
9

Scheduling: Proportional Share

In this chapter, we’ll examine a different type of scheduler known
as a proportional-share scheduler, also sometimes referred to as a
fair-share scheduler. Proportional-share is based around a simple
concept: instead of optimizing for turnaround or response time, a
scheduler might instead try to simply guarantee that each job obtain
a certain percentage of CPU time.

An excellent modern example of proportional-share scheduling is
found in research by Waldspurger and Weihl [WW94], and is known
as lottery scheduling; however, the idea is certainly much older [KL88].
The basic idea is quite simple: every so often, hold a lottery to deter-
mine which process should get to run next; processes that should run
more often should be given more chances to win the lottery. Easy, no?
Now, onto the details!

9.1 Basic Concept: Tickets Represent Your Share

Underlying lottery scheduling is one very basic concept: tickets,
which are used to represent the share of a resource that a process
(or user or whatever) should receive. The percent of tickets that a
process has represents its share of the system resource in question.

Let’s look at an example. Imagine two processes, A and B, and
further that A has 75 tickets while B has only 25. Thus, what we
would like is for A to receive 75% of the CPU and B the remaining
25%.

Lottery scheduling achieves this probabilistically (but not deter-
ministically) by holding a lottery every so often (say, every time slice).

1

2 SCHEDULING: PROPORTIONAL SHARE

Holding a lottery is straightforward: the scheduler must know how
many total tickets there are (in our example, there are 100). The
scheduler then picks a winning ticket, which is a number from 0 to

99 1 Assuming A holds tickets 0 through 74 and B 75 through 99, the
winning ticket simply determines whether A or B runs. The sched-
uler then loads the state of that winning process and runs it.

Here is an example output of a lottery scheduler’s winning tick-
ets:

63 85 70 39 76 17 29 41 36 39 10 99 68 83 63 62 43 0 49 49

Here is the resulting schedule:

A B A A B A A A A A A B A B A A A A A A

As you can see from the example, the use of randomness in lottery
scheduling leads to a probabilistic correctness in meeting the desired
proportion, but no guarantee. In our example above, B only gets to
run 4 out of 20 time slices (20%), instead of the desired 25% alloca-
tion. However, the longer these two jobs compete, the more likely
they are to achieve the desired percentages.

9.2 Ticket Mechanisms

Lottery scheduling also provides a number of mechanisms to ma-
nipulate tickets in different and sometimes useful ways. One way is
with the concept of ticket currency. Currency allows a user with a
set of tickets to allocate tickets among their own jobs in whatever cur-
rency they would like; the system then automatically converts said
currency into the correct global value.

For example, assume users A and B have each been given 100
tickets. User A is running two jobs, A1 and A2, and gives them each
500 tickets (out of 1000 total) in User A’s own currency. User B is
running only 1 job and gives it 10 tickets (out of 10 total). The system
will convert A1’s and A2’s allocation from 500 each in A’s currency
to 50 each in the global currency; similarly, B1’s 10 tickets will be
converted to 100 tickets. The lottery will then be held over the global
ticket currency (200 total) to determine which job runs.

1Computer Scientists always start counting at 0. It is so odd to non-computer-types
that famous people have felt obliged to write about why we do it this way [D82].

OPERATING

SYSTEMS ARPACI-DUSSEAU

SCHEDULING: PROPORTIONAL SHARE 3

DESIGN TIP: RANDOMNESS

One of the most beautiful aspects of lottery scheduling is its use of
randomness. When you have to make a decision, using such a ran-
domized approach is often a robust and simple way of doing so.

Random approaches has at least three advantages over more tradi-
tional decisions. First, random often avoids strange corner-case be-
haviors that a more traditional algorithm may have trouble handling.
For example, consider LRU page replacement (studied in more detail
in a future chapter on virtual memory); while often a good replace-
ment algorithm, LRU performs pessimally for some cyclic-sequential
workloads. Random, on the other hand, has no such worst case.

