
46

Distributed Systems

We now delve into one final major theme of our text: distribution.
In this part of the book, we will explore some of the underlying tech-
nology in one of the most important aspect of modern systems: how
to build distributed systems.

Distributed systems have changed the face of the world. When
your web browser connects to a web server somewhere else on the
planet, it is participating in what seems to be a simple form of a
client/server distributed system. When you contact a modern web
service such as Google or facebook, you are not just interacting with
a single machine, however; behind the scenes, these complex ser-
vices are built from a large collection (i.e., thousands) of machines,
each of which cooperate to provide the particular service of the site.
Thus, it should be clear what makes studying distributed systems
interesting. Indeed, it is worthy of an entire class; here, we just intro-
duce a few of the major topics.

A number of new challenges arise when building a distributed
system. The major one we focus on is failure; machines, disks, net-
works, and software all fail from time to time, as we do not (and
likely, will never) know how to build “perfect” components and sys-
tems. However, when we build a modern web service, we’d like it to
appear to clients as if it never fails; how can we accomplish this task?

Interestingly, while failure is a central challenge in constructing
distributed systems, it also represents an opportunity. Yes, machines
fail; but the mere fact that a machine fails does not imply the en-
tire system must fail. By collecting together a set of machines, we
can build a system that appears to rarely fail, despite the fact that

1



2 DISTRIBUTED SYSTEMS

Crux: HOW TO BUILD SYSTEMS THAT WORK WHEN COMPONENTS FAIL

The crux of the problem in building distributed systems is dealing
with failure. How can we build a working system out of parts that
don’t work correctly all the time? The basic question should remind
you of some of the topics we discussed in RAID storage arrays; how-
ever, the problems here tend to be more complex, as are the solutions.

its components fail regularly. This reality is the central beauty and
value of distributed systems, and why they underly virtually every
modern web service you use, including Google, facebook, Amazon,
etc.

Other important issues exist as well. System performance is of-
ten critical; with a network connecting our distributed system to-
gether, system designers must often think carefully about how to ac-
complish their given tasks, trying to reduce the number of messages
sent and further make communication as efficient (low latency, high
bandwidth) as possible.

Finally, security is also a necessary consideration. When connect-
ing to a remote site, having some assurance that the remote party is
who they say they are becomes a central problem. Further, ensuring
that third parties cannot monitor or alter an on-going communica-
tion between two others is also a challenge.

In this introduction, we’ll cover the most basic new aspect that is
new in a distributed system: communication. Namely, how should
machines within a distributed system communicate with one an-
other? We’ll start with the most basic primitives available, messages,
and build a few higher-level primitives on top of them. As we said
above, failure will be a central focus: how should communication
layers handle failures?

46.1 Communication Basics

The central tenet of modern networking is that communication is
fundamentally unreliable. Whether in the wide-area Internet, or a
local-area high-speed network such as Infiniband, packets are regu-
larly lost, corrupted, or otherwise do not reach their destination.

OPERATING

SYSTEMS ARPACI-DUSSEAU



DISTRIBUTED SYSTEMS 3

ASIDE: COMMUNICATION IS UNRELIABLE

In virtually all circumstances, it is good to view communication
as a fundamentally unreliable activity. Bit corruption, down or non-
working links and machines, and lack of buffer space for incoming
packets all lead to the same result: packets sometimes do not reach
their destination. Thus, to build reliable services atop such unreliable
networks, we must consider techniques that can cope with packet
loss.

There are a multitude of causes for packet loss or corruption. Some-
times, during transmission, some bits get flipped due to electrical or
other similar problems. Sometimes, an element in the system, such
as a network link or packet router or even the remote host, are some-
how damaged or otherwise not working correctly; network cables
do accidentally get severed, at least sometimes.

