7.1

Scheduling: Introduction

By now you should understand the basic machinery of running pro-
cesses, including how to context-switch between processes and the
details therein. Thus, the low-level mechanisms should be clear.

However, we have yet to understand the high-level policies that
the OS scheduler employs. In this note, we will do just that, present-
ing a series of scheduling policies (sometimes called disciplines) that
people have developed over the years.

We will now develop some scheduling policies that have been put
forth through the years. The origins of scheduling, in fact, predate
computer systems, as early approaches were taken from the field
of operations management and applied to computer systems. This
should be no surprise: assembly lines and many other human con-
structions also require scheduling.

Workload Assumptions

Before getting into the range of possible policies, let us first make
a number of simplifying assumptions about the processes running
in the system, sometimes collectively called the workload. These
assumptions are clearly unrealistic, but that is alright (for now), be-
cause we will relax them as we go and eventually develop what we
will refer to as ... (dramatic pause) ...

SCHEDULING: INTRODUCTION

7.2

OPERATING
SYSTEMS

a fully-operational scheduling discipline’.
We will make the following assumptions about the processes, some-
times called jobs, that are running in the system:

1. Each job runs for the same amount of time.

2. Alljobs arrive at the same time.

3. Alljobs only use the CPU (i.e., they perform no I/O)
4. The run-time of each job is known.

We said all of these assumptions were unrealistic, but just as some
animals are more equal than others in Orwell’s Animal Farm [O45],
some assumptions are more unrealistic than others in this chapter. In
particular, it might bother you that the run-time of each job is known:
this would make the scheduler omniscient, which, although it would
be great (probably), is not likely to happen anytime soon.

Scheduling Metrics

Beyond making workload assumptions, we also need one more
thing to enable us to compare different scheduling policies: a schedul-
ing metric. A metric is just something that we use to measure some-
thing, and of course there are a number of different metrics that make
sense in scheduling.

For now, however, let us also simplify our life by simply having a
single metric: turnaround time. The turnaround time of a job, is de-
fined as the time at which the job finally completes minus the time at
which the job arrived in the system. More formally, the turnaround
time Tturnaround is:

Tturna'round = Tcompletion - Ta'rri'ual (71)

Because we have assumed that all jobs arrive at the same time, for
now Torrival = 0 and hence Tiurnaround = Tcompletion- This fact will
change as we relax the aforementioned assumptions.

You should note that turnaround time is a performance metric,
which will be our primary focus this chapter. Another metric of in-
terest is fairness, as measured (for example) by Jain’s Fairness Index
[J91]. Performance and fairness are often at odds in scheduling; a

!Said in the same way you would say “A fully-operational Death Star.”

ARPACI-DUSSEAU

7.3

SCHEDULING: INTRODUCTION

scheduler, for example, may optimize performance but at the cost of
preventing a few jobs from running, thus decreasing fairness. This
conundrum shows us that life isn’t always perfect.

First In, First Out (FIFO)

The most basic algorithm a scheduler can implement is known
as First In, First Out (FIFO) scheduling or sometimes First Come,
First Served (FCFS). FIFO has a number of positive properties: it
is clearly very simple and thus easy to implement. And given our
assumptions, it works pretty well.

Let’s do a quick example together. Imagine three jobs arrive in the
system, A, B, and C, at roughly the same time (T4 rrivar = 0). Because
FIFO has to put some job first, let’s assume that while they all arrived
simultaneously, A arrived just a hair before B which arrived just a
hair before C. Assume also that each job runs for 10 seconds. What
will the average turnaround time be for these jobs?

A B C

T 1
0 20 40 60 80 100 120
Time

Figure 7.1: FIFO Simple Example

From Figure 7.1, you can see that A finished at 10, B at 20, and C
at 30. Thus, the average turnaround time for the three jobs is simply
%30*30 = 20. Computing turnaround time is as easy as that.

