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Redundant Arrays of Inexpensive Disks
(RAIDS)

When we use a disk, we sometimes wish it to be faster; I/O opera-
tions are slow and thus can be the bottleneck for the entire system.
When we use a disk, we sometimes wish it to be larger; more and
more data is being put online and thus our disks are getting fuller
and fuller. When we use a disk, we sometimes wish for it to be more
reliable; when a disk fails, if our data isn’t backed up, all that valu-
able data is gone.

In this note, we introduce the Redundant Array of Inexpensive
Disks better known as RAID [P+88], a technique to use multiple
disks in concert to build a faster, bigger, and more reliable disk sys-
tem. The term was introduced in the late 1980s by a group of re-
searchers at U.C. Berkeley (led by Professors David Patterson and
Randy Katz and then student Garth Gibson); it was around this time
that many different researchers simultaneously arrived upon the ba-
sic idea of using multiple disks to build a better storage system [BG8S,
K86,K88,PB86,5G86].

From the outside, a RAID looks like a disk: a group of blocks each
of which one can read or write. Internally, however, the RAID is a
complex beast, consisting of multiple disks, memory (both volatile
and non-volatile), and one or more processors to manage the system.
Thus, a hardware RAID box is very much like a computer system,
but just specialized for the task of managing a group of disks.

RAIDs offer a number of advantages over a single disk. One ad-
vantage is performance. Using multiple disks in parallel can greatly
speed up I/O times. Another benefit is capacity. Large data sets
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demand large disks. Finally, RAIDs can improve reliability; spread-
ing data across multiple disks (without RAID techniques) makes the
data vulnerable to the loss of a single disk; with some form of redun-
dancy, RAIDs can tolerate the loss of a disk and keep operating as if
nothing were wrong.

Amazingly, RAIDs provide these advantages transparently to sys-
tems that use them, i.e., a RAID just looks like a big disk to the host
system. The beauty of transparency, of course, is that it enables one
to simply replace a disk with a RAID and not change a single line
of software; the operating system and client applications continue to
operate without modification. In this manner, transparency greatly
improves the deployability of RAID, enabling users and administra-
tors to put a RAID to use without worries of software compatibility.

DESIGN T1P: TRANSPARENCY
When considering how to add new functionality to a system, one
should always consider whether such functionality can be added
transparently, in a way that demands no changes to the rest of the
system. Requiring a complete rewrite of the existing software (or
radical hardware changes) lessens the chance of impact of an idea.

We now discuss some of the important aspects of RAIDs. We be-
gin with the interface, fault model, and then discuss how one can
evaluate a RAID design along three important axes: capacity, relia-
bility, and performance. We then discuss a number of other issues
that are important to RAID design and implementation.

Interface and RAID Internals

To a file system above, a RAID looks like a big, (hopefully) fast,
and (hopefully) reliable disk. Just as with a single disk, it presents
itself as a linear array of blocks, each of which can be read or written
by the file system (or other client).

When a file system issues a logical I/O request to the RAID, the
RAID internally must calculate which disk (or disks) to access in or-
der to complete the request, and then issue one or more physical 1/Os
to do so. The exact nature of these physical I/Os depends on the
RAID level, as we will discuss in detail below. However, as a simple
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example, consider a RAID that keeps two copies of each block (each
one on a separate disk); when writing to such a mirrored RAID sys-
tem, the RAID will have to perform two physical I/Os for every one
logical I/O it is issued.

A RAID system is often built as a separate hardware box, with a
standard connection (e.g., SCSI, or SATA) to a host. Internally, how-
ever, RAIDs are fairly complex, consisting of a microcontroller that
runs firmware to direct the operation of the RAID, volatile memory
such as DRAM to buffer data blocks as they are read and written,
and in some cases, non-volatile memory to buffer writes safely and
perhaps even specialized logic to perform parity calculations (useful
in some RAID levels, as we will also see below). At a high level, a
RAID is very much a specialized computer system: it has a proces-
sor, memory, and disks; however, instead of running applications, it
runs specialized software designed to operate the RAID.

Fault Model

To understand RAID and compare different approaches, we must
have a fault model in mind. RAIDs are designed to detect and re-
cover from certain kinds of disk faults; thus, knowing exactly which
faults to expect is critical in arriving upon a working design.

The first fault model we will assume is quite simple, and has been
called the fail-stop fault model [S84]. In this model, a disk can be in
exactly one of two states: working or failed. With a working disk, all
blocks can be read or written. In contrast, when a disk has failed, we
assume it is permanently lost.

One critical aspect of the fail-stop model is what it assumes about
fault detection. Specifically, when a disk has failed, we assume that
this is easily detected. For example, in a RAID array, we would as-
sume that the RAID controller hardware (or software) can immedi-
ately observe when a disk has failed.

Thus, for now, we do not have to worry about more complex
“silent” failures such as disk corruption. We also do not have to
worry about a single block becoming inaccessible upon an other-
wise working disk (sometimes called a latent sector error). We will
consider these more complex (and unfortunately, more realistic) disk
faults later.
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How to Evaluate a RAID

As we will soon see, there are a number of different approaches
to building a RAID. Each of these approaches has different charac-
teristics which are worth evaluating, in order to understand their
strengths and weaknesses.

Specifically, we will evaluate each RAID design along three axes.
The first axis is capacity; given a set of N disks, how much useful
capacity is available to systems that use the RAID? Without redun-
dancy, the answer is obviously N; however, if we have a system that
keeps a two copies of each block, we will obtain a useful capacity of
N/2.

The second axis of evaluation is reliability. How many disk faults
can the given design tolerate? In alignment with our fault model, we
assume only that an entire disk can fail.

