39

File System Implementation

In this note, we introduce a simple file system implementation, known
as vsfs (the Very Simple File System). This file system is a simplified
version of a typical UNIX file system and thus serves to introduce
some of the basic on-disk structures, access methods, and various
policies that you will find in many file systems today.

The file system is pure software; unlike our development of CPU
and memory virtualization, we will not be adding hardware features
to make some aspect of the file system work better (though we will
want to pay attention to device characteristics to make sure the file
system works well). Because of the great flexibility we have in build-
ing a file system, many different ones have been built, literally from
AFS (the Andrew File System) [H+88] to ZFS (Sun’s Zettabyte File
System) [B07]. All of these file systems have different data structures
and do some things better or worse than their peers. Thus, the way
we will be learning about file systems is through case studies: first, a
simple file system (vsfs) in this chapter to introduce most concepts,
and then a series of studies of real file systems to understand how
they can differ in practice.

FILE SYSTEM IMPLEMENTATION

2
39.1
39.2
OPERATING

SYSTEMS

THE CRUX: HOW TO IMPLEMENT A SIMPLE FILE SYSTEM
How can we build a simple file system? What structures are
needed on the disk? What do they need to track? How are they
accessed?

The Way To Think

To think about file systems, we usually suggest thinking about
two different aspects of them; if you understand both of these as-
pects, you probably understand how the file system basically works.

The first is the data structures of the file system. In other words,
what types of on-disk structures are utilized by the file system to
organize its data and metadata? The first file systems we’ll see (in-
cluding vsfs below) employ simple structures, like arrays of blocks
or other objects, whereas more sophisticated file systems, like SGI's
XFS, use more complicated tree-based structures [S+96].

The second aspect of a file system is its access methods. How
does it map the calls made by a process, such as open(), read(),
write(),etc., onto its structures? Which structures are read during
the execution of a particular system call? Which are written? How
efficiently are all of these steps performed?

If you understand the data structures and access methods of a file
system, you have developed a good mental model of how it truly
works, a key part of the systems mindset. Try to work on developing
your mental model as we delve into our first implementation.

Overall Organization

We'll now develop the overall on-disk organization of the data
structures of the vsfs file system. The first thing we’ll need to do is
divide the disk into blocks of some size; simple file systems use just
one block size, and that’s exactly what we’ll do here. Let’s choose a
commonly-used size of 4 KB.

Thus, our view of the disk partition where we’re building our file
system is simple: a series of blocks, each of size 4 KB. The blocks
are addressed from 0 to N — 1, in a partition of size N 4-KB blocks.
Assume we have a really small disk, with just 64 blocks:

ARPACI-DUSSEAU

FILE SYSTEM IMPLEMENTATION

ASIDE: MENTAL MODELS

As we’ve discussed before, mental models are what you are really
trying to develop when learning about systems. For file systems,
your mental model should eventually include answers to questions
like: what on-disk structures store the file system’s data and meta-
data? What happens when a process opens a file? Which on-disk
structures are accessed during a read or write? By working on
and improving your mental model, you develop an abstract under-
standing of what is going on, instead of just trying to understand
the specifics of some file-system code (though that is also useful, of
course!).

BBBBBBBB BBBBBBBB BBBBBBBB BBBBBBBB BBBBBBBB BBBBBBBB BBBBBBBB BBBBBBBB

0 78 15 16 23 24 31 32 39 40 47 48 55 56

Let’s now think about what we need to store in these blocks to
build a file system. Of course, the first thing that comes to mind is
user data. In fact, most of the space in any file system is (and should
be) user data. Let’s call the region of the disk we use for user data
the data region, and, again for simplicity, reserve a fixed portion of
the disk for these blocks, say the last 56 of 64 blocks on the disk:

0 78 15 16 23 24 31 32 39 40 47 48 55 56

As we learned about (a little) last chapter, the file system has to
track information about each file. This information is a key piece
of metadata, and tracks things like which data blocks (in the data
region) comprise a file, the size of the file, its owner and access rights,
access and modify times, and other similar kinds of information. To
store this information, file system usually have a structure called an
inode (we’ll read more about inodes below).

To accommodate inodes, we’ll need to reserve some space on the
disk for them as well. Let’s call this portion of the disk the inode
table, which simply holds an array of on-disk inodes. Thus, our on-
disk image now looks like this picture, assuming that we use 5 of our
64 blocks for inodes (denoted by I's in the diagram):

ARPACI-DUSSEAU

63

THREE
EASY
PIECES
(v0.5)

4 FILE SYSTEM IMPLEMENTATION

L LR T The Data Region ---------------------- >
??201111 DDDDDDDD DDDDDDDD DDDDDDDD DDDDDDDD DDDDDDDD DDDDDDDD DDDDDDDD
0 78 15 16 23 24 31 32 39 40 47 48 55 56 63

We should note here that inodes are typically not that big, for ex-
ample 128 bytes in size. Thus, a 4-KB block can hold 32 inodes, and
our file system above can thus contain 160 inodes. In our simple file
system, built on a tiny 64-block partition, this number represents the
maximum number of files we can have in our file system; however,
do note that the same file system, built on a larger disk, could simply
allocate a larger inode table and thus accommodate more files.

Our file system thus far has data blocks (D), and inodes (I), but
a few things are still missing. One primary component that is still
needed, as you might have guessed, is some way to track whether
inodes or data blocks are free or allocated. Such allocation structures
are thus a requisite element in any file system.