But now let’s relax one of our assumptions. In particular, let’s
relax assumption 1, and thus no longer assume that each job runs
for the same amount of time. How does FIFO perform now? What
kind of workload could you construct to make FIFO perform poorly?
(think about this before reading on)

Presumably you've figured this out by now, but just in case, let’s
do an example to show how jobs of different lengths can lead to trou-
ble for FIFO scheduling. In particular, let’s again assume three jobs
(A, B, and C), but this time A runs for 100 seconds while B and C run
for 10 each.

ARPACI-DUSSEAU

THREE
EASY
PIECES
(v0.5)

SCHEDULING: INTRODUCTION

7.4

OPERATING
SYSTEMS

0 20 40 60 80 100 120
Time

Figure 7.2: Why FIFO Is Not That Great

As you can see from Figure 7.2, Job A runs first and takes up the
full 100 seconds before B or C even get a chance to run. Thus, the av-
erage turnaround time for the system is high: a painful 110 seconds
(L00+1104120 _ 1),

This problem is generally referred to as the convoy effect [B+79],
where a number of relatively-short potential consumers of a resource
get queued behind a heavyweight resource consumer. This might re-
mind you of a single line at a grocery store and what you feel like
when you see the person in front of you with three carts full of pro-
visions and their checkbook out; it’s going to be a while.

So what should we do? How can we develop a better algorithm
to deal with our new reality of jobs that run for different amounts of
time? Think about it first; then read on.

Shortest Job First (SJF)

It turns out that a very simple approach solves this problem; in
fact it is an idea stolen from operations research [C54,PV56] and ap-
plied to scheduling of jobs in computer systems. This new schedul-
ing discipline is known as Shortest Job First (SJF), and the name
should be easy to remember because it describes the policy quite
completely: it runs the shortest job first, then the next shortest, and
so on.

Let’s take our example above but with SJF as our scheduling pol-
icy. Figure 7.3 shows the results of running A, B, and C. Hope-
fully the diagram makes it clear why SJF performs much better with
regards to average turnaround time. Simply by running B and C
before, A, SJF reduces average turnaround from 110 seconds to 50
(%;“20 = 50), more than a factor of two improvement.

ARPACI-DUSSEAU

SCHEDULING: INTRODUCTION

0 20 40 60 80 100 120
Time

Figure 7.3: SJF Simple Example

In fact, given our assumptions about jobs all arriving at the same
time, we could prove that SJF is indeed an optimal scheduling algo-
rithm. However, you are in a systems class, not theory or operations
research; no proofs are allowed.

Thus we arrive upon a good approach to scheduling with SJF, but
our assumptions are still fairly unrealistic. Let’s relax another. In
particular, we can target assumption 2, and now assume that jobs
can arrive at any time instead of all at once. What problems does this
lead to? (think about it again)

Here we can illustrate the problem again with an example. This
time, assume A arrives at ¢ = 0 and needs to run for 100 seconds,
whereas B and C arrive at ¢t = 10 and each need to run for 10 seconds.
With pure SJF, we’d get the schedule seen in Figure 7.4.

As you can see from the figure, even though B and C arrived
shortly after A, they still are forced to wait until A has completed,
and thus suffer the same convoy problem. Average turnaround time

for these three jobs is 103.33 seconds (100“110712”(120710)). What
can a scheduler do?

DESIGN TiP: PRINCIPLE OF SJF

Shortest Job First represents a general scheduling principle that can
be applied to any system where the perceived turnaround time per
customer (or, in our case, a job) matters. Think of any line you have
waited in: if the establishment in question cares about customer sat-
isfaction, it is likely they have taken SJF into account. For example,
grocery stores commonly have a “ten-items-or-less” line to ensure
that shoppers with only a few things to purchase don’t get stuck be-
hind the family preparing for some upcoming nuclear winter.

ARPACI-DUSSEAU

THREE
EASY
PIECES
(v0.5)

SCHEDULING: INTRODUCTION

7.5

OPERATING
SYSTEMS

[B,C arrive]

0 20 40 60 80 100 120
Time

Figure 7.4: SJF With Late Arrivals From B and C

Shortest Time-to-Completion First (STCF)

As you might have guessed, given our previous discussion about
mechanisms such as timer interrupts and context switching, the sched-
uler can certainly do something else when B and C arrive: it can
preempt job A and decide to run another job, perhaps continuing A
later. SJF by our definition is a non-preemptive scheduler, and thus
suffers from the problems described above.

