilege level back to user mode.

The hardware needs to be a bit careful when executing a trap, in
that it must make sure to save enough of the caller’s register state in
order to be able to return correctly when the OS issues the return-
from-trap instruction. On x86, for example, the processor will push
the program counter, flags, and a few other registers onto a stack;
the return-from-trap will pop these values off the stack and resume
execution of the user-mode program (see [I11] for details). Other
hardware systems use different conventions, but the basic concepts
are similar across platforms.
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4 MECHANISM: LIMITED DIRECT EXECUTION

HARDWARE SUPPORT: PROTECTED TRANSFER OF CONTROL

The hardware assists the OS by providing different modes of execu-
tion. In user mode, applications do not have full access to hardware
resources. In kernel mode, the OS has access to the full resources of
the machine. Special instructions to trap into the kernel and return-
from-trap back to user-mode programs are also provided, as well
instructions that allow the OS to tell the hardware where the trap
table resides in memory.

There is one important detail left out of this discussion: how does
the trap know which code to run inside the OS? Clearly, the call-
ing process can’t specify an address to jump to (as you would when
making a procedure call); this would allow programs to jump any-
where into the kernel which clearly is a bad idea (imagine jumping
into code to access a file, but just after a permission check). Thus the
kernel must carefully control what code executes upon a trap.

The kernel does so by setting up a trap table at boot time. When
the machine boots up, it does so in privileged (kernel) mode, and
thus is free to configure machine hardware as need be. One of the
first things the OS thus does is to tell the hardware what code to
run when certain exceptional events occur. For example, what code
should run when a hard-disk interrupt takes place, when a keyboard
interrupt occurs, or when program makes a system call? The OS
informs the hardware of the locations of these trap handlers, usu-
ally with some kind of special instruction. Once the hardware is in-
formed, it remembers the location of these handlers until the ma-
chine is next rebooted, and thus the hardware knows what to do
(i.e., what code to jump to) when system calls and other exceptional
events take place.

One last aside: being able to execute the instruction to tell the
hardware where the trap tables are is a very powerful capability.
Thus, as you might have guessed, it is also a privileged operation.
If you try to execute this instruction in user mode, the kernel won’t
let you, and you can probably guess what will happen (hint: adios,
offending program). What you might think about: what types of hor-
rible things could you do to a system if you could install your own
trap table?
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ASIDE: WHY SYSTEM CALLS LOOK LIKE PROCEDURE CALLS

You may wonder why a call to a system call, such as open() or
read(), looks exactly like a typical procedure call in C; that is, if
it looks just like a procedure call, how does the system know it’s a
system call, and do all the right stuff? The simple reason: it is a
procedure call, but hidden inside that procedure call is the famous
trap instruction. More specifically, when you call open() (for exam-
ple), you are executing a procedure call into the C library. Therein,
whether for open() or any of the other system calls provided, the li-
brary uses an agreed-upon calling convention with the kernel to put
the arguments to open in well-known locations (e.g., on the stack, or
in specific registers), puts the system-call number into a well-known
location as well (again, onto the stack or a register), and then exe-
cutes the aforementioned trap instruction. The code in the library
after the trap unpacks return values and returns control to the pro-
gram that issued the system call. Thus, the parts of the C library
that make system calls are hand-coded in assembly, as they need to
carefully follow convention in order to process arguments and re-
turn values correctly, as well as execute the hardware-specific trap
instruction. And now you know why you personally don’t have to
write assembly code to trap into an OS; somebody has already writ-
ten that assembly for you.

6.3 Problem #2: Switching Between Processes

The next problem with direct execution is achieving a switch be-
tween processes. Switching between processes should be simple,
right? The OS should just decide to stop one process and start an-
other. What’s the big deal? But it actually is a little bit tricky: specifi-
cally, if a process is running on the CPU, this by definition means the
OS is not running. If the OS is not running, how can it do anything at
all? (hint: it can’t) While this sounds almost philosophical, it is a real
problem: there is clearly no way for the OS to take an action if it is
not running on the CPU. Thus we arrive at the crux of the problem.
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6 MECHANISM: LIMITED DIRECT EXECUTION

THE CRUX: HOW TO REGAIN CONTROL OF THE CPU
How can the operating system regain control of the CPU so that

it can switch between processes?

A Cooperative Approach: Wait For System Calls

One approach that some systems have taken in the past (for exam-
ple, early versions of the Macintosh operating system [M11], or the
old Xerox Alto system [A79]) is known as the cooperative approach.
In this style, the OS trusts the processes of the system to behave rea-
sonably. Processes that run for too long are assumed to periodically
give up the CPU so that the OS can decide to run some other task.

TECHNIQUE: DEALING WITH MISBEHAVIOR

Operating systems often have to deal with misbehaving processes,
those that either through design (maliciousness) or accident (bugs)
attempt to do something that they shouldn’t. In modern systems, the
way the OS tries to handle such malfeasance is to simply terminate
the offender. One strike and you’re out! Perhaps a little brutal, but
what else should the OS do when you try to access memory illegally
or execute an illegal instruction?

