
29

Condition Variables

Thus far we have developed the notion of a lock and seen how one
can be properly built with the right combination of hardware and
OS support. Unfortunately, locks are not the only primitives that are
needed to build concurrent programs.

In particular, there are many cases where a thread wishes to check
whether a condition is true before continuing its execution. For ex-
ample, a parent thread might wish to check whether a child thread
has completed before continuing (this is often called a join()); how
should such a wait be implemented? Let’s look at Figure 29.1.

1 void *
2 child(void *arg) {

3 printf("child\n");

4 // XXX how to indicate we are done?

5 return NULL;

6 }

7

8 int

9 main(int argc, char *argv[]) {

10 printf("parent: begin\n");

11 pthread_t c;

12 Pthread_create(&c, NULL, child, NULL); // create child

13 // XXX how to wait for child?

14 printf("parent: end\n");

15 return 0;

16 }

Figure 29.1: A Parent Waiting For Its Child

1



2 CONDITION VARIABLES

What we would like to see here is the following output:

parent: begin

child

parent: end

We could try using a shared variable, as you see in Figure 29.2.
This solution will generally work, but it is hugely inefficient as the
parent spins and wastes CPU time. What we would like here instead
is some way to put the parent to sleep until the condition we are
waiting for (e.g., the child is done executing) comes true.

THE CRUX: HOW TO WAIT FOR A CONDITION

In multi-threaded programs, it is often useful for a thread to wait
for some condition to become true before proceeding. The simple ap-
proach, of just spinning until the condition becomes true, is grossly
inefficient and wastes CPU cycles, and in some cases, can be incor-
rect. Thus, how should a thread wait for a condition?

1 volatile int done = 0;

2

3 void *
4 child(void *arg) {

5 printf("child\n");

6 done = 1;

7 return NULL;

8 }

9

10 int

11 main(int argc, char *argv[]) {

12 printf("parent: begin\n");

13 pthread_t c;

14 Pthread_create(&c, NULL, child, NULL); // create child

15 while (done == 0)

16 ; // spin

17 printf("parent: end\n");

18 return 0;

19 }

Figure 29.2: Parent Waiting For Child: Spin-based Approach

OPERATING

SYSTEMS ARPACI-DUSSEAU



CONDITION VARIABLES 3

29.1 Definition and Routines

To wait for a condition to become true, a thread can make use of
what is known as a condition variable. A condition variable is an
explicit queue that threads can put themselves on when some state
of execution (i.e., some condition) is not as desired (by waiting on
the condition); some other thread, when it changes said state, can
then wake one (or more) of those waiting threads and thus allow
them to continue (by signaling on the condition). The idea goes back
to Dijkstra’s use of “private semaphores” [D68]; a similar idea was
later named a “condition variable” by Hoare in his work on monitors
[H74].

To declare such a condition variable, one simply writes something
like this: pthread cond t c;, which declares c as a condition vari-
able (note: proper initialization is also required). A condition vari-
able has two operations associated with it: wait() and signal().
The wait() call is executed when a thread wishes to put itself to
sleep; the signal() call is executed when a thread has changed
something in the program and thus wants to wake a sleeping thread
waiting on this condition. Specifically, the POSIX calls look like this:

pthread_cond_wait(pthread_cond_t *c, pthread_mutex_t *m);

pthread_cond_signal(pthread_cond_t *c);

We will just refer to these as wait() and signal() for simplic-
ity. One thing you might notice about the wait() call is that it also
takes a mutex as a parameter; it assumes that this mutex is locked
when wait() is called. The responsibility of wait() is to release
the lock and put the calling thread to sleep (atomically); when the
thread wakes up (after some other thread has signaled it), it must
re-acquire the lock before returning to the caller. This complexity
stems from the desire to prevent certain race conditions from occur-
ring when a thread is trying to put itself to sleep. Let’s take a look
at the solution to the join problem (Figure 29.3) to understand this
better.

