
26

Interlude: Thread API

This chapter briefly covers the main portions of the thread API. Each
part will be explained further in the subsequent chapters, as we show
how to use the API. More details can be found in various books
and online sources [B97,B+96,K+96]. We should note that the sub-
sequent chapters introduce the concepts of locks and condition vari-
ables more slowly, with many examples; this chapter is thus better
used as a reference.

26.1 Thread Creation

The first thing you have to be able to do to write a multi-threaded
program is to create new threads, and thus some kind of thread cre-
ation interface must exist. In POSIX, it is easy:

#include <pthread.h>
int
pthread_create(pthread_t * restrict thread,

const pthread_attr_t * restrict attr,
void * (*start_routine)(void*),
void * restrict arg);

Now, this declaration might look a little complex (particularly if
you haven’t used function pointers in C), but actually it’s not too bad.
There are four arguments: thread, attr, start routine, and
arg. The first, thread, is a pointer to a structure of type pthread t;
we’ll use this structure to interact with this thread, and thus we need
to pass it to pthread create() in order to initialize it.

1

2 INTERLUDE: THREAD API

The second argument, attr, is used to specify any attributes this
thread might have. Some examples include setting the stack size or
perhaps information about the scheduling priority of the thread. An
attribute is initialized with a separate call to pthread attr init();
see the manual page for details. However, in most cases, the defaults
will be fine; in this case, we will simply pass the value NULL in.

The third argument is the most complex, but is really just ask-
ing: which function should this thread start running in? In C, we
call this a function pointer, and this one tells us the following is ex-
pected: a function name (start routine), which is passed a sin-
gle argument of type void * (as indicated in the parentheses after
start routine), and which returns a value of type void *.

If this routine instead required an integer argument, instead of a
void *, the declaration would look like this:

int pthread_create(..., // first two args are the same
void * (*start_routine)(int),
int arg);

If instead the routine took a void * as an argument, but returned
an integer, it would look like this:

int pthread_create(..., // first two args are the same
int (*start_routine)(void *),
void * arg);

Finally, the fourth argument, arg, is exactly the argument to be
passed to the function where the thread begins execution. Now you
might be asking: why all of these void * declarations? Well, the an-
swer is quite simple: having a void * argument to the start routine
allows us to pass in any type of argument the function requires; hav-
ing it as a return value allows the thread to return any type of argu-
ment as well.

Let’s look at an example in Figure 26.1. Here we just create a
thread that is passed two arguments, packaged into a single type we
define ourselves (myarg t). The thread, once created, can simply
cast its argument to the type it expects and thus unpack the argu-
ments as desired.

And there it is! Once you create a thread, you really have an-
other live executing entity, complete with its own call stack, running
within the same address space as all the currently existing threads in
the program. The fun thus begins!

OPERATING

SYSTEMS ARPACI-DUSSEAU

INTERLUDE: THREAD API 3

#include <pthread.h>

typedef struct __myarg_t {
int a;
int b;

} myarg_t;

void *mythread(void *arg) {
myarg_t *m = (myarg_t *) arg;
printf("%d %d\n", m->a, m->b);
return NULL;

}

int
main(int argc, char *argv[]) {

pthread_t p;
int rc;

myarg_t args;
args.a = 10;
args.b = 20;
rc = pthread_create(&p, NULL, mythread, &args);
...

}

Figure 26.1: Creating a Thread

26.2 Thread Completion

The example above shows how to create a thread. However, what
happens if you want to wait for a thread to complete? You need to
do something special in order to wait for completion; in particular,
you must call the routine pthread join().

int pthread_join(pthread_t thread, void **value_ptr);

This routine takes only two arguments. The first is of type pthread t,
and is used to specify which thread to wait for. This value is exactly
what you passed into the thread library during creation; if you held
onto it, you can now use it to wait for the thread to stop running.

