
103

Monitors

Around the time concurrent programming was becoming a big deal,
object-oriented programming was also gaining ground. Not surpris-
ingly, people started to think about ways to merge synchronization
into a more structured programming environment.

One such approach that emerged was the monitor. First described
by Per Brinch Hansen [BH73] and later refined by Tony Hoare [H74],
the idea behind a monitor is quite simple. Consider the following
pretend monitor written in C++ notation:
monitor class account {
private:

int balance = 0;

public:
void deposit(int amount) {

balance = balance + amount;
}
void withdraw(int amount) {

balance = balance - amount;
}

};

Figure 103.1: A Pretend Monitor Class

Note: this is a “pretend” class because C++ does not support mon-
itors, and hence the monitor keyword does not exist. However, Java
does support monitors, with what are called synchronized methods.
Below, we will examine both how to make something quite like a
monitor in C/C++, as well as how to use Java synchronized meth-
ods.

1

2 MONITORS

In this example, you may notice we have our old friend the ac-
count and some routines to deposit and withdraw an amount from
the balance. As you also may notice, these are critical sections; if
they are called by multiple threads concurrently, you have a race con-
dition and the potential for an incorrect outcome.

In a monitor class, you don’t get into trouble, though, because the
monitor guarantees that only one thread can be active within the
monitor at a time. Thus, our above example is a perfectly safe and
working piece of code; multiple threads can call deposit() or with-
draw() and know that mutual exclusion is preserved.

How does the monitor do this? Simple: with a lock. Whenever
a thread tries to call a monitor routine, it implicitly tries to acquire
the monitor lock. If it succeeds, then it will be able to call into the
routine and run the method’s code. If it does not, it will block until
the thread that is in the monitor finishes what it is doing. Thus, if we
wrote a C++ class that looked like the following, it would accomplish
the exact same goal as the monitor class above:
class account {
private:

int balance = 0;
pthread_mutex_t monitor;

public:
void deposit(int amount) {

pthread_mutex_lock(&monitor);
balance = balance + amount;
pthread_mutex_unlock(&monitor);

}
void withdraw(int amount) {

pthread_mutex_lock(&monitor);
balance = balance - amount;
pthread_mutex_unlock(&monitor);

}
};

Figure 103.2: A C++ Class that acts like a Monitor

Thus, as you can see from this example, the monitor isn’t doing
too much for you automatically. Basically, it is just acquiring a lock
and releasing it. By doing so, we achieve what the monitor requires:
only one thread will be active within deposit() or withdraw(), as de-
sired.

OPERATING

SYSTEMS ARPACI-DUSSEAU

MONITORS 3

103.1 Why Bother with Monitors?

You might wonder why monitors were invented at all, instead of
just using explicit locking. At the time, object-oriented programming
was just coming into fashion. Thus, the idea was to gracefully blend
some of the key concepts in concurrent programming with some of
the basic approaches of object orientation. Nothing more than that.

103.2 Do We Get More Than Automatic Locking?

Back to business. As we know from our discussion of semaphores,
just having locks is not quite enough; for example, to implement
the producer/consumer solution, we previously used semaphores
to both put threads to sleep when waiting for a condition to change
(e.g., a producer waiting for a buffer to be emptied), as well as to
wake up a thread when a particular condition has changed (e.g., a
consumer signaling that it has indeed emptied a buffer).

Monitors support such functionality through an explicit construct
known as a condition variable. Let’s take a look at the code for the
producer/consumer solution, but written with monitors and condi-
tion variables.

In this monitor class, we have two routines, produce() and con-
sume(). A producer thread would repeatedly call produce() to put
data into the bounded buffer, while a consumer() would repeatedly
call consume(). The example is a modern paraphrase of Hoare’s so-
lution [H74].

You should notice some similarities betewen this code and the
semaphore-based solution in the previous note. One major differ-
ence is how condition variables must be used in concert with an ex-
plicit state variable; in this case, the integer fullEntries deter-
mines whether a producer or consumer must wait, depending on its
state. Semaphores, in contrast, have an internal numeric value which
serves this same purpose. Thus, condition variables must be paired
with some kind of external state value in order to achieve the same
end.

