
Programming for mobiles

theory;
different OS;
frameworks;

good practices.

prof. O. Nakov, Ph.D

1. Device audio and video playback capabilities

1.1 Audio
Audio capture code must reside into individual classes within your container.

Each audio interface is particular to the platform.

Android SDK

Access to the device microphone is using Android.Media.MediaRecoreder object, witch

 instance supports set of properties and methods to configure and manage the audio stream.

Windows Phone 7

Access to the device microphone is using Microsoft.Xna.Framework.Audio.Microfone object.

Playing audio

Android

MediaManager object plays sounds and video from variety of sources. You can use

Android.Media.MediaPlayer to view and manage the audio/video playback.

Windows Phone 7

Microsoft.Xna.Framework.Audio.SoundEffect object manage sound from stream or file

1.2 Capturing Video (camera)

+ face recognition, capturing an image, insert into the communication process etc.

Android

The same as previous MediaRecorder object.

Windows Phone 7

Must be used FileSink Object and IsolatedStorageFileStream Object for storing into a file and

 VideoCaptureDevice and CaptureSource objects for specifying device and source of video.

Playing video

Android

MediaPlayer object is needed.

Windows Phone 7

MediaPlayerLauncher object controls source, visual controls, functions, orientation etc.

2. Contacts and calendar

This is the so called Personal Information Manager (PIM) software.

 - contact list;

 - tasks;

 - calendar.

Accessing Contacts

Android

Android.Provider.ContactsContract object. A generic table is used and each raw has a data that

 determines the values each of the columns hold.

Before access contact record, you must insert permissions to the AndroidManifest.xml file:

 <uses-permission android:name=“android.permission.READ_CONTACTS”/>

Windows Phone 7

Microsoft.Phone.UserData.Contacts class. This performs asynchronous search witch results

 in an event handler:

 Contacts cons = new Contacts();

 cons.SearchCompleted += new EventHandler<ContactsSearchEventArgs>

 (Contacts_SearchCompleted);

…

3. Messaging and Communication

Initiating a Voice call

Android

The user still needs to confirm the action before an application can initiate a phone call:

String uti = string.Format(“tel : {0}”, “0887-342-245”);

Android.Net.Uri phoneNumber = Android.Net.Uri.Parse(uti);

StartActivity(new Intent(Intent.ActionDial, PhoneNumber));

Windows Phone 7

You have to start a task : PhoneCallTask constructor with assigned prone number to a property.

Confirmation before dialing is not mandatory (only when Show() exists):

 PhoneCallTask task = new PhoneCallTask();

 task.PhoneNumber = “887-333-234”;

 task.Show();

4. Geo-Location

Getting GPS Location Information

Generally you have to set up a GPS listener in you application code and reference the

 listener’s cashed data when the view needs the information.

Android

Access to all device sensors is achieved through SensorManager class.

You are able to create Sensor and connect listener to it, describing the functionality into a

corresponding OnSensorChanged function.

Windows Phone SDK

Class Compass is used for the purpose. You can configure it (for example intervals).

Event handler is used to read

 _compass.CurrentValueChanged +=

 new EventHandler<SensorReadingEventArgs<CompassReading>>(…);

5. Accelerometer

Needed in games, to control navigation on the screen, to control scrolling speed in reading apps,

 to replace part or all the window.

All the info accelerometer API returns is X,Y,Z values

 Android

Class SensorManager is used (the same as for GPS) with SensorType.Accelerometer .

A listener must be installed to read and evaluate the new values (RegisterListener(..);).

Handler function (OnSensorChanged(..) {} must be coded.

Windows Phone

Class Accelerometer is used. Event handler is wired to its instance .

Windows Mobile
(Visual Studio and Windows Mobile SDK)

-Usefull to start to develop for Windows® phones by using the same tools that developers use

for desktop development:

 Microsoft Visual Studio 2008;

 Windows Mobile specific Microsoft .NET Compact Framework

-.NET Compact Framework (.NET CF) is a subset of the full Microsoft .NET Framework, with all

 the functionality that you must have to deliver powerful enterprise applications for the

 Windows Mobile platform.

 Visual Studio from 2008 has built-in support for the .NET Compact Framework

1

Until 2010

Developers of desktop applications that use Visual Studio have all the necessary tools

and knowledge to develop solutions for Windows Mobile platform.

There are many differences between the desktop and mobile platform.

 However, the programming concepts remain the same.

You have to answer the following questions before you start to develop for a mobile:

- What development tools do you have and want to use?

- What platform do you want to target?

Other business-related considerations can also influence your decisions:

- Do you want to create offline or online solution?

