
101

Virtual Machine Monitors

101.1 Introduction

Years ago, IBM sold expensive mainframes to large organizations,
and a problem arose: what if the organization wanted to run different
operating systems on the machine at the same time? Some applica-
tions had been developed on one OS, and some on others, and thus
the problem. As a solution, IBM introduced yet another level of indi-
rection in the form of a virtual machine monitor (VMM) (also called
a hypervisor) [G74].

Specifically, the monitor sits between one or more operating sys-
tems and the hardware and gives the illusion to each running OS that
it controls the machine. Behind the scenes, however, the monitor
actually is in control of the hardware, and must multiplex running
OSes across the physical resources of the machine. Indeed, the VMM
serves as an operating system for operating systems, but at a much
lower level; the OS must still think it is interacting with the physical
hardware. Thus, transparency is a major goal of VMMs.

Thus, we find ourselves in a funny position: the OS has thus far
served as the master illusionist, tricking unsuspecting applications
into thinking they have their own private CPU and a large virtual
memory, while secretly switching between applications and sharing
memory as well. Now, we have to do it again, but this time under-
neath the OS, who is used to being in charge. How can the VMM
create this illusion for each OS running on top of it?

1



2 VIRTUAL MACHINE MONITORS

THE CRUX:
HOW TO VIRTUALIZE THE MACHINE UNDERNEATH THE OS

The virtual machine monitor must transparently virtualize the
machine underneath the OS; what are the techniques required to do
so?

101.2 Motivation: Why VMMs?

Today, VMMs have become popular again for a multitude of rea-
sons. Server consolidation is one such reason. In many settings, peo-
ple run services on different machines which run different operating
systems (or even OS versions), and yet each machine is lightly uti-
lized. In this case, virtualization enables an administrator to consol-
idate multiple OSes onto fewer hardware platforms, and thus lower
costs and ease administration.

Virtualization has also become popular on desktops, as many users
wish to run one operating system (say Linux or Mac OS X) but still
have access to native applications on a different platform (say Win-
dows). This type of improvement in functionality is also a good
reason.

Another reason is testing and debugging. While developers write
code on one main platform, they often want to debug and test it on
the many different platforms that they deploy the software to in the
field. Thus, virtualization makes it easy to do so, by enabling a de-
veloper to run many operating system types and versions on just one
machine.

This resurgence in virtualization began in earnest the mid-to-late
1990’s, and was led by a group of researchers at Stanford headed by
Professor Mendel Rosenblum. His group’s work on Disco [B+97], a
virtual machine monitor for the MIPS processor, was an early effort
that revived VMMs and eventually led that group to the founding
of VMware [V98], now a market leader in virtualization technology.
In this chapter, we will discuss the primary technology underlying
Disco and through that window try to understand how virtualiza-
tion works.

OPERATING

SYSTEMS ARPACI-DUSSEAU



VIRTUAL MACHINE MONITORS 3

101.3 Virtualizing the CPU

To run a virtual machine (e.g., an OS and its applications) on top
of a virtual machine monitor, the basic technique that is used is lim-
ited direct execution, a technique we saw before when discussing
how the OS virtualizes the CPU. Thus, when we wish to “boot” a
new OS on top of the VMM, we simply jump to the address of the
first instruction and let the OS begin running. It is as simple as that
(well, almost).

Assume we are running on a single processor, and that we wish to
multiplex between two virtual machines, that is, between two OSes
and their respective applications. In a manner quite similar to an
operating system switching between running processes (a context
switch), a virtual machine monitor must perform a machine switch
between running virtual machines. Thus, when performing such a
switch, the VMM must save the entire machine state of one OS (in-
cluding registers, PC, and unlike in a context switch, any privileged
hardware state), restore the machine state of the to-be-run VM, and
then jump to the PC of the to-be-run VM and thus complete the
switch. Note that the to-be-run VM’s PC may be within the OS it-
self (i.e., the system was executing a system call) or it may simply be
within a process that is running on that OS (i.e., a user-mode appli-
cation).

