
47

Sun’s Network File System (NFS)

One of the first uses of distributed client/server computing was in
the realm of distributed file systems. In such an environment, there
are a number of client machines and one server (or a few); the server
stores the data on its disks, and clients request data through well-
formed protocol messages. Figure 47.1 depicts the basic setup.

As you can see from the (ugly) picture, the server has the disks;
the clients communicate through the network to access their directo-
ries and files on those disks.

Why do we bother with this arrangement? (i.e., why don’t we just
let clients use their local disks?) Well, primarily this setup allows for
easy sharing of data across clients. Thus, if you access a file on one
machine (Client0) and then later use another (Client2), you will have
the same view of the file system. Your data is naturally shared across
these different machines. A secondary benefit is centralized admin-
istration; for example, backing up files can be done from the few
server machines instead of from the multitude of clients. Another
advantage could be security; having all servers in a locked machine
room prevents certain types of problems from arising.

47.1 A Basic Distributed File System

We now will study the architecture of a simplified distributed file
system. A simple client/server distributed file system has more com-
ponents than the file systems we have studied so far. On the client
side, there are client applications which access files and directories
through the client-side file system. A client application issues sys-

1

2 SUN’S NETWORK FILE SYSTEM (NFS)

Client 0

Client 1

Client 2

Client 3

ServerNetwork

Figure 47.1: A Generic Client/Server System

tem calls to the client-side file system (such as open(), read(), write(),
close(), mkdir(), etc.) in order to access files which are stored on the
server. Thus, to client applications, the file system does not appear to
be any different than a local (disk-based) file system, except perhaps
for performance; in this way, distributed file systems provide trans-
parent access to files, an obvious goal; after all, who would want to
use a file system that required a different set of APIs or otherwise
was a pain to use?

The role of the client-side file system is to execute the actions
needed to service those system calls. For example, if the client is-
sues a read() request, the client-side file system may send a message
to the server-side file system (or, more commonly, the file server) to
read a particular block; the file server will then read the block from
disk (or its own in-memory cache), and send a message back to the
client with the requested data. The client-side file system will then
copy the data into the user buffer supplied to the read() system call
and thus the request will complete. Note that a subsequent read() of
the same block on the client may be cached in client memory or on
the client’s disk even; in the best such case, no network traffic need
be generated.

OPERATING

SYSTEMS ARPACI-DUSSEAU

SUN’S NETWORK FILE SYSTEM (NFS) 3

Client Application

Client-side File System

Networking Layer

File Server

Networking Layer

Disks

Figure 47.2: Distributed File System Architecture

From this simple overview, you should get a sense that there are
two important pieces of software in a client/server distributed file
system: the client-side file system and the file server. Together their
behavior determines the behavior of the distributed file system.

47.2 On To NFS

One of the earliest and most successful systems was developed
by Sun Microsystems, and is known as the Sun Network File Sys-
tem (or NFS) [S86]. In defining NFS, Sun took an unusual approach:
instead of building a proprietary and closed system, Sun instead de-
veloped an open protocol which simply specified the exact message
formats that clients and servers would use to communicate. Different
groups could develop their own NFS servers and thus compete in an
NFS marketplace while preserving interoperability. It worked: today
there are many companies that sell NFS servers (including Sun, Net-
App [HLM94], EMC, IBM, and others), and the widespread success
of NFS is likely attributed to this “open market” approach.

47.3 Focus: Simple and Fast Server Crash Recovery

In this note, we will discuss the classic NFS protocol (version 2,
a.k.a. NFSv2), which was the standard for many years; small changes
were made in moving to NFSv3, and larger-scale protocol changes
were made in moving to NFSv4. However, NFSv2 is both wonderful
and frustrating and thus serves as our focus.