The second argument is a pointer to the return value you expect
to get back. Because the routine can return anything, it is defined
to return a pointer to void; because the pthread join() routine
changes the value of the passed in argument, you need to pass in a
pointer to that value, not just the value itself.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

4 INTERLUDE: THREAD API

Let’s look at another example (Figure 26.2). In the code, a sin-
gle thread is again created, and passed a couple of arguments via the
myarg t structure. To return values, the myret t type is used. Once
the thread is finished running, the main thread, which has been wait-

ing inside of pthread join()1, then returns, and we can access the
values returned from the thread, namely whatever is in myret t.

A few things to note about this example. First, often times we
don’t have to do all of this painful packing and unpacking of argu-
ments. For example, if we just create a thread with no arguments, we
can pass NULL in as an argument when the thread is created. Simi-
larly, we can pass NULL into pthread join() if we don’t care about
the return value.

Second, if we are just passing in a single value (e.g., an int), we
don’t have to package it up as an argument. Figure 26.3 shows an
example. In this case, life is a bit simpler, as we don’t have to package
arguments and return values inside of structures.

Third, we should note that one has to be extremely careful with
how values are returned from a thread. In particular, never return a
pointer which refers to something allocated on the thread’s call stack.
If you do, what do you think will happen? (think about it!) Here is
an example of a dangerous piece of code, modified from the example
in Figure 26.2.

void *mythread(void *arg) {
myarg_t *m = (myarg_t *) arg;
printf("%d %d\n", m->a, m->b);
myret_t r; // ALLOCATED ON STACK -> BAD!
r.x = 1;
r.y = 2;
return (void *) &r;

}

In this case, the variable r is allocated on the stack of mythread.
However, when it returns, the value is automatically deallocated
(that’s why the stack is so easy to use, after all!), and thus, passing
back a pointer to a now deallocated variable will lead to all sorts of
bad results. Certainly, when you print out the values you think you

1Note we use wrapper functions here; specifically, we call Malloc(), Pthread join(),
and Pthread create(), which just call their similarly-named lower-case versions and
make sure the routines did not return anything unexpected.

OPERATING

SYSTEMS ARPACI-DUSSEAU

INTERLUDE: THREAD API 5

#include <stdio.h>
#include <pthread.h>
#include <assert.h>
#include <stdlib.h>

typedef struct __myarg_t {
int a;
int b;

} myarg_t;

typedef struct __myret_t {
int x;
int y;

} myret_t;

void *mythread(void *arg) {
myarg_t *m = (myarg_t *) arg;
printf("%d %d\n", m->a, m->b);
myret_t *r = Malloc(sizeof(myret_t));
r->x = 1;
r->y = 2;
return (void *) r;

}

int
main(int argc, char *argv[]) {

int rc;
pthread_t p;
myret_t *m;

myarg_t args;
args.a = 10;
args.b = 20;
Pthread_create(&p, NULL, mythread, &args);
Pthread_join(p, (void **) &m);
printf("returned %d %d\n", m->x, m->y);
return 0;

}

Figure 26.2: Waiting for Thread Completion

returned, you’ll probably (but not necessarily!) be surprised at what

you see. Try it and find out for yourself2!
Finally, you might notice that the use of pthread create() to

2Fortunately the compiler gcc will likely complain when you write code like this,
yet another reason to pay attention to compiler warnings.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

6 INTERLUDE: THREAD API

void *mythread(void *arg) {
int m = (int) arg;
printf("%d\n", m);
return (void *) (arg + 1);

}

int main(int argc, char *argv[]) {
pthread_t p;
int rc, m;
Pthread_create(&p, NULL, mythread, (void *) 100);
Pthread_join(p, (void **) &m);
printf("returned %d\n", m);
return 0;

}

Figure 26.3: Simpler Argument Passing to a Thread

create a thread, followed by an immediate call to pthread join(),
is a pretty strange way to create a thread. In fact, there is an eas-
ier way to accomplish this exact task; it’s called a procedure call.
Clearly, we’ll usually be creating more than just one thread and wait-
ing for it to complete, otherwise there is not much purpose to using
threads at all.