Second, random also is lightweight, requiring little state to track al-
ternatives. In a traditional fair-share scheduling algorithm, tracking
how much CPU each process has received requires per-process ac-
counting, which must be updated after running each process. Doing
so randomly necessitates only the most minimal of per-process state
(e.g., the number of tickets each has).

Finally, random can be quite fast. As long as generating a random
number is quick, making the decision is also, and thus random can
be used in a number of places where speed is required. Of course, the
faster the need, the more random tends towards pseudo-random.

User A -> 500 (A’s currency) to A1 -> 50 (global currency)

-> 500 (A’s currency) to A2 -> 50 (global currency)

User B -> 10 (B’s currency) to B1 -> 100 (global currency)

Another useful mechanism is ticket transfer. With transfers, a
process can temporarily hand off its tickets to another process. This
ability is especially useful in a client/server setting, where a client
process sends a message to a server asking it to do some work on the
client’s behalf. To speed up the work, the client can pass the tickets
to the server and thus try to maximize the performance of the server
while the server is handling the client’s request. When finished, the
server then transfers the tickets back to the client and all is as before.

Finally, ticket inflation can sometimes be a useful technique. With
inflation, a process can temporarily raise or lower the number of tick-

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

4 SCHEDULING: PROPORTIONAL SHARE

ets it owns. Of course, in a competitive scenario with processes that
do not trust one another, this makes little sense; one greedy process
could give itself a vast number of tickets and take over the machine.
Rather, inflation can be applied in an environment where a group of
processes trust one another; in such a case, if any one process knows
it needs more CPU time, it can boost its ticket value as a way to re-
flect that need to the system, all without communicating with any
other processes.

9.3 Implementation

Probably the most amazing thing about lottery scheduling is the
simplicity of its implementation. Basically, all you need is a good
random number generator to pick the winning ticket, a simple data
structure to track the processes of the system (e.g., a list), and the
total number of tickets.

Let’s assume we keep the processes in a list. Here is an exam-
ple list comprised of three processes, A, B, and C, each with some
number of tickets.

head -> (A | 100) -> (B | 50) -> (C | 250) -> null

To make a scheduling decision, we first have to pick a random
number (the winner) from the total number of tickets (400). Let’s say
we pick the number 300. Then, we simply traverse the list, with a
simple counter used to help us find the winner. Here is some exam-
ple code that will do just that:

counter = 0;

winner = random(totaltickets); // get winner

list_t *current = head;

// loop until the sum of ticket values is > the winner

while (current) {

counter = counter + current->tickets;

if (counter > winner)

break; // found the winner

current = current->next;

}

// current is the winner: schedule it...

All the code does is walk the list of processes, adding their ticket
value to counter until the value exceeds winner. Once that is the

OPERATING

SYSTEMS ARPACI-DUSSEAU

SCHEDULING: PROPORTIONAL SHARE 5

case, the current list element is the winning process. With our exam-
ple of the winning ticket being 300, the following would take place.
First, counter would be incremented to 100 to account for A’s tickets;
because 100 is less than 300, the loop would continue. Then, counter
would be updated to 150 (B’s tickets), still less than 300 and thus
again we continue. Finally, the counter is updated to 400, clearly
greater than 300, and thus we would break out of the loop with
current pointing at process C as the winner.

To make this process most efficient, it might generally be best to
organize the list in sorted order, from the highest number of tickets
to the lowest. The ordering does not effect the correctness of the
algorithm; however, it does ensure in general that the fewest number
of list iterations are taken.

9.4 How To Assign Tickets?

One problem we have not addressed with lottery scheduling is:
how to assign tickets to jobs? This problem is a tough one, because of
course how the system behaves is strongly dependent on how tickets
are allocated. One approach is to assume that the users know best; in
such a case, each user is handed some number of tickets, and a user
can allocate tickets to any jobs they run as desired. However, this
solution is a non-solution: it really doesn’t tell you what to do. Thus,
given a set of jobs, the “ticket-assignment problem” remains open.

9.5 Why Not Deterministic?

You might also be wondering: why use randomness at all? As
we saw above, while randomness gets us a simple (and approxi-
mately correct) scheduler, it occasionally will not deliver the exact
right proportions, especially over short time scales. For this reason,
Waldspurger invented stride scheduling, a deterministic fair-share
scheduler [W95].