In NFSv2, one of the main goals of the design of the protocol was
simple and fast server crash recovery. In a multiple-client, single-server
environment, this goal makes a great deal of sense; any minute that
the server is down (or unavailable) makes all the client machines
(and their users) unhappy and unproductive. Thus, as the server
goes, so goes the entire system.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

4 SUN’S NETWORK FILE SYSTEM (NFS)

47.4 Key To Fast Crash Recovery: Statelessness

This simple goal is realized in NFSv2 by designing what we refer
to as a stateless protocol. The server, by design, does not keep track
of anything about what is happening at each client. For example,
the server does not know which clients are caching which blocks, or
which files are currently open at each client, or the current file pointer
position for a file, etc. Simply put, the server does not track anything
about what clients are doing; rather, the protocol is designed to de-
liver in each protocol request all the information that is needed in order
to complete the request. If it doesn’t now, this stateless approach will
make more sense as we discuss the protocol in more detail below.

For an example of a stateful (not stateless) protocol, consider the
open() system call. Given a pathname, open() returns a file descriptor
(an integer). This descriptor is used on subsequent read() or write()
requests to access various file blocks, as in this application code (note
that proper error checking of the system calls is omitted for space
reasons):
char buffer[MAX];

int fd = open("foo", O_RDONLY); // get descriptor "fd"

read(fd, buffer, MAX); // use fd to read MAX bytes from foo

read(fd, buffer, MAX); // use fd to read MAX bytes from foo

...

read(fd, buffer, MAX); // use fd to read MAX bytes from foo

close(fd); // close file

Figure 47.3: Client Code: Reading from a File

Now imagine that the client-side file system opens the file by
sending a protocol message to the server saying “open the file ’foo’
and give me back a descriptor”. The file server then opens the file
locally on its side and sends the descriptor back to the client. On
subsequent reads, the client application uses that descriptor to call
the read() system call; the client-side file system then passes the de-
scriptor in a message to the file server, saying “read some bytes from
the file that is referred to by the descriptor I am passing you here”.

In this example, the file descriptor is a piece of shared state be-
tween the client and the server (Ousterhout calls this distributed
state [O91]). Shared state, as we hinted above, complicates crash
recovery. Imagine the server crashes after the first read completes,
but before the client has issued the second one. After the server is

OPERATING

SYSTEMS ARPACI-DUSSEAU

SUN’S NETWORK FILE SYSTEM (NFS) 5

up and running again, the client then issues the second read. Un-
fortunately, the server has no idea to which file fd is referring; that
information was ephemeral (i.e., in memory) and thus lost when the
server crashed. To handle this situation, the client and server would
have to engage in some kind of recovery protocol, where the client
would make sure to keep enough information around in its memory
to be able to tell the server what it needs to know (in this case, that
file descriptor fd refers to file foo).

It gets even worse when you consider the fact that a stateful server
has to deal with client crashes. Imagine, for example, a client that
opens a file and then crashes. The open() uses up a file descriptor
on the server; how can the server know it is OK to close a given
file? In normal operation, a client would eventually call close() and
thus inform the server that the file should be closed. However, when
a client crashes, the server never receives a close(), and thus has to
notice the client has crashed in order to close the file.

For these reasons, the designers of NFS decided to pursue a state-
less approach: each client operation contains all the information needed
to complete the request. No fancy crash recovery is needed; the
server just starts running again, and a client, at worst, might have
to retry a request.

ASIDE: WHY SERVERS CRASH

Before getting into the details of the NFSv2 protocol, you might be
wondering: why do servers crash? Well, as you might guess, there
are plenty of reasons. Servers may simply suffer from a power out-
age (temporarily); only when power is restored can the machines be
restarted. Servers are often comprised of hundreds of thousands or
even millions of lines of code; thus, they have bugs (even good soft-
ware has a few bugs per hundred or thousand lines of code), and
thus they eventually will trigger a bug that will cause them to crash.
They also have memory leaks; even a small memory leak will cause
a system to run out of memory and crash. And, finally, in distributed
systems, there is a network between the client and the server; if the
network acts strangely (for example, if it becomes partitioned and
clients and servers are working but cannot communicate), it may ap-
pear as if a remote machine has crashed, but in reality it is just not
currently reachable through the network.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