The most important aspect of this code, however, is the use of the
two condition variables, empty and full, and the respective wait()
and signal() calls that employ them. These operations do exactly
what you might think: wait() blocks the calling thread on a given

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

4 MONITORS

monitor class BoundedBuffer {
private:

int buffer[MAX];
int fill, use;
int fullEntries = 0;
cond_t empty;
cond_t full;

public:
void produce(int element) {

if (fullEntries == MAX) // line P0
wait(&empty); // line P1

buffer[fill] = element; // line P2
fill = (fill + 1) % MAX; // line P3
fullEntries++; // line P4
signal(&full); // line P5

}

int consume() {
if (fullEntries == 0) // line C0

wait(&full); // line C1
int tmp = buffer[use]; // line C2
use = (use + 1) % MAX; // line C3
fullEntries--; // line C4
signal(&empty); // line C5
return tmp; // line C6

}
}

Figure 103.3: Producer/Consumer with Monitors and Hoare Seman-
tics

condition; signal() wakes one waiting thread that is waiting on
the given condition.

However, there are some subtleties in how these calls operate;
understanding the semantics of these calls is critically important to
understanding why this code works. In what researchers in oper-
ating systems call Hoare semantics (yes, a somewhat unfortunate
name), the signal() immediately wakes one waiting thread and
runs it; thus, the monitor lock, which is implicitly held by the run-
ning thread, immediately is transferred to the woken thread which
then runs until it either blocks or exits the monitor. Note that there
may be more than one thread waiting; signal() only wakes one
waiting thread and runs it, while the others must wait for a subse-
quent signal.

OPERATING

SYSTEMS ARPACI-DUSSEAU

MONITORS 5

A simple example will help us understand this code better. Imag-
ine there are two threads, one a producer and the other a consumer.
The consumer gets to run first, and calls consume(), only to find
that fullEntries = 0 (C0), as there is nothing in the buffer yet. Thus, it
calls wait(&full)(C1), and waits for a buffer to be filled. The pro-
ducer then runs, finds it doesn’t have to wait (P0), puts an element
into the buffer (P2), increments the fill index (P3) and the fullEn-
tries count (P4), and calls signal(&full) (P5). In Hoare seman-
tics, the producer does not continue running after the signal; rather,
the signal immediately transfers control to the waiting consumer,
which returns from wait() (C1) and immediately consumes the
element produced by the producer (C2) and so on. Only after the
consumer returns will the producer get to run again and return from
the produce() routine.

103.3 Where Theory Meets Practice

Tony Hoare, who wrote the solution above and came up with
the exact semantics for signal() and wait(), was a theoretician.
Clearly a smart guy, too; he came up with quicksort after all [H61].
However, the semantics of signaling and waiting, as it turns out,
were not ideal for a real implementation. As the old saying goes,
in theory, there is no difference between theory and practice, but in
practice, there is.

OLD SAYING: THEORY VS. PRACTICE

The old saying is “in theory, there is no difference between theory
and practice, but in practice, there is.” Of course, only practioners
tell you this; a theory person could undoubtedly prove that it is not
true.

A few years later, Butler Lampson and David Redell of Xerox
PARC were building a concurrent language known as Mesa, and de-
cided to use monitors as their basic concurrency primitive [LR80].
They were well-known systems researchers, and they soon found
that Hoare semantics, while more amenable to proofs, were hard to
realize in a real system (there are a lot of reasons for this, but perhaps
too detailed to go through here).

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

6 MONITORS

In particular, to build a working monitor implementation, Lamp-
son and Redell decided to change the meaning of signal() in a subtle
but critical way. The signal() routine now was just considered a hint
[L83]; it would move a single waiting thread from the blocked state
to a runnable state, but it would not run it immediately. Rather, the
signaling thread would retain control until it exited the monitor and
was naturally descheduled.

103.4 Oh Oh, A Race

Given these new Mesa semantics, let us again reexamine the code
above. Imagine again a consumer (consumer 1) who enters the the
monitor and finds the buffer empty and thus waits (C1). Now the
producer comes along and fills the buffer and signals that a buffer
has been filled, moving the waiting consumer from blocked on the
full condition variable to ready. The producer keeps running for a
while, and eventually gives up the CPU.