Many allocation-tracking methods are possible, of course. For ex-
ample, we could use a free list that points to the first free block,
which then points to the next free block, and so forth. We instead
choose a simple and popular structure known as a bitmap, one for
the data region (the data bitmap), and one for the inode table (the
inode bitmap). A bitmap is a simple structure: each bit is used to
indicate whether the corresponding object/block is free (0) or in-use
(1). And thus our new on-disk layout, with an inode bitmap (i) and

a data bitmap (d):

S e T The Data Region ---------------monm-n- >
?idl 1111 DDDDDDDD DDDDDDDD DDDDDDDD DDDDDDDD DDDDDDDD DDDDDDDD DDDDDDDD
0 78 15 16 23 24 31 32 39 40 47 48 55 56 63

You may notice that it is a bit of overkill to use an entire 4-KB
block for these bitmaps; such a bitmap can track whether 32K objects
are allocated, and yet we only have 160 inodes and 56 data blocks.
However, we just use an entire 4-KB block for each of these bitmaps
for simplicity.

The careful reader’ may have noticed there is one block left in the
design of the on-disk structure of our very simple file system. We re-
serve this for the superblock, denoted by an S in the diagram below.
The superblock contains information about this particular file sys-
tem, including, for example, how many inodes and data blocks are

!Or rather, the reader who is not completely asleep.

OPERATING
SYSTEMS ARPACI-DUSSEAU

39.3

FILE SYSTEM IMPLEMENTATION

in the file system (160 and 56, respectively in this instance), where the
inode table begins (block 3), and so forth. It will likely also include
a magic number of some kind to identify the file system type (in this
case, vsfs).

L LR T The Data Region ---------------------- >
Sidlil111 DDDDDbDDD DDDDDDDD DDDDDDDD DDDDDDDD DDDDDDDD DDDDDDDD DDDDDDDD
0 78 15 16 23 24 31 32 39 40 47 48 55 56 63

Thus, when mounting a file system, the operating system will
read the superblock first, to initialize various parameters, and then
attach the volume to the file-system tree. When files within the vol-
ume are accessed, the system will thus know exactly where to look
for the needed on-disk structures.

File Organization: The Inode

One of the most important on-disk structures of a file system is the
inode; virtually all file systems have a structure similar to this. The
name inode is short for index node, the historical name given to it
by UNIX inventor Ken Thompson [RT74], used because these nodes
were originally arranged in an array, and the array indexed into when
accessing a particular inode.

Each inode is implicitly referred to by a number (called the inum-
ber), which we’ve earlier called the low-level name of the file. In
vsfs (and other simple file systems), given an i-number, you should
directly be able to calculate where on the disk the corresponding in-
ode is located. For example, take the inode table of vsfs as above:
20-KB in size (5 4-KB blocks) and thus consisting of 160 inodes (again
assuming each inode is 128 bytes); further assume that the inode re-
gion starts at 12KB (i.e, the superblock starts at 0KB, the inode bitmap
is at address 4KB, the data bitmap at 8KB, and thus the inode table
comes right after). In vsfs, we thus have the following layout for the
beginning of the file system partition:

0 4KB 8KB 12KB 16KB 20KB 24KB 28KB 32KB

Super | iBrep | dBmep | iBIkO | iBklL | iBk2| iBIk3 | iBlka]| ...

0-31 32-63 64-95 96-127 128-159
e L The inode Table ----------- >

To read inode number 64, the file system would first calculate the
offset into the inode region (64 - sizeof(inode) or 8192, add it to the

ARPACI-DUSSEAU

THREE
EASY
PIECES
(v0.5)

FILE SYSTEM IMPLEMENTATION

OPERATING
SYSTEMS

start address of the inode table on disk (i nodeSt art Addr = 12K B),
and thus arrive upon the correct byte address of the desired block of
inodes: 20K B. Recall that disks are not byte addressable, but rather
consist of a large number of addressable sectors, usually of size 512
bytes. Thus, to fetch the block of inodes that contains inode 64, the
file system would issue a read to sector 2251024 or 40, to fetch the
desired inode block. More generally, the sector address i addr of the
inode block can be calculated as follows:

bl k
sector

(i nunber * sizeof(inode_t)) / blockSize;
((bl'k * bl ockSize) + inodeStartAddr) / sectorSize;

Inside each inode is virtually all of the information you need about
a file: its type (e.g., regular file, directory, etc.), its size, the number of
blocks allocated to it, protection information (such as who owns the file,
as well as who can access it), some time information, including when
the file was created, modified, or last accessed, as well as informa-
tion about where its data blocks reside on disk (e.g., pointers of some
kind). We refer to all such information about a file as metadata; in
fact, any information inside the file system that isn’t pure user data is
often referred to as such. An example inode from ext2 [P09] is shown
below in Figure 39.1.

One of the most important decisions in the design of the inode is
how it refers to where data blocks are. One simple approach would
be to have one or more direct pointers (disk addresses) inside the
inode; each pointer refers to one disk block that belongs to the file.
Such an approach is limited: for example, if you want to have a file
that is really big (e.g., bigger than the size of a block multiplied by
the number of direct pointers), you are out of luck.