More fundamental however is packet loss due to lack of buffering
within a network switch, router, or endpoint. Specifically, even if
we could guarantee that all links worked correctly, and that all the
components in the system (switches, routers, end hosts) were up and
running as expected, loss is still possible, for the following reason.
Imagine a packet arrives at a router; for the packet to be processed,
it must be placed in memory somewhere within the router. If many
such packets arrive at once, it is possible that the memory within the
router cannot accommodate all of the packets. The only choice the
router has at that point is to drop one or more of the packets. This
same behavior occurs at end hosts as well; when you send a large
number of messages to a single machine, the machine’s resources
can easily become overwhelmed, and thus packet loss again arises.

Thus, packet loss is fundamental in networking. The question
thus becomes: how should we deal with it?

46.2 Unreliable Communication Layers

One simple way is this: we don’t deal with it. Because some ap-
plications know how to deal with packet loss, it is sometimes useful
to let them communicate with a basic unreliable messaging layer, an
example of the end-to-end argument one often hears about in the
world of networking. One excellent example of such an unreliable

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



4 DISTRIBUTED SYSTEMS

// client code

int main(int argc, char *argv[]) {

int sd = UDP_Open(20000);

struct sockaddr_in addr, addr2;

int rc = UDP_FillSockAddr(&addr, "machine.cs.wisc.edu", 10000);

char message[BUFFER_SIZE];

sprintf(message, "hello world");

rc = UDP_Write(sd, &addr, message, BUFFER_SIZE);

if (rc > 0) {

int rc = UDP_Read(sd, &addr2, buffer, BUFFER_SIZE);

}

return 0;

}

// server code

int main(int argc, char *argv[]) {

int sd = UDP_Open(10000);

assert(sd > -1);

while (1) {

struct sockaddr_in s;

char buffer[BUFFER_SIZE];

int rc = UDP_Read(sd, &s, buffer, BUFFER_SIZE);

if (rc > 0) {

char reply[BUFFER_SIZE];

sprintf(reply, "reply");

rc = UDP_Write(sd, &s, reply, BUFFER_SIZE);

}

}

return 0;

}

Figure 46.1: Example UDP/IP Client/Server Code

layer is found in the UDP/IP networking stack available today on
virtually all modern systems. To use UDP, a process uses the sock-
ets API in order to create a communication endpoint; processes on
other machines (or on the same machine) send UDP datagrams to the
original process (a datagram is just a fixed-sized buffer up to some
maximum size).

Figures 46.1 and 46.2 show a simple client and server built on top
of UDP/IP. The client can send a message to the server, which then
responds with a reply. With this small amount of code, you have all
you need to begin building distributed systems!

UDP is a great example of an unreliable communication layer.
If you use it, you will encounter situations where packets get lost

OPERATING

SYSTEMS ARPACI-DUSSEAU



DISTRIBUTED SYSTEMS 5

int UDP_Open(int port) {

int sd;

if ((sd = socket(AF_INET, SOCK_DGRAM, 0)) == -1) { return -1; }

struct sockaddr_in myaddr;

bzero(&myaddr, sizeof(myaddr));

myaddr.sin_family = AF_INET;

myaddr.sin_port = htons(port);

myaddr.sin_addr.s_addr = INADDR_ANY;

if (bind(sd, (struct sockaddr *) &myaddr, sizeof(myaddr)) == -1) {

close(sd);

return -1;

}

return sd;

}

int UDP_FillSockAddr(struct sockaddr_in *addr, char *hostName, int port) {

bzero(addr, sizeof(struct sockaddr_in));

addr->sin_family = AF_INET; // host byte order

addr->sin_port = htons(port); // short, network byte order

struct in_addr *inAddr;

struct hostent *hostEntry;

if ((hostEntry = gethostbyname(hostName)) == NULL) { return -1; }

inAddr = (struct in_addr *) hostEntry->h_addr;

addr->sin_addr = *inAddr;

return 0;

}

int UDP_Write(int sd, struct sockaddr_in *addr, char *buffer, int n) {

int addrLen = sizeof(struct sockaddr_in);

return sendto(sd, buffer, n, 0, (struct sockaddr *) addr, addrLen);

}

int UDP_Read(int sd, struct sockaddr_in *addr, char *buffer, int n) {

int len = sizeof(struct sockaddr_in);

return recvfrom(sd, buffer, n, 0, (struct sockaddr *) addr,

(socklen_t *) &len);

return rc;

}

Figure 46.2: A Simple UDP Library

(dropped) and thus do not reach their destination; the sender is never
thus informed of the loss. However, that does not mean that UDP
does not guard against any failures at all. For example, UDP includes
a checksum to detect some forms of packet corruption.

