
8

Scheduling:
The Multi-Level Feedback Queue

In this note, we’ll tackle the problem of developing one of the most
well-known approaches to scheduling, known as the Multi-level Feed-
back Queue (MLFQ). The Multi-level Feedback Queue (MLFQ) sched-
uler was first described by Corbato et al. in 1962 [C+62] in a sys-
tem known as the Compatible Time-Sharing System (CTSS), and this
work, along with later work on Multics, led the ACM to award Cor-
bato its highest honor, the Turing Award. It has subsequently been
refined throughout the years to the implementations you will en-
counter in modern systems.

The fundamental problem MLFQ tries to address is two-fold. First,
it would like to optimize turnaround time, which, as we saw in the
previous note, is done by running shorter jobs first; unfortunately,
the OS doesn’t generally know how long a job will run for, exactly
the knowledge that algorithms like SJF (or STCF) require. Second,
MLFQ would like to make a system feel responsive to interactive
users (i.e., users sitting and staring at the screen, waiting for a pro-
cess to finish), and thus minimize response time; unfortunately, algo-
rithms like Round Robin reduce response time but are terrible for
turnaround time. Thus, our problem: given that we in general do
not know anything about a process, how can we build a scheduler to
achieve these goals?

1



2
SCHEDULING:

THE MULTI-LEVEL FEEDBACK QUEUE

THE CRUX:
HOW TO SCHEDULE WITHOUT PERFECT KNOWLEDGE?

How can we design a scheduler that both minimizes response
time for interactive jobs while also minimizing turnaround time
without a priori knowledge of job length?

8.1 MLFQ: Basic Rules

To build such a scheduler, in this chapter we will describe the
basic algorithms behind a multi-level feedback queue; although the
specifics of many implemented MLFQs differ [E95], the basic ap-
proaches are all similar.

In our treatment, the MLFQ has a number of distinct queues, each
assigned a different priority level. At any given time, a job that is
ready to run is on a single queue. MLFQ uses priorities to decide
which job should run at a given time: a job with higher priority (i.e.,
a job on a higher queue) is chosen to run.

Of course, more than one job may be on a given queue, and thus
have the same priority. In this case, we will just use round-robin
scheduling among those jobs.

Thus, the key to MLFQ scheduling lies in how the scheduler sets
priorities. Rather than giving a fixed priority to each job, MLFQ
varies the priority of a job based on its observed behavior. If, for exam-
ple, a job repeatedly relinquishes the CPU while waiting for input
from the keyboard, MLFQ will keep its priority high, as this is how
an interactive process might behave. If, instead, a job uses the CPU
intensively for long periods of time, MLFQ will reduce its priority.
In this way, MLFQ will try to learn about processes as they run, and
thus use the history of the job to predict its future behavior.

Thus, we arrive at the first two basic rules for MLFQ:

• Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).
• Rule 2: If Priority(A) = Priority(B), A & B run in RR.

If we were to put forth a picture of what the queues might look
like at a given instant, we might see something like what you can see
in Figure 8.1.

In the figure, two jobs (A and B) are at the highest priority level,

OPERATING

SYSTEMS ARPACI-DUSSEAU



SCHEDULING:
THE MULTI-LEVEL FEEDBACK QUEUE 3

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

[Low Priority]

[High Priority]

D

C

A B

Figure 8.1: MLFQ Example

while job C is in the middle and Job D is at the lowest priority. Given
our current knowledge of how MLFQ works, the scheduler would
just alternate time slices between A and B because they are the high-
est priority jobs in the system.

8.2 Attempt #1: How to Change Priority

We now must decide how MLFQ is going to change the priority
level of a job (and thus which queue it is on) over the lifetime of a
job. To do this, we must keep in mind our workload: a mix of inter-
active jobs that are short-running (and may frequently relinquish the
CPU), and some longer-running “CPU-bound” jobs that need a lot of
CPU time but where response time isn’t important. Here is our first
attempt at a priority-adjustment algorithm:

• Rule 3: When a job enters the system, it is placed at the highest
priority (the topmost queue).

• Rule 4a: If a job uses up an entire time slice while running, its
priority is reduced (i.e., it moves down one queue).