ASIDE: PREEMPTIVE SCHEDULERS

In the old days of batch computing, a number of non-preemptive
schedulers were developed; such systems would run each job to
completion before considering whether to run a new job. Virtually
all modern schedulers are preemptive, and quite willing to stop one
process from running in order to run another. This implies that the
scheduler employs the mechanisms we learned about previously; in
particular, the scheduler can perform a context switch, stopping one
running process temporarily and resuming (or starting) another.

Fortunately, there is a scheduler which does exactly that: add pre-
emption to SJE, known as the Shortest Time-to-Completion First
(STCF) or Preemptive Shortest Job First PSJF scheduler [CK68].
Any time a new job enters the system, it determines of the remaining
jobs and new job, which has the least time left, and then schedules
that one. Thus, in our example, STCF would preempt A and run B
and C to completion; only when they are finished would A’s remain-
ing time be scheduled. Figure 7.5 shows an example.

ARPACI-DUSSEAU

SCHEDULING: INTRODUCTION

[B,C arrive]
AlB C

0 20 40 60 80 100 120
Time

Figure 7.5: STCF Simple Example

The result is a much-improved average turnaround time: 50 sec-

onds (<120 0)+(20— 10)“30 10)) And as before, given our new as-
sumptions, STCF is provably optimal; given that SJF is optimal if
all jobs arrive at the same time, you should probably be able to see
the intuition behind the optimality of STCE.

Thus, if we knew that job lengths, and jobs only used the CPU,
and our only metric was turnaround time, STCF would be a great
policy. In fact, for a number of early batch computing systems, these
types of scheduling algorithms made some sense. However, the in-
troduction of time-shared machines changed all that. Now users
would sit at a terminal and demand interactive performance from
the system as well. And thus, a new metric was born: response time.

Response time is defined as the time from when the job arrives in
a system to the first time it is scheduled. More formally:

T’response = Tf’i'r‘st'r‘un - Tar"r‘ival (72)

For example, if we had the schedule above (with A arriving at
time 0, and B and C at time 10), the response time of each job is as
follows: 0 for job A, 0 for B, and 10 for C (average: 3.33).

As you might be thinking, STCF and related disciplines are not
particularly good for response time. If three jobs arrive at the same
time, for example, the third job has to wait for the previous two jobs
to run in their entirety before being scheduled just once. While great
for turnaround time, this approach is quite bad for response time and
interactivity. Indeed, imagine sitting at a terminal, typing, and hav-
ing to wait 10 seconds to see a response from the system just because
some other job got scheduled in front of yours: not too pleasant.

Thus, we are left with another problem: how can we build a sched-
uler that is sensitive to response time?

ARPACI-DUSSEAU

THREE
EASY
PIECES
(v0.5)

SCHEDULING: INTRODUCTION

7.6

OPERATING
SYSTEMS

T
10 15 20 25 30
Time

o
o

Figure 7.6: SJF Again (Bad for Response Time)

ABCABCABCABCABC

T
10 15 20 25 30
Time

o
(8]

Figure 7.7: Round Robin

Round Robin

To solve this problem, we will introduce a new scheduling al-
gorithm. This approach is classically known as Round-Robin (RR)
scheduling [K64]. The basic idea is simple: instead of running jobs
to completion, RR runs a job for a time slice (sometimes called a
scheduling quantum) and then switches to the next job in the run
queue. It repeatedly does so until the jobs are finished. For this rea-
son, RR is sometimes called time-slicing. Note that the length of a
time slice must be a multiple of the timer-interrupt period; thus if the
timer interrupts every 10 milliseconds, the time slice could be 10, 20,
or any other multiple of 10 ms.