However, because many applications simply want to send data to

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



6 DISTRIBUTED SYSTEMS

DESIGN TIP: USE CHECKSUMS

Checksums are a commonly-used method to detect corruption
quickly and effectively in modern systems. A simple checksum is
addition: just sum up the bytes of a chunk of data; of course, many
other more sophisticated checksums have been created, including
basic cyclic redundancy codes (CRCs), the Fletcher checksum, and
many others [MK09].

In networking, checksums are used as follows. Before sending a mes-
sage from one machine to another, compute a checksum over the
bytes of the message. Then send both the message and the checksum
to the destination. At the destination, the receiver computes a check-
sum over the incoming message as well; if this computed checksum
matches the sent checksum, the receiver can feel some assurance that
the data likely did not get corrupted during transmission.

Checksums can be evaluated along a number of different axes. Effec-
tiveness is one primary consideration: does a change in the data lead
to a change in the checksum? The stronger the checksum, the harder
it is for changes in the data to go unnoticed. Performance is the other
important criterion: how costly is the checksum to compute? Unfor-
tunately, effectiveness and performance are often at odds, meaning
that checksums that are of high quality are often expensive to com-
pute. Life, once again, isn’t perfect.

a destination and not worry about packet loss, we need more. Specif-
ically, we need to develop a reliable communication layer on top of
an unreliable network.

46.3 Reliable Communication Layers

To build a reliable communication layer, we need some new mech-
anisms and techniques to handle packet loss. Let us consider a sim-
ple example in which a client is sending a message to a server over an
unreliable connection. The first question we must answer: how does
the sender know that the receiver has actually received the message?

The technique that we will use is known as an acknowledgment,
or ack for short. The idea is simple: the sender sends a message to the
receiver; the receiver then sends a short message back to acknowledge
its receipt. Figure 46.3 depicts the process.

OPERATING

SYSTEMS ARPACI-DUSSEAU



DISTRIBUTED SYSTEMS 7

sender receiver

(send msg)

------- (msg)

-------

-------->

(recv message;

send ack)

--------

-------

<------- (ack)

(receive ack)

Figure 46.3: Message Plus Acknowledgment

When the sender receives an acknowledgment of the message, it
can then rest assured that the message did indeed receive the original
message. However, what should the sender do if it does not receive
an acknowledgment?

To handle this case, we need an additional mechanism, known as
a timeout. When the sender sends a message, the sender now sets a
timer to go off after some period of time. If, in that time, no acknowl-
edgment has been received, the sender concludes that the message
has been lost. In this case, the sender simply performs a retry of the
send, sending the same message again with hopes that this time, it
will get through. Note that for this to work, it is implied that the
sender keeps a copy of the message around, in case it needs to per-
form the retry. The combination of the timeout and the retry have led
some to call the approach timeout/retry; pretty clever crowd, those
networking types, no? Figure 46.4 shows an example of the entire
sequence.

Unfortunately, timeout/retry in this form is not quite enough.
Figure 46.5 shows an example of packet loss which could lead to
trouble. In this example, it is not the original message that gets lost,
but the acknowledgment. From the perspective of the sender, the
situation seems the same: no ack was received, and thus a timeout
and retry are in order. But from the perspective of the receiver, it
is quite different: now the same message has been received twice!
While there may be cases where this is OK, in general it is not; imag-
ine what would happen when you are downloading something from
the Internet and some extra packets were repeated inside the down-
load. Thus, when we are aiming for a reliable message layer, we also

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



8 DISTRIBUTED SYSTEMS

sender receiver

(send msg;

keep copy;

set timer)

------- (msg)

------- X (msg dropped)

...

(waiting for ack...)

...