But Houston, we have a problem. Can you see it? Imagine a dif-
ferent consumer (consumer 2) now calls into the consume() routine;
it will find a full buffer, consume it, and return, setting fullEntries to 0
in the meanwhile. Can you see the problem yet? Well, here it comes.
Our old friend consumer 1 now finally gets to run, and returns from
wait(), expecting a buffer to be full (C1...); unfortunately, this is
no longer true, as consumer 2 snuck in and consumed the buffer be-
fore consumer 1 had a chance to consume it. Thus, the code doesn’t
work, because in the time between the signal() by the producer and
the return from wait() by consumer 1, the condition has changed.
This timeline illustrates the problem:

Fortunately, the switch from Hoare semantics to Mesa semantics
requires only a small change by the programmer to realize a work-
ing solution. Specifically, when woken, a thread should recheck the
condition it was waiting on; because signal() is only a hint, it is pos-
sible that the condition has changed (even multiple times) and thus
may not be in the desired state when the waiting thread runs. In our
example, two lines of code must change, lines P0 and C0:

Not too hard after all. Because of the ease of this implementation,
virtually any system today that uses condition variables with signal-
ing and waiting uses Mesa semantics. Thus, if you remember noth-
ing else at all from this class, you can just remember: always recheck

OPERATING

SYSTEMS ARPACI-DUSSEAU

MONITORS 7

Producer Consumer1 Consumer2
C0 (fullEntries=0)
C1 (Consumer1: blocked)

P0 (fullEntries=0)
P2
P3
P4 (fullEntries=1)
P5 (Consumer1: ready)

C0 (fullEntries=1)
C2
C3
C4 (fullEntries=0)
C5
C6

C2 (oh oh, using a buffer,
but fullEntries=0!)

Figure 103.4: Why the Code doesn’t work with Hoare Semantics

public:
void produce(int element) {

while (fullEntries == MAX) // line P0 (CHANGED IF->WHILE)
wait(&empty); // line P1

buffer[fill] = element; // line P2
fill = (fill + 1) % MAX; // line P3
fullEntries++; // line P4
signal(&full); // line P5

}

int consume() {
while (fullEntries == 0) // line C0 (CHANGED IF->WHILE)

wait(&full); // line C1
int tmp = buffer[use]; // line C2
use = (use + 1) % MAX; // line C3
fullEntries--; // line C4
signal(&empty); // line C5
return tmp; // line C6

}

Figure 103.5: Producer/Consumer with Monitors and Mesa Seman-
tics

the condition after being woken! Put in even simpler terms, use
while loops and not if statements when checking conditions. Note
that this is always correct, even if somehow you are running on a
system with Hoare semantics; in that case, you would just needlessly

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

8 MONITORS

retest the condition an extra time.

103.5 Peeking Under The Hood A Bit

To understand a bit better why Mesa semantics are easier to im-
plement, let’s understand a little more about the implementation of
Mesa monitors. In their work [LR80], Lampson and Redell describe
three different types of queues that a thread can be a part of at a
given time: the ready queue, a monitor lock queue, and a condition
variable queue. Note that a program might have multiple monitor
classes and multiple condition variable instances; there is a queue
per instance of said items.

With a single bounded buffer monitor, we thus have four queues
to consider: the ready queue, a single monitor queue, and two con-
dition variable queues (one for the full condition and one for the
empty). To better understand how a thread library manages these
queues, what we will do is show how a thread transitions through
these queues in the producer/consumer example.

In this example, we walk through a case where a consumer might
be woken up but find that there is nothing to consume. Let us con-
sider the following timeline. On the left are two consumers (Con1
and Con2) and a producer (Prod) and which line of code they are
executing; on the right is the state of each of the four queues we are
following for this example: the ready queue of runnable processes,
the monitor lock queue called Monitor, and the empty and full con-
dition variable queues. We also track time (t), the thread that is run-
ning (square brackets around the thread on the ready queue that is
running), and the value of fullEntries (FE).