To understand RR in more detail, let’s look at an example. As-
sume three jobs A, B, and C arrive at the same time in the system,
and that they each wish to run for 5 seconds. An SJF scheduler runs
each job to completion before running another (Figure 7.6). In con-
trast, RR with a time-slice of 1 second would cycle through the jobs
quite quickly (Figure 7.7).

The average response time of RR is:
response time is: 2510 = 5,

0+142 __ .
=== = 1; for SJF, average

ARPACI-DUSSEAU

SCHEDULING: INTRODUCTION

DESIGN T1P: AMORTIZATION

The general technique of amortization is commonly used in systems
when there is a fixed cost to some operation. By incurring that cost
less often (i.e., by performing the operation fewer times), the total
cost to the system is reduced. For example, if the time slice is set to
10 ms, and the context-switch cost is 1 ms, roughly 10% of time is
spent context switching and is thus wasted. If we want to amortize
this cost, we can increase the time slice, e.g., to 100 ms. In this case,
less than 1% of time is spent context switching, and thus the cost of
time-slicing has been amortized.

As you can see, the length of the time slice is critical for RR. The
shorter it is, the better the performance of RR under the response-
time metric. However, making the time slice too short is problem-
atic: suddenly the cost of context switching will dominate overall
performance. Thus, deciding on the length of the time slice presents
a trade-off to a system designer, making it long enough to amortize
the cost of switching without making it so long that the system is no
longer responsive.

Note that the cost of context switching does not arise solely from
the OS actions of saving and restoring a few registers. When pro-
grams run, they build up a great deal of state in CPU caches, TLBs,
branch predictors, and other on-chip hardware. Switching to an-
other job causes this state to be flushed and new state relevant to the
currently-running job to be brought in, which may exact a noticeable
performance cost [MB91].

RR, with a reasonable time slice, is thus an excellent scheduler
if response time is our only metric. But what about our old friend
turnaround time? Let’s look at our example above again. A, B, and
C, each with running times of 5 seconds, arrive at the same time, and
RR is the scheduler with a (long) 1-second time slice. We can see
from the picture above that A finishes at 13, B at 14, and C at 15, for
an average of 14. Pretty awful!

It is not surprising, then, that RR is indeed one of the worst poli-
cies if turnaround time is our metric. Intuitively, this should make
sense: what RR is doing is stretching out each job as long as it can,
by only running each job for a short bit before moving to the next.
Because turnaround time only cares about when jobs finish, RR is
nearly pessimal, even worse than simple FIFO in many cases.

ARPACI-DUSSEAU

THREE
EASY
PIECES
(v0.5)

10

SCHEDULING: INTRODUCTION

7.7

OPERATING
SYSTEMS

More generally, any policy (such as RR) that is fair, i.e., that evenly
divides the CPU among active processes on a small time scale, will
perform poorly on metrics such as turnaround time. Indeed, this is
an inherent trade-off: if you are willing to be unfair, you can run
shorter jobs to completion, but at the cost of response time; if you
instead value fairness, response time is lowered, but at the cost of
turnaround time. This type of trade-off is common in systems; you
can’t have your cake and eat it too.

We have developed two types of schedulers. The first type (SJE,
STCF) optimizes turnaround time, but is bad for response time. The
second type (RR) optimizes response time but is bad for turnaround.
And we still have two assumptions which need to be relaxed: as-
sumption 3 (that jobs do no 1/0O), and assumption 4 (that the run-
time of each job is known). Let’s tackle those assumptions next.

Incorporating I/O

First we will relax assumption 3. Of course all programs perform
I/0. Imagine a program that didn’t take any input: it would produce
the same output each time. Imagine one without output: it is the tree
falling in the forest, with no one to see it; it doesn’t matter that it ran.

A scheduler clearly has a decision to make when a job initiates an
I/0 request, because the currently-running job won’t be using the
CPU during the 1/0; it is blocked waiting for I/O completion. If
the I/0O is sent to a hard disk drive, the process might be blocked
for a few ms or longer, depending on the current I/O load of the
drive. Thus, the scheduler should probably schedule another job on
the CPU at that time.

