
31

Deadlock

In this note we discuss one of the most basic problems of systems
with complex locking protocols: deadlock. Deadlock occurs, for ex-
ample, when a thread (say Thread 1) is holding a lock (L1) and wait-
ing for another one (L2); unfortunately, the thread (Thread 2) that
holds lock L2 is waiting for L1 to be released. Here is a code snippet
that demonstrates such a potential deadlock:

Thread 1: Thread 2:

lock(L1); lock(L2);

lock(L2); lock(L1);

Note that if this code runs, deadlock does not necessarily occur;
rather, it may occur, if, for example, Thread 1 grabs lock L1 and then
a context switch occurs to Thread 2. At that point, Thread 2 grabs L2,
and tries to acquire L1. Thus we have a deadlock, as each thread is
waiting for the other and neither can run. See Figure 31.1 for details;
the presence of a cycle in the graph is indicative of the deadlock.

The figure should make clear the problem. How should program-
mers write code so as to handle deadlock in some way?

CRUX: HOW TO DEAL WITH DEADLOCK

How should we build systems to prevent, avoid, or at least detect
and recover from deadlock? Is this a real problem in systems today?

1



2 DEADLOCK

Thread 1

Thread 2

Lock L1

Lock L2
Holds

Holds

W
a
n
te

d
 b

y

W
a
n
te

d
 b

y

Figure 31.1: The Deadlock Dependency Graph

31.1 Why Do Deadlocks Occur?

As you may be noting already, simple deadlocks such as the one
above seem readily avoidable. For example, if thread 1 and 2 both
made sure to grab locks in the same order (which we will discuss
further below), the deadlock would never arise. So why do dead-
locks happen?

One reason is that in large code bases, complex dependencies exist
between components. Take the OS, for example. The virtual mem-
ory system might need to access the file system in order to page in a
block from disk; the file system might subsequently require a page of
memory to read the block into and thus contact the virtual memory
system. Thus, the design of locking strategies in large systems must
be carefully done to avoid deadlock in the case of circular dependen-
cies that may arise naturally in the code.

Another reason is due to the nature of encapsulation. As software
developers, we are taught to hide details of implementations and
thus make software easier to build in a modular way. Unfortunately,
such modularity does not mesh well with locking. As Jula et al. point
out [J+08], some seemingly innocuous interfaces almost invite you

OPERATING

SYSTEMS ARPACI-DUSSEAU



DEADLOCK 3

to deadlock. For example, take the Java Vector class and the method
AddAll(). This routine would be called as follows:

Vector v1, v2;

v1.AddAll(v2);

Internally, because the method needs to be multi-thread safe, locks
for both the vector being added to (v1) and the parameter (v2) need
to be acquired. The routine acquires said locks in some arbitrary or-
der (say v1 then v2) in order to add the contents of v2 to v1. If some
other thread calls v2.AddAll(v1) at nearly the same time, we have
the potential for deadlock, all in a way that is quite hidden from the
calling application.

31.2 Conditions for Deadlock

Four conditions need to hold for a deadlock to occur [C+71]:

• Mutual exclusion: Threads claim exclusive control of resources
that they require (e.g., a thread grabs a lock).

• Hold-and-wait: Threads hold resources allocated to them (e.g.,
locks that they have already acquired) while waiting for addi-
tional resources (e.g., locks that they wish to acquire).

• No preemption: Resources (e.g., locks) cannot be forcibly re-
moved from threads that are holding them.

• Circular wait: There exists a circular chain of threads such that
each thread holds one more resources (e.g., locks) that are be-
ing requested by the next thread in the chain.

If any of these four conditions are not met, deadlock cannot occur.
Thus, we first explore techniques to prevent deadlock; each of these
strategies seeks to prevent one of the above conditions from arising
and thus is one approach to handling the deadlock problem.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



4 DEADLOCK

31.3 Prevention

Circular Wait

Probably the most practical prevention technique (and certainly one
that is used in many systems today) is to write your locking code
such that you never cause a circular wait to arise. The way to do
that is to provide a total ordering on lock acquisition. For example, if
there are only two locks in the system (L1 and L2), we can ensure
deadlock does not occur by always making sure to acquire L1 before
L2. Such strict ordering ensures that no cyclical wait can arise and
hence no deadlock.