Finally, the third axis is performance. Performance is somewhat
challenging to evaluate, because it depends heavily on the workload
presented to the disk array. Thus, before evaluating performance, we
will first present a set of typical workloads that one should consider.

We now consider three important RAID designs: RAID Level 0
(striping), RAID Level 1 (mirroring), and RAID Levels 4/5 (parity-
based redundancy). The naming of each of these designs as a “level”
stems from the pioneering work of Patterson, Gibson, and Katz at
Berkeley [P+88].

RAID Level 0: Striping

The first RAID level is actually not a RAID level at all, in that
there is no redundancy. However, RAID level 0, or striping as it is
better known, serves as an excellent upper-bound on performance
and capacity and thus is worth understanding.

The simplest form of striping will stripe blocks across the disks of
the system as follows (assume here a 4-disk array):

From Table 37.1, you get the basic idea: spread the blocks of the
array across the disks in a round-robin fashion. This approach is de-
signed to extract the most parallelism from the array when requests
are made for contiguous chunks of the array (as in a large, sequential
read, for example). We call the blocks in the same row a stripe; thus,
blocks 0, 1, 2, and 3 are in the same stripe above.
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Disk0 Disk1 Disk2 Disk3
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Table 37.1: RAID-0: Simple Striping

In the example, we have made the simplifying assumption that
only 1 block (each of say size 4KB) is placed on each disk before mov-
ing on to the next. However, this arrangement need not be the case.
For example, we could arrange the blocks across disks as in Table
37.2:

Disk0 Disk1 Disk2 Disk3

0 2 4 6 chunk size:

1 3 5 7 2 blocks
8 10 12 14
9 11 13 15

Table 37.2: Striping with a Bigger Chunk Size

In this example, we place two 4KB blocks on each disk before
moving on to the next disk. Thus, the chunk size of this RAID ar-
ray is 8KB, and a stripe thus consists of 4 chunks or 32KB of data.

Chunk Sizes

Chunk size mostly affects performance of the array. For example, a
small chunk size implies that many files will get striped across many
disks, thus increasing the parallelism of reads and writes to a single
file; however, the positioning time to access blocks across multiple
disks increases, because the positioning time for the entire request is
determined by the maximum of the positioning times of the requests
across all drives.

A big chunk size, on the other hand, reduces such intra-file par-
allelism, and thus relies on multiple concurrent requests to achieve
high throughput. However, large chunk sizes reduce positioning
time; if, for example, a single file fits within a chunk and thus is
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placed on a single disk, the positioning time incurred while accessing
it will just be the positioning time of a single disk.

Thus, determining the “best” chunk size is hard to do, as it re-
quires a great deal of knowledge about the workload presented to
the disk system [CL95]. For the rest of this discussion, we will as-
sume that the array uses a chunk size of a single block (4KB); most
arrays use larger chunk sizes (say around 64 KB), but for the issues
we discuss below, the exact chunk size does not matter and thus we
use a single block for the sake of simplicity.

ASIDE: THE RAID MAPPING PROBLEM

Before studying the capacity, reliability, and performance charac-
teristics of the RAID, we first present an aside on what we call the
mapping problem. This problem arises in all RAID arrays; simply
put, given a logical block to read or write, how does the RAID know
exactly which physical disk and offset to access?

For these simple RAID levels, we do not need much sophistication
in order to correctly map logical blocks onto their physical locations.
Take the first striping example above (chunk size = 1 block = 4KB).
In this case, given a logical block address A, the RAID can easily
compute the desired disk and offset with two simple equations:

Di sk
O f set

A % nunber _of _di sks
A | nunber _of _di sks

Note that these are all integer operations (e.g., 4 / 3 = 1 not
1.33333...).

Let’s see how these equations work for a simple example. Imagine
in the first RAID above that a request arrives for block 14. Given that
there are 4 disks, this would mean that the disk we are interested in
is (14 The exact block is calculated as (14 / 4 = 3): block 3. Thus, block
14 should be found on the fourth block (block 3, starting at 0) of the
third disk (disk 2, starting at 0), which is exactly where it is.

You can think about how these equations would be modified to
support different chunk sizes. Try it! It’s not too hard.

ARPACI-DUSSEAU



REDUNDANT ARRAYS OF INEXPENSIVE DIsks (RAIDS)

Back to RAID-0 Analysis

Let us now evaluate striping. From the perspective of capacity, it
is perfect: given N disks, striping delivers N disks worth of useful
capacity. From the standpoint of reliability, striping is also perfect,
but in the bad way: any disk failure will lead to data loss. Finally,
performance is excellent.

Evaluating RAID Performance

In analyzing RAID performance, one can consider two different per-
formance metrics. The first is single-request latency. Understanding
the latency of a single 1/O request to a RAID is useful as it reveals
how much parallelism can exist during a single logical I/O opera-
tion. The second is steady-state throughput of the RAID, i.e., the total
bandwidth of many concurrent requests. Because RAIDs are often
used in high-performance environments, the steady-state bandwidth
is critical, and thus will be the main focus of our analyses.

To understand throughput in more detail, we need to put forth
some workloads of interest. We will assume, for this discussion, that
there are two types of workloads: sequential and random. With
a sequential workload, we assume that requests to the array come
in large contiguous chunks; for example, a request (or series of re-
quests) that accesses 1 MB of data, starting at block (B) and end-
ing at block (B + 1 MB), would be deemed sequential. Sequential
workloads are common in many environments (think of searching
through a large file for a keyword), and thus are considered impor-
tant.