6 SUN’S NETWORK FILE SYSTEM (NFS)

47.5 The NFSv2 Protocol

We thus arrive at the NFSv2 protocol definition. Our problem
statement is simple:

THE CRUX: HOW TO DEFINE A STATELESS PROTOCOL

How can we define the network protocol to enable stateless op-
eration? Clearly, stateful calls like open() can’t be a part of the dis-
cussion (as it would require the server to track open files); however,
the client application will want to call open(), read(), write(), close()
and other standard API calls to access files and directories. Thus, as
a refined question, how do we define the protocol to both be stateless
and support the POSIX file system API?

One key to understanding the design of the NFS protocol is un-
derstanding the file handle. File handles are used to uniquely de-
scribe the file or directory a particular operation is going to operate
upon; thus, many of the protocol requests include a file handle.

You can think of a file handle as having three important compo-
nents: a volume identifier, an inode number, and a generation number;
together, these three items comprise a unique identifier for a file or
directory that a client wishes to access. The volume identifier informs
the server which file system the request refers to (an NFS server can
export more than one file system); the inode number tells the server
which file within that partition the request is accessing. Finally, the
generation number is needed when reusing an inode number; by in-
crementing it whenever an inode number is reused, the server en-
sures that a client with an old file handle can’t accidentally access
the newly-allocated file.

Here is a summary of some of the important pieces of the protocol;
the full protocol is available elsewhere (see Callaghan’s book for an
excellent and detailed overview of NFS [Sun89]).

We’ll briefly highlight some of the important components of the
protocol. First, the LOOKUP protocol message is used to obtain a
file handle, which is then subsequently used to access file data. The
client passes a directory file handle and name of a file to look up,
and the handle to that file (or directory) plus its attributes are passed
back to the client from the server.

OPERATING

SYSTEMS ARPACI-DUSSEAU

SUN’S NETWORK FILE SYSTEM (NFS) 7

NFSPROC_GETATTR

expects: file handle

returns: attributes

NFSPROC_SETATTR

expects: file handle, attributes

returns: nothing

NFSPROC_LOOKUP

expects: directory file handle, name of file/directory to look up

returns: file handle

NFSPROC_READ

expects: file handle, offset, count

returns: data, attributes

NFSPROC_WRITE

expects: file handle, offset, count, data

returns: attributes

NFSPROC_CREATE

expects: directory file handle, name of file to be created, attributes

returns: nothing

NFSPROC_REMOVE

expects: directory file handle, name of file to be removed

returns: nothing

NFSPROC_MKDIR

expects: directory file handle, name of directory to be created, attributes

returns: file handle

NFSPROC_RMDIR

expects: directory file handle, name of directory to be removed

returns: nothing

NFSPROC_READDIR

expects: directory handle, count of bytes to read, cookie

returns: directory entries, cookie (which can be used to get more entries)

Figure 47.4: Some examples of the NFS Protocol

For example, assume the client already has a directory file han-
dle for the root directory of a file system (/) (indeed, this would be
obtained through the NFS mount protocol, which is how clients and
servers first are connected together; we do not discuss the mount
protocol here for sake of brevity). If an application running on the
client tries to open the file /foo.txt, the client-side file system will
send a lookup request to the server, passing it the root directory’s
file handle and the name foo.txt; if successful, the file handle for
foo.txt will be returned, along with its attributes.

In case you are wondering, attributes are just the metadata that
the file system tracks about each file, including fields such as file cre-
ation time, last modification time, size, ownership and permissions

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

8 SUN’S NETWORK FILE SYSTEM (NFS)

information, and so forth, i.e., the same type of information that you
would get back if you called stat() on a file.