• Rule 4b: If a job gives up the CPU before the time slice is up, it
stays at the same priority level.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



4
SCHEDULING:

THE MULTI-LEVEL FEEDBACK QUEUE

Q0

Q1

Q2

0 50 100 150

Time

Figure 8.2: Long-running Job Over Time

Example 1: A Single Long-Running Job

To understand this better, let’s look at some examples. First, we’ll
just look at what happens when there has been a long running job
in the system for a while. Figure 8.2 shows what happens to this job
over time, in a system with three queues.

As you can see in the example, the job enters at the highest prior-
ity (Q2). After a single time-slice of 10 ms, the scheduler reduces the
job’s priority by one, and thus the job is on Q1. After running at Q1
for a time slice, the job is finally lowered to the lowest priority in the
system (Q0), where it remains. Pretty simple, no?

Example 2: Along Came A Short Job

Now let’s look at a more complicated example, and hopefully see
how MLFQ tries to approximate SJF. In this example, there are two
jobs: A, which is a long-running CPU-intensive job, and B, which
is a short-running interactive job. Assume A has been running for
some time, and then B arrives. What do you think will happen? Will
MLFQ approximate shortest-job first for B?

Figure 8.3 plots the results of this scenario. A (shown in black)
is running along in the lowest-priority queue (as would any long-
running CPU-intensive jobs); B (shown in gray) arrives at time T =

100, and thus is inserted into the highest queue; as its run-time is

OPERATING

SYSTEMS ARPACI-DUSSEAU



SCHEDULING:
THE MULTI-LEVEL FEEDBACK QUEUE 5

Q0

Q1

Q2

50 100 150 200

Time

Figure 8.3: Along Came An Interactive Job

short (only 20 ms), B completes before reaching the bottom queue, in
two time slices; then A resumes running (at low priority).

From this example, you can hopefully understand one of the ma-
jor goals of the algorithm: because it doesn’t know whether a job will
be a short job or a long-running job, it first assumes it might be a short
job, thus giving the job high priority. If it actually is a short job, it will
run quickly and complete; if it is not a short job, it will slowly move
down the queues, and thus soon prove itself to be a long-running
more batch-like process. In this manner, MLFQ approximates SJF.

Example 3: What About I/O?

Let’s now look at an example with some I/O. As Rule 4b states above,
if a process gives up the processor before using up its time slice, we
keep it at the same priority level. The intent of this rule is simple:
if an interactive job, for example, is doing a lot of I/O (say by wait-
ing for user input from the keyboard or mouse), it will relinquish the
CPU before its time slice is complete; in such case, we don’t wish to
penalize the job and thus simply keep it at the same level.

Figure 8.4 shows an example of how this works, with an interac-
tive job B (shown in gray) that needs the CPU only for 1 ms before
performing an I/O competing for the CPU with a long-running batch
job A (shown in black). The MLFQ approach keeps B at the highest
priority because B keeps releasing the CPU; if B is an interactive job,
MLFQ further achieves its goal of running interactive jobs quickly.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



6
SCHEDULING:

THE MULTI-LEVEL FEEDBACK QUEUE

Q0

Q1

Q2

50 100 150 200

Time

Figure 8.4: A Mixed I/O-intensive and CPU-intensive Workload

Problems With Our Current MLFQ

We thus have a basic MLFQ algorithm. It seems to do a fairly good
job, sharing the CPU fairly between long-running jobs, and letting
short or I/O-intensive interactive jobs run quickly. Unfortunately,
the approach we have developed thus far contains a few serious
problems. Can you think of any? (pause and think on it a minute)

First, there is the problem of starvation: if there are “too many”
interactive jobs in the system, they will combine to consume all CPU
time, and thus long-running jobs will never receive any CPU time
(hence the name, starvation). Clearly, we’d like to make some progress
on these jobs even in this scenario.

Second, a smart user could rewrite their program to game the
scheduler. Gaming the scheduler generally refers to the idea of do-
ing something sneaky to trick the scheduler into giving you more
than your fair share of the resource. The algorithm we have de-
scribed is susceptible to the following attack: before the time slice
is over, issue an I/O operation (to some file you don’t care about)
and thus relinquish the CPU; doing so allows you to remain in the
same queue, and thus gain a higher percentage of the CPU. In fact,
if done just right (e.g., by running for 99% of the time slice before
relinquishing the CPU), a job could get most available CPU time.