For random workloads, we assume that each request is rather
small, and that each request s to a different random location on disk.
For example, a random stream of requests may first access 4KB at
logical address 10, then at logical address 55000, then at 20100, and
so forth. Some important workloads, like transactional workloads
on a database, exhibit this type of access pattern, and thus it is con-
sidered an important workload as well.

Of course, real workloads are not so simple, and often have a mix
of sequential and random-seeming components as well as behaviors
in-between the two. However, for now, we will just consider these
two possibilities.

As you can tell, sequential and random workloads will result in
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widely different performance characteristics from a disk. With se-
quential access, a disk operates in its most efficient mode, spending
little time seeking and waiting for rotation and most of its time trans-
ferring data. With random access, just the opposite is true: most time
is spent seeking and waiting for rotation and relatively little time is
spent transferring data. To capture this difference in our analysis,
we will assume that a disk can transfer data at S MB/s under a se-
quential workload, and R MB/s when under a random workload. In
general, S is much greater than R.

To make sure we understand this difference, let’s do a simple ex-
ercise. Specifically, lets calculate S and R given the following disk
characteristics. Assume a sequential transfer of size 10 MB on aver-
age, and a random transfer of 10 KB on average. Also, assume the
following disk characteristics:

Average seek time 7 ms
Average rotational delay 3 ms
Transfer rate of disk 50 MB/s

To compute S, we need to first figure out how time is spent in a
typical 10 MB transfer. First, we spend 7 ms seeking, and then 3 ms
rotating. Finally, transfer begins; 10 MB @ 50 MB/s leads to 1/5th of
a second, or 200 ms, spent in transfer. Thus, for each 10 MB request,
we spend 210 ms completing the request. To compute S, we just need
to divide:

S — Amount of Data — 10MB _ 47.62 MB/S

Time to access 210 ms

As we can see, because of the large time spent transferirng data, S
is very near the peak bandwidth of the disk (the seek and rotational
costs have been amortized).

We can compute R similarly. Seek and rotation are the same; we
then compute the time spent in transfer, which is 10 KB @ 50 MB/s,
or 0.195 ms.

R= Amount of Data _ _10KB = 0.981 MB/S

Time to access 10.195 ms

As we can see, R is less than 1 MB/s, and S/R is almost 50.

Back to RAID-0 Analysis, Again

Let’s now evaluate the performance of striping. As we said above,
it is generally good. From a latency perspective, for example, the
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latency of a single-block request should be just about identical to that
of a single disk; after all, RAID-0 will simply redirect that request to
one of its disks.

From the perspective of steady-state throughput, we’d expect to
get the full bandwidth of the system. Thus, throughput equals N
(the number of disks) multiplied by S (the sequential bandwidth of
a single disk). For a large number of random I/Os, we can again use
all of the disks, and thus obtain N - R MB/s. As we will see below,
these values are both the simplest to calculate and will serve as an
upper bound in comparison with other RAID levels.

RAID Level 1: Mirroring

Our first RAID level beyond striping is known as RAID level 1, or
mirroring. With a mirrored system, we simply make more than one
copy of each block in the system; each copy should be placed on a
separate disk, of course. By doing so, we can tolerate disk failures.

In a typical mirrored system, we will assume that for each logical
block, the RAID makes two physical copies of the block. Here is a
simple example:

Disk0 Disk1 Disk2 Disk3
0 0 1 1

2 2 3 3
4 4 5 5
6 6 7 7

Table 37.3: Simple RAID-1: Mirroring

In the example, disk 0 and disk 1 have identical contents, and disk
2 and disk 3 do as well; the data is striped across these mirror pairs.
In fact, you may have noticed that there are a number of different
ways to place block copies across the disks. The arrangement above
is a common one and is sometimes called RAID-10 or (RAID 1+0)
because it uses mirrored pairs (RAID-1) and then stripes (RAID-0)
on top of them; another common arrangement is RAID-01 (or RAID
0+1), which contains two large striping (RAID-0) arrays, and then
mirrors (RAID-1) on top of them. For now, we will just talk about
mirroring assuming the above layout.

When reading a block from a mirrored array, the RAID has a
choice: it can read either copy. For example, if a read to logical block
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5 is issued to the RAID, it is free to read it from either disk 2 or disk
3. When writing a block, though, no such choice exists: the RAID
must update both copies of the data, in order to preserve reliability.
Do note, though, that these writes can take place in parallel; for ex-
ample, a write to logical block 5 could proceed to disks 2 and 3 at the
same time.

ASIDE: THE RAID CONSISTENT UPDATE PROBLEM

Before analyzing RAID-1, let us first discuss a problem that arises
in any multi-disk RAID system, known as the consistent update
problem [DAAO5]. The problem occurs on a write to any RAID that
has to update multiple disks during a single logical operation. In this
case, let us assume we are considering a mirrored disk array.

Imagine the write is issued to the RAID, and then the RAID de-
cides that it must be written to two disks, disk 0 and disk 1. The
RAID then issues the write to disk 0, but just before the RAID can
issue the request to disk 1, a power loss (or system crash) occurs. In
this unfortunate case, let us assume that the request to disk 0 com-
pleted (but clearly the request to disk 1 did not, as it was never is-
sued).

The result of this untimely power loss is that the two copies of the
block are now inconsistent; the copy on disk 0 is the new version,
and the copy on disk 1 is the old. What we would like to happen
is for the state of both disks to change atomically, i.e., either both
should end up as the new version or neither.

The general way to solve this problem is to use a write-ahead
log of some kind to first record what the RAID is about to do (i.e.,
update two disks with a certain piece of data) before doing it. By
taking this approach, we can ensure that in the presence of a crash,
the right thing will happen; by running a recovery procedure that
replays all pending transactions to the RAID, we can ensure that no
two mirrored copies (in the RAID-1 case) are out of sync.