The Multi-Level Index

To support bigger files, file system designers have had to introduce
different structures within inodes. One common idea is to have a
special pointer known as an indirect pointer. Instead of pointing
to a block that contains user data, it points to a block that contains
more pointers, each of which point to user data. Thus, an inode may
have some fixed number of direct pointers (say 12), and then a single
indirect pointer. If a file grows large enough, an indirect block is
allocated (from the data-block region of the disk), and the inode’s

ARPACI-DUSSEAU

FILE SYSTEM IMPLEMENTATION

Name What is this inode field for?

mode can this file be read /written/executed?

uid who owns this file?

size how many bytes are in this file?

time what time was this file last accessed?

ctime what time was this file created?

mtime what time was this file last modified?

dtime what time was this inode deleted?

gid which group does this file belong to?
links_count how many hard links are there to this file?
blocks how many blocks have been allocated to this file?
flags how should ext2 use this inode?

osdl an OS-dependent field

block a set of disk pointers (15 total)

generation file version (used by NFS)

file_acl a new permissions model beyond mode bits
dir_acl called access control lists

faddr an unsupported field

i_osd2 another OS-dependent field

Table 39.1: The ext2 inode

w»n
=
N
o

[ox)
N R ORBREBENNERBRBEREBREDNDND

—_

slot for an indirect pointer is set to point to it. Assuming that a block
is 4KB and that each disk pointer is 4 bytes, that adds another 1024
pointers and thus the file can grow to be (12 + 1024) - 4K or 4144KB
in size.

Not surprisingly, in such an approach, you might want to support
even larger files. To do so, just add another pointer to the inode: the
double indirect pointer. This pointer refers to a block that contains
pointers to indirect blocks, each of which contain pointers to data
blocks. A double indirect block thus adds the possibility to grow
files with an additional 1024 - 1024 or 1-million 4KB blocks, in other
words supporting files that are over 4GB in size. You may want even
more, though, and I bet you know where this is headed: the triple
indirect pointer.

Overall, this imbalanced tree is referred to as the multi-level in-
dex approach to pointing to file blocks. Many file systems use such
an approach, including commonly-used file systems such as Linux
ext2 [P09] and ext3 as well as the original UNIX file system. Other
file systems (e.g., SGI XFS) use extents instead of simple pointers;
see the aside for details.

ARPACI-DUSSEAU

THREE
EASY
PIECES
(v0.5)

8 FILE SYSTEM IMPLEMENTATION

ASIDE: EXTENT-BASED APPROACHES

A different approach is to use extents instead of pointers. An extent
is simply a disk pointer plus a length (in blocks); thus, instead of re-
quiring a pointer for every block of a file, all one needs is a pointer
and a length to specify the on-disk location of a file. Just a single ex-
tent is limiting, as one may have trouble finding a contiguous chunk
of on-disk free space when allocating a file. Thus, extent-based file
systems often allow for more than one extent, thus giving more free-
dom to the file system during file allocation.

In comparing the two approaches, pointer-based approaches are the
most flexible but use a large amount of metadata per file (particularly
for large files). Extent-based approaches are less flexible but more
compact; in particular, they work well when there is enough free
space on the disk and files can be laid out contiguously (which is the
goal for virtually any file allocation policy anyhow).

You might be wondering: why use an imbalanced tree like this?
Why not a different approach? Well, as it turns out, many researchers
have studied file systems and how they are used, and virtually ev-
ery time they find certain “truths” that hold across the decades. One
such finding is that most files are small. This imbalanced design re-
flects such a reality; if most files are indeed small, it makes sense to
optimize for this case. Thus, with a small number of direct pointers
(12 is a typical number), an inode can directly point to 48-KB of data,
only needing one (or more) indirect blocks for larger files. See [A+07]
for a recent study; Table 39.2 summarizes the results.

Of course, in the space of inode design, many other possibilities
exist; after all, the inode is just a data structure, and any data struc-
ture that stores the relevant information is sufficient.

Most files are small Roughly 2K is the most common size

Average file size is growing Almost 200K is the average

Most bytes are stored in large files | A few big files use most of the space

File systems contains lots of files Almost 100K on average

File systems are roughly half full Even as disks grow, file systems remain almost 50% full
Directories are typically small Many have just a few entries; most have 20 or fewer

Table 39.2: File System Measurement Summary

OPERATING
SYSTEMS ARPACI-DUSSEAU

FILE SYSTEM IMPLEMENTATION

ASIDE: LINKED-BASED APPROACHES

Another simpler approach in designing inodes is to use a linked
list. Thus, inside an inode, instead of having multiple pointers, you
just need one, to point to the first block of the file. To handle larger
files, add another pointer at the end of that data block, and so on,
and thus you can support large files.

Of course, as you might have guessed, linked file allocation per-
forms very poorly for some workloads; think about reading the last
block of a file, for example, or just doing random access. Thus, to
make linked allocation work better, some systems will keep an in-
memory table of link information, instead of storing the next point-
ers with the data blocks themselves. The table is indexed by the ad-
dress of a data block D; the content of an entry is simply D’s next
pointer, i.e., the address of the next block in a file which follows D.
A null-value could be there too (indicating an end-of-file), or some
other marker to indicate that a particular block is free. Having such a
table of next pointers makes it so that a linked allocation scheme can
effectively do random file accesses, simply by first scanning through
the (in memory) table to find the desired block, and then accessing
(on disk) it directly.

Does such a table sound familiar? Turns out that what we have
described is the basic structure of what is known as the file allo-
cation table, or FAT file system. Yes, this classic old Windows file
system, before NTFS [C94], is based on a simple linked-based alloca-
tion scheme. There are other differences from a standard UNIX file
system too; for example, there are no inodes per se, but rather direc-
tory entries which store metadata about a file and refer directly to the
first block of said file, which makes creating hard links impossible.
See Brouwer [B02] for more of the inelegant details.