There are two cases to consider. In the first, the parent creates
the child thread but continues running itself (assume we have only
a single processor) and thus immediately calls into thr join() to
wait for the child thread to complete. In this case, it will acquire the
lock, check if the child is done (it is not), and put itself to sleep by
calling wait() (hence releasing the lock). The child will eventually

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



4 CONDITION VARIABLES

1 int done = 0;

2 pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

3 pthread_cond_t c = PTHREAD_COND_INITIALIZER;

4

5 void thr_exit() {

6 Pthread_mutex_lock(&m);

7 done = 1;

8 Pthread_cond_signal(&c);

9 mutex_unlock(&m);

10 }

11

12 void *child(void *arg) {

13 printf("child\n");

14 thr_exit();

15 return NULL;

16 }

17

18 void thr_join() {

19 Pthread_mutex_lock(&m);

20 while (done == 0)

21 Pthread_cond_wait(&c, &m);

22 Pthread_mutex_unlock(&m);

23 }

24

25 int main(int argc, char *argv[]) {

26 printf("parent: begin\n");

27 pthread_t p;

28 Pthread_create(&p, NULL, child, NULL);

29 thr_join();

30 printf("parent: end\n");

31 return 0;

32 }

Figure 29.3: Parent Waiting For Child: Use A Condition Variable

run, print the message “child”, and call thr exit() to wake the
parent thread; this code just grabs the lock, sets the state variable
done, and signals the parent thus waking it. Finally, the parent will
run (returning from wait()with the lock held), unlock the lock, and
print the final message “parent: end”.

In the second case, the child runs immediately upon creation, and
thus sets done to 1, calls signal to wake a sleeping thread (but there
is none, so this just returns), and is done. The parent then runs, calls
thr join(), which checks done and sees that it is 1 and thus does
not wait and returns.

One last note: you might observe the parent uses a while loop
instead of just an if statement when deciding whether to wait on

OPERATING

SYSTEMS ARPACI-DUSSEAU



CONDITION VARIABLES 5

the condition. While this does not seem strictly necessary per the
logic of the program, it is always a good idea, as we will see below.

To make sure we understand the importance of each piece of the
thr exit() and thr join() code, let’s try a few alternate imple-
mentations. First, you might be wondering if we need the state vari-
able done. For example, what if the code looked like the example
below. Would this work? (think about it!)

void thr_exit() {

mutex_lock(&m);

Pthread_cond_signal(&c);

mutex_unlock(&m);

}

void thr_join() {

mutex_lock(&m);

Pthread_cond_wait(&c, &m);

mutex_unlock(&m);

}

Unfortunately this approach does not work. Imagine the case
where the child runs immediately and calls thr exit() right away;
in this case, the child will signal, but there is no thread asleep on the
condition. Thus, when the parent runs, it will simply call wait and
be stuck; no thread will ever wake it. From this example, you should
be able to understand the importance of the state variable done; it
records the value the threads are interested in knowing. The sleep-
ing, waking, and locking all are built around it.

Here is another poor implementation. In this example, we imag-
ine that one does not need to hold a lock in order to signal and wait.
What problem could occur here? (Think about it!)

void thr_exit() {

done = 1;

Pthread_cond_signal(&c);

}

void thr_join() {

if (done == 0)

Pthread_cond_wait(&c);

}

The issue here is an even trickier race condition. Specifically, if
the parent calls thr join() and then checks the value of done, it

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



6 CONDITION VARIABLES

will see that it is 0 and thus try to go to sleep. But just before it calls
wait to go to sleep, the parent is interrupted, and the child runs. The
child changes the state variable done to 1 and signals, but no thread
is waiting and thus no thread is woken. When the parent runs again,
it sleeps forever.

Hopefully, from this simple join example, you can see some of the
basic requirements of using condition variables properly. To make
sure you understand, we now go through a more complicated exam-
ple: the producer/consumer or bounded-buffer problem.

CODING TIP: ALWAYS HOLD THE LOCK WHILE SIGNALING

Although it is strictly not necessary in all cases, it is likely simplest
and best to hold the lock while signaling when using condition vari-
ables. The example above shows a case where you must hold the lock
for correctness; however, there are some other cases where it is likely
OK not to, but probably is something you should avoid. Thus, for
simplicity, hold the lock when calling signal.