As you can imagine, this approach requires careful design of global
locking strategies and must be done with great care. Further, it is just
a convention, and a sloppy programmer can easily ignore the locking
protocol and potentially cause deadlock. Finally, it requires a deep
understanding of the code base, and how various routines are called;
just one mistake could result in the wrong ordering of lock acquisi-
tion, and hence deadlock.

Hold-and-wait

The hold-and-wait requirement for deadlock can be avoided by ac-
quiring all locks at once, atomically. In practice, this could be achieved
as follows:

lock(prevention);

lock(L1);

lock(L2);

...

unlock(prevention);

By first grabbing the lock prevention, this code guarantees that
no untimely thread switch can occur in the midst of lock acquisition
and thus deadlock can once again be avoided. Of course, it requires
that any time any thread grabs a lock, it first acquires the global pre-
vention lock. For example, if another thread was trying to grab locks
L1 and L2 in a different order, it would be OK, because it would be
holding the prevention lock while doing so.

OPERATING

SYSTEMS ARPACI-DUSSEAU



DEADLOCK 5

Note that the solution is problematic for a number of reasons. As
before, encapsulation works against us: this approach requires us to
know when calling a routine exactly which locks must be held and to
acquire them ahead of time. Further, the approach likely decreases
concurrency as all locks must be acquired early on (at once) instead
of when they are truly needed.

No Preemption

Because we generally view locks as held until unlock is called, multi-
ple lock acquisition often gets us into trouble because when waiting
for one lock we are holding another. Many thread libraries provide
a more flexible set of interfaces to help avoid this situation. Specifi-
cally, a trylock() routine will grab the lock (if it is available) or re-
turn -1 indicating that the lock is held right now and that you should
try again later if you want to grab that lock.

Such an interface could be used as follows to build a deadlock-
free, ordering-robust lock acquisition protocol:

top:

lock(L1);

if (trylock(L2) == -1) {

unlock(L1);

goto top;

}

Note that another thread could follow the same protocol but grab
the locks in the other order (L2 then L1) and the program would still
be deadlock free. One new problem does arise, however: livelock.
It is possible (though perhaps unlikely) that two threads could both
be repeatedly attempting this sequence and repeatedly failing to ac-
quire both locks. In this case, both systems are running through this
code sequence over and over again (and thus it is not a deadlock),
but progress is not being made, hence the name livelock. There are
solutions to the livelock problem, too: for example, one could add
a random delay before looping back and trying the entire thing over
again, thus decreasing the odds of repeated interference among com-
peting threads.

One final point about this solution: it skirts around the hard parts
of using a trylock approach. The first problem that would likely exist
again arises due to encapsulation: if one of these locks is buried in

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



6 DEADLOCK

some routine that is getting called, the jump back to the beginning
becomes more complex to implement. If the code had acquired some
resources (other than L1) along the way, it must make sure to care-
fully release them as well; for example, if after acquiring L1, the code
had allocated some memory, it would have to release that memory
upon failure to acquire L2, before jumping back to the top to try the
entire sequence again. However, in limited circumstances (e.g., the
Java vector method above), this type of approach could work well.

Mutual Exclusion

The final prevention technique would be to avoid the need for mu-
tual exclusion at all. In general, we know this is difficult, because the
code we wish to run does indeed have critical sections. So what can
we do?

Herlihy had the idea that one could design various data struc-
tures to be wait-free [H91]. The idea here is simple: using powerful
hardware instructions, you can build data structures in a manner that
does not require explicit locking.