We should note that not all code that is multi-threaded uses the
join routine. For example, a multi-threaded web server might create
a number of worker threads, and then use the main thread to ac-
cept requests and pass them to the workers, indefinitely. Such long-
lived programs thus may not need join. However, a parallel program
which creates threads to execute a particular task (in parallel) will
likely use join to make sure all such work completes before either
exiting or moving onto the next stage of a computation.

26.3 Locks

Beyond thread creation and join, probably the next most useful
set of functions provided by the POSIX threads library are those for
providing mutual exclusion to a critical section via locks. The most
basic pair of routines to use for this purpose is provided by this pair
of routines:

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

OPERATING

SYSTEMS ARPACI-DUSSEAU

INTERLUDE: THREAD API 7

The routines should be easy to understand and use. When you
have a region of code you realize is a critical section, and thus needs
to be protected by locks in order to operate as desired. You can prob-
ably imagine what the code looks like:

pthread_mutex_t lock;
pthread_mutex_lock(&lock);
x = x + 1; // or whatever your critical section is
pthread_mutex_unlock(&lock);

The intent of the code is as follows: if no other thread holds the
lock when pthread mutex lock() is called, the thread should ac-
quire the lock and enter the critical section. If another thread does
indeed hold the lock, the thread trying to grab the lock will not re-
turn from the call until it has acquired the lock (implying that the
thread holding the lock has indeed released it via the unlock call). Of
course, many threads may be stuck waiting inside the lock acquisi-
tion function at a given time; only the thread with the lock acquired,
however, should call unlock.

Unfortunately, this code is broken, in two important ways. The
first problem is a lack of proper initialization. All locks must be prop-
erly initialized in order to guarantee that they have the correct values
to begin with and thus work as desired when lock and unlock are
called.

With POSIX threads, there are two ways to initialize locks. One
way to do this is to use PTHREAD MUTEX INITIALIZER, as follows:

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

Doing so sets the lock to the default values and thus makes the
lock usable. The dynamic way to do it (i.e., at run time) is to make a
call to pthread mutex init(), as follows:

int rc = pthread_mutex_init(&lock, NULL);
assert(rc == 0); // always check success!

The first argument to this routine is the address of the lock itself,
whereas the second is an optional set of attributes. Read more about
the attributes yourself; passing NULL in simply uses the defaults. Ei-
ther way works, but we usually use the dynamic (latter) method.
Note that a corresponding call to pthread cond destroy() should
also be made, when you are done with the lock; see the manual page
for all of details.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

8 INTERLUDE: THREAD API

// Use this to keep your code clean but check for failures
// Only use if exiting program is OK upon failure
void Pthread_mutex_lock(pthread_mutex_t *mutex) {

int rc = pthread_mutex_lock(mutex);
assert(rc == 0);

}

Figure 26.4: An Example Wrapper

The second problem with the code above is that it fails to check er-
rors code when calling lock and unlock. Just like virtually any library
routine you call in a UNIX system, these routines can also fail! If
your code doesn’t properly check error codes, the failure will happen
silently, which in this case could allow multiple threads into a criti-
cal section. Minimally, use wrappers, which assert that the routine
succeeded (e.g., as in Figure 26.4); more sophisticated (non-toy) pro-
grams, which can’t simply exit when something goes wrong, should
check for failure and do something appropriate when the lock or un-
lock does not succeed.

The lock and unlock routines are not the only routines that pthreads
has to interact with locks. In particular, here are a couple more rou-
tines which may be of interest:

int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_timedlock(pthread_mutex_t *mutex,

struct timespec *restrict abs_timeout);

These two calls are used in lock acquisition. The trylock ver-
sion returns failure if the lock is already held; the timedlock ver-
sion of acquiring a lock returns after a timeout or after acquiring the
lock, whichever happens first. Thus, the timedlock with a timeout of
zero degenerates to the trylock case. Both of these versions should
generally be avoided; however, there are a few cases where avoid-
ing getting stuck (perhaps indefinitely) in a lock acquisition routine
can be useful, as we’ll see in future chapters (e.g., when we study
deadlock).