The converse of this tip, i.e., hold the lock when calling wait, is not
just a tip, but rather mandated by the semantics of wait, because wait
always (a) assumes the lock is held when you call it, (b) releases said
lock when putting the caller to sleep, and (c) re-acquires the lock just
before returning. Thus, the generalization of this tip is correct: hold
the lock when calling signal or wait, and you will always be in good
shape.

29.2 The Producer/Consumer (Bound Buffer) Problem

The next synchronization problem we will confront in this note
is known as the producer/consumer problem, or sometimes as the
bounded buffer problem, which was also first posed by Dijkstra
[D72]. Indeed, it was this very producer/consumer problem that
led Dijkstra and his co-workers to invent the generalized semaphore
(which can be used as either a lock or a condition variable) [D01]; we
will learn more about semaphores in a future chapter.

Imagine one or more producer threads and one or more consumer
threads. Producers produce data items and wish to place them in a
buffer; consumers grab data items out of the buffer consume the data
in some way.

OPERATING

SYSTEMS ARPACI-DUSSEAU



CONDITION VARIABLES 7

1 int buffer;

2 int count = 0; // initially, empty

3

4 void put(int value) {

5 assert(count == 0);

6 count = 1;

7 buffer = value;

8 }

9

10 int get() {

11 assert(count == 1);

12 count = 0;

13 return buffer;

14 }

Figure 29.4: The Put and Get Routines (Version 1)

This arrangement occurs in many real systems. For example, in
a multi-threaded web server, a producer puts HTTP requests into
a work queue (i.e., the bounded buffer); consumer threads take re-
quests out of this queue and process them.

A bounded buffer is also used when you pipe the output of one
program into another (e.g., grep foo file.txt | wc -l). This
example runs two processes concurrently; grep writes lines from
file.txt with the string foo in them to what it thinks is standard
output; instead, however, the UNIX shell has redirected the output
to what is called a UNIX pipe (created by the pipe system call). The
other end of this pipe is connected to the standard input of the pro-
cess wc, which simply counts the number of lines in the input stream
and prints out the result. Thus, the grep process is the producer; the
wc process is the consumer; between them is an in-kernel bounded
buffer.

Because the bounded buffer is a shared resource, we must of course
require synchronized access to it, lest a race condition arise. To begin
to understand this problem better, let us examine some actual code.

The first thing we need is a shared buffer, into which a producer
puts data, and out of which a consumer takes data. Let’s just use
a single integer for simplicity (you can certainly imagine placing a
pointer to a data structure into this slot instead), and the two inner
routines to put a value into the shared buffer, and to get a value out
of the buffer. See Figure 29.4 for details.

Pretty simple, no? The put() routine assumes the buffer is empty

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



8 CONDITION VARIABLES

1 void *producer(void *arg) {

2 int i;

3 int loops = (int) arg;

4 for (i = 0; i < loops; i++) {

5 put(i);

6 }

7 }

8

9 void *consumer(void *arg) {

10 int i;

11 while (1) {

12 int tmp = get();

13 printf("%d\n", tmp);

14 }

15 }

Figure 29.5: Producer/Consumer Threads (Version 1)

(and checks this with an assertion), and then simply puts a value into
the shared buffer and marks it full by setting count to 1. The get()
routine does the opposite, setting the buffer to empty (i.e., setting
count to 0) and returning the value.

Now we need to write some routines that know when it is OK to
access the buffer to either put data into it or get data out of it. The
conditions for this should be obvious: only put data into the buffer
when count is zero (i.e., when the buffer is empty), and only get
data from the buffer when count is one (i.e., when the buffer is full).
If we write the synchronization code such that a producer puts data
into a full buffer, or a consumer gets data from an empty one, we
have done something wrong (and in this code, an assertion will fire).

This work is going to be done by two types of threads, one set of
which we’ll call the producer threads, and the other set which we’ll
call consumer threads. Figure 29.5 shows the code for a producer
that puts an integer into the shared buffer loops number of times,
and a consumer that gets the data out of that shared buffer (forever),
each time printing it out.