We get into some slightly trickier issues when a running applica-
tion or OS tries to perform some kind of privileged operation. For
example, on a system with a software-managed TLB, the OS will use
special privileged instructions to update the TLB with a translation
before restarting an instruction that suffered a TLB miss. In a vir-
tualized environment, the OS cannot be allowed to perform privi-
leged instructions, because then it controls the machine rather than
the VMM beneath it. Thus, the VMM must somehow intercept at-
tempts to perform privileged operations and thus retain control of
the machine.

A simple example of how a VMM must interpose on certain op-
erations arises when a running process on a given OS tries to make a
system call. For example, the process may be trying to call open()
on a file, or may be calling read() to get data from it, or may be
calling fork() to create a new process. In a system without virtual-
ization, a system call is achieved with a special instruction; on MIPS,
it is a trap instruction, and on x86, it is the int (an interrupt) in-

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



4 VIRTUAL MACHINE MONITORS

struction with the argument 0x80. Here is the open library call on
FreeBSD [B00] (recall that your C code first makes a library call into
the C library, which then executes the proper assembly sequence to
actually issue the trap instruction and thus make a system call):
open:

push dword mode
push dword flags
push dword path
mov eax, 5
push eax
int 80h

On UNIX-based systems, open() takes just three arguments: int
open(char *path, int flags, mode t mode). You can see
in the code above how the open() library call is implemented: first,
the arguments get pushed onto the stack (mode, flags, path),
then a 5 gets pushed onto the stack, and then int 80h is called,
which transfers control to the kernel. The 5, if you were wondering,
is the pre-agreed upon convention between user-mode applications
and the kernel for the open() system call in FreeBSD; different sys-
tem calls would place different numbers onto the stack (in the same
position) before calling the trap instruction int and thus making the

system call1.
Process Hardware Operating System
1. Execute instructions
(add, load, etc.)
2. System call:
Trap to OS

3. Switch to kernel mode;
Jump to trap handler

4. In kernel mode;
Handle system call;
Return from trap

5. Switch to user mode;
Return to user code

6. Resume execution
(@PC after trap)

Table 101.1: Executing a System Call
When a trap instruction is executed, as we’ve discussed before, it

usually does a number of interesting things. Most important in our

1Just to make things confusing, the Intel folks use the term “interrupt” for what
almost any sane person would call a trap instruction. As Patterson said about the Intel
instruction set: “It’s an ISA only a mother could love.”

OPERATING

SYSTEMS ARPACI-DUSSEAU



VIRTUAL MACHINE MONITORS 5

example here is that it first transfers control (i.e., changes the PC) to
a well-defined trap handler within the operating system. The OS,
when it is first starting up, establishes the address of such a routine
with the hardware (also a privileged operation) and thus upon sub-
sequent traps, the hardware knows where to start running code to
handle the trap. At the same time of the trap, the hardware also does
one other crucial thing: it changes the mode of the processor from
user mode to kernel mode. In user mode, operations are restricted,
and attempts to perform privileged operations will lead to a trap and
likely the termination of the offending process; in kernel mode, on
the other hand, the full power of the machine is available, and thus
all privileged operations can be executed. Thus, in a traditional set-
ting (again, without virtualization), the flow of control would be like
what you see in Table 101.1.

Process Operating System
1. System call:
Trap to OS

2. OS trap handler:
Decode trap and execute
appropriate syscall routine;
When done: return from trap

3. Resume execution
(@PC after trap)

Table 101.2: System Call Flow Without Virtualization

On a virtualized platform, things are a little more interesting. When
an application running on an OS wishes to perform a system call, it
does the exact same thing: executes a trap instruction with the ar-
guments carefully placed on the stack (or in registers). However, it
is the VMM that controls the machine, and thus the VMM who has
installed a trap handler that will first get executed in kernel mode.