Finally, a program may change its behavior over time; what was
CPU-bound may transition to a phase of interactivity. With our cur-
rent approach, such a job would be out of luck and not be treated like
the other interactive jobs in the system.

OPERATING

SYSTEMS ARPACI-DUSSEAU



SCHEDULING:
THE MULTI-LEVEL FEEDBACK QUEUE 7

Q0

Q1

Q2

0 50 100 150 200 250

Time

Q0

Q1

Q2

0 50 100 150 200 250

Time

Figure 8.5: Without (Left) and With (Right) Priority Boost

8.3 Attempt #2: The Priority Boost

Let’s try to change the rules and see if we can avoid the problem of
starvation. What could we do in order to guarantee that CPU-bound
jobs will make some progress (even if it is not much?).

The simple idea here is to periodically boost the priority of all the
jobs in system. There are many ways to achieve this, but let’s just do
something simple: throw them all in the topmost queue. Thus, we
add a new rule:

• Rule 5: After some time period S, move all the jobs in the sys-
tem to the topmost queue.

Our new rule solves two problems at once. First, processes are
guaranteed not to starve: by sitting in the top queue, a job will share
the CPU with other high-priority jobs in a round-robin fashion, and
thus eventually receive service. Second, if a CPU-bound job has be-
come interactive, the scheduler treats it properly once it has received
the priority boost.

Let’s see an example. In this scenario, we just show the behavior
of a long-running job when competing for the CPU with two short-
running interactive jobs. Two graphs are shown in Figure 8.5. On
the left, there is no priority boost, and thus the long-running job gets
starved once the two short jobs arrive; on the right, there is a priority
boost every 50 ms (which is likely too small of a value, but used
here for the example), and thus we at least guarantee that the long-
running job will make some progress, getting boosted to the highest
priority every 50 ms and thus getting to run periodically.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



8
SCHEDULING:

THE MULTI-LEVEL FEEDBACK QUEUE

DESIGN TIP: AVOID VOO-DOO CONSTANTS

It is pretty clear that avoiding voo-doo constants is a good idea
whenever possible. Unfortunately, as in the example above, it is of-
ten difficult. One could try to make the system learn a good value,
but that too is not straightforward. The frequent result: a configura-
tion file filled with default parameter values that a seasoned admin-
istrator can tweak when something isn’t quite working correctly. As
you can imagine, these are often left unmodified, and thus we are left
to hope that the default values shipped with the system work well
in the field. This tip brought to you by our old OS professor, John
Ousterhout, and hence the other name for it: Ousterhout’s Law.

Of course, the addition of the time period S leads to the obvious
question: what should S be set to? John Ousterhout, a well-regarded
systems researcher [O11], used to call such values in systems voo-
doo constants, because they seemed to require some form of black
magic to set them correctly. Unfortunately, S has that flavor. If it is
set too high, long-running jobs could starve; too low, and interactive
jobs may not get a proper share of the CPU.

8.4 Attempt #3: Better Accounting

We now have one more problem to solve: how to prevent gaming
of our scheduler? The real culprit here, as you might have guessed,
are Rules 4a and 4b, which let a job retain its priority level simply by
relinquishing the CPU before the time slice expires. So what should
we do instead?

The solution here is to perform better accounting of CPU time at
each level of the MLFQ. Instead of forgetting how much of a time
slice a process used at a given level, the scheduler should keep track;
once a process has used its allotment, it is demoted to the next prior-
ity queue. Whether it uses the time slice in one long burst or many
small ones does not matter. We thus rewrite Rules 4a and 4b to the
following single rule:

• Rule 4: Once a job uses up its time allotment at a given level
(regardless of how many times it has given up the CPU), its

OPERATING

SYSTEMS ARPACI-DUSSEAU



SCHEDULING:
THE MULTI-LEVEL FEEDBACK QUEUE 9

priority is reduced (i.e., it moves down one queue).

Q0

Q1

Q2

50 100 150 200

Time

Q0

Q1

Q2

50 100 150 200

Time

Figure 8.6: Without (Left) and With (Right) Gaming Tolerance

Let’s look once again at an example. Figure 8.6 shows what hap-
pens when a workload tries to game the scheduler with the old Rules
4a and 4b (on the left) as well the new anti-gaming Rule 4. Without
any protection from gaming, a process can issue an I/O just before
a time slice ends and thus dominate CPU time. With such protec-
tions in place, regardless of the I/O behavior of the process, it slowly
moves down the queues, and thus cannot gain an unfair percentage
of CPU time.