A Broken Solution

Now imagine that we have just a single producer and a single
consumer. Obviously the put() and get() routines have critical
sections within them, as put() updates the buffer, and get() reads
from it. However, putting a lock around the code doesn’t work;
we need something more. Not surprisingly, that something more
is some condition variables. Let’s try to throw some in there and

OPERATING

SYSTEMS ARPACI-DUSSEAU



CONDITION VARIABLES 9

1 cond_t cond;

2 mutex_t mutex;

3

4 void *producer(void *arg) {

5 int i;

6 for (i = 0; i < loops; i++) {

7 mutex_lock(&mutex);

8 if (count == 1)

9 cond_wait(&cond, &mutex);

10 put(i);

11 cond_signal(&cond);

12 mutex_unlock(&mutex);

13 }

14 }

15

16 void *consumer(void *arg) {

17 int i;

18 for (i = 0; i < loops; i++) {

19 mutex_lock(&mutex);

20 if (count == 0)

21 cond_wait(&cond, &mutex);

22 int tmp = get();

23 cond_signal(&cond);

24 mutex_unlock(&mutex);

25 printf("%d\n", tmp);

26 }

27 }

Figure 29.6: Producer/Consumer: Single CV and If Statement

see what happens. In this (broken) first try (Figure 29.6), we have a
single condition variable cond and an associated lock mutex.

Let’s understand the signaling between producers and consumers.
When a producer wants to fill the buffer, it first waits for the buffer
to be empty (lines 7–9). The consumer has the same logic, but waits
for the buffer to become full (19–21).

With just a single producer and a single consumer, the code above
works. However, if we have more than one of these threads, the
solution has some problems. Can you figure them out?

OK, you gave up. Let’s understand the first problem. It has to do
with the if statement before the wait. Imagine the following inter-
leaving of threads, where we assume there are two consumers (Tc1

and Tc2 and one producer, Tp. First, a consumer (Tc1) runs; it ac-
quires the lock (line 19), checks if any buffers are ready for consump-
tion (line 20), and finding that none are, waits (line 21) (which thus
releases the lock). Then a producer (Tp) runs. It acquires the lock

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



10 CONDITION VARIABLES

(line 7), checks if all buffers are full (line 8), and finding that not to be
the case, goes ahead and fills a buffer (line 10). Then, the producer
signals that a buffer has been filled. Critically, this moves the first
consumer (Tc1) from sleeping on a condition variable to the ready
queue; Tc1 is now able to run (but not yet running). The producer
then finishes, unlocking the mutex (line 12) and continuing to loop.

Here is where the problem occurs: another consumer (Tc2) comes
along and consumes the one existing value in the buffer (it runs from
line 19 through line 25, skipping the wait at 21 because the buffer was
full). Now Tc1 runs; just before returning from the wait it re-acquires
the lock and then returns. It then calls get() (line 22), but there are
no buffers to consume! An assertion triggers, and the code has not
worked as desired. Clearly, we should have somehow prevented Tc1

from trying to consume because Tc2 had snuck in and consumed the
one value in the buffer that had been produced.

The problem arises for a simple reason: after the producer woke
Tc1, but before Tc1 ever ran, the state of the bounded buffer changed
(thanks to Tc2). Signaling a thread only wakes them up; it is thus a
hint that the state of the world has changed (in this case, that a value
has been placed in the buffer), but there is no guarantee that when
the woken thread runs, the state will still be as desired. This interpre-
tation of what a signal means is often referred to as Mesa semantics,
after the first research that built a condition variable in such a man-
ner [LR80]; the contrast, referred to as Hoare semantics, is harder to
build but provides a stronger guarantee that the woken thread will
run immediately upon being woken [H74]. Virtually every system
ever built employs Mesa semantics.