(timer goes off;

set timer;

retry message)

------- (msg)

-------

-------->

(recv message;

send ack)

--------

-------

<------- (ack)

(receive ack;

discard copy)

Figure 46.4: Message Plus Acknowledgment

usually want to guarantee that each message is received exactly once
by the receiver.

To enable the receiver to detect duplicate message transmission,
the sender has to identify each message in some unique way, and the
receiver needs some way to track whether it has already seen each
message before. When the receiver sees a duplicate transmission,
it simply acks the message, but (critically) does not pass the message
up to the application that receives the data. Thus, the sender receives
the ack but the message is not received twice, thus preserving the
exactly-once semantics mentioned above.

There are myriad ways one could go about implementing this du-
plicate message detector; imagine the sender generating a unique 64-
bit ID number for each message sent, and the receiver keeping a his-
tory of every ID it has ever seen. Such an approach could work, but
is prohibitively costly, requiring an unbounded amount of space to
track all IDs. Thus, a simple approach used by many message layers
is known as a sequence counter.

With a sequence counter, the sender and receiver agree upon a

OPERATING

SYSTEMS ARPACI-DUSSEAU



DISTRIBUTED SYSTEMS 9

sender receiver

(send msg;

keep copy;

set timer)

------- (msg)

-------

-------->

(recv message;

send ack)

--------

(ack dropped) X -------

(ack)

...

(waiting for ack...)

...

(timer goes off;

set timer;

retry message)

------- (msg)

-------

-------->

(recv message; // AGAIN!

send ack)

--------

-------

<------- (ack)

(receive ack;

discard copy)

Figure 46.5: Message Plus Acknowledgment

start value (e.g., 1) for a counter that each side will maintain. When-
ever the send side sends a message, it sends the current value of the
counter along with the sent message; this counter value (say N ) thus
serves as an ID for the message. The sender then increments the
value (to N + 1).

The receive side uses its counter value as the expected value for
the ID of the incoming message from that sender. If the ID of a re-
ceived message (N ) matches the receiver’s counter (also N ), it acks
the message and passes it up to the application; in this case, the re-
ceiver concludes that this is the first time this message has been re-
ceived. The receiver then increments its counter (to N + 1), and thus
now expects the next message.

If the ack is lost, the sender will timeout and re-send message

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



10 DISTRIBUTED SYSTEMS

ASIDE: SETTING THE TIMEOUT VALUE

As you can probably guess from the discussion, setting the timeout
value correctly is an important aspect of using timeouts to retry mes-
sage sends. If the timeout is too small, the sender will re-send mes-
sages needlessly, thus wasting CPU time on the sender and network
resources. If the timeout is too large, the sender waits too long to re-
send and thus perceived performance at the sender is reduced. The
“right” value, from the perspective of a single client and server, is
thus to wait just long enough to detect packet loss but no longer.

However, there are often more than just a single client and server in
a distributed system, as we will see in future chapters. In a scenario
with many clients sending to a single server, packet loss at the server
may be an indicator that the server is overloaded. If true, clients
might retry in a different adaptive manner; for example, after the first
timeout, a client might increase its timeout value to a higher amount,
perhaps twice as high as the original value. Such an exponential
back-off scheme, pioneered in the early Aloha network and adopted
in the first Ethernet networks [A70], avoid situations where resources
are being overloaded by an excess of re-sends. Robust systems strive
to avoid overload of this nature.

N . This time, the receiver’s counter is higher (N + 1), and thus the
receiver knows it has already received this message. Thus it acks
it but does not pass it up to the application. And in this manner,
sequence counters can be used to avoid duplicates.

The most commonly used reliable communication layer is known
as TCP/IP, or just TCP for short. TCP has a great deal more sophis-
tication than we describe above, including machinery to handle con-
gestion in the network [VJ90], multiple outstanding requests, and
hundreds of other small tweaks and optimizations. Read more about
it if you’re curious (or more appropriately, take a networking course).

OPERATING

SYSTEMS ARPACI-DUSSEAU



DISTRIBUTED SYSTEMS 11

46.4 Communication Abstractions

Given a basic messaging layer, we now approach the next ques-
tion in this chapter: what abstraction of communication should we
use when building a distributed system?