So what should the VMM do to handle this system call? The
VMM doesn’t really know how to handle the call; after all, it does
not know the details of each OS that is running and therefore does
not know what each call should do. What the VMM does know, how-
ever, is where the OS’s trap handler is. It knows this because when
the OS booted up, it tried to install its own trap handlers; when the
OS did so, it was trying to do something privileged, and therefore
trapped into the VMM; at that time, the VMM recorded the neces-
sary information (i.e., where this OS’s trap handlers are in memory).
Now, when the VMM receives a trap from a user process running on

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



6 VIRTUAL MACHINE MONITORS

the given OS, it knows exactly what to do: it jumps to the OS’s trap
handler and lets the OS handle the system call as it should. When
the OS is finished, it executes some kind of privileged instruction
to return from the trap (rett on MIPS, iret on x86), which again
bounces into the VMM, which then realizes that the OS is trying to
return from the trap and thus performs a real return-from-trap and
thus returns control to the user and puts the machine back in user
mode. The entire process is depicted in Tables 101.2 and 101.3, both
for the normal case without virtualization and the case with virtual-
ization (we leave out the exact hardware operations from above to
save space).

Process Operating System VMM
1. System call:
Trap to OS

2. Process trapped:
Call OS trap handler
(at reduced privilege)

3. OS trap handler:
Decode trap and
execute syscall;
When done: issue
return-from-trap

4. OS tried return from trap:
Do real return from trap

5. Resume execution
(@PC after trap)

Table 101.3: System Call Flow with Virtualization

As you can see from the figures, a lot more has to happen when
virtualization is going on. Certainly, because of the extra jumping
around, virtualization might indeed slow down system calls and
thus could hurt performance.

You might also notice that we have one remaining question: what
mode should the OS run in? It can’t run in kernel mode, because then
it would have unrestricted access to the hardware. Thus, it must
run in some less privileged mode than before, be able to access its
own data structures, and simultaneously prevent access to its data
structures from user processes.

In the Disco work, Rosenblum and colleagues handled this prob-
lem quite neatly by taking advantage of a special mode provided by
the MIPS hardware known as supervisor mode. When running in
this mode, one still doesn’t have access to privileged instructions,
but one can access a little more memory than when in user mode;

OPERATING

SYSTEMS ARPACI-DUSSEAU



VIRTUAL MACHINE MONITORS 7

the OS can use this extra memory for its data structures and all is
well. On hardware that doesn’t have such a mode, one has to run the
OS in user mode and use memory protection (page tables and TLBs)
to protect OS data structures appropriately. In other words, when
switching into the OS, the monitor would have to make the memory
of the OS data structures available to the OS via page-table protec-
tions; when switching back to the running application, the ability to
read and write the kernel would have to be removed.

Virtual Address Space "Physical Memory" Machine Memory

0
1
2
3

OS Page Table

VPN 0 to PFN 10
VPN 2 to PFN 03
VPN 3 to PFN 08

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

VMM Page Table

PFN 03 to MFN 06
PFN 08 to MFN 10
PFN 10 to MFN 05

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Figure 101.1: VMM Memory Virtualization

101.4 Virtualizing Memory

You should now have a basic idea of how the processor is vir-
tualized: the VMM acts like an OS and schedules different virtual
machines to run, and some interesting interactions occur when priv-
ilege levels change. But we have left out a big part of the equation:
how does the VMM virtualize memory?

Each OS normally thinks of physical memory as a linear array of
pages, and assigns each page to itself or user processes. The OS itself,
of course, already virtualizes memory for its running processes, such
that each process has the illusion of its own private address space.
Now we must add another layer of virtualization, so that multiple

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



8 VIRTUAL MACHINE MONITORS

OSes can share the actual physical memory of the machine, and we
must do so transparently.

This extra layer of virtualization makes “physical” memory a vir-
tualization on top of what the VMM refers to as machine memory,
which is the real physical memory of the system. Thus, we now have
an additional layer of indirection: each OS maps virtual-to-physical
addresses via its per-process page tables; the VMM maps the result-
ing physical mappings to underlying machine addresses via its per-
OS page tables. Figure 101.1 depicts this extra level of indirection.

