48.1

48

The Andrew File System (AFS)

The Andrew File System was introduced by researchers at Carnegie-
Mellon University (CMU) in the 1980’s [H+88]. Led by the well-
known Professor M. Satyanarayanan of Carnegie-Mellon University
(“Satya” for short), the main goal of this project was simple: scale.
Specifically, how can one design a distributed file system such that a
server can support as many clients as possible?

Interestingly, as we will see, there are numerous design and im-
plementation components that affect scalability. Most important is
the design of the protocol between clients and servers. In NFS, for
example, the protocol forces clients to check with the server peri-
odically to determine if cached contents have changed; because each
check uses server resources (e.g., CPU, network bandwidyth, etc.), fre-
quent checks like this will limit the number of clients a server can
respond to and thus limit scalability.

AFS Version 1

We will discuss two versions of AFS [H+88,5+85]. The first ver-
sion (which we will call AFSv1, but actually the original system was
called the ITC distributed file system [S+85]) had some of the basic
design in place, but didn’t scale as desired, which led to a re-design
and the final protocol (which we will call AFSv2, orjust AFS) [H+88].
We now discuss the first version.

One of the basic tenets of all versions of AFS is whole-file caching
on the local disk of the client machine that is accessing a file. When
you open() a file, the entire file (if it exists) is fetched from the server

1



2 THE ANDREW FILE SYSTEM (AFS)

and stored in a file on your local disk. Subsequent application read()
and write() operations are redirected to the local file system where
the file is stored; thus, these operations require no network commu-
nication and are fast. Finally, upon close(), the file (if it has been
modified) is flushed back to the server. Note the obvious contrasts
with NFS, which caches blocks (not whole files, although NFS could
of course cache every block of an entire file) and does so in client
memory (not local disk).

Let’s get into the details a bit more. When a client application first
calls open(), the AFS client-side code (which the AFS designers call
Venus) would send a Fetch protocol message to the server. The Fetch
message would pass the entire pathname (e.g., /home/remzi/notes.txt)
of the desired file to the file server (the group of which they called
Vice), which would then traverse the pathname, find the desired file,
and ship the entire file back to the client. The client-side code would
then cache the file on the local disk of the client (by writing it to local
disk). As we said above, subsequent read() and write() system calls
are strictly local in AFS (no communication with the server occurs);
they are just redirected to the local copy of the file. Because the read()
and write() calls act just like calls to a local file system, once a block
is accessed, it also may be cached in client memory. Thus, AFS also
uses client memory to cache copies of blocks that it has in its local
disk. Finally, when finished, the AFS client checks if the file has been
modified (i.e., that it has been opened for writing); if so, it flushes the
new version back to the server with a Store protocol message, send-
ing the entire file and pathname to the server for permanent storage.

TestAuth Test whether a file has changed (used to validate cached entries)
GetFileStat Get the stat info for a file

Fetch Fetch the contents of an entire file from the server

Store Store this file on the server

SetFileStat Set the stat info for a file

ListDir List the contents of a directory

Figure 48.1: AFSv1 Protocol Highlights

The next time the file is accessed, AFSv1 does so much more effi-
ciently. Specifically, the client-side code first contacts the server (us-
ing the TestAuth protocol message) in order to determine whether
the file has changed. If not, the client would use the locally-cached
copy, thus improving performance by avoiding a network transfer.
The figure above shows some of the protocol messages in AFSv1.

OPERATING
SYSTEMS ARPACI-DUSSEAU



48.2

THE ANDREW FILE SYSTEM (AFS)

Note that this early version of the protocol only cached file contents;
directories, for example, were only kept at the server.

Problems with Version 1

A few key problems with this first version of AFS motivated the
designers to rethink their file system. To study the problems in de-
tail, the designers of AFS spent a great deal of time measuring their
existing prototype to find what was wrong. Such experimentation
is a good thing; measurement is the key to understanding how sys-
tems work and how to improve them. Hard data helps take intuition
and make into a concrete science of deconstructing systems. In their
study, the authors found two main problems with AFSv1:

o Path-traversal costs are too high: When performing a Fetch
or Store, the client passes the entire file name (e.g., the file
/home/remzi/grades.txt)to the server. The server, in or-
der to access the file, must perform a full pathname traversal,
first looking in the root directory to find home, then in home
to find remzi, and so forth, all the way down the path until
finally the desired file is located. With many clients accessing
the server at once, the designers of AFS found that the server
was spending much of its time simply walking down directory
paths!

e The client issues too many TestAuths to the server: Much
like NFS and its overabundance of GetAttr protocol messages,
AFSv1 generated a large amount of traffic to check whether a
local file (or its stat information) was valid with the TestAuth
protocol message. Thus, servers spent a great deal of time
telling clients whether it was OK to used their cached copies
of a file. Most of the time, it was OK (of course), and thus the
protocol was leading to high server overheads again.