The systems community developed a number of approaches over
the years. One body of work took OS abstractions and extended
them to operate in a distributed environment. For example, dis-
tributed shared memory (DSM) systems enable processes on differ-
ent machines to share a large, virtual address space [LH89]. This ab-
straction turns a distributed computation into something that looks
like a multi-threaded application; the only difference is that these
threads run on different machines instead of different processors within
the same machine.

The way most DSM systems work is through the virtual mem-
ory system of the OS. When a page is accessed on one machine, two
things can happen. In the first (best) case, the page is already local on
the machine, and thus the data is fetched quickly. In the second case,
the page is currently on some other machine. A page fault occurs,
and the page fault handler sends a message to some other machine
to fetch the page, install it in the page table of the requesting process,
and continue execution.

This approach is quite a bad idea for a number of reasons. The
largest problem for DSM is how such approaches handle failure. Imag-
ine, for example, if a machine fails; what happens to the pages on that
machine? What if the data structures of the distributed computation
are spread across the entire address space? In this case, parts of these
data structures would suddenly become unavailable. Dealing with
failure when parts of your address space go missing is hard; imag-
ine a linked list that where a next pointer points into a portion of the
address space that is gone. Yikes!

A further problem is performance. One usually assumes, when
writing code, that access to memory is cheap. In DSM systems, some
accesses are inexpensive, but others cause page faults and expensive
fetches from remote machines. Thus, programmers of such DSM sys-
tems had to be very careful to organize computations such that al-
most no communication occurred at all, defeating much of the point
of such an approach. Though a lot of research was performed in this
space, it resulted in little practical impact; nobody builds reliable dis-
tributed systems using DSM today.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



12 DISTRIBUTED SYSTEMS

46.5 Remote Procedure Call (RPC)

While OS abstractions turned out to be a poor choice for building
distributed systems, programming language (PL) abstractions make
much more sense. The most dominant abstraction is based on the
idea of a remote procedure call, or RPC for short [BN84]1.

Remote procedure call packages all have a simple goal: to make
the process of executing code on a remote machine as simple and
straightforward as calling a local function. Thus, to a client, a proce-
dure call is made, and some time later, the results are returned. The
server simply defines some routines that it wishes to export. The rest
of the magic is handled by the RPC system, which in general has two
pieces: a stub generator (sometimes called a protocol compiler), and
the run-time library. We’ll now take a look at each of these pieces in
more detail.

Stub Generator

The stub generator’s job is simple: to take some of the yuckiness
of packing function arguments and results into messages and auto-
mate it. Numerous benefits arise: one avoids, by design, the simple
mistakes that occur in writing such code by hand; further, a stub
compiler can perhaps optimize such code and thus improve perfor-
mance.

The input to such a compiler is simply the set of calls a server
wishes to export to clients. Conceptually, it could be something as
simple as this:

interface {

int func1(int arg1);

int func2(int arg1, int arg2);

};

The stub generator takes an interface like this and generates a
few different pieces of code. For the client, a client stub is gener-
ated, which contains each of the functions specified in the interface;
a client program wishing to use this RPC service would link with this
client stub and call into it in order to make RPCs.

1In modern programming languages, we might instead say remote method invoca-
tion (RMI), but who likes these languages anyhow, with all of their fancy objects?

OPERATING

SYSTEMS ARPACI-DUSSEAU



DISTRIBUTED SYSTEMS 13

Internally, each of these functions in the client stub do all of the
work needed to perform the remote procedure call. To the client, the
code just appears as a function call (e.g., the client calls func1(x));
internally, the code in the client stub for func1() does this:

• Create a message buffer. A message buffer is usually just a
contiguous array of bytes of some size.

• Pack the needed information into the message buffer. This
information includes some kind of identifier for the function to
be called, as well as all of the arguments that the function needs
(e.g., in our example above, one integer for func1). The pro-
cess of putting all of this information into a single contiguous
buffer is sometimes referred to as the marshaling of arguments
or the serialization of the message.