- How expensive is your connection?

- Do you want touch screen functionality?

- Are you targeting multiple or a single platform?

- What are your security requirements?

Visual Studio has supported Windows Mobile application development since Visual Studio 5.0.

 Visual Studio 2005 supports development for Smartphone 2003, Pocket PC 2003 SE, and Windows CE.

You can easily add support for Windows Mobile 5.0 (Smartphone, Pocket PC, and Pocket PC Phone

Edition) and Windows Mobile 6 (Standard, Classic, and Professional) by installing SDKs for these

platforms. SDKs include various tools that greatly improve your development experience, emulators,

GPS, mobile operator emulator, and more.

Visual Studio 2008 brought some new features and functionalities, both in the IDE and in functionality.

The following list shows some new features in Visual Studio 2008:

- Support for unit testing, in Visual Studio Developer Edition and Visual Studio Team Suite

- Remote Performance Monitor

 - Device Security Manager, part of Visual Studio 2008 IDE

- New Device Emulators and Device Emulator Manager

- New and redesigned New Project Wizard for creating new Windows Mobile projects

History :

.NET CF (compact framework) is smaller than the .NET Framework, and supplies

 a subset of the .NET Framework functionality. Therefore, most applications that you develop for

 .NET CF should run without any modifications on the desktop .NET Framework platform.

There are two main reasons for reduced functionality in .NET CF:

- unsupported desktop features and

- limited storage space on mobile devices.

some new controls that are added and improved:

- MonthCalendar. New in .NET CF 2.0.

- DataGrid. Greatly improved.

- DateTimePicker. New in .NET CF 2.0.

- LinkLabel. New in .NET CF 2.0.

- Splitter. New in .NET CF 2.0.

- WebBrowser. New in .NET CF 2.0.

Because Visual Studio 2005 and 2008 support application development for various resolutions and

various orientations, .NET CF 2.0 introduced also:

- Facilities to change Orientation from Portrait to Landscape or vice versa;

-Automatic scrollbars. If because of an orientation change, some controls remain outside the visible area,

horizontal and vertical scrollbars are created automatically to provide access to all parts of user interface.

- Tab order support. Enables moving from one control to another by using the TAB key.

Working with data in .NET CF resembles working with data in the .NET Framework. ADO.NET is

fully supported. Working with Microsoft SQL Server Compact Edition (various versions), and working

with XML, Web services, and files as data stores is supported. .NET CF supports datasets, data binding,

and collections.

Windows Mobile SDK Tools

Windows Mobile SDK Tools are an addition to Visual Studio and .NET CF. They provide support and

templates for developing applications targeting Windows Mobile platforms.

Windows Mobile SDK Tools are free downloads. They require you to have Visual Studio 2005 or 2008

and .NET CF installed. There are two separate installations for two platforms. One is Windows Mobile

Standard (previously called Smartphone) and the other one is Windows Mobile Professional,

 targeted for both Classic (previously called Pocket PC) and Professional (previously called Pocket PC

Phone Edition).

Device Emulator Manager

Device Emulator Manager

 manages Device Emulators

 that are installed on the

developer workstation

Device Emulators

You can start the Device Emulator from Microsoft Visual Studio IDE, manually or automatically when

you deploy the application, or from Device Emulator Manager. When it is up and running, you can

configure it to meet your needs. You can access configuration options on the Device Emulator menu.

You frequently have to access host files and folders from the Device Emulator. The following

illustration shows how to set up the location of a Shared folder in the Emulator configuration.

.

That gives you access to that folder from the Device Emulator. The Shared folder is displayed as a

Storage Card in the Emulator File Explorer.

network connection in the Device Emulator

To simulate real-world environment, sometimes you must have a network connection in the Device

Emulator. To do that, you have to set up the host network adapter that you want to connect to in the

emulator.

After the network adapter is set up, you have to set up the

network adapter in the emulator :

Cellular Emulator

Cellular Emulator is part of Windows Mobile SDK Tool. It emulates the presence of mobile operator

network that enables developers to test phone functionality in their applications from a Device Emulator.

 To configure Cellular Emulator to communicate with Device Emulator, you have to map its COM port

to the physical port of Device Emulator.

When it is run and configured, the Cellular Emulator enables Windows Mobile Professional Device

 Emulator to send and receive phone calls and SMS messages, and data services, such as GPRS

and 3G.

Fake GPS

Fake GPS enables you to use GPS functionalities from Device Emulators or physical devices that do

not have GPS, or to test applications in scenarios where you do not have GPS coverage.