In the figure, there is just a single virtual address space with four
pages, three of which are valid (0, 2, and 3). The OS uses its page
table to map these pages to three underlying physical frames (10,
3, and 8, respectively). Underneath the OS, the VMM performs a
further level of indirection, mapping PFNs 3, 8, and 10 to machine
frames 6, 10, and 5 respectively. Of course, this picture simplifies
things quite a bit; on a real system, there would be V operating sys-
tems running (with V likely greater than one), and thus V VMM
page tables; further, on top of each running operating system OSi,
there would be a number of processes Pi running (Pi likely in the
tens or hundreds), and hence Pi (per-process) page tables within OSi.

To understand how this works a little better, let’s recall how ad-
dress translation works in a modern paged system. Specifically, let’s
discuss what happens on a system with a software-managed TLB
during address translation. Assume a user process generates an ad-
dress (for an instruction fetch or an explicit load or store); by defini-
tion, the process generates a virtual address, as its address space has
been virtualized by the OS. As you know by now, it is the role of the
OS, with help from the hardware, to turn this into a physical address
and thus be able to fetch the desired contents from physical memory.

Assume we have a 32-bit virtual address space and a 4-KB page
size. Thus, our 32-bit address is chopped into two parts: a 20-bit
virtual page number (VPN), and a 12-bit offset. The role of the OS,
with help from the hardware TLB, is to translate the VPN into a valid
physical page frame number (PFN) and thus produce a fully-formed
physical address which can be sent to physical memory to fetch the
proper data. In the common case, we expect the TLB to handle the
translation in hardware, thus making the translation fast. When a
TLB miss occurs (at least, on a system with a software-managed TLB),
the OS must get involved to service the miss, as depicted here in Ta-
ble 101.4.

OPERATING

SYSTEMS ARPACI-DUSSEAU



VIRTUAL MACHINE MONITORS 9

Process Operating System
1. Load from memory:
TLB miss: Trap

2. OS TLB miss handler:
Extract VPN from VA;
Do page table lookup;
If present and valid:
get PFN, update TLB;
Return from trap

3. Resume execution
(@PC of trapping instruction);
Instruction is retried;
Results in TLB hit

Table 101.4: TLB Miss Flow without Virtualization

As you can see, a TLB miss causes a trap into the OS, which han-
dles the fault by looking up the VPN in the page table and installing
the translation in the TLB.

With a virtual machine monitor underneath the OS, however, things
again get a little more interesting. Let’s examine the flow of a TLB
miss again (see Table 101.5 for a summary). When a process makes a
virtual memory reference and misses in the TLB, it is not the OS TLB
miss handler that runs; rather, it is the VMM TLB miss handler, as
the VMM is the true privileged owner of the machine. However, in
the normal case, the VMM TLB handler doesn’t know how to handle
the TLB miss, so it immediately jumps into the OS TLB miss handler;
the VMM knows the location of this handler because the OS, during
“boot”, tried to install its own trap handlers. The OS TLB miss han-
dler then runs, does a page table lookup for the VPN in question, and
tries to install the VPN-to-PFN mapping in the TLB. However, doing
so is a privileged operation, and thus causes another trap into the
VMM (the VMM gets notified when any non-privileged code tries to
do something that is privileged, of course). At this point, the VMM
plays its trick: instead of installing the OS’s VPN-to-PFN mapping,
the VMM installs its desired VPN-to-MFN mapping. After doing so,
the system eventually gets back to the user-level code, which retries
the instruction, and results in a TLB hit, fetching the data from the
machine frame where the data resides.