• Send the message to the destination RPC server. The com-
munication with the RPC server, and all of the details required
to make it operate correctly, are handled by the RPC run-time
library, described further below.

• Wait for the reply. Because function calls are usually syn-
chronous, the call will wait for its completion.

• Unpack return code and other arguments. If the function just
returns a single return code, this process is straightforward;
however, more complex functions might return more complex
results (e.g., a list), and thus the stub might need to unpack
those as well. This step is also known as unmarshaling or de-
serialization.

• Return to the caller. Finally, just return from the client stub
back into the client code.

For the server, code is also generated. The steps taken on the
server are as follows:

• Unpack the message. This step, called unmarshaling or de-
serialization, takes the information out of the incoming mes-
sage. The function identifier and function arguments are all
extracted.

• Call into the actual function. Finally! We have reached the
point where the remote function is actually executed. The RPC
runtime calls into the function specified by the ID (using some-
thing as simple as a switch statement), passing in the desired
arguments.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



14 DISTRIBUTED SYSTEMS

• Package the results. The return argument(s) are marshaled
back into a single reply buffer.

• Send the reply. The reply is finally sent to the caller.

There are a few other important issues to consider in a stub com-
piler. The first is complex arguments, i.e., how does one package
and send a complex data structure? For example, when one calls
the write() system call, one passes in three arguments: an integer
file descriptor, a pointer to a buffer, and a size indicating how many
bytes (starting at the pointer) are to be written. If an RPC package
is passed a pointer, it needs to be able to figure out how to interpret
that pointer, and perform the correct action. Usually this is accom-
plished through either well-known types (e.g., a buffer t that is
used to pass chunks of data given a size, which the RPC compiler
understands), or by annotating the data structures with more infor-
mation, enabling the compiler to fully understand which bytes need
to be serialized.

Another important issue is the organization of the server with re-
gards to concurrency. A simple server just waits for requests in a
simple loop, and handles each request one at a time. However, as
you might have guessed, this can be grossly inefficient; if one RPC
call blocks (e.g., on I/O), server resources are wasted. Thus, most
servers are constructed in some sort of concurrent fashion. A com-
mon organization is a thread pool. In this organization, a finite set of
threads are created when the server starts; when a message arrives,
it is dispatched to one of these worker threads, which then does the
work of the RPC call, eventually replying; during this time, a main
thread keeps receiving other requests, and perhaps dispatching them
to other workers. Such an organization enables concurrent execution
within the server, thus increasing its utilization; the standard costs
arise as well, mostly in programming complexity, as the RPC calls
may now need to use locks and other synchronization primitives in
order to ensure their correct operation.

Run-Time Library

The run-time library handles much of the heavy lifting in an RPC
system; most performance and reliability issues are handled herein.
We’ll now discuss some of the major challenges in building such a
run-time layer.

OPERATING

SYSTEMS ARPACI-DUSSEAU



DISTRIBUTED SYSTEMS 15

One of the first challenges we must overcome is how to locate
a remote service. This problem, of naming, is a common one in
distributed systems, and in some sense goes beyond the scope of
our current discussion. The simplest of approaches build on exist-
ing naming systems, e.g., hostnames and port numbers provided by
current internet protocols. In such a system, the client must know
the hostname or IP address of the machine running the desired RPC

service, as well as the port number it is using2. The protocol suite
must then provide a mechanism to route packets to a particular ad-
dress from any other machine in the system. For a good discussion
of naming, read either the Grapevine paper or about DNS and name
resolution on the Internet, or better yet just read the excellent chapter
in Saltzer and Kaashoek’s book [SK09].

Once a client knows which server it should talk to for a particular
remote service, the next question is which transport-level protocol
should RPC be built upon. Specifically, should the RPC system use
a reliable protocol such as TCP/IP, or be built upon an unreliable
communication layer such as UDP/IP?

Naively the choice would seem easy: clearly we would like for a
request to be reliably delivered to the remote server, and clearly we
would like to reliably receive a reply. Thus we should choose the
reliable transport protocol such as TCP, right?