Thus, you might ask, how does a friendly process give up the
CPU in this utopian world? Most processes, as it turns out, transfer
control of the CPU to the OS quite frequently by making system calls,
for example, to open a file and subsequently read it, or to send a
message to another machine, or to create a new process. Systems like
this often include an explicit yield system call, which does nothing
except to transfer control to the OS so it can run other processes.

Applications also transfer control to the OS when they do some-
thing illegal. For example, if an application divides by zero, or tries
to access memory that it shouldn’t be able to access, it will generate a
trap to the OS. The OS will then have control of the CPU again (and
likely terminate the offending process).

Thus, in a cooperative scheduling system, the OS regains control
of the CPU by waiting for a system call or an illegal operation of some
kind to take place. You might also be thinking: isn’t this passive
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MECHANISM: LIMITED DIRECT EXECUTION 7

approach less than ideal? What happens, for example, if a process
(whether malicious, or just full of bugs) ends up in an infinite loop,
and never makes a system call? What can the OS do then?

A Non-Cooperative Approach: The OS Takes Control

Without some additional help from the hardware, it turns out the OS
can’t do much at all when a process refuses to make system calls (or
mistakes) and thus return control to the OS. In fact, in the cooperative
approach, your only recourse when a process gets stuck in an infinite
loop is to resort to the age-old solution to all problems in computer
systems: reboot the machine. Thus, we again arrive at a subproblem
of our general quest to gain control of the CPU.

THE CRUX: HOW TO GAIN CONTROL WITHOUT COOPERATION

How can the OS gain control of the CPU even if processes are not
being cooperative?

The answer turns out to be simple and was discovered by a num-
ber of people building computer systems many years ago: a timer
interrupt [M+63]. A timer device can be programmed to raise an in-
terrupt every so many milliseconds; when the interrupt is raised, the
currently running process is halted, and a preconfigured interrupt
handler in the OS runs. At this point, the OS has regained control of
the CPU, and thus can do what it pleases: stop the current process
from running, and start a new one running.

As we discussed before with system calls, the OS must inform
the hardware of which code to run when the timer interrupt occurs;
thus, at boot time, the OS does exactly that. Second, also during
the boot sequence, the OS must start the timer, which is of course
a privileged operation. Once the timer has begun, the OS can thus
feel safe in that control will eventually be returned to it, and thus the
OS is free to run user programs. The timer can also be turned off
(also a privileged operation), something we will discuss later when
we understand concurrency in more detail.

Note that the hardware has some responsibility when an inter-
rupt occurs, in particular to save enough of the state of the program
that was running when the interrupt occurred such that a subsequent
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8 MECHANISM: LIMITED DIRECT EXECUTION

HARDWARE SUPPORT: THE TIMER INTERRUPT

The addition of a timer interrupt gives the OS the ability to regain
control of the CPU even if processes act in a non-cooperative fashion.
Thus, this hardware is key in helping the OS maintain control of the
system.

return-from-trap instruction will be able to resume the running pro-
gram correctly. This set of actions is quite similar to the behavior
of the hardware during an explicit system-call trap into the kernel,
with various registers thus getting saved (e.g., onto a kernel stack)
and thus easily restored by the return-from-trap instruction.

Saving and Restoring Context

Now that the OS has regained control, whether cooperatively via a
system call, or more forcefully via a timer interrupt, a decision has
to be made: whether to continue running the currently-running pro-
cess, or switch to a different one. This decision is made by a part of
the operating system known as the scheduler, and we will discuss
scheduling policies in great detail in the next few chapters.

If the decision is made to switch, the OS then executes a low-level
piece of code which we refer to as a context switch. A context switch
is conceptually simple: all the OS has to do is save a few register
values for the currently-executing process and restore a few for the
soon-to-be-executing process. By doing so, the OS thus ensures that
when the return-from-trap instruction is finally executed, instead of
returning to the process that was running, the system resumes exe-
cution of another process.

To save the context of the currently-running process, the OS will
execute some low-level assembly code to save the general purpose
registers, PC, as well as the kernel stack pointer of the currently-
running process, and then restore said registers, PC, and switch to
the kernel stack for the soon-to-be-executing process. By switch-
ing stacks, the kernel enters the call to the switch code in the con-
text of one process (the one that was interrupted) and returns in
the context of another (the soon-to-be-executing one). When the OS
then finally executes a return-from-trap instruction, the soon-to-be-
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# void swtch(struct context **old, struct context *new);

#

# Save current register context in old

# and then load register context from new.

.globl swtch

swtch:

# Save old registers

movl 4(%esp), %eax # put old ptr into eax

popl 0(%eax) # save the old IP

movl %esp, 4(%eax) # and stack

movl %ebx, 8(%eax) # and other registers

movl %ecx, 12(%eax)

movl %edx, 16(%eax)

movl %esi, 20(%eax)

movl %edi, 24(%eax)

movl %ebp, 28(%eax)

# Load new registers

movl 4(%esp), %eax # put new ptr into eax

movl 28(%eax), %ebp # restore other registers

movl 24(%eax), %edi

movl 20(%eax), %esi

movl 16(%eax), %edx

movl 12(%eax), %ecx

movl 8(%eax), %ebx

movl 4(%eax), %esp # stack is switched here

pushl 0(%eax) # return addr put in place

ret # finally return into new ctxt

Figure 6.1: The xv6 Context Switch Code

executing process becomes the currently-running process. And thus
the context switch is complete. Figure 6.1 shows the context switch
code for xv6; see if you can find something similar within Linux (but
be wary; it is notably more complicated).