26.4 Condition Variables

The other major component of any threads library, and certainly
the case with POSIX threads, is the presence of a condition variable.
Condition variables are useful when some kind of signaling must
take place between threads, if one thread is waiting for another to do

OPERATING

SYSTEMS ARPACI-DUSSEAU

INTERLUDE: THREAD API 9

something before it can continue. Two primary routines are used by
programs wishing to interact in this way:

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
int pthread_cond_signal(pthread_cond_t *cond);

To use a condition variable, one has to in addition have a lock that
is associated with this condition. When calling either of the above
routines, this lock should be held.

The first routine, pthread cond wait(), puts the calling thread
to sleep, and thus waits for some other thread to signal it, usually
when something in the program has changed that the now-sleeping
thread might care about. For example, a typical usage looks like this:

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t init = PTHREAD_COND_INITIALIZER;

Pthread_mutex_lock(&lock);
while (initialized == 0)

Pthread_cond_wait(&init, &lock);
Pthread_mutex_unlock(&lock);

In this code, after initialization of the relevant lock and condition
3, a thread checks to see if the variable initialized has yet been
set to something other than zero. If not, the thread simply calls the
wait routine in order to sleep until some other thread wakes it.

The code to wake a thread, which would run in some other thread,
looks like this:

Pthread_mutex_lock(&lock);
initialized = 1;
Pthread_cond_signal(&init);
Pthread_mutex_unlock(&lock);

A few things to note about this code sequence. First, when signal-
ing (as well as when modifying the global variable initialized),
we always make sure to have the lock held. This ensures that we
don’t accidentally introduce a race condition into our code.

Second, you might notice that the wait call takes a lock as its sec-
ond parameter, whereas the signal call only takes a condition. The

3Note that one could use pthread cond init() (and correspond-
ing the pthread cond destroy() call) instead of the static initializer
PTHREAD COND INITIALIZER. Sound like more work? It is.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

10 INTERLUDE: THREAD API

reason for this difference is that the wait call, in addition to putting
the calling thread to sleep, releases the lock when putting said caller
to sleep. Imagine if it did not: how could the other thread acquire
the lock and signal it to wake up? However, before returning after
being woken, the pthread cond wait() re-acquires the lock, thus
ensuring that any time the waiting thread is running between the
lock acquire at the beginning of the wait sequence, and the lock re-
lease at the end, it holds the lock.

One last oddity: the waiting thread re-checks the condition in a
while loop, instead of a simple if statement. We’ll discuss this issue
in detail when we study condition variables in a future chapter, but
in general, using a while loop is the simple and safe thing to do. Al-
though it rechecks the condition (perhaps adding a little overhead),
there are some pthread implementations that could spuriously wake
up a waiting thread; in such a case, without rechecking, the waiting
thread will continue thinking that the condition has changed even
though it has not. It is safer thus to view waking up as a hint that
something might have changed, rather than an absolute fact.

Note that sometimes it is tempting to use a simple flag to signal
between two threads, instead of a condition variable and associated
lock. For example, we could rewrite the waiting code above to look
more like this in the waiting code:

while (initialized == 0)
; // spin

The associated signaling code would look like this:

initialized = 1;

Don’t ever do this, for the following reasons. First, it performs
poorly in many cases (spinning for a long time just wastes CPU cy-
cles). Second, it is error prone. As recent research shows [X+10], it
is surprisingly easy to make mistakes when using flags (as above) to
synchronize between threads; roughly half the uses of these ad hoc
synchronizations were buggy! Don’t be lazy; use condition variables
even when you think you can get away without doing so.

OPERATING

SYSTEMS ARPACI-DUSSEAU

INTERLUDE: THREAD API 11

26.5 Compiling and Running

All of the code examples in this chapter are relatively easy to get
up and running. To compile them, you must include the header
pthread.h in your code. On the link line, you must also explicitly
link with the pthreads library, by adding the -pthread flag.