Better, But Still Broken: While, Not If

Fortunately, this fix is easy (Figure 29.7): change the if to a while.
Think about why this works; now consumer Tc1 wakes up and (with
the lock held) immediately re-checks the state of the shared variable
(line 20). If the buffer is empty at that point, the consumer simply
goes back to sleep (line 21). The corollary if is also changed to a
while in the producer (line 8).

Thus, thanks to Mesa semantics, a simple rule to remember with
condition variables is to always use while loops. Sometimes you
don’t have to, but it is always safe to do so.

OPERATING

SYSTEMS ARPACI-DUSSEAU



CONDITION VARIABLES 11

1 cond_t cond;

2 mutex_t mutex;

3

4 void *producer(void *arg) {

5 int i;

6 for (i = 0; i < loops; i++) {

7 mutex_lock(&mutex);

8 while (count == 1)

9 cond_wait(&cond, &mutex);

10 put(i);

11 cond_signal(&cond);

12 mutex_unlock(&mutex);

13 }

14 }

15

16 void *consumer(void *arg) {

17 int i;

18 for (i = 0; i < loops; i++) {

19 mutex_lock(&mutex);

20 while (count == 0)

21 cond_wait(&cond, &mutex);

22 int tmp = get();

23 cond_signal(&cond);

24 mutex_unlock(&mutex);

25 printf("%d\n", tmp);

26 }

27 }

Figure 29.7: Producer/Consumer: Single CV and While

However, this code still has a bug, the second of two problems
mentioned above. Can you see it? It has something to do with the
fact that there is only one condition variable. Try to figure out what
the problem is, before reading ahead. DO IT!

Let’s confirm you figured it out correctly. The problem occurs
when two consumers run first (Tc1 and Tc2), and both go to sleep
(line 21). Then, a producer runs, put a value in the buffer, wakes one
of the consumers (say Tc1), and then goes back to sleep. Now we
have one consumer ready to run (Tc1), and two threads sleeping on
a condition (Tc2 and Tp).

The consumer Tc1 then wakes (returning from wait() at line 21),
re-checks the condition (line 20), and finding the buffer full, con-
sumes the value (line 22). This consumer then, critically, signals on
the condition, waking one thread that is sleeping. However, which
thread should be woken?

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



12 CONDITION VARIABLES

Because the consumer has emptied the buffer, it clearly should
wake the producer. However, if it wakes the consumer Tc2 (definitely
possible depending on how the wait queue is managed), we have a
problem. Specifically, the consumer Tc2 will wake up and find the
buffer empty (line 20), and go back to sleep (line 21). The producer
Tp, which has a value to put into the buffer, is left sleeping. The other
consumer thread, Tc1, also goes back to sleep. All three threads are
left sleeping, a clear correctness bug.

The Single Buffer Producer/Consumer Solution

The solution here is once again a small one: use two condition vari-
ables, instead of one, in order to properly signal which type of thread
should wake up when the state of the system changes. Figure 29.8
shows the resulting code.

1 cond_t empty, fill;

2 mutex_t mutex;

3

4 void *producer(void *arg) {

5 int i;

6 for (i = 0; i < loops; i++) {

7 mutex_lock(&mutex);

8 while (count == 1)

9 cond_wait(&empty, &mutex);

10 put(i);

11 cond_signal(&fill);

12 mutex_unlock(&mutex);

13 }

14 }

15

16 void *consumer(void *arg) {

17 int i;

18 for (i = 0; i < loops; i++) {

19 mutex_lock(&mutex);

20 while (count == 0)

21 cond_wait(&fill, &mutex);

22 int tmp = get();

23 cond_signal(&empty);

24 mutex_unlock(&mutex);

25 printf("%d\n", tmp);

26 }

27 }

Figure 29.8: Producer/Consumer: Two CVs and While

OPERATING

SYSTEMS ARPACI-DUSSEAU



CONDITION VARIABLES 13

1 int buffer[MAX];

2 int fill = 0;

3 int use = 0;

4 int count = 0;

5

6 void put(int value) {

7 buffer[fill] = value;

8 fill = (fill + 1) % MAX;

9 count++;

10 }

11

12 int get() {

13 int tmp = buffer[use];

14 use = (use + 1) % MAX;

15 count--;

16 return tmp;

17 }

Figure 29.9: The Final Put and Get Routines

In the code above, producer threads wait on the condition empty,
and signals fill. Conversely, consumer threads wait on fill and signal
empty. By doing so, the second problem above is avoided by design:
a consumer can never accidentally wake a consumer, and a producer
can never accidentally wake a producer.