ARPACI-DUSSEAU

THREE
EAsY
PIECES
(v0.5)

10

FILE SYSTEM IMPLEMENTATION

39.4

OPERATING
SYSTEMS

Directory Organization

In vsfs (as in many file systems), directories have a simple organi-
zation; a directory basically just contains a list of (entry name, inode
number) pairs. Thus, for each file or directory in a given directory,
there is a string and a number in the data block(s) of the directory.
For each string, there may also be a length (assuming variable-sized
file names).

For example, assume a directory di r (inode number 5) has three
files in it (f 00, bar, and f oobar), and their inode numbers are 12,
13, and 24 respectively. The on-disk data block for di r might look
like this:

inum| reclen | strlen | nane
5 .

4 2
2 4 3 .
12 4 4 foo
13 4 4 bar
24 8 7 f oobar

In this example, each entry has an inode number, record length
(the total bytes for the name plus any left over space), string length
(the actual length of the name), and finally the name of the entry.
Note that each directory has two extra entries, . “dot” and .. “dot-
dot”; the dot directory is just the current directory (in this example,
di r), whereas dot-dot is the parent directory (in this example, the
root).

Deleting a file (e.g., calling unl i nk()) can leave an empty space
in the middle of the directory, and hence there should be some way to
mark that as well (e.g., with a reserved inode number such as zero).
Such a delete is one reason the record length is used: a new entry
may reuse an old, bigger entry and thus have a fair amount of space
within.

You might be wondering where exactly directories are stored. Most
file systems just treat directories as a special type of file. Thus, a di-
rectory has an inode, somewhere in the inode table (with the type
field of the inode marked as “directory” instead of “regular file”).
The directory has data blocks pointed to by the inode (and perhaps,
indirect blocks); these data blocks live in the data block region of our
simple file system. Our on-disk structure thus remains unchanged.

We should also note again that this simple linear list of directory
entries is not the only way to store such information. As before, any

ARPACI-DUSSEAU

39.5

39.6

FILE SYSTEM IMPLEMENTATION

11

data structure is possible. For example, XFS [S+96] stores directories
in binary tree form, making file create operations (which have to en-
sure that a file name has not been used before creating it) faster than
systems with simple lists that must be scanned in their entirety.

Free Space Management

A file system must track which inodes and data blocks are free,
and which are not, so that when a new file or directory is allocated,
it can readily find space for it. Thus, free space management is an
important aspect of any file system. In vsfs, we have two simple
bitmaps for this task.

For example, when we create a file, we will have to allocate an in-
ode for that file. The file system will thus search through the bitmap
for an inode that is free, and allocate it to the file; the file system will
have to mark the inode as used (with a 1) and eventually update the
on-disk bitmap with the correct information. A similar set of activi-
ties take place when a data block is allocated.

Some other considerations might also come into play when allo-
cating data blocks for a new file. For example, some Linux file sys-
tems, such as ext2 and ext3, will look for a sequence of blocks (say
8) that are free when a new file is created and needs data blocks; by
finding such a sequence of free blocks, and then allocating them to
the newly-created file, the file system guarantees that a portion of the
file will be on the disk and contiguous, thus improving performance.
Such a pre-allocation policy is thus a commonly-used heuristic when
allocating space for data blocks.

Access Paths: Reading and Writing

Now that we have some idea of how files and directories are
stored on disk, we should be able to follow the flow of operation
during the activity of reading or writing a file. Understanding what
happens on this access path is thus the second key in developing an
understanding of how a file system works; pay attention!

For the following examples, let us assume that the file system has
been mounted and thus that the superblock is already in memory.
Everything else (i.e., inodes, directories) is still on the disk.

ARPACI-DUSSEAU

THREE
EAsY
PIECES
(v0.5)

12

FILE SYSTEM IMPLEMENTATION

OPERATING
SYSTEMS

ASIDE: FREE SPACE MANAGEMENT
There are many ways to manage free space; bitmaps are just one way.
Some early file systems used free lists, where a single pointer in the
super block was kept to point to the first free block; inside that block
the next free pointer was kept, thus forming a list through the free
blocks of the system. When a block was needed, the head block was
used and the list updated accordingly.

Modern file systems use more sophisticated data structures. For ex-
ample, SGI's XFS [S+96] uses some form of a binary tree to com-
pactly represent which chunks of the disk are free. As with any data
structure, different time-space trade-offs are possible.

Reading A File From Disk

In this simple example, let us first assume that you want to simply
open a file (e.g., / f 00/ bar . t xt, read it, and then close it. For this
simple example, let’s assume the file is just 4KB in size (i.e., 1 block).

When you issue an open("/f oo/ bar.txt", ORDONLY) call,
the file system first needs to find the inode for the file bar . t xt , to
obtain some basic information about the file (permissions informa-
tion, file size, etc.). To do so, the file system must be able to find the
inode. Unfortunately, all the FS has right now is the full pathname.
Thus, it must traverse the pathname and in doing so locate the inode
of the desired file.

All traversals begin at the root of the file system, in the root di-
rectory which is simply called /. Thus, the first thing the FS will
read from disk is the inode of the root directory. But where is this
inode? To find an inode, we must know its i-number. Usually, we
find the i-number of a file or directory in its parent directory; the
root has no parent (by definition). Thus, the root inode number must
be “well known”; the FS must know what it is when the file system
is mounted. In most UNIX file systems, the root inode number is 2.
Thus, to begin the process, the FS reads in the block that contains
inode number 2 (the first inode block).

Once the inode is read in, the FS can look inside of it to find point-
ers to data blocks, which contain the contents of the root directory.
The FS will thus use these on-disk pointers to read through the di-

ARPACI-DUSSEAU

FILE SYSTEM IMPLEMENTATION

13

rectory, in this case looking for an entry for f 00. By reading in one or
more directory data blocks, it will find the entry for foo; once found,
the FS will also have found the inode number of f 00 (say it is 44)
which it will need next.