Once a file handle is available, the client can issue READ and
WRITE protocol messages on a file to read or write the file, respec-
tively. The READ protocol message requires the protocol to pass
along the file handle of the file along with the offset within the file
and number of bytes to read. The server then will be able to issue the
read (after all, the handle tells the server which volume and which
inode to read from, and the offset and count tells it which bytes of
the file to read) and return the data to the client (or an error if there
was a failure). WRITE is handled similarly, except the data is passed
from the client to the server, and just a success code is returned.

One last interesting protocol message is the GETATTR request;
given a file handle, it simply fetches the attributes for that file, in-
cluding the last modified time of the file. We will see why this pro-
tocol request is quite important in NFSv2 below when we discuss
caching (see if you can guess why).

47.6 From Protocol to Distributed File System

Hopefully you are now getting some sense of how this protocol
is turned into a file system across the client-side file system and the
file server. The client-side file system tracks open files, and generally
translates application requests into the relevant set of protocol mes-
sages. The server simply responds to each protocol message, each of
which has all the information needed to complete request.

For example, let us consider the a simple application which reads
a file. In the diagram (Figure 47.5), we show what system calls the ap-
plication makes, and what the client-side file system and file server
do in responding to such calls.

A few comments about the figure. First, notice how the client
tracks all relevant state for the file access, including the mapping of
the integer file descriptor to an NFS file handle as well as the current
file pointer. This enables the client to turn each read request (which
you may have noticed do not specify the offset to read from explic-
itly) into a properly-formatted read protocol message which tells the
server exactly which bytes from the file to read. Upon a successful
read, the client updates the current file position; subsequent reads
are issued with the same file handle but a different offset.

OPERATING

SYSTEMS ARPACI-DUSSEAU

SUN’S NETWORK FILE SYSTEM (NFS) 9

App fd = open("/foo", ...);

Client Send LOOKUP (root dir file handle, "foo")

Server Receive LOOKUP request

Server look for "foo" in root dir

Server if successful, pass back foo’s file handle/attributes

Client Receive LOOKUP reply

Client use attributes to do permissions check

Client if OK to access file, allocate file desc. in "open file table";

Client store NFS file handle therein

Client store current file position (0 to begin)

Client return file descriptor to application

App read(fd, buffer, MAX);

Client Use file descriptor to index into open file table

Client thus find the NFS file handle for this file

Client use the current file position as the offset to read from

Client Send READ (file handle, offset=0, count=MAX)

Server Receive READ request

Server file handle tells us which volume/inode number we need

Server may have to read the inode from disk (or cache)

Server use offset to figure out what block to read,

Server and inode (and related structures) to find it

Server issue read to disk (or get from server memory cache)

Server return data (if successful) to client

Client Receive READ reply

Client Update file position to current + bytes read

Client set current file position = MAX

Client return data and error code to application

App read(fd, buffer, MAX);

(Same as above, except offset=MAX and set current file position = 2*MAX)

App read(fd, buffer, MAX);

(Same as above, except offset=2*MAX and set current file position = 3*MAX)

App close(fd);

Client Just need to clean up local structures

Client Free descriptor "fd" in open file table for this process

Client (No need to talk to server)

Figure 47.5: Reading A File: Client-side and File Server Actions

Second, you may notice where server interactions occur. When
the file is opened for the first time, the client-side file system sends a
LOOKUP request message. Indeed, if a long pathname must be tra-
versed (e.g., /home/remzi/foo.txt), the client would send three
LOOKUPs: one to look up home in the directory /, one to look up
remzi in home, and finally one to look up foo.txt in remzi.

Third, you may notice how each server request has all the infor-
mation needed to complete the request in its entirety. This design
point is critical to be able to gracefully recover from server failure, as
we will now discuss.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

10 SUN’S NETWORK FILE SYSTEM (NFS)

DESIGN TIP: IDEMPOTENCY

Idempotency is a useful property when building reliable systems.
When an operation can be issued more than once, it is much easier to
handle failure of the operation; you can just retry it. If an operation
is not idempotent, life becomes more difficult.