One last note: because logging to disk on every write is pro-
hibitively expensive, most RAID hardware includes a small amount
of non-volatile RAM (e.g., battery-backed) where it performs this
type of logging. Thus, consistent update is provided without the
high cost of logging to disk.
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RAID-1 Analysis

Let us now assess RAID-1. From a capacity standpoint, RAID-1 is
pretty expensive; with the mirroring level = 2, we only obtain half of
our peak useful capacity. Thus, with N disks, the useful capacity of
mirroring is N /2.

From a reliability standpoint, RAID-1 does well. It can tolerate
the failure of any one disk. However, you may notice RAID-1 can
actually do better than this, with a little luck. Imagine, in the figure
above, that disk 0 and disk 2 both failed. In such a situation, there is
still no data loss! More generally, a mirrored system (with mirroring
level = 2) can tolerate 1 disk failure for certain, and up to N /2 failures
depending on which disks fail. In real life, however, we generally
don’t like to leave things like this to chance, and thus most people
consider mirroring to be good for handling a single failure.

Finally, we analyze performance. From the perspective of the la-
tency of a single read request, we can see it is the same as the latency
on a single disk; all the RAID-1 does is direct the read to one of its
copies. A write is a little different: it requires two physical writes
to complete before it is done. These two writes happen in parallel,
and thus the time will be roughly equivalent to the time of a single
write; however, because the logical write must wait for both physical
writes to complete, it suffers from the worst-case seek and rotational
delay of the two requests, and thus (on average) will be just a little
bit higher than a single write to a single disk.

To analyze steady-state throughput, let us start with the sequen-
tial workload. When writing out to disk sequentially, each logical
write must result in two physical writes; for example, when we write
logical block 0 (in the figure above), the RAID internally would write
it to both disk 0 and disk 1. Thus, we can conclude that the maximum
bandwidth obtained during sequential writing to a mirrored array is
(% - S), or half the peak bandwidth.

Unfortunately, we obtain the exact same performance during a se-
quential read. One might think that a sequential read could do better,
because it only needs to read one copy of the data, not both. How-
ever, let’s use an example to illustrate why this doesn’t help much.
Imagine we need to read blocks 0, 1, 2, 3,4, 5, 6, and 7. Let’s say we
issue the read of 0 to disk 0, the read of 1 to disk 2, the read of 2 to
disk 1, and the read of 3 to disk 3. We continue by issuing reads to
4,5,6,and 7 to disks 0, 2, 1, and 3, respectively. One might naively
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think that because we are utilizing all the disks in this example, we
are achieving the full bandwidth of the array.

To see that this is not the case, however, consider the requests a
single disk receives (say disk 0). First, it gets a request for block 0;
then, it gets a request for block 4 (skipping block 2). In fact, each
disk receives a request for every other block. While it is rotating over
the skipped block, it is not delivering useful bandwidth to the client.
Thus, each disk will only deliver half its peak bandwidth. And thus,
the sequential read will only obtain a bandwidth of (% - S)MB/s.

Random reads are the best case for a mirrored RAID. In this case,
we can distribute the reads across all the disks, and thus obtain the
full possible bandwidth. Thus, for random reads, RAID-1 delivers
N - RMB/s.

Finally, random writes perform as you might expect: & - R MB/s.
Each logical write must turn into two physical writes, and thus while
all the disks will be in use, the client will only perceive this as half the
available bandwidth. Even though a write to logical block X turns
into two parallel writes to two different physical disks, the band-
width of many small requests only achieves half of what we saw with
striping. As we will soon see, getting half the available bandwidth is
actually pretty good!

RAID Level 4: Saving Space with Parity

We now present a different method of adding redundancy to a
disk array known as parity. Parity-based approaches attempt to use
less capacity and thus overcome the huge space penalty paid by mir-
rored systems. They do so at a cost, however: performance.

In a five-disk RAID-4 system, we might observe the following
data layout:

Disk0 Disk1 Disk2 Disk3 Disk4

0 1 2 3 PO
4 5 6 7 P1
8 9 10 11 P2
12 13 14 15 P3

As you can see, for each stripe of data, we have added a single
parity block that stores the redundant information for that stripe of
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blocks. For example, parity block P1 has redundant information that
it calculated from blocks 4, 5, 6, and 7.

To compute parity, we need to use some kind of mathematical
function that enables us to withstand the loss of any one block from
our stripe. It turns out the simple function XOR does the trick quite
nicely. For a given set of bits, the XOR of all of those bits returns a 0
if there are an even number of 1’s in the bits, and a 1 if there are an
odd number of 1’s. For example:

co C1 C2 (C3 P
0 0 1 1 XOROO1,1)=0
0 1 0 0 XOR(0100) =1

In the first row (0,0,1,1), there are two 1’s (C2, C3), and thus XOR
of all of those values will be 0 (P); similarly, in the second row there is
only one 1 (C1), and thus the XOR must be 1 (P). You can remember
this in a very simple way: that the number of 1’s in any row must be
an even (not odd) number; that is the invariant that the RAID must
maintain in order for parity to be correct.

From the example above, you might also be able to guess how
parity information can be used to recover from a failure. Imagine
the column labeled C2 is lost. To figure out what values must have
been in the column, we simply have to read in all the other values in
that row (including the XOR’d parity bit) and reconstruct the right
answer. Specifically, assume the first row’s value in column C2 is lost
(it is a 1); by reading the other values in that row (0 from CO, 0 from
C1, 1 from C3, and 0 from the parity column P), we get the values 0,
0,1, and 0. Because we know that XOR keeps an even number of 1’s
in each row, we know what the missing data mustbe: a 1. And that is
how reconstruction works in a XOR-based parity scheme! Note also
how we compute the reconstructed value: we just XOR the data bits
and the parity bits together, in the same way that we calculated the
parity in the first place.