As a simple example, let us assume we have a compare-and-swap
instruction, which as you may recall is an atomic instruction pro-
vided by the hardware that does the following:

int CompareAndSwap(int *address, int expected, int new) {

if (*address == expected) {

*address = new;

return 1; // success

}

return 0; // failure

}

Imagine we now wanted to atomically increment a value by a cer-
tain amount. We could do it as follows:

void AtomicIncrement(int *value, int amount) {

do {

int old = *value;

} while (CompareAndSwap(value, old, old + amount) == 0);

}

Instead of acquiring a lock, doing the update, and then releasing
it, we have instead built an approach that repeatedly tries to update
the value to the new amount and uses the compare-and-swap to do

OPERATING

SYSTEMS ARPACI-DUSSEAU



DEADLOCK 7

so. In this manner, no lock is acquired, and no deadlock can arise
(though livelock is still a possibility).

Let us consider a slightly more complex example: list insertion.
Here is code that inserts at the head of a list:

void insert(int value) {

node_t *n = malloc(sizeof(node_t));

assert(n != NULL);

n->value = value;

n->next = head;

head = n;

}

This code performs a simple insertion, but if called by multiple
threads at the “same time”, has a race condition (see if you can figure
out why). Of course, we could solve this by surrounding this code
with a lock acquire and release:

void insert(int value) {

node_t *n = malloc(sizeof(node_t));

assert(n != NULL);

n->value = value;

lock(listlock); // begin critical section

n->next = head;

head = n;

unlock(listlock); // end of critical section

}

In this solution, we are using locks in the traditional manner1. In-
stead, let us try to perform this insertion in a wait-free manner sim-
ply using the compare-and-swap instruction. Here is one possible
approach:

void insert(int value) {

node_t *n = malloc(sizeof(node_t));

assert(n != NULL);

n->value = value;

do {

n->next = head;

} while (CompareAndSwap(&head, n->next, n));

}

1The astute reader might be asking why we grabbed the lock so late, instead of right
when entering the insert() routine; can you, astute reader, figure out why that is OK?

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



8 DEADLOCK

The code here updates the next pointer to point to the current
head, and then tries to swap the newly-created node into position as
the new head of the list. However, this will fail if some other thread
successfully swapped in a new head in the meanwhile, causing this
thread to retry again with the new head.

Of course, building a useful list requires more than just a list in-
sert, and not surprisingly building a list that you can insert into,
delete from, and perform lookups on in a wait-free manner is non-
trivial. Read more of the rich literature on wait-free synchronization
if you find this interesting.

31.4 Avoidance via Scheduling

Instead of deadlock prevention, in some scenarios deadlock avoid-
ance is preferable. Avoidance requires some global knowledge of
which locks various threads might grab during their execution, and
subsequently schedules said threads in a way as to guarantee no
deadlock can occur.

For example, assume we have two processors and four threads
which must be scheduled upon them. Assume further we know that
Thread 1 (T1) grabs locks L1 and L2 (in some order, at some point
during its execution), T2 grabs L1 and L2 as well, T3 grabs just L2,
and T4 grabs no locks at all. In tabular form:

T1 T2 T3 T4

L1 yes yes no no

L2 yes yes yes no

A smart scheduler could thus compute that as long as T1 and T2
are not run at the same time, no deadlock could ever arise. Here is
one such schedule:

CPU 1

CPU 2 T1 T2

T3 T4

Note that it is OK for (T3 and T1) or (T3 and T2) to overlap. Even
though T3 grabs lock L2, it can never cause a deadlock by running
concurrently with other threads because it only grabs one lock.

OPERATING

SYSTEMS ARPACI-DUSSEAU



DEADLOCK 9

Let’s look at one more example. In this one, there is more con-
tention for the same resources (again, locks L1 and L2), as indicated
by the following contention table:

T1 T2 T3 T4

L1 yes yes yes no

L2 yes yes yes no

In particular, threads T1, T2, and T3 all need to grab both locks
L1 and L2 at some point during their execution. Here is a possible
schedule that guarantees that no deadlock could ever occur:

CPU 1

CPU 2 T1 T2 T3

T4

As you can see, static scheduling leads to a conservative approach
where T1, T2, and T3 are all run on the same processor, and thus the
total time to complete the jobs is lengthened considerably. Though
it may have been possible to run these tasks concurrently, the fear of
deadlock prevents us from doing so, and the cost is performance.