The next step is to recursively traverse the pathname until the
desired inode is found. In this example, the FS would next read
the block containing the inode of f 00 and then read in its directory
data, finally finding the inode number of bar . t xt . The final step of
open(), then, is to read its inode into memory; the FS can then do
a final permissions check, allocate a file descriptor for this process in
the per-process open-file table, and return it to the user.

open

block bar.txt read 4k read 4k read 4k
12 bar.txt data[2] ; : : PR

11 bar.txt data[1] | H r R

10 bar.txt data[0] ! PR

9 foo data : R

8 root data 3 R

s barixtinode | RIR .R .R .
3 foo inode i R E E E i
3 root inode | R 1 H H :
2 d-bitmap |

1 i-bitmap |

o |

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
I/O Timeline

Figure 39.1: File Read Timeline
Once open, the program can then issue a r ead() system call to

read from the file. The first read (at offset 0 unless | seek() has
been called) will thus read in the first block of the file, consulting
the inode to find the location of such a block; it may also update the
inode with a new last-accessed time. The read will further update
the in-memory open file table for this file descriptor, updating the
file offset such that the next read will read the second block of the
file, and so forth.

At some point, the file will be closed. There is much less work to
be done here; clearly, the file descriptor should be deallocated, but
for now, that is all the FS really needs to do. No disk I/Os take place.

A depiction of this entire process is found in Figure 39.1. As you
can see from the graph, the open causes numerous reads to take place

ARPACI-DUSSEAU

THREE
EASY
PIECES
(v0.5)

14

FILE SYSTEM IMPLEMENTATION

OPERATING
SYSTEMS

in order to finally locate the inode of the file. Afterwards, reading
each block requires the file system to first consult the inode, then
read the block, and then update the inode’s last-accessed-time field
with a write.

You might also notice that the amount of I/O generated by the
open is proportional to the length of the pathname. For each addi-
tional directory in the path, we have to read its inode as well as its
data. Making this worse would be the presence of large directories;
here, we only have to read one block to get the contents of a direc-
tory, whereas with a large directory, we might have to read many
data blocks to find what we are looking for.

Writing to Disk

Writing to a file is a similar process. First, the file must be opened (as
above). Then, the application can issuew i t () calls to update the
file with new contents. Finally, the file is closed.

Unlike reading, writing to the file may also allocate a block (un-
less the block is being overwritten, for example). When writing out
a new file, each write not only has to write data to disk but has to
first decide which block to allocate to the file and thus update other
structures of the disk accordingly (e.g., the data bitmap). Thus, each
write to a file logically generates three I/Os: one to read the data
bitmap, which is then updated to mark the newly-allocated block as
used, one to write the bitmap (to reflect its new state to disk), and
one to the actual block itself.

The amount of write traffic is even worse when one considers a
simple and common operation such as file creation. To create a file,
the file system must not only allocate an inode, but also allocate space
within the directory containing the new file. The total amount of I/O
traffic to do so is quite high: one read to the inode bitmap (to find a
free inode), one write to the inode bitmap (to mark it allocated), one
write to the new inode itself (to initialize it), one to the data of the
directory (to link the high-level name of the file to its inode number),
and one read and write to the directory inode to update it. If the
directory needs to grow to accommodate the new entry, additional
I/0Os (to the data bitmap to allocate the block and to the new block
to record the entry) will be needed too. All of that work just to create
a file!

ARPACI-DUSSEAU

FILE SYSTEM IMPLEMENTATION 15

Let’s look at a specific example, where the file / f 0o/ bar . t xt is
created, and three blocks are written to it. Figure 39.2 shows what
happens during the open() (which creates the file), as well as dur-
ing each of three 4-KB calls towri te().

block create /foo/bar.txt write 4k write 4k write 4k
12 bar.txt data[2] | W
1 bar.txt data[1] | : : w|
10 bar.txt data[0] ! W
9 foo data 3 R . 1 :
8 root data 3 R
3 bartxtinode | R in i r i r w,
3 foo inode i R . E E 3
3 root inode {R : : :
2 d-bitmap | » R Y] G
1 i-bitmap i R . E E E
0 '

12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
1/O Timeline

Figure 39.2: File Creation Timeline

In the figure, reads and writes to the disk are grouped under
which system call caused them to occur, and the rough ordering they
might take place in goes from left to right along the x-axis. The y-axis
shows which block is being accessed (read or written) at a particular
point in time. You can see how much work it is to create the file: 10
I/0Os in this case, to walk the pathname and then finally create the
file. You can also see that each allocating write costs 51/0Os: a pair to
read and update the inode, another pair to read and update the data
bitmap, and then finally the write of the data itself. How can a file
system accomplish any of this with reasonable efficiency?

The Crux: HOW TO REDUCE FILE SYSTEM I/O COSTS
Even the simplest of operations like opening, reading, or writing a
file incurs a huge number of I/O operations, scattered over the disk.
What can a file system do to reduce the obvious high costs of doing
so many 1/Os?

THREE
EASY
PIECES
(v0.5)

ARPACI-DUSSEAU

16

FILE SYSTEM IMPLEMENTATION

39.7

OPERATING
SYSTEMS

Caching and Buffering

As the examples above show, reading and writing files can be ex-
pensive, incurring many I/Os to the (slow) disk. To remedy what
would clearly be a huge performance problem, most file systems ag-
gressively use system memory (DRAM) to cache important blocks.