Unfortunately, building RPC on top of a reliable communication
layer can lead to a major inefficiency in performance. Recall from
the discussion above how reliable communication layers work: with
acknowledgments plus timeout/retry. Thus, when the client sends
an RPC request to the server, the server responds with an acknowl-
edgment so that the caller knows the request was received. Similarly,
when the server sends the reply to the client, the client acks it so that
the server knows it was received. By building a request/response
protocol (such as RPC) on top of a reliable communication layer, two
“extra” messages are sent.

For this reason, many RPC packages are built on top of unreliable
communication layers, such as UDP. Doing so enables a more effi-
cient RPC layer, but does add the responsibility of providing reliabil-
ity to the RPC system. The RPC layer achieves the desired level of
responsibility by using timeout/retry and acknowledgments much

2A port number is just a way of identifying a particular communication activity
taking place on a machine, allowing multiple communication channels at once.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



16 DISTRIBUTED SYSTEMS

like we described above. By using some form of sequence num-
bering, the communication layer can guarantee that each RPC takes
place exactly once (in the case of no failure), or at most once (in the
case where failure arises).

ASIDE: THE END-TO-END ARGUMENT

The end-to-end argument makes the case that the highest level in
a system, i.e., usually the application at “the end”, is ultimately the
only locale within a layered system where certain functionality can
truly be implemented. In their landmark paper, Saltzer et al. argue
this through an excellent example: reliable file transfer between two
machines. If you want to transfer a file from machine A to machine
B, and make sure that the bytes that end up on B are exactly the
same as those that began on A, you must have an “end-to-end” check
of this; lower-level reliable machinery, e.g., in the network or disk,
provides no such guarantee.

The contrast is an approach which tries to solve the reliable-file-
transfer problem by adding reliability to lower layers of the system.
For example, say we build a reliable communication protocol and
use it to build our reliable file transfer. The communication proto-
col guarantees that every byte sent by a sender will be received in
order by the receiver, say using timeout/retry, acknowledgments,
and sequence numbers. Unfortunately, using such a protocol does
not a reliable file transfer make; imagine the bytes getting corrupted
in sender memory before the communication even takes place, or
something bad happening when the receiver writes the data to disk.
In those cases, even though the bytes were delivered reliably across
the network, our file transfer was ultimately not reliable. To build a
reliable file transfer, one must include end-to-end checks of reliabil-
ity, e.g., after the entire transfer is complete, read back the file on the
receiver disk, compute a checksum, and compare that checksum to
that of the file on the sender.

The corollary to this maxim is that sometimes having lower layers
provide extra functionality can indeed improve system performance
or otherwise optimize a system. Thus, you should not rule out hav-
ing such machinery at a lower-level in a system; rather, you should
carefully consider the utility of such machinery, given its eventual
usage in an overall system or application.

OPERATING

SYSTEMS ARPACI-DUSSEAU



DISTRIBUTED SYSTEMS 17

Other Issues

There are some other issues an RPC run-time must handle as well.
For example, what happens when a remote call takes a long time
to complete? Given our timeout machinery, a long-running remote
call might appear as a failure to a client, thus triggering a retry, and
thus the need for some care here. One solution is to use an explicit
acknowledgment (from the receiver to sender) when the reply isn’t
immediately generated; this lets the client know the server received
the request. Then, after some time has passed, the client can peri-
odically ask whether the server is still working on the request; if the
server keeps saying “yes”, the client should be happy and continue
to wait (after all, sometimes a procedure call can take a long time to
finish executing).

The run-time must also handle procedure calls with large argu-
ments, larger than what can fit into a single packet. Some lower-
level network protocols provide such sender-side fragmentation (of
larger packets into a set of smaller ones) and receiver-side reassem-
bly (of smaller parts into one larger logical whole); if not, the RPC
run-time may have to implement such functionality itself. See Birrell
and Nelson’s excellent RPC paper for details [BN84].