For example, to compile a simple multi-threaded program, all you
have to do is the following:

prompt> gcc -o main main.c -Wall -pthread

As long as main.c includes the pthreads header, you have now
successfully compiled a concurrent program. Whether it works or
not, as usual, is a different matter entirely.

26.6 Summary

We have introduced the basics of the pthread library, including
thread creation, building mutual exclusion via locks, and signaling
and waiting via condition variables. You don’t need much else to
write robust and efficient multi-threaded code, except patience and
a great deal of care!

We now end the chapter with a set of tips that might be useful
to you when you write multi-threaded code (see the side bar for de-
tails). There are other aspects of the API that are interesting; see man
-k pthread on a Linux system to see over one hundred APIs that
make up the entire interface. However, the basics discussed herein
should enable you to build sophisticated (and hopefully, correct and
performant) multi-threaded programs. The hard part with threads is
not the APIs, but rather the tricky logic of how you build concurrent
programs. Read on to learn more.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

12 INTERLUDE: THREAD API

DESIGN TIP: USING THE THREAD APIS

There are a number of small but important things to remember when you
use the POSIX thread library (or really, any thread library) to build a multi-
threaded program. They are:

• Keep it simple. Above all else, any code to lock or signal between
threads should be as simple as possible. Tricky thread interactions lead
to bugs.

• Minimize thread interactions. Try to keep the number of ways in
which threads interact to a minimum. Each interaction should be
carefully thought out and constructed with tried and true approaches
(many of which we will learn about in the coming chapters).

• Initialize locks and condition variables. Failure to do so will lead to
code that sometimes works and sometimes fails in very strange ways.

• Check your return codes. Of course, in any C and UNIX programming
you do, you should be checking each and every return code, and it’s
true here as well. Failure to do so will lead to bizarre and hard to
understand behavior, making you likely to (a) scream, (b) pull some of
your hair out, or (c) both.

• Be careful with how you pass arguments to, and return values from,
threads. In particular, any time you are passing a reference to a vari-
able allocated on the stack, you are probably doing something wrong.

• Each thread has its own stack. As related to the point above, please re-
member that each thread has its own stack. Thus, if you have a locally-
allocated variable inside of some function a thread is executing, it is
essentially private to that thread; no other thread can (easily) access it.
To share data between threads, the values must be in the heap or oth-
erwise some locale that is globally accessible.

• Always use condition variables to signal between threads. While it
is often tempting to use a simple flag, don’t do it.

• Use the manual pages. On Linux, in particular, the pthread man pages
are highly informative and discuss much of the nuances presented
here, often in even more detail. Read them carefully!

OPERATING

SYSTEMS ARPACI-DUSSEAU

INTERLUDE: THREAD API 13

References

[B97] “Programming with POSIX Threads”
David R. Butenhof
Addison-Wesley, May 1997
Another one of these books on threads.

[B+96] “PThreads Programming:
A POSIX Standard for Better Multiprocessing”
Dick Buttlar, Jacqueline Farrell, Bradford Nichols
O’Reilly, September 1996
A reasonable book from the excellent, practical publishing house O’Reilly. Our bookshelves cer-
tainly contain a great deal of books from this company, including some excellent offerings on Perl,
Python, and Javascript (particularly Crockford’s “Javascript: The Good Parts”.)

[K+96] “Programming With Threads”
Steve Kleiman, Devang Shah, Bart Smaalders
Prentice Hall, January 1996
Probably one of the better books in this space. Get it at your local library.

[X+10] “Ad Hoc Synchronization Considered Harmful”
Weiwei Xiong, Soyeon Park, Jiaqi Zhang, Yuanyuan Zhou, Zhiqiang Ma
OSDI 2010, Vancouver, Canada
This paper shows how seemingly simple synchronization code can lead to a surprising number of
bugs. Use condition variables and do the signaling correctly!

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