Imagine the open example above: without caching, every file open
would require at least two reads for every level in the directory hi-
erarchy (one to read the inode of the directory in question, and at
least one to read its data). With a long pathname (e.g., /1/2/3/ ...
/100/file.txt), the file system would literally perform hundreds of
reads just to open the file!

Early file systems thus introduced a fix-sized cache to hold pop-
ular blocks. As in our discussion of virtual memory, strategies such
as LRU and different variants would decide which blocks to keep in
cache. This fix-sized cache would usually be allocated at boot time to
be roughly 10% of the total memory of the system. Modern systems
integrate virtual memory pages and file system pages into a unified
page cache [S00]. In this way, memory can be allocated much more
flexibly across virtual memory and file system, depending on which
needs more memory at a given time.

Now imagine the file open example with caching. The first open
may generate a lot of I/O traffic to read in directory inode and data,
but subsequent file opens of that same file (or files in the same direc-
tory) will mostly hit in the cache and thus no I/0O is needed.

Let us also consider the effect of caching on writes. Whereas read
I/0 can be avoided altogether with a sufficiently large cache, write
traffic has to go to disk in order to become persistent. Thus, a cache
does not serve as the same kind of filter on write traffic that it does for
reads. That said, write buffering (as it is sometimes called) certainly
has a number of performance benefits. First, by delaying writes, the
file system can batch some updates into a smaller set of I/Os; for
example, if an inode bitmap is updated when one file is created and
then updated moments later as another file is created, the file system
saves an I/O by delaying the write after the first update. Second,
by buffering a number of writes in memory, the system can then
schedule the subsequent I/Os and thus increase performance. Fi-
nally, some writes are avoided altogether by delaying them; for ex-
ample, if an application creates a file and then deletes it, delaying the
writes to reflect the file creation to disk avoids them entirely. In this

ARPACI-DUSSEAU

39.8

FILE SYSTEM IMPLEMENTATION

17

case, laziness (in writing blocks to disk) is a virtue.

For the reasons above, most modern file systems buffer writes in
memory for anywhere between 5 and 30 seconds, which represents
another trade-off. If the system crashes before the updates have been
propagated to disk, the updates are lost; for this reason, more para-
noid applications will force writes to disk explicitly (e.g., by call-
ing f sync()). However, by buffering writes, performance can be
greatly increased, by batching writes together, scheduling them, and
avoiding some altogether.

Summary

We have seen the basic machinery required in building a file sys-
tem. There needs to be some information about each file (metadata),
usually stored in an inode. Directories are just a specific type of file
that store name-to-i-number mappings. And other structures are
needed too, e.g., bitmaps to track which inodes or data blocks are
free or allocated.

The terrific aspect of file system design is its freedom; the file sys-
tems we explore in the coming chapters each take advantage of this
freedom to optimize some aspect of the file system. There are also
clearly many policy decisions we have left unexplored. For example,
when a new file is created, where should it be placed on disk? This
policy and others will also be the subject of future notes.

ARPACI-DUSSEAU

THREE
EASY
PIECES
(v0.5)

18 FILE SYSTEM IMPLEMENTATION
References
[A+07] Nitin Agrawal, William J. Bolosky, John R. Douceur, Jacob R. Lorch
A Five-Year Study of File-System Metadata
FAST '07, pages 31-45, February 2007, San Jose, CA
An excellent recent analysis of how file systems are actually used. Use the bibliography within to
follow the trail of file-system analysis papers back to the early 1980s.
[B07] “ZFS: The Last Word in File Systems”
Jeff Bonwick and Bill Moore
Available: http:/ /opensolaris.org/os/community / zfs /docs / zfs last.pdf
One of the most recent important file systems, full of features and awesomeness. We should have
a chapter on it, and perhaps soon will.
[B02] “The FAT File System”
Andries Brouwer
September, 2002
Available: http:/ /www.win.tue.nl/ aeb/linux/fs/fat/fathtml
A nice clean description of FAT. The file system kind, not the bacon kind. Though you have to
admit, bacon fat probably tastes better.
[C94] “Inside the Windows NT File System”
Helen Custer
Microsoft Press, 1994
A short book about NTFS; there are probably ones with more technical details elsewhere.
[H+88] “Scale and Performance in a Distributed File System”
John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satya-
narayanan, Robert N. Sidebotham, Michael J. West.
ACM Transactions on Computing Systems (ACM TOCS), page 51-81, Volume 6, Number
1, February 1988
A classic distributed file systen; we’ll be learning more about it later, don’t worry.
[P09] “The Second Extended File System: Internal Layout”
Dave Poirier, 2009
Available: http:/ /www.nongnu.org/ext2-doc/ext2.html
Some details on ext2, a very simple Linux file system based on FFS, the Berkeley Fast File System.
We'll be reading about it in the next chapter.
[RT74] “The UNIX Time-Sharing System”
M. Ritchie and K. Thompson
CACM, Volume 17:7, pages 365-375, 1974
The original paper about UNIX. Read it to see the underpinnings of much of modern operating
systems.

OPERATING

SYSTEMS

ARPACI-DUSSEAU

FILE SYSTEM IMPLEMENTATION 19

[S00] “UBC: An Efficient Unified I/O and Memory Caching Subsystem for NetBSD”
Chuck Silvers

FREENIX, 2000

A nice paper about NetBSD's integration of file-system buffer caching and the virtual-memory
page cache. Many other systems do the same type of thing.