Fake GPS is a small application that you have to

install with Device Emulator. When it is enabled, it runs

 like a service on the emulator. It randomly provides GPS

 coordinates from one of the files that are included to

 applications that use the assembly. The application

 behaves the same way it will with a physical GPS on a

 device and reads real GPS coordinates from a GPS

 device.

You have to install the following software products and tools to your development environment in order

to get started:

- Visual Studio 2008 or later

- Latest Visual Studio, .NET Framework and .NET Compact Framework updates

- Windows Mobile SDK Tools Standard or Professional, or both

- Latest emulators to be supported, not included in SDK Tools

- SQL Server to work with local data stores

-

You are ready to

 start and develop

 your first Windows

Mobile solution.

Now you have a

regular Visual

Studio solution

with a basic

application

skeleton

Handling inputs
Compared to standard desktop input methods, keyboard and mouse, mobile devices handle input

somewhat differently. Keyboard became a standard option in many mobile devices so that users can

use it as an input device for mobile devices, but more common options are Taps, Software Input

Panel (SIP), and Hardware keys.

Tap is to a mobile device, what the left mouse double-click is to the desktop. It is a common input

method on touch-screen devices. Tap-and-hold corresponds to right-click. It opens the shortcut menu

for selected items. When tap is used on a control in a Windows form, it starts all corresponding events

 for that control: MouseDown, MouseUp, MouseMove, Click, DoubleClick.

From a programmatic perspective, it is the equivalent to a mouse click, and you can handle all these

events in your application just as you handle them in desktop applications.

The soft input panel lets users accept keyboard input without a physical keyboard. SIP in combination

with Tap provides a real keyboarding experience for users, invoking events associated with pressing

keys on the keyboard: KeyUp, KeyDown, and KeyPress.

The Input panel is a .NET CF control, and when you add it to the form, it can be programmatically

controlled from the code. You can see it when the text box control receives the focus:

inputPanel1.Enabled = true;

Error handling

Error handling in .NET CF is performed exactly like in the .NET Framework, by using a

try….

 catch….

finally …

 structure

Working with data

.NET CF supports working with various data sources. The concept is the same as the .NET Framework

 and most important, ADO.NET is supported in most of its functionality. Windows Mobile applications

 can use SQL Server CE, XML, SQL Server, Web services as data sources.

XML is a common format that most data sources can export data to, and import data from. Even

 though it can be used by most data sources, we do not recommend it as a data store, because it has

a large overhead, it is not optimized, and is much slower than a relational database, because it has

no indexes. However, if there is no other option, XML can be used as a data store on the device.

SQL Server can directly be accessed from devices as a data store.

Web Services service are a good choice for transferring data in the n-tier environment

when you do not have direct access to SQL Server (either for direct data access or for replication).

Deployment and packaging
The last step in the project development cycle is to deploy the completed solution to the device

and to package it for distribution and mass deployment.

There are several ways with which an application can be deployed to the device or emulator:

 Development IDE installer;

 Device Installer;

Development IDE installer
The easiest way to deploy the application is when the device (beeing open for deployment)

is connected to the development workstation through ActiveSync or WMDC.

The first step is to select the deployment device or emulator.

When you select it, you can connect to the target device manually from the toolbar or the deployment

process connects automatically if it is not connected already.

Device installer
It is not very likely that every device that is used in production arrives at the developer's desk for

application deployment.

Device Installer is the method that enables applications to be easily deployed directly on the device,

 without any need for a connection between the device and the developer workstation. All assemblies

and dependencies are packed in a single (or more) CAB file which is copied to the device and

executed there. The CAB execution on the device installs it with predefined parameters. The CAB

file can be distributed through e-mail, a Web server, external cards, or by coping it through

ActiveSync

In the Add New Project dialog box, under Templates, there is a project template in Visual Studio

to enables you to create CAB projects:

In the CAB project, you have to define project output, which is the application that you just finished

After the project output is set, it is

automatically added to the application folder

 for installation

Through the Deployment project, you can also alter registry settings and add new keys for your

application

Even though it is good practice to distribute and install dependencies (.NET CF, SQL Server CE)

separately to keep the CAB file as small as possible, you can also include dependencies into the

final CAB. By default, they are excluded:

When all parameters for the Deployment project

are set, you can build it. The result of the building

action is a redistributable, self-executing CAB file,

ready to be distributed and deployed directly

on devices.

Pocket outlook object model (POOM)

The POOM API is part of the Microsoft.WindowsMobile.PocketOutlook library. Through POOM,

you can access Calendar, Contacts and Tasks on the device.

All activities that use POOM functionality are based on the OutlookSession class. Therefore, in

your applications, you must always have an instance of that object at the application level.