8.5 Tuning MLFQ and Other Issues

A few other issues arise with MLFQ scheduling. One big question
is how to parameterize such a scheduler. For example, how many
queues should there be? How big should the time slice be per queue?
How often should priority be boosted in order to avoid starvation
and account for changes in behavior? There are no easy answers to
these questions, and thus only some experience with workloads and
subsequent tuning of the scheduler will lead to a satisfactory balance.

For example, most MLFQ variants allow for varying time-slice
length across the different queues of the system. The high-priority
queues are usually given short time slices; they are comprised of in-
teractive jobs, after all, and thus quickly alternating between them
makes sense (e.g., 10 or 20 milliseconds). The low-priority queues, in
contrast, contain long-running jobs that are CPU-bound. Thus, there
is no need to switch between them frequently, and longer time slices

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



10
SCHEDULING:

THE MULTI-LEVEL FEEDBACK QUEUE

Q0

Q1

Q2

0 50 100 150 200 250 300

Time

Figure 8.7: Lower Priority, Longer Quanta

make sense (e.g., hundreds of ms). Figure 8.7 shows an example in
which two long-running jobs run for 10 ms at the highest queue, 20
ms at the middle queue, and 40 ms at the lowest.

The Solaris implementation of MLFQ, known as the Time Sharing
scheduling class (TS), is particularly easy to configure; it provides
a set of tables that determine exactly how the priority of a process
is altered throughout its lifetime, how long each time slice is, and
how often to boost the priority of a job [AD00]; an administrator can
muck with this table in order to make the scheduler behave in differ-
ent ways. Default values for the table are 60 queues, with slowly in-
creasing time-slice lengths from 20 milliseconds (highest priority) to
a few hundred milliseconds (lowest), and priorities boosted around
every 1 second or so.

Other MLFQ schedulers don’t use a table or the exact rules de-
scribed in this chapter; rather they adjust priorities using mathemat-
ical formulae. For example, the FreeBSD scheduler (version 4.3) uses
a formula to calculate the current priority level of a job, basing it on
how much CPU the process has used [LM+89]; in addition, usage is
decayed over time, providing the desired priority boost in a different
manner than described herein. See [E95] for an excellent overview of
such decay-usage algorithms and their properties.

Finally, many schedulers have a few other features that you might
encounter. For example, some schedulers reserve the highest prior-
ity levels for operating system work; thus typical user jobs can never

OPERATING

SYSTEMS ARPACI-DUSSEAU



SCHEDULING:
THE MULTI-LEVEL FEEDBACK QUEUE 11

DESIGN TIP: USE ADVICE WHERE POSSIBLE

As the operating system rarely knows what is best for each and ev-
ery process of the system, it is often useful to provide interfaces to
allow users or administrators to provide some hints to the OS. We
often call such hints advice, as the OS need not necessarily pay at-
tention to it, but rather might take the advice into account in order
to make a better decision. Such hints are useful in many parts of
the OS, including the scheduler (e.g., with nice), memory manager
(e.g., madvise), and file system (e.g., TIP [P+95]).

obtain the highest levels of priority in the system. Some systems also
allow some user advice to help set priorities; for example, by using
the command-line utility nice you can increase or decrease the pri-
ority of a job (at least, somewhat), and thus increase or decrease its
chances of running at any given time. See the nice man page for
details.

8.6 MLFQ: Summary

We have described a scheduling approach known as the Multi-
Level Feedback Queue (MLFQ). Hopefully you can now see why it
is called that: it has multiple levels of queues, and uses feedback to de-
termine the priority of a given job. The refined set of rules, spread
throughout the chapter, are reproduced here for your viewing plea-
sure:

• Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).
• Rule 2: If Priority(A) = Priority(B), A & B run in RR.
• Rule 3: When a job enters the system, it is placed at the highest

priority (the topmost queue).
• Rule 4: Once a job uses up its time allotment at a given level

(regardless of how many times it has given up the CPU), its
priority is reduced (i.e., it moves down one queue).

• Rule 5: After some time period S, move all the jobs in the sys-
tem to the topmost queue.