As you can see from the timeline, consumer 2 (Con2) sneaks in
and consumes the available data (t=9..14) before consumer 1 (Con1),
who was waiting on the full condition to be signaled (since t=1), gets
a chance to do so. However, Con1 does get woken by the producer’s
signal (t=7), and thus runs again even though the buffer is empty by
the time it does so. If Con1 didn’t recheck the state variable fullEn-
tries (t=16), it would have erroneously tried to consume data when
no data was present to consume. Thus, this natural implementation
is exactly what leads us to Mesa semantics (and not Hoare).

OPERATING

SYSTEMS ARPACI-DUSSEAU

MONITORS 9

t | Con1 Con2 Prod | Ready | Monitor | Empty | Full | FE | Comment

0 | C0 | [Con1],Prod,Con2 | | | | 0 |
1 | C1 | [Con1],Prod,Con2 | | | Con1 | 0 | Con1 waiting on
2 |<Context switch>| [Prod],Con2 | | | Con1 | 0 | switch from Con1
3 | P0 | [Prod],Con2 | | | Con1 | 0 |
4 | P2 | [Prod],Con2 | | | Con1 | 0 | Prod doesn’t wait
5 | P3 | [Prod],Con2 | | | Con1 | 0 |
6 | P4 | [Prod],Con2 | | | Con1 | 1 | Prod changes value
7 | P5 | [Prod],Con2,Con1 | | | | 1 | Prod signals,
8 |<Context switch>| Prod,[Con2],Con1 | | | | 1 | switch from Prod
9 | C0 | Prod,[Con2],Con1 | | | | 1 | switch to Con2

10 | C2 | Prod,[Con2],Con1 | | | | 1 | Con2 doesn’t wait
11 | C3 | Prod,[Con2],Con1 | | | | 1 |
12 | C4 | Prod,[Con2],Con1 | | | | 0 | Con2 changes value
13 | C5 | Prod,[Con2],Con1 | | | | 0 | Con2 signals empty
14 | C6 | Prod,[Con2],Con1 | | | | 0 | Con2 all done
15 |<Context switch>| Prod,Con2,[Con1] | | | | 0 | switch from Con2
16 | C0 | Prod,Con2,[Con1] | | | | 0 | recheck fullEntries,
17 | C1 | Prod,Con2,[Con1] | | | Con1 | 0 | wait on full again

Figure 103.6: Tracing Queues during a Producer/Consumer Run

103.6 Other Uses Of Monitors

In their paper on Mesa, Lampson and Redell also point out a few
places where a different kind of signaling is needed. For example,
consider the following memory allocator:

Many details are left out of this example, in order to allow us to
focus on the conditions for waking and signaling. It turns out the
signal/wait code above does not quite work; can you see why?

Imagine two threads call allocate. The first calls allocate(20) and
the second allocate(10). No memory is available, and thus both threads
call wait() and block. Some time later, a different thread comes along
and calls free(p, 15), and thus frees up 15 bytes of memory. It then
signals that it has done so. Unfortunately, it wakes the thread wait-
ing for 20 bytes; that thread rechecks the condition, finds that only
15 bytes are available, and calls wait() again. The thread that could
have benefitted from the free of 15 bytes, i.e., the thread that called
allocate(10), is not woken.

Lampson and Redell suggest a simple solution to this problem.
Instead of a signal() which wakes a single waiting thread, they em-
ploy a broadcast() which wakes all waiting threads. Thus, all threads

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

10 MONITORS

monitor class allocator {
int available; // how much memory is available?
cond_t c;

void *allocate(int size) {
while (size > available)

wait(&c);
available -= size;
// and then do whatever the allocator should do
// and return a chunk of memory

}

void free(void *pointer, int size) {
// free up some memory
available += size;
signal(&c);

}
};

Figure 103.7: A Simple Memory Allocator

are woken up, and in the example above, the thread waiting for 10
bytes will find 15 available and succeed in its allocation. In this way,

In Mesa semantics, using a broadcast() is always correct, as all
threads should recheck the condition of interest upon waking any-
how. However, it may be a performance problem, and thus should
only be used when needed. In this example, a broadcast() might
wake hundreds of waiting threads, only to have one successfully
continue while the rest immediately block again; this problem, some-
times known as a thundering herd, is costly, due to all the extra con-
text switches that occur.

