
42

Log-structured File Systems

In the early 90’s, a group at Berkeley led by Professor John Ouster-
hout and graduate student Mendel Rosenblum developed a new file
system known as the log-structured file system [RO91]. Their moti-
vation to do so was based on the following observations:

• Memory sizes were growing: As memory got bigger, more
data could be cached in memory. As more data is cached, disk
traffic would increasingly consist of writes, as reads would be
serviced in the cache. Thus, file system performance would
largely be determined by its performance for writes.

• There was a large and growing gap between random I/O per-
formance and sequential I/O performance: Transfer bandwidth
increases roughly 50%-100% every year; seek and rotational
delay costs decrease much more slowly, maybe at 5%-10% per
year [P98]. Thus, if one is able to use disks in a sequential man-
ner, one gets a huge performance advantage, which grows over
time.

• Existing file systems perform poorly on many common work-
loads: For example, FFS [MJLF84] would perform a large num-
ber of writes to create a new file of size one block: one for a
new inode, one to update the inode bitmap, one to the direc-
tory data block that the file is in, one to the directory inode to
update it, one to the new data block that is apart of the new file,
and one to the data bitmap to mark the data block as allocated.
Thus, although FFS would place all of these blocks within the

1

2 LOG-STRUCTURED FILE SYSTEMS

same block group, FFS would incur many short seeks and sub-
sequent rotational delays and thus performance would fall far
short of peak sequential bandwidth.

• File systems were not RAID-aware: For example, RAID-4 and
RAID-5 have the small-write problem where a logical write to
a single block causes 4 physical I/Os to take place. Existing
file systems do not try to avoid this worst-case RAID writing
behavior.

An ideal file system would thus focus on write performance, and
try to make use of the sequential bandwidth of the disk. Further, it
would perform well on common workloads that not only write out
data but also update on-disk metadata structures frequently. Finally,
it would work well on RAIDs as well as single disks.

The new type of file system Rosenblum and Ousterhout intro-
duced was called LFS, short for the Log-structured File System. When
writing to disk, LFS first buffers all updates (including metadata!) in
an in-memory segment; when the segment is full, it is written to disk
in one long, sequential transfer to an unused part of the disk (i.e., LFS
never overwrites existing data, but rather always writes segments to
a free part of the disk). Because segments are large, the disk is used
quite efficiently, and thus performance of the file system approaches
the peak performance of the disk.

THE CRUX:
HOW TO MAKE ALL WRITES SEQUENTIAL WRITES?

How can a file system turns all writes into sequential writes? For
reads, this task is impossible, as the desired block to be read may be
anywhere on disk. For writes, however, the file system always has a
choice, and it is exactly this choice we hope to exploit.

42.1 Writing To The Log: Some Details

Let’s try to understand this a little bit better through an example.
Imagine we are appending a new block to a file; assume that the file
already exists but currently has no blocks allocated to it (it is zero

OPERATING

SYSTEMS ARPACI-DUSSEAU

LOG-STRUCTURED FILE SYSTEMS 3

sized). To do so, LFS of course places the data block D in this in-
memory segment:

D

However, we also must update the inode to now point to the
block. Because LFS wants to make all writes sequential, it also must
include the inode I in the update to disk. Thus, the segment (still in
memory) now looks like this:

| D | I |

Note further that I is also updated to point to D (and also note
that the pointer within I is a disk address, and thus when placing I
in the segment, LFS must have an idea of where this segment will
be written to disk). Assume this type of activity continues and the
segment finally fills up and is written to disk. So far, so good. We
have now written out I and D to disk, and the write to disk was
efficient. Unfortunately, we have our first real problem: how can we
find the inode I?

42.2 How Can We Find Those Pesky Inodes?

To understand how we find an inode in LFS, let us first make sure
we understand how to find an inode in a typical UNIX file system.
In a typical file system such as FFS, or even the old UNIX file system,
finding inodes is really easy. They are organized in an array and
placed on disk at a fixed location (or locations). For example, the old
UNIX FS keeps all inodes at a fixed portion of the disk. Thus, given
an inode number and the start address, to find a particular inode,
you can calculate its exact disk address simply by multiplying the
inode number by the size of an inode, and adding that to the start
address of the on-disk array. Here is what this looks like on disk:

Super Block | Inodes | Data blocks

If we expand this a bit, and assume a single block for the super
block, and that we have ten blocks for inodes, we get:

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

4 LOG-STRUCTURED FILE SYSTEMS

Super Block | Inodes | Data blocks
b0 | b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 | b11 ...