MLFQ is interesting because instead of demanding a priori knowl-
edge of the nature of a job, it instead observes the execution of a

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



12
SCHEDULING:

THE MULTI-LEVEL FEEDBACK QUEUE

job and prioritizes it accordingly. In this way, it manages to achieve
the best of both worlds: it can deliver excellent overall performance
(similar to SJF/STCF) for short-running interactive jobs, and is fair
and makes progress for long-running CPU-intensive workloads. For
this reason, many systems, including BSD UNIX derivatives [LM+89,B86],
Solaris [M06], and Windows NT and subsequent Windows operating
systems [CS97] use a form of MLFQ as their base scheduler.

DESIGN TIP: LEARNING FROM HISTORY

The multi-level feedback queue is an excellent example of a system
that learns from the past to predict the future. Such approaches
are common in operating systems (and many other places in Com-
puter Science, including hardware branch predictors and caching al-
gorithms). Such approaches work when jobs have phases of behav-
ior and are thus predictable; of course, one must be careful with such
techniques, as they can easily be wrong and drive a system to make
worse decisions than they would have with no knowledge at all.

OPERATING

SYSTEMS ARPACI-DUSSEAU



SCHEDULING:
THE MULTI-LEVEL FEEDBACK QUEUE 13

References

[AD00] “Multilevel Feedback Queue Scheduling in Solaris”
Andrea Arpaci-Dusseau
Available: http://www.cs.wisc.edu/˜remzi/solaris-notes.pdf
A great short set of notes by one of the authors on the details of the Solaris scheduler. OK, we are
probably biased in this description, but the notes are pretty darn good.

[B86] “The Design of the UNIX Operating System”
M.J. Bach
Prentice-Hall, 1986
One of the classic old books on how a real UNIX operating system is built; a definite must-read
for kernel hackers.

[C+62] “An Experimental Time-Sharing System”
F. J. Corbato, M. M. Daggett, R. C. Daley
IFIPS 1962
A bit hard to read, but the source of many of the first ideas in multi-level feedback scheduling.
Much of this later went into Multics, which one could argue was the most influential operating
system of all time.

[CS97] “Inside Windows NT”
Helen Custer and David A. Solomon
Microsoft Press, 1997
The NT book, if you want to learn about something other than UNIX. Of course, why would you?
OK, we’re kidding; you might actually work for Microsoft some day you know.

[E95] “An Analysis of Decay-Usage Scheduling in Multiprocessors”
D.H.J. Epema
SIGMETRICS ’95
A nice paper on the state of the art of scheduling back in the mid 1990s, including a good overview
of the basic approach behind decay-usage schedulers.

[LM+89] “The Design and Implementation of the 4.3BSD UNIX Operating System”
S.J. Leffler, M.K. McKusick, M.J. Karels, J.S. Quarterman
Addison-Wesley, 1989
Another OS classic, written by four of the main people behind BSD. The later versions of this
book, while more up to date, don’t quite match the beauty of this one.

[M06] “Solaris Internals: Solaris 10 and OpenSolaris Kernel Architecture”
Richard McDougall
Prentice-Hall, 2006
A good book about Solaris and how it works.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



14
SCHEDULING:

THE MULTI-LEVEL FEEDBACK QUEUE

[O11] “John Ousterhout’s Home Page”
John Ousterhout
Available: http://www.stanford.edu/˜ouster/
The home page of the famous Professor Ousterhout. The two co-authors of this book had the
pleasure of taking graduate operating systems from Ousterhout while in graduate school; indeed,
this is where the two co-authors got to know each other, eventually leading to marriage, kids, and
even this book. Thus, you really can blame Ousterhout for this entire mess you’re in.

[P+95] “Informed Prefetching and Caching”
R.H. Patterson, G.A. Gibson, E. Ginting, D. Stodolsky, J. Zelenka
SOSP ’95
A fun paper about some very cool ideas in file systems, including how applications can give the
OS advice about what files it is accessing and how it plans to access them.