6.4 Summary

We have described some key low-level mechanisms to implement
CPU virtualization, a set of techniques which we collectively refer to
as limited direct execution. The basic idea is straightforward: just
run the program you want to run on the CPU, but first make sure to
set up the hardware so as to limit what the process can do without
OS assistance.
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10 MECHANISM: LIMITED DIRECT EXECUTION

ASIDE: HOW LONG CONTEXT SWITCHES TAKE

A natural question you might have is: how long does something like
a context switch take? Or even a system call? For those of you that
are curious, there is a tool called lmbench [MS96] that measures ex-
actly those things, as well as a few other performance measures that
might be relevant.

Results have improved quite a bit over time, roughly tracking pro-
cessor performance. For example, in 1996 running Linux 1.3.37 on
a 200-MHz P6 CPU, system calls took roughly 4 microseconds, and
a context switch roughly 6 microseconds [MS96]. Modern systems
perform almost an order of magnitude better, with sub-microsecond
results on systems with 2- or 3-GHz processors.

It should be noted that not all operating-system actions track CPU
performance. As Ousterhout observed, many OS operations are
memory intensive, and memory bandwidth has not improved as
dramatically as processor speed over time [O90]. Thus, depending
on your workload, buying the latest and greatest processor may not
speed up your OS as much as you might hope.

This general approach is taken in real life as well. For example,
those of you who have children, or, at least, have heard of children,
may be familiar with the concept of baby proofing a room, i.e., lock-
ing all cabinets with dangerous stuff in them and plugging all the
electrical sockets. When the room is thus readied, you can let your
baby roam freely, relaxed in the knowledge that the most dangerous
aspects of the room have been restricted.

In an analogous manner, the OS “baby proofs” the CPU, by first
(during boot time) setting up the trap handlers and starting an inter-
rupt timer, and then by only running processes in a restricted mode.
By doing so, the OS can feel quite assured that processes can run
efficiently, only requiring OS intervention to perform privileged op-
erations or when they have monopolized the CPU for too long and
thus need to be switched out.

We thus have the basic mechanisms for virtualizing the CPU in
place. But a major question is left unanswered: which process should
we run at a given time? It is this question that the scheduler must
answer, and thus the next topic of our study.
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Homework

ASIDE: MEASUREMENT HOMEWORKS

Measurement homeworks are small exercises where you write
code to run on a real machine, in order to measure some aspect of
OS or hardware performance. The idea behind such homeworks is
to give you a little bit of hands-on experience with a real operating
system.

In this homework, you are to measure the costs of a system call
and context switch. Measuring the cost of a system call is relatively
easy. For example, you could repeatedly call a really simple system
call (e.g., performing a 0-byte read), and time how long it takes; di-
viding the time by the number of iterations gives you a rough esti-
mate of the cost of a system call.

One thing you’ll have to take into account is the precision and ac-
curacy of your timer. A typical timer that you can use is gettimeofday();
read the man page for details. What you’ll see there is that gettimeofday()
returns the time in microseconds since 1970; however, this does not
mean that the timer is precise to the microsecond. Measure back-to-
back calls to gettimeofday() to learn something about how pre-
cise the timer really is; this will tell you how many iterations of your
null system-call test you’ll have to run in order to get a good mea-
surement result.

If gettimeofday() is not precise enough for you, you might
look into using the rdtsc instruction available on x86 machines.
This instruction reads the current value of a cycle timer; you’ll have
to convert the results to seconds yourself of course.

Measuring the cost of a context switch is a little trickier. The lm-
bench benchmark does so by running two processes on a single CPU,
and setting up two UNIX pipes between them; a pipe is just one of
many ways processes in a UNIX system can communicate with one
another. The first process then issues a write to the first pipe, and
waits for a read on the second; upon seeing the first process wait-
ing for something to read from the second pipe, the OS puts the first
process in the blocked state, and switches to the other process, which
reads from the first pipe and then writes to the second. When the sec-
ond process tries to read from the first pipe again, it blocks, and thus
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14 MECHANISM: LIMITED DIRECT EXECUTION

the back-and-forth cycle of communication continues. By measuring
the cost of communicating like this repeatedly, lmbench can make a
good estimate of the cost of a context switch. You can try to re-create
something similar here, using pipes, or perhaps some other commu-
nication mechanism such as UNIX sockets.

One difficulty in measuring context-switch cost arises in systems
with more than one CPU; what you need to do on such a system
is ensure that your context-switching processes are located on the
same processor. Fortunately, most operating systems have calls to
bind a process to a particular processor; on Linux, for example, the
sched setaffinity() call is what you’re looking for. By ensur-
ing both processes are on the same processor, you are making sure
to measure the cost of the OS stopping one process and restoring an-
other on the same CPU.
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