
Part II

Concurrency

1





24

A Dialogue on Concurrency

Professor: And thus we reach the second of our three pillars of operating
systems: concurrency.

Student: I thought there were four pillars...?

Professor: Nope, that was in an older version of the book.

Student: Umm... OK. So what is concurrency, oh wonderful professor?

Professor: Well, imagine we have a peach –

Student: (interrupting) Peaches again! What is it with you and peaches?

Professor: Ever read T.S. Eliot? The Love Song of J. Alfred Prufrock, “Do
I dare to eat a peach”, and all that fun stuff?

Student: Oh yes! In English class in high school. Great stuff! I really liked
the part where –

Professor: (interrupting) This has nothing to do with that – I just like
peaches. Anyhow, imagine there are a lot of peaches on a table, and a lot
of people who wish to eat them. Let’s say we did it this way: each eater
first identifies a peach visually, and then tries to grab it and eat it. What is
wrong with this approach?

Student: Hmmm... seems like you might see a peach that somebody else
also sees. If they get there first, when you reach out, no peach for you!

3



4 A DIALOGUE ON CONCURRENCY

Professor: Exactly! So what should we do about it?

Student: Well, probably develop a better way of going about this. Maybe
form a line, and when you get to the front, grab a peach and get on with it.

Professor: Good! But what’s wrong with your approach?

Student: Sheesh, do I have to do all the work?

Professor: Yes.

Student: OK, let me think. Well, we used to have many people grabbing
for peaches all at once, which is faster. But in my way, we just go one at
a time, which is correct, but quite a bit slower. The best kind of approach
would be fast and correct, probably.

Professor: You are really starting to impress. In fact, you just told us
everything we need to know about concurrency! Well done.

Student: I did? I thought we were just talking about peaches. Remember,
this is usually a part where you make it about computers again.

Professor: Indeed. My apologies! One must never forget the concrete.
Well, as it turns out, there are certain types of programs that we call multi-
threaded applications; each thread is kind of like an independent agent
running around in this program, doing things on the program’s behalf. But
these threads access memory, and for them, each spot of memory is kind of
like one of those peaches. If we don’t coordinate access to memory between
threads, the program won’t work as expected. Make sense?

Student: Kind of. But why do we talk about this in an OS class? Isn’t that
just application programming?

Professor: Good question! A few reasons, actually. First, the OS must
support multi-threaded applications with primitives such as locks and con-
dition variables, which we’ll talk about soon. Second, the OS itself was
the first concurrent program – it must access its own memory very care-
fully or many strange and terrible things will happen. Really, it can get
quite grisly.

Student: I see. Sounds interesting. There are more details, I imagine?

Professor: Indeed there are...

OPERATING

SYSTEMS ARPACI-DUSSEAU