This set of actions also hints at how a VMM must manage the vir-
tualization of physical memory for each running OS; just like the OS
has a page table for each process, the VMM must track the physical-
to-machine mappings for each virtual machine it is running. These
per-machine page tables need to be consulted in the VMM TLB miss

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



10 VIRTUAL MACHINE MONITORS

Process Operating System Virtual Machine Monitor
1. Load from memory
TLB miss: Trap

2. VMM TLB miss handler:
Call into OS TLB handler
(reducing privilege)

3. OS TLB miss handler:
Extract VPN from VA;
Do page table lookup;
If present and valid,
get PFN, update TLB

4. Trap handler:
Unprivileged code trying to
update the TLB;
OS is trying to install
VPN-to-PFN mapping;
Update TLB instead with
VPN-to-MFN (privileged);
Jump back to OS
(reducing privilege)

5. Return from trap
6. Trap handler:
Unprivileged code trying
to return from a trap;
Return from trap

7. Resume execution
(@PC of instruction);
Instruction is retried;
Results in TLB hit

Table 101.5: TLB Miss Flow with Virtualization

handler in order to determine which machine page a particular “phys-
ical” page maps to, and even, for example, if it is present in machine
memory at the current time (i.e., the VMM could have swapped it to
disk to reduce memory pressure).

ASIDE: HARDWARE-MANAGED TLBS

Our discussion has centered around software-managed TLBs and
the work that needs to be done when a miss occurs. But you might be
wondering: how does the virtual machine monitor get involved with
a hardware-managed TLB? In those systems, the hardware walks
the page table on each TLB miss and updates the TLB as need be,
and thus the VMM doesn’t have a chance to run on each TLB miss

OPERATING

SYSTEMS ARPACI-DUSSEAU



VIRTUAL MACHINE MONITORS 11

to sneak its translation into the system. Instead, the VMM must
closely monitor changes the OS makes to each page table (which,
in a hardware-managed system, is pointed to by a page-table base
register of some kind), and keep a shadow page table that instead
maps the virtual addresses of each process to the VMM’s desired
machine pages [AA06]. The VMM installs a process’s shadow page
table whenever the OS tries to install the process’s OS-level page ta-
ble, and thus the hardware chugs along, translating virtual addresses
to machine addresses using the shadow table, without the OS even
noticing.

Finally, as you might notice from this sequence of operations, TLB
misses on a virtualized system become quite a bit more expensive
than in a non-virtualized system. To reduce this cost, the designers
of Disco added a VMM-level “software TLB”. The idea behind this
data structure is simple. The VMM records every virtual-to-physical
mapping that it sees the OS try to install; then, on a TLB miss, the
VMM first consults its software TLB to see if it has seen this virtual-
to-physical mapping before, and what the VMM’s desired virtual-
to-machine mapping should be. If the VMM finds the translation in
its software TLB, it simply installs the virtual-to-machine mapping
directly into the hardware TLB, and thus skips all the back and forth
in the control flow above [B+97].

101.5 The Information Gap

Just like the OS doesn’t know too much about what application
programs really want, and thus must often make general policies that
hopefully work for all programs, the VMM often doesn’t know too
much about what the OS is doing or wanting; this lack of knowledge,
sometimes called the information gap between the VMM and the
OS, can lead to various inefficiencies [B+97]. For example, an OS,
when it has nothing else to run, will sometimes go into an idle loop
just spinning and waiting for the next interrupt to occur:

while (1)
; // the idle loop

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



12 VIRTUAL MACHINE MONITORS

ASIDE: PARA-VIRTUALIZATION

In many situations, it is good to assume that the OS cannot be modi-
fied in order to work better with virtual machine monitors (for ex-
ample, because you are running your VMM under an unfriendly
competitor’s operating system). However, this is not always the
case, and when the OS can be modified (as we saw in the example
with demand-zeroing of pages), it may run more efficiently on top
of a VMM. Running a modified OS to run on a VMM is generally
called para-virtualization [WSG02], as the virtualization provided
by the VMM isn’t a complete one, but rather a partial one requiring
OS changes to operate effectively. Research shows that a properly-
designed para-virtualized system, with just the right OS changes, can
be made to be nearly as efficient a system without a VMM [BD+03].