OPERATING

SYSTEMS ARPACI-DUSSEAU



SCHEDULING:
THE MULTI-LEVEL FEEDBACK QUEUE 15

Homework

This program, scheduler-mlfq.py, allows you to see how the
MLFQ scheduler presented in this chapter behaves. As before, you
can use this to generate problems for yourself using random seeds, or
use it to construct a carefully-designed experiment to see how MLFQ
works under different circumstances. To run the program, type:

prompt> ./scheduler-mlfq.py

Use the help flag (-h) to see the options:

Usage: scheduler-mlfq.py [options]

Options:

-h, --help show this help message and exit

-s SEED, --seed=SEED the random seed

-n NUMQUEUES, --numQueues=NUMQUEUES

number of queues in MLFQ (if not using -Q)

-q QUANTUM, --quantum=QUANTUM

length of time slice (if not using -Q)

-Q QUANTUMLIST, --quantumList=QUANTUMLIST

length of time slice per queue level,

specified as x,y,z,... where x is the

quantum length for the highest-priority

queue, y the next highest, and so forth

-j NUMJOBS, --numJobs=NUMJOBS

number of jobs in the system

-m MAXLEN, --maxlen=MAXLEN

max run-time of a job (if random)

-M MAXIO, --maxio=MAXIO

max I/O frequency of a job (if random)

-B BOOST, --boost=BOOST

how often to boost the priority of all

jobs back to high priority (0 means never)

-i IOTIME, --iotime=IOTIME

how long an I/O should last (fixed constant)

-S, --stay reset and stay at same priority level

when issuing I/O

-l JLIST, --jlist=JLIST

a comma-separated list of jobs to run,

in the form x1,y1,z1:x2,y2,z2:... where

x is start time, y is run time, and z

is how often the job issues an I/O request

-c compute answers for me

There are a few different ways to use the simulator. One way is to
generate some random jobs and see if you can figure out how they
will behave given the MLFQ scheduler. For example, if you wanted

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



16
SCHEDULING:

THE MULTI-LEVEL FEEDBACK QUEUE

to create a randomly-generated three-job workload, you would sim-
ply type:

prompt> ./scheduler-mlfq.py -j 3

What you would then see is the specific problem definition:

Here is the list of inputs:

OPTIONS jobs 3

OPTIONS queues 3

OPTIONS quantum length for queue 2 is 10

OPTIONS quantum length for queue 1 is 10

OPTIONS quantum length for queue 0 is 10

OPTIONS boost 0

OPTIONS ioTime 0

OPTIONS stayAfterIO False

For each job, three defining characteristics are given:

startTime : at what time does the job enter the system

runTime : the total CPU time needed by the job to finish

ioFreq : every ioFreq time units, the job issues an I/O

(the I/O takes ioTime units to complete)

Job List:

Job 0: startTime 0 - runTime 84 - ioFreq 7

Job 1: startTime 0 - runTime 42 - ioFreq 2

Job 2: startTime 0 - runTime 51 - ioFreq 4

Compute the execution trace for the given workloads.

If you would like, also compute the response and turnaround

times for each of the jobs.

Use the -c flag to get the exact results when you are finished.

This generates a random workload of three jobs (as specified), on
the default number of queues with a number of default settings. If
you run again with the solve flag on (-c), you’ll see the same print
out as above, plus the following:

OPERATING

SYSTEMS ARPACI-DUSSEAU



SCHEDULING:
THE MULTI-LEVEL FEEDBACK QUEUE 17

Execution Trace:

[time 0] JOB BEGINS by JOB 0

[time 0] JOB BEGINS by JOB 1

[time 0] JOB BEGINS by JOB 2

[time 0] Run JOB 0 at PRI 2 [TICKSLEFT 9 RUNTIME 84 TIMELEFT 83]

[time 1] Run JOB 0 at PRI 2 [TICKSLEFT 8 RUNTIME 84 TIMELEFT 82]

[time 2] Run JOB 0 at PRI 2 [TICKSLEFT 7 RUNTIME 84 TIMELEFT 81]

[time 3] Run JOB 0 at PRI 2 [TICKSLEFT 6 RUNTIME 84 TIMELEFT 80]

[time 4] Run JOB 0 at PRI 2 [TICKSLEFT 5 RUNTIME 84 TIMELEFT 79]

[time 5] Run JOB 0 at PRI 2 [TICKSLEFT 4 RUNTIME 84 TIMELEFT 78]

[time 6] Run JOB 0 at PRI 2 [TICKSLEFT 3 RUNTIME 84 TIMELEFT 77]

[time 7] IO_START by JOB 0

[time 7] Run JOB 1 at PRI 2 [TICKSLEFT 9 RUNTIME 42 TIMELEFT 41]

[time 8] Run JOB 1 at PRI 2 [TICKSLEFT 8 RUNTIME 42 TIMELEFT 40]

[time 9] IO_START by JOB 1

...