103.7 Using Monitors To Implement Semaphores

You can probably see a lot of similarities between monitors and
semaphores. Not surprisingly, you can use one to implement the
other. Here, we show how you might implement a semaphore class
using a monitor.

As you can see, wait() simply waits for the value of the semaphore
to be greater than 0, and then decrements its value, whereas post()
increments the value and wakes one waiting thread (if there is one).
It’s as simple as that.

OPERATING

SYSTEMS ARPACI-DUSSEAU

MONITORS 11

monitor class Semaphore {
int s; // value of the semaphore
Semaphore(int value) {

s = value;
}
void wait() {

while (s <= 0)
wait();

s--;
}
void post() {

s++;
signal();

}
};

Figure 103.8: Implementing a Semaphore with a Monitor

To use this class as a binary semaphore (i.e., a lock), you would
just do the following:

Semaphore s(1);
s.wait(); // grab lock (value of semaphore goes from 1 -> 0)
... // do the critical section
s.post(); // release lock (value of semaphore goes from 0 -> 1)

Figure 103.9: Using the Semaphore Class

And thus we have shown that monitors can be used to implement
semaphores.

103.8 Monitors in the Real World

We already mentioned above that we were using ”pretend” mon-
itors in that C++ has no such concept. We now show how can make a
monitor-like class in C++, and how Java uses synchronized methods
to achieve a similar end.

A C++ Monitor of Sorts

Here is the producer/consumer code written in C++ with locks and
condition variables:

You can see in this code example that there is little difference
between the pretend monitor code and the working C++ class we

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

12 MONITORS

class BoundedBuffer {
private:

int buffer[MAX];
int fill, use;
int fullEntries;
pthread_mutex_t monitor; // monitor lock
pthread_cond_t empty;
pthread_cond_t full;

public:
BoundedBuffer() {

use = fill = fullEntries = 0;
}
void produce(int element) {

pthread_mutex_lock(&monitor);
while (fullEntries == MAX)

pthread_cond_wait(&empty, &monitor);
buffer[fill] = element;
fill = (fill + 1) % MAX;
fullEntries++;
pthread_cond_signal(&full);
pthread_mutex_unlock(&monitor);

}

int consume() {
pthread_mutex_lock(&monitor);
while (fullEntries == 0)

pthread_cond_wait(&full, &monitor);
int tmp = buffer[use];
use = (use + 1) % MAX;
fullEntries--;
pthread_cond_signal(&empty);
pthread_mutex_unlock(&monitor);
return tmp;

}
}

Figure 103.10: A C++ Producer/Consumer with Locks and Condi-
tion Variables

have above. Of course, one obvious difference is the explicit use
of a lock ”monitor”. More subtle is the switch to the POSIX stan-
dard pthread cond signal() and pthread cond wait() calls.
In particular, notice that when calling pthread cond wait(), one
also passes in the lock that is held at the time of waiting. The lock is
needed inside pthread cond wait() because it must be released

OPERATING

SYSTEMS ARPACI-DUSSEAU

MONITORS 13

when this thread is put to sleep and reacquired before it returns to
the caller (the same behavior as within a monitor but again with ex-
plicit locks).

A Java Monitor

Interestingly, the designers of Java decided to use monitors as they
thought they were a graceful way to add synchronization primitives
into a language. To use them, you just use add the keyword syn-
chronized to the method or set of methods that you wish to use as
a monitor (here is an example from Sun’s own documentation site
[S12a,S12b]):
public class SynchronizedCounter {

private int c = 0;
public synchronized void increment() {

c++;
}
public synchronized void decrement() {

c--;
}
public synchronized int value() {

return c;
}

}

Figure 103.11: A Simple Java Class with Synchronized Methods

This code does exactly what you think it should: provide a counter
that is thread safe. Because only one thread is allowed into the mon-
itor at a time, only one thread can update the value of ”c”, and thus
a race condition is averted.