Now you might be wondering: we are talking about XORing all
of these bits, and yet above we know that the RAID places 4KB (or
larger) blocks on each disk; how do we apply XOR to a bunch of
blocks to compute the parity? It turns out this is easy as well. Simply
perform a bitwise XOR across each bit of the data blocks; put the re-
sult of each bitwise XOR into the corresponding bit slot in the parity
block. For example, if we had blocks of size 4 bits (yes, this is still
quite a bit smaller than a 4KB block, but you get the picture), they
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might look something like this:
Block0  Blockl  Block2  Block3  Parity

00 10 11 10 11
10 01 00 01 10

As you can see from the figure, the parity is computed for each bit
of each block and the result placed in the parity block.

RAID-4 Analysis

Let us now analyze RAID-4. From a capacity standpoint, RAID-4
uses 1 disk for parity information for every group of disks it is pro-
tecting. Thus, our useful capacity for a RAID group is (N-1).

Reliability is also quite easy to understand: RAID-4 tolerates 1
disk failure and no more. If more than one disk is lost, there is simply
no way to reconstruct the lost data.

Finally, there is performance. This time, let us start by analyzing
steady-state throughput. Sequential read performance can utilize all
of the disks except for the parity disk, and thus deliver a peak effec-
tive bandwidth of (N — 1) - S MB/s (an easy case).

To understand the performance of sequential writes, we must first
understand how they are done. When writing a big chunk of data to
disk, RAID-4 can perform a simple optimization known as a full-
stripe write. For example, imagine the case where the blocks 0, 1, 2,
and 3 have been sent to the RAID as part of a write request (Table
37.4).

Disk0 Disk1 Disk2 Disk3 Disk4
0 1 2 3 PO
4 5 6 7 P1
8 9 10 11 P2
12 13 14 15 P3

Table 37.4: Full-stripe Writes In RAID-4

In this case, the RAID can simply calculate the new value of PO (by
performing an XOR across the blocks 0, 1, 2, and 3) and then write
all of the blocks (including the parity block) to the five disks above
in parallel (highlighted in gray in the figure). Thus, full-stripe writes
are the most efficient way for RAID-4 to write to disk.
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Once we understand the full-stripe write, calculating the perfor-
mance of sequential writes on RAID-4 is easy; the effective band-
width is also (N — 1) - S MB/s. Even though the parity disk is con-
stantly in use during the operation, the client does not gain any per-
formance advantage from it.

Now let us analyze the performance of random reads. As you can
also see from the figure above, a set of 1-block random reads will be
spread across the data disks of the system but not the parity disk.
Thus, the effective performance is: (N — 1) - R MB/s.

Random writes, which we have saved for last, present the most
interesting case for RAID-4. Imagine we wish to overwrite block 1 in
the example above. We could just go ahead and overwrite it, but that
would leave us with a problem: the parity block PO would no longer
accurately reflect the correct parity value for the stripe. Thus, in this
example, PO must also be updated. But how can we update it both
correctly and efficiently?

It turns out there are two methods. The first, known as additive
parity, requires us to do the following. To compute the value of the
new parity block, read in all of the other data blocks in the stripe
in parallel (in the example, blocks 0, 2, and 3) and XOR those with
the new block (1). The result is your new parity block. To complete
the write, you can then write the new data and new parity to their
respective disks, also in parallel.

The problem with this technique is that it scales with the number
of disks, and thus in larger RAIDs requires a high number of reads
to compute parity. Thus, the subtractive parity method.

For example, imagine this string of bits (4 data bits, and one parity
bit):

co C1 C2 (3 P
0 0 1 1 XORO0LD=0

Let’s imagine that we wish to overwrite bit C2 with a new value
which we will call C2(new). The subtractive method works in three
steps. First, we read in the old data at C2 (C2(old) = 1) and the old
parity (P(old) = 0). Then, we compare the old data and the new data;
if they are the same (e.g., C2(new) = C2(o0ld)), then we know the par-
ity bit will also remain the same (i.e., P(new) = P(old)). If, however,
they are different, then we must flip the old parity bit to the opposite
of its current state, that is, if (P(old) == 1), P(new) will be set to 0;
if (P(old) == 0), P(new) will be set to 1. We can express this whole
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mess neatly with XOR as it turns out (if you understand XOR, this
will now make sense to you):

P(new) = (C(old) XOR C(new)) XOR P(old)

Because we are dealing with blocks, not bits, we perform this cal-
culation over all the bits in the block (e.g., 4096 bytes in each block
multipled by 8 bits per byte). Thus, in most cases, the new block will
be different than the old block and thus the new parity block will too.

You should now be able to figure out when we would use the
additive parity calculation and when we would use the subtractive
method. Think about how many disks would need to be in the sys-
tem so that the additive method performs fewer I/Os than the sub-
tractive method, and vice-versa.