There were actually two other problems with AFSv1: load was
not balanced across servers, and the server used a single distinct
process per client thus inducing context switching and other over-
heads. The load imbalance problem was solved by introducing vol-
umes, which an administrator could move across servers to balance
load; the context-switch problem was solved in AFSv2 by building

ARPACI-DUSSEAU

THREE
EASY
PIECES
(v0.5)



THE ANDREW FILE SYSTEM (AFS)

4
48.3
48.4
OPERATING

SYSTEMS

the server with threads instead of processes. However, for the sake
of space, we focus here on the main two protocol problems above
that limited the scale of the system.

Improving the Protocol

The two problems above limited the scalability of AFS; the server
CPU became the bottleneck of the system, and each server could only
service 20 clients without becoming overloaded. Servers were receiv-
ing too many TestAuth messages, and when they received Fetch or
Store messages, were spending too much time traversing the direc-
tory hierarchy. Thus, the AFS designers were faced with a problem:

THE CRUX: HOW TO DESIGN A PROTOCOL FOR SCALABILITY

How should one redesign the protocol to minimize the number of
server interactions, i.e., how could they reduce the number of Tes-
tAuth messages? Further, how could they design the protocol to
make these server interactions efficient? By attacking both of these
issues, a new protocol would result in a much more scalable version
AFS.

AFS Version 2

AFSv2 introduced the notion of a callback to reduce the number
of client/server interactions. A callback is simply a promise from the
server to the client that the server will inform the client when a file
that the client is caching has been modified. By adding this state to
the server, the client no longer needs to contact the server to find out
if a cached file is still valid; rather, it assumes that the file is valid
until the server tells it otherwise.

AFSv2 also introduced the notion of a file handle (very similar to
NFS) instead of pathnames to specify which file a client was inter-
ested in. A file handle in AFS consisted of a volume identifier, a file
identifier, and a generation number. Thus, instead of sending whole
pathnames to the server and letting the server walk the pathname to
find the desired file, the client would walk the pathname, one piece
at a time, caching the results and thus hopefully reducing the load

ARPACI-DUSSEAU



48.5

THE ANDREW FILE SYSTEM (AFS)

on the server.

For example, if a client accessed /home/remzi/notes.txt,and
home was the AFS directory mounted onto / (in other words, / was
the local root directory, but home and its children were in AFS), the
client would first Fetch the directory contents of home, put them in
the local-disk cache, and setup a callback on home. Then, the client
would Fetch the directory remz1i, put it in the local-disk cache, and
setup a callback on the server on remzi. Finally, the client would
Fetch notes.txt, cache this regular file in the local disk, setup a
callback, and finally return a file descriptor to the calling application.

The key difference, however, from NFS, is that with each fetch
of a directory or file, the AFS client would establish a callback with
the server, thus ensuring that the server would notify the client of a
change in its cached state. The benefit is obvious: although the first
access to /home/remzi/notes.txt generates many client-server
messages (as described above), it also establishes callbacks for all the
directories as well as the file notes.txt, and thus subsequent accesses
are entirely local and require no server interaction at all. Thus, in the
common case where a file is cached at the client, AFS behaves nearly
identically to a local disk-based file system. If one accesses a file more
than once, the second access should be just as fast as accessing a file
locally.

Cache Consistency

Because of callbacks and whole-file caching, the cache consistency
model provided by AFS is easy to describe and understand. When a
client (C1) opens a file, it will fetch it from the server. Any updates
it makes to the file are entirely local, and thus only visible to other
applications on that same client (C1); if an application on another
client (C2) opens the file at this point, it will just get the version that
is stored at the server which does not yet reflect the changes being
made at C1. When the application at C1 finishes updating the file, it
calls close() which flushes the entire file to the server. At that point,
any clients caching the file (such as C2) would be informed that their
callbacks are broken and thus they should not use cached versions of
the file because the server has a newer version.

In the rare case that two clients are modifying a file at the same
time, AFS naturally employs what is known as a last writer wins

ARPACI-DUSSEAU

THREE
EASY
PIECES
(v0.5)



THE ANDREW FILE SYSTEM (AFS)

48.6

OPERATING
SYSTEMS

approach. Specifically, whichever client calls close() last will update
the entire file on the server last and thus will be the winning file, i.e.,
the file that remains on the server for others to see. The result is a
file that is either one client’s or the other client’s. Note the difference
from a block-based protocol like NFS: in such a block-based protocol,
writes of individual blocks may be flushed out to the server as each
client is updating the file, and thus the final file on the server could
end up as a mix of updates from both clients; in many cases, such a
mixed file output would not make much sense (i.e., imagine a JPEG
image getting modified by two clients in pieces; the resulting mix of
writes would hardly make much sense).