[S+96] “Scalability in the XFS File System”

Adan Sweeney, Doug Doucette, Wei Hu, Curtis Anderson,

Mike Nishimoto, Geoff Peck

USENIX 96, January 1996, San Diego, CA

The first attempt to make scalability of operations, including things like having millions of files
in a directory, a central focus. A great example of pushing an idea to the extreme. The key idea
behind this file system: everything is a tree. We should have a chapter on this file system too.

THREE
EASY
PIECES
(v0.5)

ARPACI-DUSSEAU

20

FILE SYSTEM IMPLEMENTATION

OPERATING
SYSTEMS

Homework

Use this tool, vsfs. py, to study how file system state changes
as various operations take place. The file system begins in an empty
state, with just a root directory. As the simulation takes place, various
operations are performed, thus slowly changing the on-disk state of
the file system.

The possible operations are:

o mkdir() - creates a new directory

e creat() - creates a new (empty) file

e open(), write(), close() - appends a block to a file

e link() - creates a hard link to a file

o unlink() - unlinks a file (removing it if linkent==0)

To understand how this homework functions, you must first un-
derstand how the on-disk state of this file system is represented. The
state of the file system is shown by printing the contents of four dif-
ferent data structures:

inode bitmap - indicates which inodes are allocated

i nodes - table of inodes and their contents

data bitmap - indicates which data bl ocks are allocated
dat a - indicates contents of data bl ocks

The bitmaps should be fairly straightforward to understand, with
a “1” indicating that the corresponding inode or data block is allo-
cated, and a “0” indicating said inode or data block is free.

The inodes each have three fields: the first field indicates the type
of file (e.g., f for a regular file, d for a directory); the second indi-
cates which data block belongs to a file (here, files can only be empty,
which would have the address of the data block set to -1, or one block
in size, which would have a non-negative address); the third shows
the reference count for the file or directory. For example, the follow-
ing inode is a regular file, which is empty (address field set to -1),
and has just one link in the file system:

[f a:-1r:1]

ARPACI-DUSSEAU

FILE SYSTEM IMPLEMENTATION

21

If the same file had a block allocated to it (say block 10), it would
be shown as follows:

[f a:10 r:1]

If someone then created a hard link to this inode, it would then
become:

[f a:10 r: 2]

Finally, data blocks can either retain user data or directory data. If
filled with directory data, each entry within the block is of the form
(name, inumber), where “name” is the name of the file or directory,
and “inumber” is the inode number of the file. Thus, an empty root
directory looks like this, assuming the root inode is 0:

[¢..0) (..,0)]

If we add a single file “f” to the root directory, which has been
allocated inode number 1, the root directory contents would then
become:

[¢..0) (..,0) (f,1)]

If a data block contains user data, it is shown as just a single char-
acter within the block, e.g., [h]. If it is empty and unallocated, just a
pair of empty brackets ([]) are shown.

An entire file system is thus depicted as follows:

i node bitmp 11110000

i nodes [da:0r:6] [f ail r:1] [f a:-1r:1] [dar2r:2] [] [] [] []

data bitmap 11100000

data [(¢..0) (..,0) (y,1) (z,2) (f,3)] [u]l [(..3) (..,0)] [1 [1 1 [1]

This file system has eight inodes and eight data blocks. The root

7 T

directory contains three entries (other than “.” and “..”), to “y”, “z”,
and “f”. By looking up inode 1, we can see that “y” is a regular file
(type f), with a single data block allocated to it (address 1). In that
data block 1 are the contents of the file “y”: namely, “u”. We can
also see that “z” is an empty regular file (address field set to -1), and
that “f” (inode number 3) is a directory, also empty. You can also see
from the bitmaps that the first four inode bitmap entries are marked
as allocated, as well as the first three data bitmap entries.

The simulator can be run with the following flags:

ARPACI-DUSSEAU

THREE
EASY
PIECES
(v0.5)

22 FILE SYSTEM IMPLEMENTATION
pronmpt> vsfs.py -h
Usage: vsfs.py [options]
Opti ons:
-h, --help show this hel p nessage and exit
-s SEED, --seed=SEED the random seed
-1 NUM NCDES, - - num nodes=NUM NODES
nunber of inodes in file system
-d NUMDATA, - -nunDat a=NUVDATA
nunber of data blocks in file system
-n NUMREQUESTS, - -nunRequest s=NUVREQUESTS
nunber of requests to sinulate
-r, --reverse instead of printing state, print ops
-p, --printFinal print the final set of files/dirs
-c, --conpute conpute answers for ne
A typical usage would simply specify a random seed (to generate
a different problem), and the number of requests to simulate. In this
default mode, the simulator prints out the state of the file system at
each step, and asks you which operation must have taken place to
take the file system from one state to another. For example:
prompt> vsfs.py -n 6 -s 16
iﬁitial state
i node bitmap 10000000
i nodes [daor:2] [T [][] T[]]Il
data bitmap 10000000
data [¢..0) (...01 [1 [T [1 0111 1111
Wi ch operation took place?
i node bitmap 11000000
i nodes [d a0 r:3] [f a-1r:1] [1 [1 0[] 0] 0111
data bitmap 10000000
data [¢..o) (...0) (y.1I [1 [T [1 0111 1111
Whi ch operation took place?
i node bitmap 11000000
i nodes [da:0r:3] [falr:1] [] [[1[] I1 1]
data bitmap 11000000
data [¢..0) (...0) (y,)T [ul [T (111 01111
Wi ch operation took place?
i node bitmap 11000000
OPERATING