For this performance analysis, let us assume we are using the sub-
tractive method. Thus, for each write, the RAID has to perform 4
physical I/Os (two reads and two writes). Now imagine there are
lots of writes submitted to the RAID; how many can RAID-4 per-
form in parallel? To understand, let us again look at the RAID-4

layout (Figure 37.5).
Disk 0 Disk1 Disk2 Disk3 Disk 4
0 1 2 3 PO
*4 5 6 7 +P1
8 9 10 11 P2
12 #13 14 15 +P3

Table 37.5: Example: Writes To 4, 13, And Respective Parity Blocks

Now imagine there were 2 small writes submitted to the RAID-4
at about the same time, to blocks 4 and 13 (marked with * in the di-
agram). The data for those disks is on disks 0 and 1, and thus the
read and write to data could happen in parallel, which is good. The
problem that arises is with the parity disk; both the requests have
to read the related parity blocks for 4 and 13, parity blocks 1 and 3
(marked with ™). Hopefully, the issue is now clear: the parity disk
is a bottleneck under this type of workload; we sometimes thus call
this the small-write problem for parity-based RAIDs. Thus, even
though the data disks could be access in parallel, the parity disk pre-
vents any parallelism from materializing; all writes to the system will
be serialized because of the parity disk. Because the parity disk has
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to perform two I/Os (one read, one write) per logical I/O, we can
compute the performance of small random writes in RAID-4 by com-
puting the parity disk’s performance on those two I/Os, and thus we
achieve (R/2) MB/s. RAID-4 throughput under random small writes
is terrible; it does not improve as you add disks to the system.

We conclude by analyzing I/O latency in RAID-4. As you now
know, a single read (assuming no failure) is just mapped to a single
disk, and thus its latency is equivalent to the latency of a single disk
request. The latency of a single write requires two reads and then
two writes; the reads can happen in parallel, as can the writes, and
thus total latency is about twice that of a single disk (with some dif-
ferences because we have to wait for both reads to complete and thus
get the worst-case positioning time, but then the updates don’t incur
seek cost and thus may be a better-than-average positioning cost).

RAID Level 5: Rotating Parity

To address the small-write problem (at least, partially), Patterson,
Gibson, and Katz introduced RAID-5. RAID-5 works almost iden-
tically to RAID-4, except that it rotates the parity block across the

drives (Figure 37.6).
Disk0 Disk1 Disk2 Disk3 Disk4
0 1 2 3 PO
5 6 7 P1 4
10 11 P2 8 9
15 P3 12 13 14
P4 16 17 18 19

Table 37.6: RAID-5 With Rotated Parity

As you can see in the figure, the parity block for each stripe is now
rotated across the disks, in order to remove the parity-disk bottleneck
for RAID-4.

RAID-5 Analysis

Much of the analysis for RAID-5 is identical to RAID-4. For example,
the effective capacity and failure tolerance of the two levels are iden-
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tical. So are sequential read and write performance. The latency of a
single request (whether a read or a write) is also the same as RAID-4.
Random read performance is a little better, because we can uti-
lize all of the disks. Finally, random write performance improves
noticeably over RAID-4, as it allows for parallelism across requests.
Imagine a write to block 1 and a write to block 10; this will turn into
requests to disk 1 and disk 4 (for block 1 and its parity) and requests
to disk 0 and disk 2 (for block 10 and its parity). Thus, they can
proceed in parallel. In fact, we can generally assume that that given
a large number of random requests, we will be able to keep all the
disks about evenly busy. If that is the case, then our total bandwidth
for small writes will be % - R MB/s; the factor of four loss is due to
the fact that each RAID-5 write still generates 4 total I/O operations.
Because RAID-5 is basically identical to RAID-4 except in the few
cases where it is better, it has almost completely replaced RAID-4
in the marketplace. The only place where it has not is in systems
that know they will never perform anything other than a large write,
thus avoiding the small-write problem altogether [HLM94]; in those
cases, RAID-4 is sometimes used as it is slightly simpler to build.

RAID Comparison: A Summary

We now summarize our simplified comparison of RAID levels in
Table 37.7. Note that we have omitted a number of details to simplify
our analysis. For example, when writing in a mirrored system, the
average seek time is a little higher than when writing to just a single
disk, because the seek time is the max of two seeks (one on each
disk). Thus, random write performance to two disks will generally
be a little less than random write performance of a single disk. Also,
when updating the parity disk in RAID-4/5, the first read of the old
parity will likely cause a full seek and rotation, but the second write
of the parity will only result in rotation.

However, our comparison does capture the essential differences,
and thus is useful for understanding tradeoffs across RAID levels.
We present a summary in the table below; for the latency analysis,
we simply use D to represent the time that a request to a single disk
would take.

Thus, if you strictly want performance and do not care about re-
liability, striping is obviously best. If, however, you want random
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RAID-0 RAID-1 RAID-4 RAID-5
Capacity N N/2 N -1 N -1
Reliability 0 1 (for sure) 1 1
X (if lucky)

Throughput

Sequential Read NS (N/2)- S (N-1)-8 (N-1)-8

Sequential Write N-S (N/2)-S (N=-1)-8 (N—-1)-S8

Random Read N-R N-R (N—-1)-R N-R

Random Write N-R (N/2)-R 1R 4R
Latency

Read D D D D

Write D D 2D 2D

Table 37.7: RAID Capacity, Reliability, and Performance

I/0 performance and reliability, mirroring is the best; the cost you
pay is in lost capacity. If capacity and reliability are your main goals,
then RAID-5 is the winner; the cost you pay is in small-write perfor-
mance. Finally, if you are always doing sequential I/O and want to
maximize capacity, RAID-5 also makes the most sense.

37.9 Other Interesting RAID Issues

There are a number of other interesting ideas that one could (and
perhaps should) discuss when thinking about RAID. Here are some
things we might eventually write about:

e Other RAID levels: Levels 2 and 3 from the original taxonomy,
Level 6 to tolerate multiple disk faults.

e Reconstruction: What the RAID does when a disk fails and it
has a hot spare sitting around to fill in for the failed disk. What
happens to performance under failure, and performance dur-
ing reconstruction?

e More realistic fault models: Our own work on partial failures,
including latent sector errors and block corruption.

e Ways of tolerating more realistic faults: Checksums and the
many different approaches there. Again some of our own work.

e Software RAID: How to build the RAID as a software layer
underneath the file system. Cheaper, but less reliable?
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We have discussed RAID. RAID transforms a number of indepen-
dent disks into a large, more capacious, and more reliable single en-
tity; importantly, it does so transparently, and thus hardware and
software above is relatively oblivious to the change.