The scheduler also has to make a decision when the I/O com-
pletes. When that occurs, an interrupt is raised, and the OS runs
and moves the process that issued the I/O from blocked back to the
ready state. Of course, it could even decide to run the job at that
point. How should the OS treat each job?

To understand this issue better, let us assume we have two jobs,
A and B, which each need 50 ms of CPU time. However, there is one
obvious difference: A runs for 10 ms and then issues an I/O request
(assume here that I/Os each take 10 ms), whereas B simply uses the
CPU for 50 ms and performs no I/O. Imagine the scheduler decides
to run A first, then B after (Figure 7.8).

ARPACI-DUSSEAU

SCHEDULING: INTRODUCTION

11

0 20 40 60 80 100 120 140
Time

Figure 7.8: Poor Use of Resources

Assume we are trying to build a STCF scheduler. How should
such a scheduler account for the fact that A is broken up into 5 10-ms
sub-jobs, whereas B is just a single 50-ms CPU demand? Clearly, just
running one job and then the other without considering how to take
1/0 into account makes little sense.

A common approach is to treat each 10-ms sub-job of A as an in-
dependent job. Thus, when the system starts, its choice is whether
to schedule a 10-ms A or a 50-ms B. With STCF, the choice is clear:
choose the shorter one, in this case A. Then, when the first sub-job of
A has completed, only B is left, and it begins running. Then a new
sub-job of A is submitted, and it preempts B and runs for 10 ms. Do-
ing so allows for overlap to occur, with the CPU being used by one
process while waiting for the I/O of another process to complete; the
system is thus better utilized (see Figure 7.9).

And thus we see how a scheduler might incorporate I/O. By treat-
ing each CPU burst as a job, the scheduler makes sure processes that
are “interactive” get run frequently. While those interactive jobs are
performing I/0, other CPU-intensive jobs run, thus better utilizing
the processor.

0 20 40 60 80 100 120 140
Time

Figure 7.9: Overlap Allows Better Use of Resources

ARPACI-DUSSEAU

THREE
EASY
PIECES
(v0.5)

SCHEDULING: INTRODUCTION

12
7.8
7.9
OPERATING

SYSTEMS

No More Oracle

With a basic approach to I/O in place, we come to our final as-
sumption: that the scheduler knows the length of each job. As we
said before, this is likely the worst assumption we could make. In
fact, in a general-purpose OS (like the ones we care about), the OS
usually knows very little about the length of each job. Thus, how
can we build an approach that behaves like SJF/STCF without such
a priori knowledge? Further, how can we incorporate some of the
ideas we have seen with the RR scheduler so that response time is
also quite good?

DESIGN TiP: OVERLAP
When possible, overlap operations to maximize the utilization
of systems. Overlap is useful in many different domains, includ-
ing when performing disk I/O or sending messages to remote ma-
chines; in either case, starting the operation and then switching to
other work is a good idea, and improved the overall utilization and
efficiency of the system.

Summary

We have introduced the basic ideas behind scheduling and devel-
oped two families of approaches. The first runs the shortest job re-
maining and thus optimizes turnaround time; the second alternates
between all jobs and thus optimizes response time. Both are bad
where the other is good, alas, an inherent trade-off common in sys-
tems. We have also seen how we might incorporate I/O into the
picture, but have still not solved the problem of the fundamental in-
ability of the OS to see into the future. Shortly, we will see how to
overcome this problem, by building a scheduler that uses the recent
past to predict the future. This scheduler is known as the multi-level
feedback queue, and it is the topic of the next chapter.

ARPACI-DUSSEAU

SCHEDULING: INTRODUCTION 13

References

[B+79] “The Convoy Phenomenon”

M. Blasgen, J. Gray, M. Mitoma, T. Price

ACM Operating Systems Review, 13:2, April 1979

Perhaps the first reference to convoys, which occurs in databases as well as the OS.

[C54] “Priority Assignment in Waiting Line Problems”

A. Cobham

Journal of Operations Research, 2:70, pages 70-76, 1954

The pioneering paper on using an SJF approach in scheduling the repair of machines.