The following code example shows that an OutlookSession object is declared the first time that it

appears and that an instance of it is created.

using Microsoft.WindowsMobile.PocketOutlook;

namespace WP_FirstApp

{

 public partial class Form1 : Form

 {

 private OutlookSession outlook;

 private void Main_Load(object sender, EventArgs e)

 {

 outlook = new OutlookSession();

The following code example shows that it is very easy to create a new task from the application.

 Task task = new Task();

 task.Subject = textBox1.text;

 task.Body = textBox2.text;

 outlook.Tasks.Items.Add(task);

New task will be added to Pocket Outlook Tasks, and can be managed either from code or from

Tasks menu-option directly. Existing tasks can also be altered from the application.

You can also manage Contacts from the application, using the same parent object as for Tasks.

When you create a new contact, all fields are optional. However, some basic set of information

should be set, to recognize the contact later.

The following code example shows the code for creating a new contact.

 Contact con = outlook.Contacts.Items.AddNew();

 Con.FirstName = textBox1.text;

 Con.LastName = textBox2.text;

 Con.Update();

To select an existing contact, use the ChooseContactDialog object. This object can be used to

access a specific contact or a specific property of a contact. ChooseContactDialog enables you to

filter contacts to be shown to the user, by using the RestrictContacts property and setting the filter.

The following code example shows how to use an instance of the ChooseContactDialog class to

present a Contacts dialog box to the user and how to retrieve the business telephone number of

the contact if a contact was selected by the user from the dialog box.

 ChooseContactDialog dialog = new ChooseContactDialog();

 dialog.RestrictContacts = "[Department] = \"Field\"";

 dialog.Title = "Assign To";

 if (dialog.ShowDialog() == DialogResult.OK)

 {

 str = dialog.SelectedContact.BusinessTelephoneNumber;

 }

E-mail
E-mail functionality is accessed through the EmailMessage object. The EmailMessage object contains

all standard properties that e-mail messages usually have: Attachments, Bcc, BodyText, CC, Importance,

 Subject, To and more.

The following code example show how to create a new e-mail message, set properties, and send

an e-mail message to the contact previously selected.

EmailMessage email = new EmailMessage();

email.To.Add(new Recipient(dialog.SelectedContact.Email1Address));

email.Subject = textBox1.text;

email.BodyText = textBox2.text;

email.Send("ActiveSync");

Handling SMS

Handling SMS resembles handling e-mail. Except for having fewer properties, the main difference is

that when it calls a Send method, an SMS message is sent immediately, whereas an e-mail

message waits for the next synchronization.
The following code example shows how to create a new SMS message and send it.

 SmsMessage sms = new SmsMessage();

 sms.To.Add(new Recipient("123456"));

 sms.Body = "WP_FirstApp SMS message";

 sms.Send();

SMS interception
SMS messages can easily be intercepted by the application by using the MessageInterceptor object.
The MessageInterceptor object is contained in the

Microsoft.WindowsMobile.PocketOutlook.MessageInterception namespace. Messages to be intercepted

can be filtered by the message body, the message subject or sender.

SMS Interception can be used even if the application is currently not running.

The following example code shows how to implement SMS interception.

// SMS Interception Setup

 smsInterceptor = new MessageInterceptor(InterceptionAction.NotifyAndDelete);

 smsInterceptor.MessageCondition = new MessageCondition(

 MessageProperty.Sender,

 MessagePropertyComparisonType.Equal, "+14254448851");

 smsInterceptor.MessageReceived += new MessageInterceptorEventHandler

 (smsInterceptor_MessageReceived);

// SMS Interception event handler

private void smsInterceptor_MessageReceived(object sender,

 MessageInterceptorEventArgs e)

 {

 if (e.Message.GetType() == typeof(SmsMessage))

 {

 SmsMessage message = (SmsMessage)e.Message;

 //do something with message

….

Telephony
Making voice calls from applications enables you to use phone functionality directly from the

application, without having to go to a device dialer. The Phone class is in the

Microsoft.WindowsMobile.Telephony library. Use the Phone class to establish voice calls.

The following example code shows how to establish voice calls by using the contact that you

previously selected.

using Microsoft.WindowsMobile.Telephony;

private void MakeVoiceCall()

 {

 Phone phone = new Phone();

 phone.Talk(dialog.SelectedContact.BusinessTelephoneNumber);

 }

 Mobile Internet Toolkit (.NET) Standard Controls

some of the standard controls of the Mobile Internet Toolkit:

Structure of an application

A developer working in an object-oriented language such as C# or C++.

 The .aspx file is the place for defining a class that is specific to ASP.NET.