Imagine we know that each inode block of size 512 bytes, and that
each inode is of size 128 bytes, and let us also assume that inodes are
numbered from 0 to 39. We thus get this picture, with 4 inodes (i.e.,
512/128) in each block:

Super Block | Inodes | Data blocks
b0 | b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 | b11 ...

| 0 4 8 12 16 20 24 28 32 36 |
| 1 5 9 13 17 21 25 29 33 37 |
| 2 6 10 14 18 22 26 30 34 38 |
| 3 7 11 15 19 23 27 31 35 39 |

Thus, to find inode 14, we first divide 14 by 4 and get 3 (we use
integer division); thus inode 14 is in the “third” block of inodes (0 is
the “zeroth” block of inodes, 1 is the “first”, and so on). Because the
inode array starts at sector address 1, we add 3 to 1 and get sector
4 (b4); now we know which block to read to fetch inode 14. Then
we do 14 mod 4 to get which inode within the block (b4) to read: 2
(again starting at 0). It is just a simple calculation.

Finding an inode given an inode number in FFS is only slightly
more complicated; FFS splits up the array into chunks and places a
group of inodes within each cylinder group. Thus, one must know
how big each chunk of inodes is and the start addresses of each. After
that, the calculations are similar and also easy.

In LFS, life is more difficult. Why? Well, we’ve managed to scatter
the inodes all throughout the disk! Worse, we never overwrite in
place, and thus the latest version of an inode (i.e., the one we want)
keeps moving.

42.3 Solution Through Indirection: The Inode Map

To remedy this, the designers of LFS introduced a level of indirec-
tion between inode numbers and the inodes through a data structure
called the inode map (imap). The imap is a structure that takes an
inode number as input and produces the disk address of the most
recent version of the inode. Thus, you can imagine it would often
be implemented as a simple array, with 4 bytes (a disk pointer) per
entry. Any time an inode is written to disk, the imap is updated with
its new location.

OPERATING

SYSTEMS ARPACI-DUSSEAU

LOG-STRUCTURED FILE SYSTEMS 5

DESIGN TIP: USE A LEVEL OF INDIRECTION

People often say that the solution to all problems in Computer
Science is simply a level of indirection. This is clearly not true; it
is just the solution to most problems. You certainly can think of ev-
ery virtualization we have studied, e.g., virtual memory, as simply a
level of indirection. And certainly the inode map in LFS is a virtual-
ization of inode numbers. Hopefully you can see the great power of
indirection in these examples, allowing us to freely move structures
around (such as pages in the VM example, or inodes in LFS) without
having to change every reference to them. Of course, indirection can
have a downside too: extra overhead. So next time you have a prob-
lem, try solving it with indirection. But make sure to think about the
overheads of doing so first.

42.4 Even More Problems: Where To Put The Inode Map?

The imap, unfortunately, needs to be kept persistent (i.e., written
to disk); doing so allows LFS to keep track of the locations of inodes
across crashes, and thus operate as desired. Thus, a question: where
should the imap live?

It could live on a fixed part of the disk, of course. Unfortunately,
as it gets updated frequently, this would then require the segment
writes to be followed by writes to the imap, and hence performance
would suffer (i.e., there would be more disk seeks, between each seg-
ment and the fixed location of the imap).

Thus, LFS places pieces of the inode map into the current segment
as well. Thus, when writing a data block to disk (as above), we might
actually see:

| D | I | imap(I) |

where imap(I) is the piece of the inode map that tells us where
inode I is on disk. Note that imap(I) will also include the mapping
information for some other inodes that are near inode I in the imap.

The clever reader might have noticed a problem here. How do
we find the inode map, now that pieces of it are also now spread

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

6 LOG-STRUCTURED FILE SYSTEMS

across the disk? LFS finally keeps a fixed place on disk for this, and
it is known as the checkpoint region (CR). The checkpoint region
contains pointers to the latest pieces of the inode map, and thus the
inode map pieces can be found. Note the checkpoint region is only
updated periodically (say every 30 seconds or so), and thus perfor-
mance is not ill-affected. Thus, the overall structure of the on-disk
layout contains a checkpoint region and a bunch of segments, some
of which are in use, and some of which are yet to be used, as we see
here:

___ __________ ___
| | | | | | (pointer to the next segment in the log)
| v | v | v

| CR | seg1 | FREE | seg2 | seg3 | FREE |

CR : contains pointers to pieces of the imap
segment : contains pieces of the imap, inodes, data, etc.