Java and the Single Condition Variable

In the original version of Java, a condition variable was also sup-
plied with each synchronized class. To use it, you would call either
wait() or notify() (sometimes the term notify is used instead of sig-
nal, but they mean the same thing). Oddly enough, in this original
implementation, there was no way to have two (or more) condition
variables. You may have noticed in the producer/consumer solution,
we always use two: one for signaling a buffer has been emptied, and
another for signaling that a buffer has been filled.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

14 MONITORS

To understand the limitations of only providing a single condition
variable, let’s imagine the producer/consumer solution with only a
single condition variable. Imagine two consumers run first, and both
get stuck waiting. Then, a producer runs, fills a single buffer, wakes
a single consumer, and then tries to fill again but finds the buffer full
(MAX=1). Thus, we have a producer waiting for an empty buffer,
a consumer waiting for a full buffer, and a consumer who had been
waiting about to run because it has been woken.

The consumer then runs and consumes the buffer. When it calls
notify(), though, it wakes a single thread that is waiting on the condi-
tion. Because there is only a single condition variable, the consumer
might wake the waiting consumer, instead of the waiting producer.
Thus, the solution does not work.

To remedy this problem, one can again use the broadcast solution.
In Java, one calls notifyAll() to wake all waiting threads. In this case,
the consumer would wake a producer and a consumer, but the con-
sumer would find that fullEntries is equal to 0 and go back to sleep,
while the producer would continue. As usual, waking all waiters can
lead to the thundering herd problem.

Because of this deficiency, Java later added an explicit Condition
class, thus allowing for a more efficient solution to this and other
similar concurrency problems.

103.9 Summary

We have seen the introduction of monitors, a structuring concept
developed by Brinch Hansen and and subsequently Hoare in the
early seventies. When running inside the monitor, a thread implicitly
holds a monitor lock, and thus prevents other threads from entering
the monitor, allowing the ready construction of mutual exclusion.

We also have seen the introduction of explicit condition variables,
which allow threads to signal() and wait() much like we saw with
semaphores in the previous note. The semantics of signal() and wait()
are critical; because all modern systems implement Mesa semantics,
a recheck of the condition that the thread went to sleep on is required
for correct execution. Thus, signal() is just a hint that something has
changed; it is the responsibility of the woken thread to make sure the
conditions are right for its continued execution.

Finally, because C++ has no monitor support, we saw how to em-

OPERATING

SYSTEMS ARPACI-DUSSEAU

MONITORS 15

ulate monitors with explicit pthread locks and condition variables.
We also saw how Java supports monitors with its synchronized rou-
tines, and some of the limitations of only providing a single condi-
tion variable in such an environment.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)

16 MONITORS

References

[BH73] “Operating System Principles”
Per Brinch Hansen, Prentice-Hall, 1973
Available: http://portal.acm.org/citation.cfm?id=540365
One of the first books on operating systems; certainly ahead of its time. Introduced monitors as a
concurrency primitive.

[H74] “Monitors: An Operating System Structuring Concept”
C.A.R. Hoare
CACM, Volume 17:10, pages 549–557, October 1974
An early reference to monitors; however, Brinch Hansen probably was the true inventor.

[H61] “Quicksort: Algorithm 64”
C.A.R. Hoare
CACM, Volume 4:7, July 1961
The famous quicksort algorithm.

[LR80] “Experience with Processes and Monitors in Mesa”
B.W. Lampson and D.R. Redell
CACM, Volume 23:2, pages 105–117, February 1980
An early and important paper highlighting the differences between theory and practice.

[L83] “Hints for Computer Systems Design”
Butler Lampson
ACM Operating Systems Review, 15:5, October 1983
Lampson, a famous systems researcher, loved using hints in the design of computer systems. A
hint is something that is often correct but can be wrong; in this use, a signal() is telling a waiting
thread that it changed the condition that the waiter was waiting on, but not to trust that the
condition will be in the desired state when the waiting thread wakes up. In this paper about hints
for designing systems, one of Lampson’s general hints is that you should use hints. It is not as
confusing as it sounds.

[S12a] “Synchronized Methods”
Sun documentation
http://java.sun.com/docs/books/tutorial/essential/concurrency/syncmeth.html

[S12b] “Condition Interface”
Sun documentation
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/locks/Condition.html

OPERATING

SYSTEMS ARPACI-DUSSEAU