SYSTEMS

ARPACI-DUSSEAU

FILE SYSTEM IMPLEMENTATION 23
i nodes [da0or:4] [fa21r:2] [1 011 [1T1111
data bitmap 11000000
data [(-,0) (..,0) (y,1) (m21)] [u] [T [T [1 [T 01 I]
Whi ch operation took place?
i node bitmap 11000000
i nodes [da:0r:4] [f a1 r:2]) [1 [] [1 [1 11 [1
data bitnmap 11000000
data [(..0) (...0) (y.)I [ul [T [1 [1 11 I1 11
Wi ch operation took place?
i node bitmap 11100000
i nodes [da0r:5 [f alr:1] [f a:-2r:2] []1 [] [] [1 []
data bitnmap 11000000
data [(..0) (..,0) (y,1) (z,2)] [ul [1 [1 [T [1[1 T[]
Whi ch operation took place?
inode bitmap 11110000
i nodes [da:0r:6] [f alr:1] [f a:-2r:1] [d a2 r:2] [] [] []1 [1]
data bitmp 11100000
data [(..O) (...0) (v.1) (z.2) (f,3)] [u] [(..3) (...0)1 [T [1 [1 [Tl
When run in this mode, the simulator just shows a series of states,
and asks what operations caused these transitions to occur. Running
with the - ¢ flag shows us the answers. Specifically, file “/y” was
created, a single block appended to it, a hard link from “/m” to “/y”
created, “/m” removed via a call to unlink, the file “/z” created, and
the directory “/f” created:
prompt> vsfs.py -n 6 -s 16 -c
iﬁitial state
i node bitnmap 10000000
i nodes [da0r:2] [T [1[1I[1I01I]T1]
data bitnmap 10000000
data [(..,0) (...0)1 [T [1 [T [1TI1 1111
creat("/y");
i node bitmap 11000000
i nodes [da:0r:3] [f a-1r:2) [1 [] [1 L1111
data bitmap 10000000
data [¢..o) (...0) (y.)1 [1 [T (1 [1 111111
THREE
ARPACI-DUSSEAU PIE:?]SE\S(

(v0.5)

3) (...01 [T 11 (1111

24 FILE SYSTEM IMPLEMENTATION
fd=open("/y", O WRONLY| O APPEND); write(fd, buf, BLOCKSIZE); close(fd);
i node bitmap 11000000
i nodes [dao0r:3] [f a1 r:1] [1 [1[1 1171111
data bitmap 11000000
data [¢..0) (...0) (y,)T [ul [T (111 01 111
link("/y", "Int);

i node bitmap 11000000

i nodes [da:0r:4] [f a1l r:2] [] [[1[] [1 1]

data bitmap 11000000

data [¢..0) (...0) (y,;1) (mD] [u]l [T [T (11111101
unlink("/m")

i node bitmap 11000000

i nodes [da0or:4] [f a2 r:1] [1 [1 [1 [1 1111

data bitmap 11000000

data [¢..0) (...0) (y,)] [ul [T (111 01 [11]
creat("/z");

i node bitmap 11100000

i nodes [da:0r:5 [f alr:1] [f a:-27r:2]) []1 [] [] [1 []
data bitmap 11000000

data [¢..0) (...0) (v,1) (z,2)] [ul [T [T (10111101
mkdir("/f");

inode bitmap 11110000

i nodes [da0r:6] [f alr:1] [f a:-2r:1] [da:2r:2] [T [] [] []
data bitmap 11100000

data [C(..0) (...0) (v,1) (z,2) (f,3)] [ul [(.,

You can also run the simulator in “reverse” mode (with the “-r”
flag), printing the operations instead of the states to see if you can
predict the state changes from the given operations:
prompt> ./vsfs.py -n 6 -s 16 -r
Initial state
i node bitmap 10000000
i nodes [daor:2] [T [][] [T [1I]T]
data bitmap 10000000
data [¢..o) (...01 [1 [T [1 0111 1111
creat("/y");

OPERATING

SYSTEMS

ARPACI-DUSSEAU

FILE SYSTEM IMPLEMENTATION 25

State of file system (inode bitmap, inodes, data bitmp, data)?
fd=open("/y", O WRONLY| O APPEND); write(fd, buf, BLOCKSIZE); close(fd);

State of file system (inode bitmap, inodes, data bitmp, data)?
link("/y", "/n);

State of file system (inode bitmap, inodes, data bitmp, data)?
unlink("/m")

State of file system (inode bitnap, inodes, data bitmap, data)?
creat("/z");

State of file system (inode bitnmap, inodes, data bitmap, data)?
mkdir("/f");

State of file system (inode bitnmap, inodes, data bitmap, data)?

A few other flags control various aspects of the simulation, in-
cluding the number of inodes (“-i”), the number of data blocks (“-
d”), and whether to print the final list of all directories and files in
the file system (“-p”).

THREE
EAsY
PIECES
(v0.5)

ARPACI-DUSSEAU

26

FILE SYSTEM IMPLEMENTATION

OPERATING
SYSTEMS

Questions

1. Run the simulator with some different random seeds (say 17,

18,19, 20), and see if you can figure out which operations must
have taken place between each state change.

. Now do the same, using different random seeds (say 21, 22,

23, 24), except run with the - r flag, thus making you guess the
state change while being shown the operation. What can you
conclude about the inode and data-block allocation algorithms,
in terms of which blocks they prefer to allocate?

. Now reduce the number of data blocks in the file system, to

very low numbers (say two), and run the simulator for a hun-
dred or so requests. What types of files end up in the file sys-
tem in this highly-constrained layout? What types of opera-
tions would fail?

. Now do the same, but with inodes. With very few inodes, what

types of operations can succeed? Which will usually fail? What
is the final state of the file system likely to be?

ARPACI-DUSSEAU