Stride scheduling is also straightforward. Each job in the system
has a stride, which is inverse in proportion to the number of tickets
it has. In our example above, with jobs A, B, and C, with 100, 50,
and 250 tickets, respectively, we can compute the stride of each by
dividing some large number by the number of tickets each process
has been assigned. For example, if we divide 10,000 by each of those

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

6 SCHEDULING: PROPORTIONAL SHARE

Pass(A) Pass(B) Pass(C) Who Runs?
(stride=100) (stride=200) (stride=40)

0 0 0 A
100 0 0 B
100 200 0 C
100 200 40 C
100 200 80 C
100 200 120 A
200 200 120 C
200 200 160 C
200 200 200 ...

Table 9.1: Stride Scheduling: A Trace

ticket values, we obtain the following stride values for A, B, and C:
100, 200, and 40. We call this value the stride of each process; every
time a process runs, we will increment a counter for it (called its pass
value) by its stride to track its global progress.

The scheduler then uses the stride and pass to determine which
process should run next. The basic idea is simple: at any given time,
pick the process to run that has the lowest pass value so far; when
you run a process, increment its pass counter by its stride. A pseu-
docode implementation [W95]:

// select client with minimum pass value

current = queue_remove_min(queue);

// use resource for quantum

schedule(current);

// compute next pass using stride

current->pass += current->stride;

// put back into the queue

queue_insert(queue, current);

In our example, we start with three processes (A, B, and C), with
stride values of 100, 200, and 40, and all with pass values initially at
0. Thus, at first, any of the processes might run, as their pass values
are equally low. Assume we pick A. A runs, and when finished with
the time slice, we update its pass value to 100. Then we run B, whose
pass value is then set to 200. Finally, we run C, whose pass value
is incremented to 40. At this point, the algorithm will pick the low-
est pass value, which is C’s, and run it, updating its pass to 80 (C’s
stride is 40, as you recall). Then C will run again (still the lowest pass
value), raising its pass to 120. A will run now, updating its pass to
200 (now equal to B’s). Then C will run twice more, updating its pass
to 160 then 200. At this point, all pass values are equal again, and the

OPERATING

SYSTEMS ARPACI-DUSSEAU

SCHEDULING: PROPORTIONAL SHARE 7

process will repeat, ad infinitum. Table 9.1 traces the behavior of the
scheduler over time.

As we can see from the table, C ran five times, A twice, and B just
once, exactly in proportion to their ticket values of 250, 100, and 50.
Lottery scheduling achieves the proportions probabilistically over
time; stride scheduling gets them exactly right.

So why use lottery at all? Well, lottery scheduling has one nice
property that stride scheduling does not: no global state. Imagine a
new job enters in the middle of our stride scheduling example above;
what should its pass value be? Should it be set to 0? If so, it will
monopolize the CPU. With lottery scheduling, there is no global state
per process; we simply add a new process with whatever tickets it
has, update the single global variable to track how many total tickets
we have, and go from there. In this way, lottery makes it much easier
to incorporate new processes in a sensible manner.

9.6 Summary

We have introduced the concept of proportional-share schedul-
ing and briefly discussed two implementations: lottery and stride
scheduling. Lottery uses randomness in a clever way to achieve pro-
portional share; stride does so deterministically. Although both are
conceptually interesting, they have not achieved wide-spread adop-
tion for a variety of reasons. One is that such approaches do not par-
ticularly mesh well with I/O [AC97]; another is that they leave open
the hard problem of ticket assignment. General-purpose schedulers
such as the MLFQ we discussed previously do so more gracefully
and thus are used in many systems. These schedulers thus likely
would be useful in domains where some of these problems (such as
assignment of shares) are relatively easy to solve, e.g., in a virtual
machine environment where you decide to give one-quarter of your
CPU cycles to the Windows VM and the rest to your base Linux in-
stallation.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

8 SCHEDULING: PROPORTIONAL SHARE

References

[AC97] “Extending Proportional-Share Scheduling to a Network of Workstations”
Andrea C. Arpaci-Dusseau and David E. Culler
PDPTA’97, June 1997
A paper by one of the authors on how to extend proportional-share scheduling to work better in a
clustered environment.