[K64] “Analysis of a Time-Shared Processor”

Leonard Kleinrock

Naval Research Logistics Quarterly, 11:1, pages 59-73, March 1964

May be the first reference to the round-robin scheduling algorithm; certainly one of the first
analyses of said approach to scheduling a time-shared system.

[CK68] “Computer Scheduling Methods and their Countermeasures”

Edward G. Coffman and Leonard Kleinrock

AFIPS '68 (Spring), April 1968

An excellent early introduction to and analysis of a number of basic scheduling disciplines.

[J91] “The Art of Computer Systems Performance Analysis:

Techniques for Experimental Design, Measurement, Simulation, and Modeling”

R. Jain

Interscience, New York, April 1991

The standard text on computer systems measurement. A great reference for your library, for sure.

[O45] “Animal Farm”

George Orwell

Secker and Warburg (London), 1945

A great but depressing allegorical book about power and its corruptions. Some say it is a critique
of Stalin and the pre-WWII Stalin era in the U.S.S.R; we say it’s a critique of pigs.

[PV56] “Machine Repair as a Priority Waiting-Line Problem”

Thomas E. Phipps Jr. and W. R. Van Voorhis

Operations Research, 4:1, pages 76-86, February 1956

Follow-on work that generalizes the SJF approach to machine repair from Cobham's original work;
also postulates the utility of an STCF approach in such an environment. Specifically, “There are
certain types of repair work, ... involving much dismantling and covering the floor with nuts
and bolts, which certainly should not be interrupted once undertaken; in other cases it would be
inadvisable to continue work on a long job if one or more short ones became available (p.81).”

[MB91] “The effect of context switches on cache performance”

Jeffrey C. Mogul and Anita Borg

ASPLOS, 1991

A nice study on how cache performance can be affected by context switching; less of an issue in
today’s systems where processors issue billions of instructions per second but context-switches
still happen in the millisecond time range.

THREE
EASY
PIECES
(v0.5)

ARPACI-DUSSEAU

14

SCHEDULING: INTRODUCTION

OPERATING
SYSTEMS

Homework

ASIDE: SIMULATION HOMEWORKS

Simulation homeworks come in the form of simulators you run to
make sure you understand some piece of the material. The simula-
tors are generally python programs that enable you both to generate
different problems (using different random seeds) as well as to have
the program solve the problem for you (with the - ¢ flag) so that
you can check your answers. Running any simulator with a - h or
- - hel p flag will provide with more information as to all the options
the simulator gives you.

This program, schedul er . py, allows you to see how different
schedulers perform under scheduling metrics such as response time,
turnaround time, and total wait time. Three schedulers are “imple-
mented”: FIFO, SJF, and RR.

There are two steps to running the program.

First, run without the -c flag: this shows you what problem to
solve without revealing the answers. For example, if you want to
compute response, turnaround, and wait for three jobs using the
FIFO policy, run this:

./ scheduler.py -p FIFO -j 3 -s 100

If that doesn’t work, try this:
python ./scheduler.py -p FIFO -j 3 -s 100

This specifies the FIFO policy with three jobs, and, importantly,
a specific random seed of 100. If you want to see the solution for
this exact problem, you have to specify this exact same random seed
again. Let’s run it and see what happens. Figure 7.10 shows the
output you should see.

As you can see from this example, three jobs are generated: job 0
of length 1, job 1 of length 4, and job 2 of length 7. As the program
states, you can now use this to compute some statistics and see if you
have a grip on the basic concepts.

Once you are done, you can use the same program to solve the
problem and see if you did your work correctly. To do so, use the - ¢
flag. Figure 7.11 shows the output.

ARPACI-DUSSEAU

SCHEDULING: INTRODUCTION 15

prompt> ./scheduler.py -p FIFO -j 3 -s 100
ARG policy FIFO

ARG jobs 3

ARG naxl en 10

ARG seed 100

Here is the job list, with the run time of each job:

Job 0 (length = 1)
Job 1 (length = 4)
Job 2 (length = 7)

Conpute the turnaround tine, response tinme, and wait tinme for each job.
Wien you are done, run this programagain, with the same argunents,

but with -c, which will thus provide you with the answers. You can use
to use -s <sonenunber> or your own job list (-1 10,15,20 for exanple)
to generate different problenms for yourself.