47.7 Handling Server Failure with Idempotent Operations

When a client sends a message to the server, it sometimes does not
receive a reply. There are many possible reasons for this failure to re-
spond. In some cases, the message may be dropped by the network;
networks do lose messages, and thus either the request or the reply
could be lost and thus the client would never receive a response.

It is also possible that the server has crashed, and thus is not cur-
rently responding to messages. After a bit, the server will be re-
booted and start running again, but in the meanwhile all requests
have been lost. In all of these cases, clients are left with a question:
what should they do when the server does not reply in a timely man-
ner?

In NFSv2, a client handles all of these failures in a single, uniform,
and elegant way: it simply retries the request. Specifically, after send-
ing the request, the client sets a timer to go off after a specified time
period. If a reply is received before the timer goes off, the timer is
canceled and all is well. If, however, the timer goes off before any re-
ply is received, the client assumes the request has not been processed
and resends the request. If this time the server replies, all is well and
the client has neatly handled the problem.

The key to the ability of the client to simply retry the request re-
gardless of what caused the failure is due to an important property
of most NFS requests: they are idempotent. An operation is called
idempotent when the effect of performing the operation multiple
times is equivalent to the effect of performing the operating a single
time. For example, if you store a value to a memory location three
times, it is the same as doing so once; thus “store value to memory”
is an idempotent operation. If, however, you increment a counter
three times, it results in a different amount than doing so just once;
thus, “increment counter” is not idempotent. More generally, any

OPERATING

SYSTEMS ARPACI-DUSSEAU

SUN’S NETWORK FILE SYSTEM (NFS) 11

operation that just reads data is obviously idempotent; an operation
that updates data must be more carefully considered to determine if
it has this property.

The key to the design of crash recovery in NFS is the idempotency
of most of the common operations. LOOKUP and READ requests
are trivially idempotent, as they only read information from the file
server and do not update it. More interestingly, WRITE requests are
also idempotent. If, for example, a WRITE fails, the client can simply
retry it. Note how the WRITE message contains the data, the count,
and (importantly) the exact offset to write the data to. Thus, it can be
repeated with the knowledge that the outcome of multiple writes is
the same as the outcome of a single write.

Case 1: Request Lost
Client

[send request]
Server

(no mesg)

Case 2: Server Down
Client

[send request]
Server

(down)

Case 3: Reply lost on way back from Server
Client

[send request]
Server

[recv request]

[handle request]

[send reply]

Figure 47.6: The Three Types of Loss

In this way, the client can handle all timeouts in a unified way. If
a WRITE request was simply lost (Case 1 above), the client will retry
it, the server will perform the write, and all will be well. The same
will happen if the server happened to be down while the request was
sent, but back up and running when the second request is sent, and
again all works as desired (Case 2). Finally, the server may in fact

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

12 SUN’S NETWORK FILE SYSTEM (NFS)

receive the WRITE request, issue the write to its disk, and send a
reply. This reply may get lost (Case 3), again causing the client to re-
send the request. When the server receives the request again, it will
simply do the exact same thing: write the data to disk and reply that
it has done so. If the client this time receives the reply, all is again
well, and thus the client has handled both message loss and server
failure in a uniform manner. Neat!

A small aside: some operations are hard to make idempotent. For
example, when you try to make a directory that already exists, you
are informed that the mkdir request has failed. Thus, in NFS, if the
file server receives a MKDIR protocol message and executes it suc-
cessfully but the reply is lost, the client may repeat it and encounter
that failure when in fact the operation at first succeeded and then
only failed on the retry. Thus, life is not perfect.

ASIDE: SOMETIMES LIFE ISN’T PERFECT

Even when you design a beautiful system, sometimes all the cor-
ner cases don’t work out exactly as you might like. Take the mkdir
example above; one could redesign mkdir to have different seman-
tics, thus making it idempotent (think about how you might do so);
however, why bother? The NFS design philosophy covers most of
the important cases, and overall makes the system design clean and
simple with regards to failure. Thus, accepting that life isn’t perfect
and still building the system is a sign of good engineering. Remem-
ber Ivan Sutherland’s old saying: “the perfect is the enemy of the
good.”