There are many possible RAID levels to choose from, and the ex-
act RAID level to use depends heavily on what is important to the
end-user. For example, mirrored RAID is simple, reliable, and gen-
erally provides good performance but at a high capacity cost. RAID-
5, in contrast, is reliable and better from a capacity standpoint, but
performs quite poorly when there are small writes in the workload.
Picking a RAID and setting its parameters (chunk size, number of
disks, etc.) properly for a particular workload is challenging, and
thus still remains more of an art than a science.
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Homework
This section introduces r ai d. py, a simple RAID simulator you
can use to shore up your knowledge of how RAID systems work. It
has a number of options, as we see below:
Usage: raid2.py [options]
Options:
-h, --help show this hel p nessage and exit
-s SEED, --seed=SEED the random seed
-D NUMDI SKS, - -nunDi sks=NUMDI SKS
nunber of disks in RAID
- C CHUNKSI ZE, - - chunkSi ze=CHUNKSI ZE
chunk size of the RAID
-n NUVREQUESTS, --nunRequest sS=NUVREQUESTS
nunber of requests to sinulate
-S SIZE, --reqSize=SIZE
size of requests
- WWORKLOAD, - - wor kl oad=WORKLOAD
either "rand" or "seq" workl oads
-w WRI TEFRAC, --writeFrac=VRlI TEFRAC
wite fraction (100->all wites, 0->all reads)
-R RANGE, - -randRange=RANGE
range of requests (when using "rand" workl oad)
-L LEVEL, --level =LEVEL
RAID | evel (0, 1, 4, 5)
-5 RAID5TYPE, --rai d5=RAl D5TYPE
RAID-5 | eft-symetric "LS" or left-asym"LA"
-r, --reverse instead of showi ng | ogical ops, show physical
-t, --timng use timng node, instead of mapping node
-c, --conpute conpute answers for ne
In its basic mode, you can use it to understand how the different
RAID levels map logical blocks to underlying disks and offsets. For
example, let’s say we wish to see how a simple striping RAID (RAID-
0) with four disks does this mapping.
prompt> ./raid2.py -n 5 -L 0 -R 20
LOGI CAL READ from addr: 16 si ze: 4096
Physi cal reads/wites?
LOG CAL READ from addr: 8 size: 4096
Physi cal reads/wites?
LOG CAL READ from addr: 10 size: 4096
Physi cal reads/wites?
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LOG CAL READ from addr: 15 size: 4096
Physi cal reads/wites?
LOG CAL READ from addr:9 size: 4096
Physi cal reads/wites?

In this example, we simulate five requests (- n 5), specifying RAID
level zero (- L 0), and restrict the range of random requests to just
the first twenty blocks of the RAID (- R 20). The result is a series of
random reads to the first twenty blocks of the RAID; the simulator
then asks you to guess which underlying disks/offsets were accessed
to service the request, for each logical read.

In this case, calculating the answers is easy: in RAID-0, recall that
the underlying disk and offset that services a request is calculated
via modulo arithmetic:

di sk = address % nunber _of _di sks
of fset = address / nunber_of _di sks
Thus, the first request to 16 should be serviced by disk 0, at offset
4. And so forth. You can, as usual see the answers (once you've
computed them!), by using the handy - ¢ flag to compute the results.
prompt> ./raid2.py -R20 -n 5 -L 0 -c
LOGI CAL READ from addr: 16 si ze: 4096
read [disk 0, offset 4]

LOG CAL READ from addr: 8 size: 4096
read [disk 0, offset 2]

LOG CAL READ from addr: 10 size: 4096
read [disk 2, offset 2]

LOG CAL READ from addr: 15 size: 4096
read [disk 3, offset 3]

LOG CAL READ from addr: 9 size: 4096
read [disk 1, offset 2]

Because we like to have fun, you can also do this problem in re-
verse, with the - r flag. Running the simulator this way shows you
the low-level disk reads and writes, and asks you to reverse engineer
which logical request must have been given to the RAID:

OPERATING
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prompt> ./raid2.py -R20 -n 5 -L O -r

LOG CAL OPERATION i's ?
read [disk 0, offset 4]

LOG CAL OPERATION is ?
read [disk 0, offset 2]

LOG CAL OPERATION is ?
read [disk 2, offset 2]

LOG CAL OPERATION is ?
read [disk 3, offset 3]

LOG CAL OPERATION is ?
read [disk 1, offset 2]

You can again use - ¢ to show the answers. To get more variety, a
different random seed (- ) can be given.

Even further variety is available by examing different RAID lev-
els. In the simulator, RAID-0 (block striping), RAID-1 (mirroring),
RAID-4 (block-striping plus a single parity disk), and RAID-5 (block-
striping with rotating parity) are supported.