As you can also see from the picture, each segment also contains
a pointer to the next segment; the chain of these segments thus forms
the log, and hence the overall name of the log-structured file system.
By starting at the checkpoint region, one should be able to find the
first segment that was written to disk and follow a chain of segments
on the disk to see what updates have taken place.

42.5 Reading A File From Disk: A Recap

To make sure you understand what is going on, let us now read
a file from disk. Assume we have nothing in memory to begin. The
first on-disk data structure we must read is the checkpoint region.
The checkpoint region contains pointers (i.e., disk addresses) to the
entire inode map, and thus LFS then reads in the entire inode map
and caches it in memory. After this point, when given an inode num-
ber of a file, LFS simply looks up the inode-number to inode-disk-
address mapping in the imap, and reads in the most recent version
of the inode. To read a block from the file, at this point, LFS pro-
ceeds exactly as a typical UNIX file system, by using direct pointers
or indirect pointers or doubly-indirect pointers as need be. Thus, in
the common case, LFS should perform the same number of I/Os as
a typical file system when reading a file from disk; the entire imap is

OPERATING

SYSTEMS ARPACI-DUSSEAU

LOG-STRUCTURED FILE SYSTEMS 7

cached and thus the only extra work LFS does during file read is to
look up the address of the inode in the imap.

42.6 A New Problem: Garbage Collection

You may have noticed another problem with LFS; it keeps writ-
ing newer version of a file, its inode, and in fact all data to new parts
of the disk. This process, while keeping writes efficient, implies that
LFS leaves older versions of a file all over the disk, scattered through-
out a number of older segments.

One could keep those older versions around and allow users to
restore old file versions (for example, when they accidentally over-
write or delete a file, it could be quite handy to do so); such a file
system is known as a versioning file system because it keeps track
of the different versions of a file. However, LFS instead keeps only
the latest live version of a file; thus (in the background), LFS must pe-
riodically find these old dead versions of file data, inodes, etc., and
clean them; cleaning should thus make blocks on disk free again for
use in a subsequent segment write. Note that the process of clean-
ing is a form of garbage collection, a similar method that arises in
languages that automatically free unused memory for programs.

The basic LFS cleaning process works as follows. Periodically,
the LFS cleaner must read in a number of old (partially-used) seg-
ments, determine which blocks are live within the segment, and then
write out a new set of segments with just the live blocks within them.
Specifically, we expect the cleaner to read in M existing segments,
compact their contents into N new segments (where N < M), and
then write the N segments to disk in new locations. The old M seg-
ments are then freed and can be used by the file system for subse-
quent writes. It is such cleaning that leads to free space between
used segments, as shown in the picture above.

We are now left with two problems, however. The first is mecha-
nism: how can LFS tell which blocks within a segment are live, and
which are dead? The second is policy: how often should the cleaner
run, and which segments should it pick to clean?

42.7 How Can We Determine Which Blocks Are Live?

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

8 LOG-STRUCTURED FILE SYSTEMS

We address the mechanism first. Given a data block D within
an on-disk segment S, LFS must be able to determine whether D is
live. To do so, LFS adds a little extra information to each segment
that describes each block. Specifically, LFS includes, for each data
block D, its inode number (which file it belongs to) and its offset
(which block of the file this is). This information is recorded in a little
structure at the head of the segment known as the segment summary
block.

Given this information, it is straightforward to determine whether
a block is live or dead. For a block D located on disk at address
A, look in the segment summary block and find its inode number I
and offset T. Next, look in the imap to find where I lives and read
I from disk (perhaps it is already in memory, which is even better).
Finally, using the offset T, look in the inode (or some indirect block)
to see where the Tth block of this file is on disk. If it points exactly to
disk address A, LFS can conclude that this block is live. If it points
anywhere else, LFS can conclude that D is not in use (i.e., it is dead)
and thus know that this version is no longer needed.
(a PICTURE here would be useful)

There are some shortcuts LFS takes to make the process of deter-
mining liveness more efficient. For example, when a file is truncated
or deleted, LFS increases its version number and records the new
version number in the imap. By also recording the version num-
ber in the on-disk segment, LFS can short circuit the longer check
described above simply by comparing the on-disk version number
with a version number maintained in the imap, and thus avoid extra
reads.