47.8 Improving Performance: Client-side Caching

Distributed file systems are good for a number of reasons, but
sending all read and write requests across the network can lead to a
big performance problem: the network generally isn’t that fast, espe-
cially as compared to local memory or disk. Thus, another problem:
how can we improve the performance of a distributed file system?

The answer, as you might guess from reading the big bold words
in the sub-heading above, is client-side caching. The NFS client-side
file system caches file data (and metadata) that it has read from the

OPERATING

SYSTEMS ARPACI-DUSSEAU

SUN’S NETWORK FILE SYSTEM (NFS) 13

server in client memory. Thus, while the first access is expensive
(i.e., it requires network communication), subsequent accesses are
serviced quite quickly out of client memory.

The cache also serves as a temporary buffer for writes. When a
client application first writes to a file, the client buffers the data in
client memory (in the same cache as the data it read from the file
server) before writing the data out to the server. Such write buffer-
ing is useful because it decouples application write() latency from ac-
tual write performance, i.e., the application’s call to write() succeeds
immediately (and just puts the data in the client-side file system’s
cache); only later does the data get written out to the file server.

Thus, NFS clients cache data and performance is usually great and
we are done, right? Unfortunately, not quite. Adding caching into
any sort of system with multiple client caches introduces a big and
interesting challenge which we will refer to as the cache consistency
problem.

47.9 The Cache Consistency Problem

The cache consistency problem is best illustrated with two clients
and a single server. Imagine client C1 reads a file F, and keeps a copy
of the file in its local cache. Now imagine a different client, C2, over-
writes the file F, thus changing its contents; let’s call the new version
of the file F (version 2), or F[v2] and the old version F[v1] so we can
keep the two distinct (but of course the file has the same name, just
different contents). Finally, there is a third client, C3, which has not
yet accessed the file F.

C1

cache: F[v1]

C2

cache: F[v2]

C3

cache: empty

Server S

disk: F[v1] at first

 F[v2] eventually

Figure 47.7: The Cache Consistency Problem

You can probably see the problem that is upcoming (Figure 47.7).
In fact, there are two subproblems. The first subproblem is that the

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

14 SUN’S NETWORK FILE SYSTEM (NFS)

client C2 may buffer its writes in its cache for a time before propagat-
ing them to the server; in this case, while F[v2] sits in C2’s memory,
any access of F from another client (say C3) will fetch the old ver-
sion of the file (F[v1]). Thus, by buffering writes at the client, other
clients may get stale versions of the file, which may be undesirable;
indeed, imagine the case where you log into machine C2, update F,
and then log into C3 and try to read the file, only to get the old copy!
Certainly this could be frustrating. Thus, let us call this aspect of the
cache consistency problem update visibility; when do updates from
one client become visible at other clients?

The second subproblem of cache consistency is a stale cache; in
this case, C2 has finally flushed its writes to the file server, and thus
the server has the latest version (F[v2]). However, C1 still has F[v1]
in its cache; if a program running on C1 reads file F, it will get a stale
version (F[v1]) and not the most recent copy (F[v2]). Again, this may
result in undesirable behavior.

NFSv2 implementations solve these cache consistency problems
in two ways. First, to address update visibility, clients implement
what is sometimes called flush-on-close consistency semantics; specif-
ically, when a file is written to and subsequently closed by a client ap-
plication, the client flushes all updates (i.e., dirty pages in the cache)
to the server. With flush-on-close consistency, NFS tries to ensure
that an open from another node will see the latest file version.

