
106

Laboratory: Systems Projects

This chapter presents some ideas for systems projects. We usually do
about six or seven projects in a 15-week semester, meaning one every
two weeks or so. The first few are usually done by a single student,
and the last few in groups of size two.

Each semester, the projects follow this same outline; however, we
vary the details to keep it interesting and make “sharing” of code
across semesters more challenging (not that anyone would do that!).
We also use the Moss tool [M94] to look for this kind of “sharing”.

As for grading, we’ve tried a number of different approaches,
each of which have their strengths and weaknesses. Demos are fun
but time consuming. Automated test scripts are less time intensive
but require a great deal of care to get them to carefully test interest-
ing corner cases. Check the book web page for more details on these
projects; if you’d like the automated test scripts, we’d be happy to
share.

106.1 Intro Project

The first project is an introduction to systems programming. Typ-
ical assignments have been to write some variant of the sort utility,
with different constraints. For example, sorting text data, sorting bi-
nary data, and other similar projects all make sense. To complete
the project, one must get familiar with some system calls (and their
return error codes), use a few simple data structures, and not much
else.

1



2 LABORATORY: SYSTEMS PROJECTS

106.2 UNIX Shell

In this project, students build a variant of a UNIX shell. Students
learn about process management as well as how mysterious things
like pipes and redirects actually work. Variants include unusual fea-
tures, like a redirection symbol that also compresses the output via
gzip. Another variant is a batch mode which allows the user to batch
up a few requests and then execute them, perhaps using different
scheduling disciplines.

106.3 Memory-allocation Library

This project explores how a chunk of memory is managed, by
building an alternative memory-allocation library (like malloc()
and free() but with different names). The project teaches students
how to use mmap() to get a chunk of anonymous memory, and then
about pointers in great detail in order to build a simple (or perhaps,
more complex) free list to manage the space. Variants include: best/worst
fit, buddy, and various other allocators.

106.4 Intro to Concurrency

This project introduces concurrent programming with POSIX threads.
Build some simple thread-safe libraries: a list, hash table, and some
more complicated data structures are good exercises in adding locks
to real-world code. Measure the performance of coarse-grained ver-
sus fine-grained alternatives. Variants just focus on different (and
perhaps more complex) data structures.

106.5 Concurrent Web Server

This project explores the use of concurrency in a real-world ap-
plication. Students take a simple web server (or build one) and add
a thread pool to it, in order to serve requests concurrently. The thread
pool should be of a fixed size, and use a producer/consumer bounded
buffer to pass requests from a main thread to the fixed pool of work-
ers. Learn how threads, locks, and condition variables are used to
build a real server. Variants include scheduling policies for the threads.

OPERATING

SYSTEMS ARPACI-DUSSEAU



LABORATORY: SYSTEMS PROJECTS 3

106.6 File System Checker

This project explores on-disk data structures and their consistency.
Students build a simple file system checker. The debugfs tool can be
used on Linux to make real file-system images; crawl through them
and make sure all is well. To make it more difficult, also fix any prob-
lems that are found. Variants focus on different types of problems:
pointers, link counts, use of indirect blocks, etc.

106.7 File System Defragmenter

This project explores on-disk data structures and their performance
implications. The project should give some particular file-system
images to students with known fragmentation problems; students
should then crawl through the image, and look for files that are not
laid out sequentially. Write out a new “defragmented” image that
fixes this problem, perhaps reporting some statistics.

106.8 Concurrent File Server

This project combines concurrency and file systems and even a
little bit of networking and distributed systems. Students build a
simple concurrent file server. The protocol should look something
like NFS, with lookups, reads, writes, and stats. Store files within a
single disk image (designed as a file). Variants are manifold, with
different suggested on-disk formats and network protocols.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.5)



4 LABORATORY: SYSTEMS PROJECTS

References

[M94] “Moss: A System for Detecting Software Plagiarism”

Alex Aiken

Available: http://theory.stanford.edu/ aiken/moss/

OPERATING

SYSTEMS ARPACI-DUSSEAU


