
33

Summary Dialogue on Concurrency

Professor: So, does your head hurt now?

Student: (taking two Motrin tablets) Well, some. It’s hard to think about
all the ways threads can interleave.

Professor: Indeed it is. I am always amazed at how so few line of code,
when concurrent execution is involved, can become nearly impossible to
understand.

Student: Me too! It’s kind of embarrassing, as a Computer Scientist, not
to be able to make sense of five lines of code.

Professor: Oh, don’t feel too badly. If you look through the first papers on
concurrent algorithms, they are sometimes wrong! And the authors often
professors!

Student: (gasps) Professors can be ... umm... wrong?

Professor: Yes, it is true. Though don’t tell anybody – it’s one of our trade
secrets.

Student: I am sworn to secrecy. But if concurrent code is so hard to think
about, and so hard to get right, how are we supposed to write correct con-
current code?

Professor: Well that is the real question, isn’t it? I think it starts with
a few simple things. First, keep it simple! Avoid complex interactions
between threads, and use well-known and tried-and-true ways to manage

1



2 SUMMARY DIALOGUE ON CONCURRENCY

thread interactions.

Student: Like simple locking, and maybe a producer-consumer queue?

Professor: Exactly! Those are common paradigms, and you should be able
to produce the working solutions given what you’ve learned. Second, only
use concurrency when absolutely needed; avoid it if at all possible. There is
nothing worse than premature optimization of a program.

Student: I see – why add threads if you don’t need them?

Professor: Exactly. Third, if you really need parallelism, seek it in other
simplified forms. For example, the Map-Reduce method for writing parallel
data analysis code is an excellent example of achieving parallelism without
having to handle any of the horrific complexities of locks, condition vari-
ables, and the other nasty things we’ve talked about.

Student: Map-Reduce, huh? Sounds interesting – I’ll have to read more
about it on my own.

Professor: Good! You should. In the end, you’ll have to do a lot of that,
as what we learn together can only serve as the barest introduction to the
wealth of knowledge that is out there. Read, read, and read some more!
And then try things out, write some code, and then write some more too.
As Gladwell talks about in his book “Outliers”, you need to put roughly
10,000 hours into something in order to become a real expert. You can’t do
that all inside of class time!

Student: Wow, I’m not sure if that is depressing, or uplifting. But I’ll
assume the latter, and get to work! Time to write some more concurrent
code...

OPERATING

SYSTEMS ARPACI-DUSSEAU