Figure 7.10: Homework Output

pronmpt> ./scheduler.py -p FIFO -j 3 -s 100 -c
ARG policy FIFO

ARG j obs 3

ARG naxl en 10

ARG seed 100

Here is the job list, with the run tinme of each job:

Job 0 (length = 1)
Job 1 (length = 4)
Job 2 (length = 7)

** Sol utions **

Execution trace:
[time 0] Run job 0 for
[time 1] Run job 1 for
[time 5] Run job 2 fo

1.00 secs (DONE)
4.00 secs (DONE)
7.00 secs (DONE)

Final statistics:
Job 0 -- Response: 0.00 Turnaround 1.00 Wit 0.00
Job 1 -- Response: 1.00 Turnaround 5.00 Wit 1.00
Job 2 -- Response: 5.00 Turnaround 12.00 Wit 5.00

Average -- Response: 2.00 Turnaround 6.00 Wait 2.00

Figure 7.11: Generating Homework Solutions

THREE
EASY
PIECES
(v0.5)

ARPACI-DUSSEAU

16 SCHEDULING: INTRODUCTION

As you can see from the figure, the - ¢ flag shows you what hap-
pened. Job 0 ran first for 1 second, Job 1 ran second for 4, and then
Job 2 ran for 7 seconds. Not too hard; it is FIFO, after all! The execu-
tion trace shows these results.

The final statistics are useful too: they compute the response time
(the time a job spends waiting after arrival before first running), the
turnaround time (the time it took to complete the job since first ar-
rival), and the total wait time (any time spent ready but not running).
The stats are shown per job and then as an average across all jobs. Of
course, you should have computed these things all before running
with the - ¢ flag!

If you want to try the same type of problem but with different in-
puts, try changing the number of jobs or the random seed or both.
Different random seeds basically give you a way to generate an in-
finite number of different problems for yourself, and the - ¢ flag lets
you check your own work. Keep doing this until you feel like you
really understand the concepts.

One other useful flag is - | (that’s a lower-case L), which lets you
specify the exact jobs you wish to see scheduled. For example, if you
want to find out how SJF would perform with three jobs of lengths

5,10, and 15, you can run:

pronmpt> ./scheduler.py -p SJF -1 5,10, 15
ARG policy SIF

ARG jlist 5,10, 15

Here is the job list, with the run time of each job
Job 0 (length = 5.0)
Job 1 (length 10. 0)
Job 2 (length 15. 0)

And then you can use - C to solve it again. Note that when you
specify the exact jobs, there is no need to specify a random seed or
the number of jobs: the jobs lengths are taken from your comma-
separated list.

Of course, more interesting things happen when you use SJF (shortest-
job first) or even RR (round robin) schedulers. Try them and see!

And you can always run

./ schedul er.py -h

to get a complete list of flags and options (including options such
as setting the time quantum for the RR scheduler).

OPERATING
SYSTEMS ARPACI-DUSSEAU

SCHEDULING: INTRODUCTION 17

Questions

1.

Compute the response time and turnaround time when run-
ning three jobs of length 200 with the SJF and FIFO schedulers.

. Now do the same but with jobs of different lengths: 100, 200,

and 300.

. Now do the same, but also with the RR scheduler and a time-

slice of 1.

. For what types of workloads does SJF deliver the same turnaround

times as FIFO?

. For what types of workloads and quantum lengths does SJF

deliver the same response times as RR?

. What happens to response time with SJF as job lengths increase?

Can you use the simulator to demonstrate the trend?

. What happens to response time with RR as quantum lengths

increase? Can you write an equation that gives the worst-case
response time, given NV jobs?

THREE
EASY
PIECES
(v0.5)

ARPACI-DUSSEAU