One issue that many systems handle is that of byte ordering. As
you may know, some machines store values in what is known as big
endian ordering, whereas others use little endian ordering. Big en-
dian stores bytes (say, of an integer) from most significant to least
significant bits, much like Arabic numerals; little endian does the
opposite. Both are equally valid ways of storing numeric informa-
tion; the question here is how to communicate between machines of
different endianness.

RPC packages often handle this by providing a well-defined en-
dianness within their message formats. In Sun’s RPC package, the
XDR (eXternal Data Representation) layer provides this functional-
ity. If the machine sending or receiving a message matches the en-
dianness of XDR, messages are just sent and received as expected.
If, however, the machine communicating has a different endianness,
each piece of information in the message must be converted. Thus,
the difference in endianness can have a small performance cost.

A final issue is whether to expose the asynchronous nature of
communication to clients, thus enabling some performance optimiza-
tions. Specifically, typical RPCs are made synchronously, i.e., when

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



18 DISTRIBUTED SYSTEMS

a client issues the procedure call, it must wait for the procedure call
to return before continuing. Because this wait can be long, and be-
cause the client may have other work it could be doing, some RPC
packages enable you to invoke an RPC asynchronously. When an
asynchronous RPC is issued, the RPC package sends the request and
returns immediately; the client is then free to do other work, such as
call other RPCs or indeed any computation it sees fit to perform. The
client at some point will want to see the results of the asynchronous
RPC; it thus calls back into the RPC layer, telling it to wait for one or
all outstanding RPCs to complete, at which point return arguments
can be accessed.

46.6 Summary

We have seen the introduction of a new topic, distributed systems,
and its major issue: how to handle failure which is now a common-
place event. As they say inside of Google, when you have just your
desktop machine, failure is rare; when you’re in a data center with
thousands of machines, failure is happening all the time. The key to
any distributed system is how you deal with that failure.

We have also seen that communication forms the heart of any dis-
tributed system. A common abstraction of that communication is
found in remote procedure call (RPC), which enables clients to make
remote calls on servers; the RPC package handles all of the gory de-
tails, including timeout/retry and acknowledgment, in order to de-
liver a service that closely mirrors a local procedure call.

The best way to really understand an RPC package is of course
to use one yourself. Sun’s RPC system, using the stub compiler
rpcgen, is a common one, and is widely available on systems to-
day, including Linux. Try it out, and see what all the fuss is about.

OPERATING

SYSTEMS ARPACI-DUSSEAU



DISTRIBUTED SYSTEMS 19

References

[A70] “The ALOHA System – Another Alternative for Computer Communications”
Norman Abramson
The 1970 Fall Joint Computer Conference
The ALOHA network pioneered some basic concepts in networking, including exponential back-
off and retransmit, which formed the basis for communication in shared-bus Ethernet networks
for years.

[BN84] “Implementing Remote Procedure Calls”
Andrew D. Birrell, Bruce Jay Nelson
ACM TOCS, Volume 2:1, February 1984
The foundational RPC system upon which all others build. Yes, another pioneering effort from
our friends at Xerox PARC.

[MK09] “The Effectiveness of Checksums for Embedded Control Networks”
Theresa C. Maxino and Philip J. Koopman
IEEE Transactions on Dependable and Secure Computing, 6:1, January ’09
A nice overview of basic checksum machinery and some performance and robustness comparisons
between them.

[LH89] “Memory Coherence in Shared Virtual Memory Systems”
Kai Li and Paul Hudak
ACM TOCS, 7:4, November 1989
The introduction of software-based shared memory via virtual memory. An intriguing idea for
sure, but not a lasting or good one in the end.

[SK09] “Principles of Computer System Design”
Jerome H. Saltzer and M. Frans Kaashoek
Morgan-Kaufmann, 2009
An excellent book on systems, and a must for every bookshelf. One of the few terrific discussions
on naming we’ve seen.

[SRC84] “End-To-End Arguments in System Design”
Jerome H. Saltzer, David P. Reed, David D. Clark
ACM TOCS, 2:4, November 1984
A beautiful discussion of layering, abstraction, and where functionality must ultimately reside in
computer systems.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)