In this next example, we show how to run the simulator in mir-
rored mode. We show the answers to save space:

pronpt> ./raid2.py -R20 -n5 -L 1 -c

LOG CAL READ from addr: 16 si ze: 4096
read [disk O, offset 8]

LOG CAL READ from addr: 8 size: 4096
read [disk 0, offset 4]

LOG CAL READ from addr: 10 size: 4096
read [disk 1, offset 5]

LOG CAL READ from addr: 15 size: 4096
read [disk 3, offset 7]

LOG CAL READ from addr:9 size: 4096
read [disk 2, offset 4]

You might notice a few things about this example. First, the mir-
rored RAID-1 assumes a striped layout (which some might call RAID-
01), where logical block 0 is mapped to the Oth block of disks 0 and
1, logical block 1 is mapped to the Oth blocks of disks 2 and 3, and
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so forth (in this four-disk example). Second, when reading a sin-
gle block from a mirrored RAID system, the RAID has a choice of
which of two blocks to read. In this simulator, we use a relatively silly
way: for even-numbered logical blocks, the RAID chooses the even-
numbered disk in the pair; the odd disk is used for odd-numbered
logical blocks. This is done to make the results of each run easy to
guess for you (instead of, for example, a random choice).

We can also explore how writes behave (instead of just reads) with
the - w flag, which specifies the “write fraction” of a workload, i.e.,
the fraction of requests that are writes. By default, it is set to zero, and
thus the examples so far were 100% reads. Let’s see what happens to
our mirrored RAID when some writes are introduced:

prompt> ./raid2.py -R20 -n 5 -L 1 -w 100 -c

LOGI CAL WRITE to addr: 16 size: 4096
wite [disk 0, offset 8] wite [disk 1, offset 8]

LOG CAL WRITE to addr:8 size: 4096
wite [disk 0, offset 4] wite [disk 1, offset 4]

LOG CAL VWRITE to addr: 10 size: 4096
wite [disk 0, offset 5] wite [disk 1, offset 5]

LOG CAL WRITE to addr: 15 size: 4096
wite [disk 2, offset 7] wite [disk 3, offset 7]

LOG CAL WRITE to addr:9 size: 4096
wite [disk 2, offset 4] wite [disk 3, offset 4]

With writes, instead of generating just a single low-level disk op-
eration, the RAID must of course update both disks, and hence two
writes are issued. Even more interesting things happen with RAID-4
and RAID-5, as you might guess; we’ll leave the exploration of such
things to you in the questions below.

The remaining options are discovered via the help flag. They are:

Opti ons:
-h, --help show this hel p nessage and exit
-s SEED, --seed=SEED the random seed
-D NUMDI SKS, - - nunDi sks=NUMDI SKS
nunber of disks in RAID
- C CHUNKSI ZE, --chunkSi ze=CHUNKSI ZE
chunk size of the RAID
-n NUMREQUESTS, - -nunRequest s=NUVREQUESTS
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nunber of requests to sinulate
-S SIZE, --reqSize=S|ZE

size of requests
- WWORKLOAD, - - wor kl oad=WORKLOAD

either "rand" or "seqg" workl oads
-w WRI TEFRAC, --writeFrac=WRl TEFRAC

wite fraction (100->all wites, O0->all reads)

-R RANGE, --randRange=RANGE

range of requests (when using "rand" workl oad)

-L LEVEL, --1level =LEVEL
RAID level (0, 1, 4, 5)
-5 RAID5TYPE, --rai d5=RAlI D5TYPE

RAID-5 left-symmetric "LS" or left-asym"LA"
-r, --reverse instead of show ng | ogi cal ops, show physical

-t, --timng use timng node, instead of mapping node
-c, --conpute conpute answers for ne

The - Cflag allows you to set the chunk size of the RAID, instead
of using the default size of one 4-KB block per chunk. The size of
each request can be similarly adjusted with the - S flag. The default
workload accesses random blocks; use - W sequent i al to explore
the behavior of sequential accesses. With RAID-5, two different lay-
out schemes are available, left-symmetric and left-asymmetric; use
-5 LSor-5 LAto try those out with RAID-5 (- L 5).

Finally, in timing mode (- t ), the simulator uses an incredibly sim-
ple disk model to estimate how long a set of requests takes, instead
of just focusing on mappnings. In this mode, a “random” request
takes 10 milliseconds, whereas a “sequential” request takes 0.1 mil-
liseconds. The disk is assumed to have a tiny number of blocks per
track (100), and a similarly small number of tracks (100). You can
thus use the simulator to estimate RAID performance under some
different workloads.
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Questions

1.

Use the simulator to perform some basic RAID mapping tests.
Run with different levels (0, 1, 4, 5) and see if you can figure
out the mappings of a set of requests. For RAID-5, see if you
can figure out the difference between left-symmetric and left-
asymmetric layouts. Use some different random seeds to gen-
erate different problems than above.

. Do the same as the first problem, but this time vary the chunk

size with - C. How does chunk size change the mappings?

. Do the same as above, but use the - r flag to reverse the nature

of each problem.

. Now use the reverse flag but increase the size of each request

with the - Sflag. Try specifying sizes of 8k, 12k, and 16k, while
varying the RAID level. What happens to the underlying I/O
pattern when the size of the request increases? Make sure to
try this with the sequential workload too (- W sequent i al );
for what request sizes are RAID-4 and RAID-5 much more I/O
efficient?

. Use the timing mode of the simulator (- t ) to estimate the per-

formance of 100 random reads to the RAID, while varying the
RAID levels, using 4 disks.

. Do the same as above, but increase the number of disks. How

does the performance of each RAID level scale as the number
of disks increases?

. Do the same as above, but use all writes (- w 100) instead of

reads. How does the performance of each RAID level scale
now? Can you do a rough estimate of the time it will take to
complete the workload of 100 random writes?

. Run the timing mode one last time, but this time with a sequen-

tial workload (- W sequent i al ). How does the performance
vary with RAID level, and when doing reads versus writes?
How about when varying the size of each request? What size
should you write to a RAID when using RAID-4 or RAID-5?
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