One famous example of an approach like this is Dijkstra’s Banker’s
Algorithm [D64], and many similar approaches have been described
in the literature. Unfortunately, they are only useful in very limited
environments, for example, in an embedded system where one has
full knowledge of the entire set of tasks that must be run and the
locks that they need. Further, such approaches can limit concurrency,
as we saw in the second example above. Thus, avoidance of dead-
lock via scheduling is not a widely-used general-purpose solution.

31.5 Detect and Recover

One final general strategy is to allow deadlocks to occasionally
occur, and then take some action once such a deadlock has been de-
tected. For example, if an OS froze once a year, you would just reboot
it and get happily (or grumpily) on with your work. If deadlocks are
rare, such a non-solution is indeed quite pragmatic.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



10 DEADLOCK

DESIGN TIP: TOM WEST’S LAW

Tom West, famous as the subject of the classic computer-industry
book “Soul of a New Machine” [K81], says famously: “Not every-
thing worth doing is worth doing well”, which is a terrific engineer-
ing maxim. If a bad thing happens rarely, certainly one should not
spend a great deal of effort to prevent it, particularly if the cost of the
bad thing occurring is small.

Many database systems employ deadlock detection and recov-
ery techniques. A deadlock detector runs periodically, building a
resource graph and checking it for cycles. In the event of a cycle
(deadlock), the system needs to be restarted. If more intricate repair
of data structures is first required, a human being may be involved
to ease the process.

31.6 Summary

We have briefly discussed deadlock: why it occurs, and what can
be done about it. The problem is as old as concurrency itself, and
many hundreds of papers have been written about the topic. The
best solution in practice is to be careful, develop a lock acquisition
total order, and thus prevent deadlock from occurring in the first
place. Wait-free approaches also have promise, as some wait-free
data structures are now finding their way into commonly-used li-
braries and critical systems, including Linux. However, their lack of
generality and the complexity to develop a new wait-free data struc-
ture will likely limit the overall utility of this approach. Perhaps the
best solution is to develop new concurrent programming models: in
systems such as MapReduce (from Google) [GD02], programmers
can describe certain types of parallel computations without any locks
whatsoever. Locks are problematic by their very nature; thus, per-
haps we should seek to avoid using them unless we truly have to.

OPERATING

SYSTEMS ARPACI-DUSSEAU



DEADLOCK 11

References

[C+71] “System Deadlocks”
E.G. Coffman, M.J. Elphick, A. Shoshani
ACM Computing Surveys, 3:2, June 1971
The classic paper outlining the conditions for deadlock and how you might go about dealing with
it. There are certainly some earlier papers on this topic; see the references within this paper for
details.

[D64] “Een algorithme ter voorkoming van de dodelijke omarming”
Circulated privately, around 1964
Available: http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD108.PDF
Indeed, not only did Dijkstra come up with a number of solutions to the deadlock problem, he was
the first to note its existence, at least in written form. However, he called it the “deadly embrace”,
which (thankfully) did not catch on.

[GD02] “MapReduce: Simplified Data Processing on Large Clusters”
Sanjay Ghemawhat and Jeff Dean
OSDI 2004
The MapReduce paper ushered in the era of large-scale data processing, and proposes a framework
for performing such computations on clusters of generally unreliable machines.

[H91] “Wait-free Synchronization”
Maurice Herlihy
ACM TOPLAS, 13(1), pages 124-149, January 1991
Herlihy’s work pioneers the ideas behind wait-free approaches to writing concurrent programs.
These approaches tend to be complex and hard, often more difficult than using locks correctly,
probably limiting their success in the real world.

[J+08] “Deadlock Immunity: Enabling Systems To Defend Against Deadlocks”
Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, George Candea
OSDI ’08, San Diego, CA, December 2008
An excellent recent paper on deadlocks and how to avoid getting caught in the same ones over
and over again in a particular system.

[K81] “Soul of a New Machine”
Tracy Kidder, 1980
A must-read for any systems builder or engineer, detailing the early days of how a team inside
Data General (DG), led by Tom West, worked to produce a “new machine.” Kidder’s other book
are also excellent, in particular, “Mountains beyond Mountains”. Or maybe you don’t agree with
me, comma?

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)