Crash Recovery

From the description above, you might sense that crash recovery
is more involved than with NFS. You would be right. For example,
imagine there is a short period of time where a server (S) is not able
to contact a client (C1), for example, while the client C1 is reboot-
ing. While C1 is not available, S may have tried to send it one or
more callback recall messages; for example, imagine C1 had file F
cached on its local disk, and then C2 (another client) updated F, thus
causing S to send messages to all clients caching the file to remove it
from their local caches. Because C1 may miss those critical messages
when it is rebooting, upon rejoining the system, C1 should treat all
of its cache contents as suspect. Thus, upon the next access to file
F, C1 should first ask the server (with a TestAuth protocol message)
whether its cached copy of file F is still valid; if so, C1 can use it; if
not, C1 should fetch the newer version from the server.

Server recovery after a crash is more complicated. The problem
that arises is that callbacks are kept in-memory; thus, when a server
reboots, it has no idea which client machine has which files. Thus,
upon server restart, each client of the server must realize that the
server has crashed and treat all of their cache contents as suspect,
and (as above) reestablish the validity of a file before using it. Thus,
a server crash is a big event, as one must ensure that each client is
aware of the crash in a timely manner, or risk a client accessing a
stale file. There are many ways to implement such recovery; for ex-
ample, by having the server send a message (saying “don’t trust your
cache contents!”) to each client when it is up and running again. As

ARPACI-DUSSEAU



48.7

48.8

48.9

THE ANDREW FILE SYSTEM (AFS)

you can see, there is a cost to building a more scalable and sensible
caching model; with NFS, clients hardly noticed a server crash.

Scale of AFSv2

With the new protocol in place, AFSv2 was measured and found
to be much more scalable that the original version. Indeed, each
server could support about 50 clients (instead of just 20). A further
benefit was that client-side performance often came quite close to lo-
cal performance, because in the common case, all file accesses were
local; file reads usually went to the local disk cache (and potentially,
local memory). Only when a client created a new file or wrote to an
existing one was there need to send a Store message to the server and
thus update the file with new contents.

Other Improvements: Namespaces, Security, Etc.

AFS added a number of other improvements beyond scale. It pro-
vided a true global namespace to clients, thus ensuring that all files
were named the same way on all client machines; NFS, in contrast, al-
lowed each client to mount NFS servers in any way that they pleased,
and thus only by convention (and great administrative effort) would
files be named similarly across clients.

AFS also took security seriously, and incorporated mechanisms to
authenticate users and ensure that a set of files could be kept private
if a user so desired. NFS, in contrast, still has quite primitive support
for security.

Finally, AFS also included facilities for flexible user-managed ac-
cess control. Thus, when using AFS, a user has a great deal of control
over who exactly can access which files. NFS, like most UNIX file
systems, has much more primitive support for this type of sharing.

Summary

AFS shows us how distributed file systems can be built quite dif-
ferently than what we saw with NFS. The protocol design of AFS is
particularly important; by minimizing server interactions (through
whole-file caching and callbacks), each server can support many clients

ARPACI-DUSSEAU

THREE
EAsY
PIECES
(v0.5)



THE ANDREW FILE SYSTEM (AFS)

OPERATING
SYSTEMS

and thus reduce the number of servers needed to manage a partic-
ular site. Many other features, including the single namespace, se-
curity, and access-control lists, make AFS quite nice to use. Finally,
the consistency model provided by AFS is simple to understand and
reason about, and does not lead to the occasional weird behavior as
one sometimes observes in NFS.

Perhaps unfortunately, AFS is likely on the decline. Because NFS
became an open standard, many different vendors supported it, and,
along with CIFS (the Windows-based distributed file system proto-
col), NFS dominates the marketplace. Although one still sees AFS
installations from time to time (such as in various educational insti-
tutions, including Wisconsin), the only lasting influence will likely
be from the ideas of AFS rather than the actual system itself. Indeed,
NFSv4 now adds server state (e.g., an “open” protocol message), and
thus bears more similarity to AFS than it used to.

References

[H+88] “Scale and Performance in a Distributed File System”

John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satya-
narayanan, Robert N. Sidebotham, Michael J. West.

ACM Transactions on Computing Systems (ACM TOCS), page 51-81, Volume 6, Number
1, February 1988.

[S+85] “The ITC Distributed File System: Principles and Design”
M. Satyanarayanan, J.H. Howard, D.A. Nichols, R.N. Sidebotham, A. Spector, M.J. West.
SOSP “85. pages 35-50.

ARPACI-DUSSEAU