Final statistics:

Job 0: startTime 0 - response 0 - turnaround 175

Job 1: startTime 0 - response 7 - turnaround 191

Job 2: startTime 0 - response 9 - turnaround 168

Avg 2: startTime n/a - response 5.33 - turnaround 178.00

The trace shows exactly, on a millisecond-by-millisecond time scale,
what the scheduler decided to do. In this example, it begins by run-
ning Job 0 for 7 ms until Job 0 issues an I/O; this is entirely pre-
dictable, as Job 0’s I/O frequency is set to 7 ms, meaning that every
7 ms it runs, it will issue an I/O and wait for it to complete before
continuing. At that point, the scheduler switches to Job 1, which only
runs 2 ms before issuing an I/O. The scheduler prints the entire ex-
ecution trace in this manner, and finally also computes the response
and turnaround times for each job as well as an average.

You can also control various other aspects of the simulation. For
example, you can specify how many queues you’d like to have in
the system (-n) and what the quantum length should be for all of
those queues (-q); if you want even more control and varied quanta
length per queue, you can instead specify the length of the quantum
for each queue with -Q, e.g., -Q 10,20,30 simulates a scheduler
with three queues, with the highest-priority queue having a 10-ms
time slice, the next-highest a 20-ms time-slice, and the low-priority
queue a 30-ms time slice.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



18
SCHEDULING:

THE MULTI-LEVEL FEEDBACK QUEUE

If you are randomly generating jobs, you can also control how
long they might run for (-m), or how often they generate I/O (-M).
If you, however, want more control over the exact characteristics of
the jobs running in the system, you can use -l (lower-case “L”) or
--jlist, which allows you to specify the exact set of jobs you wish
to simulate. The list is of the form: x1,y1,z1:x2,y2,z2:... where x is
the start time of the job, y is the run time (i.e., how much CPU time
it needs), and z the I/O frequency (i.e., after running z ms, the job
issues an I/O; if z is 0, no I/Os are issued).

For example, if you wanted to recreate the example in Figure 8.4,
you would specify a job list as follows:

prompt> ./scheduler-mlfq.py --jlist 0,180,0:100,20,0 -Q 10,10,10

Running the simulator in this way creates a three-level MLFQ,
with each level having a 10-ms time slice. Two jobs are created: Job 0
which starts at time 0, runs for 180 ms total, and never issues an I/O;
Job 1 starts at 100 ms, needs only 20 ms of CPU time to complete, and
also never issues I/Os.

Finally, there are three more parameters of interest. The -B flag, if
set to a non-zero value, boosts all jobs to the highest-priority queue
every N milliseconds, when invoked as such:

prompt> ./scheduler-mlfq.py -B N

The scheduler uses this feature to avoid starvation as discussed in
the chapter. However, it is off by default.

The -S flag invokes older Rules 4a and 4b, which means that if
a job issues an I/O before completing its time slice, it will return
to that same priority queue when it resumes execution, with its full
time-slice intact. This enables gaming of the scheduler.

Finally, you can easily change how long an I/O lasts by using the
-i flag. By default in this simplistic model, each I/O takes a fixed
amount of time of 5 milliseconds or whatever you set it to with this
flag.

Questions

1. Run a few randomly-generated problems with just two jobs
and two queues; compute the MLFQ execution trace for each.
Make your life easier by limiting the length of each job and
turning off I/Os.

OPERATING

SYSTEMS ARPACI-DUSSEAU



SCHEDULING:
THE MULTI-LEVEL FEEDBACK QUEUE 19

2. How would you run the scheduler to reproduce each of the
examples in the chapter?

3. How would you configure the scheduler parameters to behave
just like a round-robin scheduler?

4. Craft a workload with two jobs and scheduler parameters so
that one job takes advantage of the older Rules 4a and 4b (turned
on with the -S flag) to game the scheduler and obtain 99% of
the CPU over a particular time interval.

5. Given a system with a quantum length of 10 ms in its highest
queue, how often would you have to boost jobs back to the
highest priority level (with the -B flag) in order to guarantee
that a single long-running (and potentially-starving) job gets
at least 5% of the CPU?

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)