[D82] “Why Numbering Should Start At Zero”
Edsger Dijkstra, August 1982
http://www.cs.utexas.edu/users/EWD/ewd08xx/EWD831.PDF
A short note from E. Dijkstra, one of the pioneers of computer science. We’ll be hearing much
more on this guy in the section on Concurrency. In the meanwhile, enjoy this note, which includes
this motivating quote: “One of my colleagues – not a computing scientist – accused a number of
younger computing scientists of ’pedantry’ because they started numbering at zero.” The note
explains why doing so is logical.

[KL88] “A Fair Share Scheduler”
J. Kay and P. Lauder
CACM, Volume 31 Issue 1, January 1988
An early reference to a fair-share scheduler.

[WW94] “Lottery Scheduling: Flexible Proportional-Share Resource Management”
Carl A. Waldspurger and William E. Weihl
OSDI ’94, November 1994
The landmark paper on lottery scheduling that got the systems community re-energized about
scheduling, fair sharing, and the power of simple randomized algorithms.

[W95] “Lottery and Stride Scheduling: Flexible
Proportional-Share Resource Management”
Carl A. Waldspurger
Ph.D. Thesis, MIT, 1995
The award-winning thesis of Waldspurger’s that outlines lottery and stride scheduling. If you’re
thinking of writing a Ph.D. dissertation at some point, you should always have a good example
around, to give you something to strive for: this is such a good one.

OPERATING

SYSTEMS ARPACI-DUSSEAU

SCHEDULING: PROPORTIONAL SHARE 9

Homework

This program,lottery.py, allows you to see how a lottery sched-
uler works. As always, there are two steps to running the program.
First, run without the -c flag: this shows you what problem to solve
without revealing the answers.

prompt> ./lottery.py -j 3 -s 0

...

Here is the job list, with the run time of each job:

Job 0 (length = 8, tickets = 75)

Job 1 (length = 4, tickets = 25)

Here is the set of random numbers you will need (at most):

Random 0.511274721369

Random 0.40493413745

Random 0.783798589035

Random 0.303312726079

Random 0.476596954152

Random 0.583382039455

Random 0.908112885195

Random 0.504686855817

Random 0.2818378444

Random 0.755804204157

Random 0.618368996675

Random 0.250506341362

When you run the simulator in this manner, it first assigns you
some random jobs (here of lengths 8, and 4), each with some number
of tickets (here 75 and 25, respectively). The simulator also gives you
a list of random numbers, which you will need to determine what
the lottery scheduler will do.

Running with -c shows exactly what you are supposed to calcu-
late:

prompt> ./lottery.py -j 2 -s 0 -c

...

** Solutions **

Random 0.511274721369 -> Winning ticket 51 (of 100) -> Run 0

Jobs: (* job:0 run:8 tix:75) (job:1 run:4 tix:25)

Random 0.40493413745 -> Winning ticket 40 (of 100) -> Run 0

Jobs: (* job:0 run:7 tix:75) (job:1 run:4 tix:25)

Random 0.783798589035 -> Winning ticket 78 (of 100) -> Run 1

Jobs: (job:0 run:6 tix:75) (* job:1 run:4 tix:25)

Random 0.303312726079 -> Winning ticket 30 (of 100) -> Run 0

Jobs: (* job:0 run:6 tix:75) (job:1 run:3 tix:25)

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

10 SCHEDULING: PROPORTIONAL SHARE

Random 0.476596954152 -> Winning ticket 47 (of 100) -> Run 0

Jobs: (* job:0 run:5 tix:75) (job:1 run:3 tix:25)

Random 0.583382039455 -> Winning ticket 58 (of 100) -> Run 0

Jobs: (* job:0 run:4 tix:75) (job:1 run:3 tix:25)

Random 0.908112885195 -> Winning ticket 90 (of 100) -> Run 1

Jobs: (job:0 run:3 tix:75) (* job:1 run:3 tix:25)