Second, to address the stale-cache problem, NFSv2 clients first
check to see whether a file has changed before using its cached con-
tents. Specifically, when opening a file, the client-side file system will
issue a GETATTR request to the server to fetch the file’s attributes.
The attributes, importantly, include information as to when the file
was last modified on the server; if the time-of-modification is more
recent than the time that the file was fetched into the client cache, the
client invalidates the file, thus removing it from the client cache and
ensuring that subsequent reads will go to the server and retrieve the
latest version of the file. If, on the other hand, the client sees that it
has the latest version of the file, it will go ahead and use the cached
contents, thus increasing performance.

When the original team at Sun implemented this solution to the
stale-cache problem, they realized a new problem; suddenly, the NFS
server was flooded with GETATTR requests. A good engineering
principle to follow is to design for the common case, and to make
it work well; here, although the common case was that a file was

OPERATING

SYSTEMS ARPACI-DUSSEAU

SUN’S NETWORK FILE SYSTEM (NFS) 15

accessed only from a single client (perhaps repeatedly), the client al-
ways had to send GETATTR requests to the server to make sure no
one else had changed the file. A client thus bombards the server,
constantly asking “has anyone changed this file?”, when most of the
time no one had.

To remedy this situation (somewhat), an attribute cache was added
to each client. A client would still validate a file before accessing it,
but most often would just look in the attribute cache to fetch the at-
tributes. The attributes for a particular file were placed in the cache
when the file was first accessed, and then would timeout after a cer-
tain amount of time (say 3 seconds). Thus, during those three sec-
onds, all file accesses would determine that it was OK to use the
cached file and thus do so with no network communication with the
server.

47.10 Assessing NFS Cache Consistency

A few final words about NFS cache consistency. The flush-on-
close behavior was added to “make sense”, but introduced a cer-
tain performance problem. Specifically, if a temporary or short-lived
file was created on a client and then soon deleted, it would still be
forced to the server. A more ideal implementation might keep such
short-lived files in memory until they are deleted and thus remove
the server interaction entirely, perhaps increasing performance.

More importantly, the addition of an attribute cache into NFS
made it very hard to understand or reason about exactly what ver-
sion of a file one was getting. Sometimes you would get the latest
version; sometimes you would get an old version simply because
your attribute cache hadn’t yet timed out and thus the client was
happy to give you what was in client memory. Although this was
fine most of the time, it would (and still does!) occasionally lead to
odd behavior.

And thus we have described the oddity that is NFS client caching.
Whew!

47.11 Implications on Server-Side Write Buffering

Our focus so far has been on client caching, and that is where
most of the interesting issues arise. However, NFS servers tend to

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

16 SUN’S NETWORK FILE SYSTEM (NFS)

be well-equipped machines with a lot of memory too, and thus they
have caching concerns as well. When data (and metadata) is read
from disk, NFS servers will keep it in memory, and subsequent reads
of said data (and metadata) will not have to go to disk, a potential
(small) boost in performance.

More intriguing is the case of write buffering. NFS servers abso-
lutely may not return success on a WRITE protocol request until the
write has been forced to stable storage (e.g., to disk or some other
persistent device). While they can place a copy of the data in server
memory, returning success to the client on a WRITE protocol request
could result in incorrect behavior; can you figure out why?

The answer lies in our assumptions about how clients handle server
failure. Imagine the following sequence of writes as issued by a
client:

write(fd, a_buffer, size); // fill first block with a’s

write(fd, b_buffer, size); // fill second block with b’s

write(fd, c_buffer, size); // fill third block with c’s

These writes overwrite the three blocks of a file with a block of
a’s, then b’s, and then c’s. Thus, if the file initially looked like this:

xx

yy

zz

we might expect the final result after these writes to be like this:

aa

bb

cc

The x’s, y’s, and z’s, would be overwritten with a’s, b’s, and c’s,
respectively.