It makes sense to spin like this if the OS in charge of the entire ma-
chine and thus knows there is nothing else that needs to run. How-
ever, when a VMM is running underneath two different OSes, one in
the idle loop and one usefully running user processes, it would be
useful for the VMM to know that one OS is idle so it can give more
CPU time to the OS doing useful work.

Another example arises with demand zeroing of pages. Most op-
erating systems zero a physical frame before mapping it into a pro-
cess’s address space. The reason for doing so is simple: security. If
the OS gave one process a page that another had been using with-
out zeroing it, an information leak across processes could occur, thus
potentially leaking sensitive information. Unfortunately, the VMM
must zero pages that it gives to each OS, for the same reason, and
thus many times a page will be zeroed twice, once by the VMM when
assigning it to an OS, and once by the OS when assigning it to a pro-
cess. The authors of Disco had no great solution to this problem:
they simply changed the OS (IRIX) to not zero pages that it knew
had been zeroed by the underlying VMM [B+97].

There are many other similar problems to these described here.
One solution is for the VMM to use inference (a form of implicit
information) to overcome the problem. For example, a VMM can
detect the idle loop by noticing that the OS switched to low-power
mode. A different approach, seen in para-virtualized systems, re-
quires the OS to be changed. This more explicit approach, while
harder to deploy, can be quite effective.

OPERATING

SYSTEMS ARPACI-DUSSEAU



VIRTUAL MACHINE MONITORS 13

DESIGN TIP: USE IMPLICIT INFORMATION

Implicit information can be a powerful tool in layered systems where
it is hard to change the interfaces between systems, but more infor-
mation about a different layer of the system is needed. For example,
a block-based disk device might like to know more about how a file
system above it is using it; Similarly, an application might want to
know what pages are currently in the file-system page cache, but the
OS provides no API to access this information. In both these cases, re-
searchers have developed powerful inferencing techniques to gather
the needed information implicitly, without requiring an explicit inter-
face between layers [AD+01,S+03]. Such techniques are quite useful
in a virtual machine monitor, which would like to learn more about
the OSes running above it without requiring an explicit API between
the two layers.

101.6 Summary

Virtualization is in a renaissance. For a multitude of reasons, users
and administrators want to run multiple OSes on the same machine
at the same time. The key is that VMMs generally provide this ser-
vice transparently; the OS above has little clue that it is not actu-
ally controlling the hardware of the machine. The key method that
VMMs use to do so is to extend the notion of limited direct execution;
by setting up the hardware to enable the VMM to interpose on key
events (such as traps), the VMM can completely control how ma-
chine resources are allocated while preserving the illusion that the
OS requires.

You might have noticed some similarities between what the OS
does for processes and what the VMM does for OSes. They both
virtualize the hardware after all, and hence do some of the same
things. However, there is one key difference: with the OS virtual-
ization, a number of new abstractions and nice interfaces are pro-
vided; with VMM-level virtualization, the abstraction is identical to
the hardware (and thus not very nice). While both the OS and VMM
virtualize hardware, they do so by providing completely different
interfaces; VMMs, unlike the OS, are not particularly meant to make
the hardware easier to use.

There are many other topics to study if you wish to learn more
about virtualization. For example, we didn’t even discuss what hap-

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



14 VIRTUAL MACHINE MONITORS

pens with I/O, a topic that has its own new and interesting issues
when it comes to virtualized platforms. We also didn’t discuss how
virtualization works when running “on the side” with your OS in
what is sometimes called a “hosted” configuration. Read more about
both of these topics if you’re interested [SVL01]. Finally, we didn’t
discuss what happens when a collection of operating systems run-
ning on a VMM uses too much memory. As it turns out, memory
overload in virtualized systems can be quite difficult to handle, and
thus it is the topic of our next chapter.