The Final Producer/Consumer Solution

We now have a working producer/consumer solution, albeit not a
fully general one. The last change we make is to enable more con-
currency and efficiency; specifically, we add more buffer slots, so
that multiple values can be produced before sleeping, and similarly
multiple values can be consumed before sleeping. With just a single
producer and consumer, this approach is more efficient as it reduces
context switches; with multiple producers or consumers (or both), it
even allows concurrent producing or consuming to take place, thus
increasing parallelism.

The first change for this final solution is within the buffer struc-
ture itself and the corresponding put() and get() (Figure 29.9). We
also slightly change the conditions that producers and consumers
check in order to determine whether to sleep or not. Figure 29.10
shows the final waiting and signaling logic. Basically, a producer
only sleeps if all the buffers are currently filled (line 8); similarly, a
consumer only sleeps if all the buffers are currently empty (line 20).

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



14 CONDITION VARIABLES

1 cond_t empty, fill;

2 mutex_t mutex;

3

4 void *producer(void *arg) {

5 int i;

6 for (i = 0; i < loops; i++) {

7 mutex_lock(&mutex);

8 while (count == MAX)

9 cond_wait(&empty, &mutex);

10 put(i);

11 cond_signal(&fill);

12 mutex_unlock(&mutex);

13 }

14 }

15

16 void *consumer(void *arg) {

17 int i;

18 for (i = 0; i < loops; i++) {

19 mutex_lock(&mutex);

20 while (count == 0)

21 cond_wait(&fill, &mutex);

22 int tmp = get();

23 cond_signal(&empty);

24 mutex_unlock(&mutex);

25 printf("%d\n", tmp);

26 }

27 }

Figure 29.10: The Final Working Solution

CODING TIP: WHILE (NOT IF) FOR CONDITIONS

When checking for a condition in a multi-threaded program, us-
ing a while loop is always correct; using an if statement only
might be, depending on the semantics of signaling. Thus, always
use while and your code will behave as expected.

Using while loops around conditional checks also handles the
case where spurious wakeups occur. In some thread packages, due
to details of the implementation, it is possible that two threads get
woken up though just a single signal has taken place [L11]. Spuri-
ous wakeups are further reason to re-check the condition a thread is
waiting on.

OPERATING

SYSTEMS ARPACI-DUSSEAU



CONDITION VARIABLES 15

1 // how many bytes of the heap are free?

2 int bytesLeft = MAX_HEAP_SIZE;

3

4 // need lock and condition too

5 cond_t c;

6 mutex_t m;

7

8 void *
9 allocate(int size) {

10 lock(&m);

11 while (bytesLeft < size)

12 cond_wait(&c, &m);

13 void *ptr = ...; // get mem from heap

14 bytesLeft -= size;

15 unlock(&m);

16 return ptr;

17 }

18

19 void free(void *ptr, int size) {

20 lock(&m);

21 bytesLeft += size;

22 cond_signal(&c); // whom to signal??

23 unlock(&m);

24 }

Figure 29.11: Covering Conditions: An Example

29.3 Covering Conditions

Before closing, we’ll look at one more example of how condi-
tion variables can be used. This code study is drawn from Lampson
and Redell’s paper on Pilot [LR80], the same group who first imple-
mented the “Mesa” semantics described above (the language they
used was called Mesa, and hence the name).

The problem they ran into is best shown via simple example, in
this case in a simple multi-threaded memory allocation library. Be-
low is a code snippet which demonstrates the issue.

As you might see in the code snippet, when a thread calls into
the memory allocation code, it might have to wait in order for more
memory to become free. Conversely, when a thread frees memory,
it signals that more memory is free. However, our code above has a
problem: which waiting thread (there can be more than one) should
be woken up?