42.8 A Policy Question: Which Blocks To Clean, And When?

On top of the mechanism described above, LFS must build a set of
policies to determine both when to clean and which blocks are worth
cleaning. Determining when to clean is easier; either periodically,
during idle time, or when you have to because the disk is full.

Determining which blocks to clean is more challenging, and has
been the subject of many research papers. In the original LFS paper
[RO91], the authors describe an approach which tries to segregate
hot and cold blocks. A hot block is one in which the contents are
being frequently over-written; thus, for such a block, the best policy

OPERATING

SYSTEMS ARPACI-DUSSEAU

LOG-STRUCTURED FILE SYSTEMS 9

is to wait a long time before cleaning it, as more and more blocks are
getting over-written (in new segments) and thus being freed for use.
A cold block, in contrast, may have a few dead blocks but the rest
of its contents are relatively stable. Thus, the authors conclude that
one should clean cold segments sooner and hot segments later, and
develop a heuristic that does exactly that. However, as with most
policies, this is just one approach, and by definition is not “the best”
approach; later approaches show how to do better [MR+97].

42.9 Crash Recovery

Crash recovery begins with the checkpoint region; the latest check-
point region points to pieces of the imap, and those point to inodes
representing a snapshot of file system state. However, for perfor-
mance reasons, the checkpoint region is only flushed to disk period-
ically; thus, a crash will leave a number of segments on the disk that
are not pointed to by the latest checkpoint update.

LFS tries to recover many of those segments through recovery,
which takes place when you mount the file system after a crash. LFS
does this by a technique known as roll forward in the database com-
munity. The basic idea is to start with the last checkpoint, find the
end of the log, and then use that to read through the next segment
and see if there are any valid updates within it. If so, update the
file system accordingly and thus recover data and metadata written
since the last checkpoint.

There are some more details here (tricky cases and such) which I
have not yet included. Sorry!

42.10 Summary

LFS introduces a new approach to updating the disk. Instead of
over-writing files in places, LFS always writes to an unused portion
of the disk, and then later reclaims that old space through cleaning.
This approach, which in database systems is called shadow paging
[L77] and in file-system-speak is sometimes called copy-on-write,
enables highly efficient writing, as LFS can gather all updates into an
in-memory segment and then write them out together sequentially.

The downside to this approach is that it generates garbage; old
copies of the data are scattered throughout the disk, and if one wants

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

10 LOG-STRUCTURED FILE SYSTEMS

to reclaim such space for subsequent usage, one must clean old seg-
ments periodically. Cleaning became the focus of much controversy
in LFS, and concerns over cleaning costs [SS+95] perhaps limited
LFS’s initial impact on the field. However, some modern commercial
file systems, including NetApp’s WAFL and Sun’s ZFS both adopt a
similar copy-on-write approach to writing to disk, and thus the in-
tellectual legacy of LFS lives on in these modern file systems.

OPERATING

SYSTEMS ARPACI-DUSSEAU

LOG-STRUCTURED FILE SYSTEMS 11

References

[L77] “Physical Integrity in a Large Segmented Database”
R. Lorie
ACM Transactions on Databases, 1977, Volume 2:1, pages 91-104 The original idea of
shadow paging is presented here.

[MJLF84] “A Fast File System for UNIX”
Marshall K. McKusick, William N. Joy, Sam J. Leffler, Robert S. Fabry
ACM TOCS, August, 1984, Volume 2, Number 3, pages 181-197

[MR+97] “Improving the performance of log-structured file systems with adaptive meth-
ods” Jeanna Neefe Matthews, Drew Roselli, Adam M. Costello, Randolph Y. Wang,
Thomas E. Anderson
SOSP 1997, pages 238-251, October, Saint Malo, France

[P98] “Hardware Technology Trends and Database Opportunities”
David A. Patterson
ACM SIGMOD ’98 Keynote Address, Presented June 3, 1998, Seattle, Washington
Available: http://www.cs.berkeley.edu/ pattrsn/talks/keynote.html

[RO91] “Design and Implementation of the Log-structured File System”
Mendel Rosenblum and John Ousterhout, SOSP ’91
More information is available in the dissertation:
http://www.eecs.berkeley.edu/Pubs/TechRpts/1992/CSD-92-696.pdf

[SS+95] “File system logging versus clustering: a performance comparison”
Margo Seltzer, Keith A. Smith, Hari Balakrishnan, Jacqueline Chang, Sara McMains,
Venkata Padmanabhan
USENIX 1995 Technical Conference, New Orleans, Louisiana, 1995

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