OPERATING

SYSTEMS ARPACI-DUSSEAU



VIRTUAL MACHINE MONITORS 15

References

[AA06] “A Comparison of Software and Hardware Techniques
for x86 Virtualization”
Keith Adams and Ole Agesen
ASPLOS ’06, San Jose, California
A terrific paper from two VMware engineers about the surprisingly small benefits of having
hardware support for virtualization. Also an excellent general discussion about virtualization in
VMware, including the crazy binary-translation tricks they have to play in order to virtualize
the difficult-to-virtualize x86 platform.

[AD+01] “Information and Control in Gray-box Systems”
Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau
SOSP ’01, Banff, Canada
Our own work on how to infer information and even exert control over the OS from application
level, without any change to the OS. The best example therein: determining which file blocks
are cached in the OS using a probabilistic probe-based technique; doing so allows applications to
better utilize the cache, by first scheduling work that will result in hits.

[B00] “FreeBSD Developers’ Handbook:
Chapter 11 x86 Assembly Language Programming”
http://www.freebsd.org/doc/en/books/developers-handbook/
A nice tutorial on system calls and such in the BSD developers handbook.

[BD+03] “Xen and the Art of Virtualization”
Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, Andrew Warfield
SOSP ’03, Bolton Landing, New York
The paper that shows that with para-virtualized systems, the overheads of virtualized systems can
be made to be incredibly low. So successful was this paper on the Xen virtual machine monitor
that it launched a company.

[B+97] “Disco: Running Commodity Operating Systems
on Scalable Multiprocessors”
Edouard Bugnion, Scott Devine, Kinshuk Govil, Mendel Rosenblum
SOSP ’97
The paper that reintroduced the systems community to virtual machine research; well, perhaps
this is unfair as Bressoud and Schneider [BS95] also did, but here we began to understand why
virtualization was going to come back. What made it even clearer, however, is when this group of
excellent researchers started VMware and made some billions of dollars.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



16 VIRTUAL MACHINE MONITORS

[BS95] “Hypervisor-based Fault-tolerance”
Thomas C. Bressoud, Fred B. Schneider
SOSP ’95
One the earliest papers to bring back the hypervisor, which is just another term for a virtual
machine monitor. In this work, however, such hypervisors are used to improve system tolerance
of hardware faults, which is perhaps less useful than some of the more practical scenarios discussed
in this chapter; however, still quite an intriguing paper in its own right.

[G74] “Survey of Virtual Machine Research”
R.P. Goldberg
IEEE Computer, Volume 7, Number 6
A terrific survey of a lot of old virtual machine research.

[SVL01] “Virtualizing I/O Devices on VMware Workstation’s
Hosted Virtual Machine Monitor”
Jeremy Sugerman, Ganesh Venkitachalam and Beng-Hong Lim
USENIX ’01, Boston, Massachusetts
Provides a good overview of how I/O works in VMware using a hosted architecture which exploits
many native OS features to avoid reimplementing them within the VMM.

[V98] VMware corporation.
Available: http://www.vmware.com/
This may be the most useless reference in this book, as you can clearly look this up yourself.
Anyhow, the company was founded in 1998 and is a leader in the field of virtualization.

[S+03] “Semantically-Smart Disk Systems”
Muthian Sivathanu, Vijayan Prabhakaran, Florentina I. Popovici, Timothy E. Denehy,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
FAST ’03, San Francisco, California, March 2003
Our work again, this time showing how a dumb block-based device can infer much about what
the file system above it is doing, such as deleting a file. The technology used therein enables
interesting new functionality within a block device, such as secure delete, or more reliable storage.

[WSG02] “Scale and Performance in the Denali Isolation Kernel”
Andrew Whitaker, Marianne Shaw, and Steven D. Gribble
OSDI ’02, Boston, Massachusetts
The paper that introduces the term para-virtualization. Although one can argue that Bugnion
et al. [B+97] introduce the idea of para-virtualization in the Disco paper, Whitaker et al. take it
further and show how the idea can be more general than what was thought before.

OPERATING

SYSTEMS ARPACI-DUSSEAU