Consider the following scenario. Assume there are zero bytes free;
thread Ta calls allocate(100), followed by thread Tb which calls

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



16 CONDITION VARIABLES

allocate(10). Both Ta and Tb thus wait on the condition and go
to sleep; there aren’t enough free bytes to satisfy either request.

At that point, assume a third thread, Tc, comes along and calls
free(50). Unfortunately, when it calls signal to wake a waiting
thread, it might not wake the correct waiting thread, Tb, which is
waiting for only 10 bytes to be freed (Ta should still wait, as not
enough memory is yet free). Thus, the code above does not work,
as the thread waking other threads does not know which thread (or
threads) to wake up.

The solution suggested by Lampson and Redell is straightforward:
replace the cond signal() call in the code above with a call to
cond broadcast(), which wakes up all waiting threads. By do-
ing so, we guarantee that any threads that should be woken are. The
downside, of course, can be a negative performance impact, as we
might needlessly wake up many other waiting threads that shouldn’t
(yet) be awake. Those threads will simply wake up, re-check the con-
dition, and then go immediately back to sleep.

Lampson and Redell call such a condition a covering condition,
as it covers all the cases where a thread needs to wake up (con-
servatively); the cost, as we’ve discussed, is that too many threads
might be woken. The astute reader might also have noticed we could
have used this approach earlier (see the producer/consumer prob-
lem with only a single condition variable). However, in that case, a
better solution was available to us, and thus we used it. In general, if
you find that your program only works when you change your sig-
nals to broadcasts (but you don’t think it should need to), you prob-
ably have a bug; fix it! But in cases like the memory allocator above,
broadcast may be the most straightforward solution available.

29.4 Summary

We have seen the introduction of another important synchroniza-
tion primitive beyond locks: condition variables. By allowing threads
to sleep when some program state is not as desired, CVs enable us
to neatly solve a number of important synchronization problems, in-
cluding the famous (and still important) producer/consumer prob-
lem, as well as covering conditions. A more dramatic concluding
sentence would go here, such as “He loved Big Brother” [O49].

OPERATING

SYSTEMS ARPACI-DUSSEAU



CONDITION VARIABLES 17

References

[D72] “Information Streams Sharing a Finite Buffer”
E.W. Dijkstra
Information Processing Letters 1: 179180, 1972
Available: http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD329.PDF
The famous paper that introduced the producer/consumer problem.

[D01] “My recollections of operating system design”
E.W. Dijkstra
April, 2001
Available: http://www.cs.utexas.edu/users/EWD/ewd13xx/EWD1303.PDF
A fascinating read for those of you interested in how the pioneers of our field came up with some
very basic and fundamental concepts, including ideas like “interrupts” and even “a stack”!

[H74] “Monitors: An Operating System Structuring Concept”
C.A.R. Hoare
Communications of the ACM, 17:10, pages 549–557, October 1974
Hoare did a fair amount of theoretical work in concurrency. However, he is still probably most
known for his work on Quicksort, the coolest sorting algorithm in the world, at least according to
these authors.

[L11] “Pthread cond signal Man Page”
Available: http://linux.die.net/man/3/pthread cond signal
March, 2011
The Linux man page shows a nice simple example of why a thread might get a spurious wakeup,
due to race conditions within the signal/wakeup code.

[LR80] “Experience with Processes and Monitors in Mesa”
B.W. Lampson, D.R. Redell
Communications of the ACM. 23:2, pages 105-117, February 1980
A terrific paper about how to actually implement signaling and condition variables in a real sys-
tem, leading to the term “Mesa” semantics for what it means to be woken up; the older semantics,
developed by Tony Hoare [H74], then became known as “Hoare” semantics, which is hard to say
out loud in class with a straight face.

[O49] “1984”
George Orwell, 1949, Secker and Warburg
A little heavy-handed, but of course a must read. That said, we kind of gave away the ending by
quoting the last sentence. Sorry! And if the government is reading this, let us just say that we
think that the government is “double plus good”.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)