Now let’s assume for the sake of the example that these three
client writes were issued to the server as three distinct WRITE pro-
tocol messages. Assume the first WRITE message is received by the
server and issued to the disk, and the client informed of its success.
Now assume the second write is just buffered in memory, and the
server also reports it success to the client before forcing it to disk; un-
fortunately, the server crashes before writing it to disk. The server
quickly restarts and receives the third write request, which also suc-
ceeds.

OPERATING

SYSTEMS ARPACI-DUSSEAU

SUN’S NETWORK FILE SYSTEM (NFS) 17

Thus, to the client, all the requests succeeded, but we are sur-
prised that the file contents look like this:

aa

yy <--- oops

cc

Yikes! Because the server told the client that the second write was
successful before committing it to disk, an old chunk is left in the file,
which, depending on the application, might result in a completely
useless file.

To avoid this problem, NFS servers must commit each write to sta-
ble (persistent) storage before informing the client of success; doing
so enables the client to detect server failure during a write, and thus
retry until it finally succeeds. Doing so ensures we will never end up
with file contents intermingled as in the above example.

The problem that this requirement gives rise to in NFS server im-
plementation is that write performance, without great care, can be
the major performance bottleneck. Indeed, some companies (e.g.,
Network Appliance) came into existence with the simple objective
of building an NFS server that can perform writes quickly; one trick
they use is to first put writes in a battery-backed memory, thus en-
abling to quickly reply to WRITE requests without fear of losing the
data and without the cost of having to write to disk right away; the
second trick is to use a file system design specifically designed to
write to disk quickly when one finally needs to do so [HLM94,RO91].

47.12 Summary

We have seen the introduction of the NFS distributed file system.
NFS is centered around the idea of simple and fast recovery in the
face of server failure, and achieves this end through careful protocol
design. Idempotency of operations is essential; because a client can
safely replay a failed operation, it is OK to do so whether or not the
server has executed the request.

We also have seen how the introduction of caching into a multiple-
client, single-server system can complicate things. In particular, the
system must resolve the cache consistency problem in order to be-
have reasonably; however, NFS does so in a slightly ad hoc fashion
which can occasionally result in observably weird behavior. Finally,

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

18 SUN’S NETWORK FILE SYSTEM (NFS)

we saw how caching on the server can be tricky; in particular, writes
to the server must be forced to stable storage before returning success
(otherwise data can be lost).

OPERATING

SYSTEMS ARPACI-DUSSEAU

SUN’S NETWORK FILE SYSTEM (NFS) 19

References

[S86] “The Sun Network File System: Design, Implementation and Experience”
Russel Sandberg
USENIX Summer 1986
The original NFS paper. Frankly, it is pretty poorly written and makes some of the behaviors of
NFS hard to understand.

[P+94] “NFS Version 3: Design and Implementation”
Brian Pawlowski, Chet Juszczak, Peter Staubach, Carl Smith, Diane Lebel, Dave Hitz
USENIX Summer 1994. 137-152

[P+00] “The NFS version 4 protocol”
Brian Pawlowski, David Noveck, David Robinson, Robert Thurlow
Proceedings of the 2nd International System Administration and Networking Confer-
ence (SANE 2000).

[4] “NFS Illustrated”
Brent Callaghan
Addison-Wesley Professional Computing Series, 2000
A great NFS reference.

[Sun89] “NFS: Network File System Protocol Specification”
Sun Microsystems, Inc. Request for Comments: 1094. March 1989
Available: http://www.ietf.org/rfc/rfc1094.txt

[O91] “The Role of Distributed State”
John K. Ousterhout
Available: ftp://ftp.cs.berkeley.edu/ucb/sprite/papers/state.ps

[HLM94] “File System Design for an NFS File Server Appliance”
Dave Hitz, James Lau, Michael Malcolm
USENIX Winter 1994. San Francisco, California, 1994
Hitz et al. were greatly influenced by previous work on log-structured file systems.

[RO91] “The Design and Implementation of the Log-structured File System”
Mendel Rosenblum, John Ousterhout
Symposium on Operating Systems Principles (SOSP), 1991.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