Random 0.504686855817 -> Winning ticket 50 (of 100) -> Run 0

Jobs: (* job:0 run:3 tix:75) (job:1 run:2 tix:25)

Random 0.2818378444 -> Winning ticket 28 (of 100) -> Run 0

Jobs: (* job:0 run:2 tix:75) (job:1 run:2 tix:25)

Random 0.755804204157 -> Winning ticket 75 (of 100) -> Run 1

Jobs: (job:0 run:1 tix:75) (* job:1 run:2 tix:25)

Random 0.618368996675 -> Winning ticket 61 (of 100) -> Run 0

Jobs: (* job:0 run:1 tix:75) (job:1 run:1 tix:25)

Random 0.250506341362 -> Winning ticket 6 (of 25) -> Run 1

Jobs: (job:0 run:0 tix:---) (* job:1 run:1 tix:25)

As you can see from this trace, what you are supposed to do is use
the random number to figure out which ticket is the winner. Then,
given the winning ticket, figure out which job should run. Repeat
this until all of the jobs are finished running. It’s as simple as that –
you are just emulating what the lottery scheduler does, but by hand!

Just to make this absolutely clear, let’s look at the first decision
made in the example above. At this point, we have two jobs (job
0 which has a runtime of 8 and 75 tickets, and job 1 which has a
runtime of 4 and 25 tickets). The first random number we are given
is 0.511274721369. From this, we can compute the winning ticket
simply by multiplying by the total number of tickets, and taking the
integer result: 0.511274721369 * 100 = 51.1274721369 = 51.

If ticket 51 is the winner, we simply search through the job list
until we find it. The first entry, for job 0, has 75 tickets (0 through
74), and thus we have found our winner, and we run job 0 for the
quantum length (1 in this example). All of this is shown in the print
out as follows:

Random 0.511274721369 -> Winning ticket 51 (of 100) -> Run 0

Jobs: (* job:0 run:8 tix:75) (job:1 run:4 tix:25)

As you can see, the first line summarizes what happens, and the
second simply shows the entire job queue, with an * denoting which
job was chosen.

The simulator has a few other options, most of which should be
self-explanatory. Most notably, the -l/--jlist flag can be used to

OPERATING

SYSTEMS ARPACI-DUSSEAU

SCHEDULING: PROPORTIONAL SHARE 11

specify an exact set of jobs and their ticket values, instead of always
using randomly-generated job lists.

prompt> ./lottery.py -h

Usage: lottery.py [options]

Options:

-h, --help

show this help message and exit

-s SEED, --seed=SEED

the random seed

-j JOBS, --jobs=JOBS

number of jobs in the system

-l JLIST, --jlist=JLIST

instead of random jobs, provide a comma-separated list

of run times and ticket values (e.g., 10:100,20:100

would have two jobs with run-times of 10 and 20, each

with 100 tickets)

-m MAXLEN, --maxlen=MAXLEN

max length of job

-T MAXTICKET, --maxtick=MAXTICKET

maximum ticket value, if randomly assigned

-q QUANTUM, --quantum=QUANTUM

length of time slice

-c, --compute

compute answers for me

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

12 SCHEDULING: PROPORTIONAL SHARE

Questions

1. Compute the solutions for simulations with 3 jobs and random
seeds of 1, 2, and 3.

2. Now run with two specific jobs: each of length 10, but one (job
0) with just 1 ticket and the other (job 1) with 100 (e.g., -l
10:1,10:100). What happens when the number of tickets
is so imbalanced? Will job 0 ever run before job 1 completes?
How often? In general, what does such a ticket imbalance do
to the behavior of lottery scheduling?

3. When running with two jobs of length 100 and equal ticket al-
locations of 100 (-l 100:100,100:100), how unfair is the
scheduler? Run with some different random seeds to deter-
mine the (probabilistic) answer; let unfairness be determined
by how much earlier one job finishes than the other.

4. How does your answer to the previous question change as the
quantum size (-q) gets larger?

OPERATING

SYSTEMS ARPACI-DUSSEAU