In mobile Web applications, this class must descend—directly or indirectly—from the

System.Web.UI.MobileControls.MobilePage class.

A mobile Web Forms page declares itself as a descendant of the MobilePage class

 through the @Page directives at the top of the .aspx file:

<%@ Page Inherits="System.Web.UI.MobileControls.MobilePage" Language="c#"%>

<%@ Register TagPrefix="mobile" Namespace="System.Web.UI.MobileControls"

 Assembly="System.Web.Mobile" %>

If you have a code-behind module, this page must inherit from a class in the

code-behind module, which must itself inherit from the MobilePage class.

In such instances, the @Page directive must specify the name of the code-behind

module and the class within it:

<%@ Page Codebehind="Default.aspx.cs" Language="c#"

 Inherits="MyMobileWebForm%>

 the file Default.aspx :
<%@ Page Codebehind="Default.aspx.cs" Language="c#" Inherits="MyMobileWebForm"

 AutoEventWireup="True"%>

<%@ Register TagPrefix="mobile" Namespace="System.Web.UI.MobileControls"

 Assembly="System.Web.Mobile" %>

<mobile:Form runat="server">

 <mobile:Label runat="server"/>

</mobile:Form>

And, the Code-behind module Default.aspx.cs:

using System;

public class MyMobileWebForm : System.Web.UI.MobileControls.MobilePage

{

protected System.Web.UI.MobileControls.Label Label1;

private void Page_Load(object sender, System.EventArgs e)

 { Label1.Text = "Hello World"; }

}

means that methods such as Page_Load

 or Page_Init are “wired-up” automatically.

Visual Studio .NET sets AutoEventWireup to

False by default in the mobile Web Forms

pages it creates and automatically inserts the

code needed to wire up the Page events.

The XML text in Default.aspx represents

 the server control syntax for a Label

control contained within a Form control.

When this code compiles, the runtime actually creates an instance of the

MobilePage-derived class, which contains an instance of the Form class

and in that, an instance of the Label class.

Container Controls

Container controls provide a powerful means of structuring your Web application.

All mobile Web Forms pages derive from the MobilePage class, which itself derives

 from the ASP.NET Page class. Therefore, every mobile Web Forms page is a

valid MobilePage object. Each MobilePage object must contain one or more

 Form controls, which, as we've mentioned, you use to group controls into

programmatically accessible objects.

A mobile Web Forms page can contain more that one Form control; however,

you can't nest (or overlap) these controls. Each Form control can contain one or

more mobile controls. These mobile controls can be of any type, except other

Form controls or style sheets. You can include one or more Panel controls
within a Form control; doing so will allow you to dictate the appearance

of groups of controls. A Form control can contain zero or more Panel

controls. Unlike Form controls, you can nest Panel controls.

For example, Panel control A can contain Panel control B, and Panel

control B can contain Panel control C.

<mobile:Form

 runat="server"

 id="id"

 Font-Name="fontName"

 Font-Bold="{NotSet│False│True}"

 Font-Italic="{NotSet│False│True}"

 ForeColor="foregroundColor"

 BackColor="backgroundColor"

 Alignment="{NotSet│Left│Center│Right}"

 Visible="{True│False}"

 Action="url"

 Method="{Post│Get}"

 OnActivate="onActivateHandler"

 OnDeactivate="onDeactivateHandler"

 OnInit="onInitHandler"

 Paginate="{True│False}"

 PagerStyle-NextPageText="text"

 PagerStyle-PageLabel="text"

 PagerStyle-StyleReference="styleReference"

 Title="formTitle"> Child controls

</mobile:Form>

Example of an aspx file:

Source code for FormExample.aspx

<%@ Register TagPrefix="mobile" Namespace="System.Web.UI.MobileControls"Assembly="System.Web.Mobile" %>

<%@ Page language="c#" Inherits="System.Web.UI.MobileControls.MobilePage" %>

<mobile:Form id="Form1" runat="server">

 <mobile:Label id="Label1" runat="server"> Form 1 </mobile:Label>

 <mobile:Link id="Link1" runat="server" NavigateUrl="#Form2"> Link </mobile:Link>

</mobile:Form> <mobile:Form id="Form2" runat="server">

 <i>Phew, you made it!</i>

 <mobile:Label id="Label2" runat="server"> Form 2 </mobile:Label>

</mobile:Form>

State Management in mobiles

When you build dynamic Web applications, you usually need a mechanism to store information

between client requests and server responses. Unfortunately, Hypertext Transfer Protocol (HTTP)

is effectively stateless, which means you must maintain state in some other way.

In the past, developers often used cookies to track—and thus identify—a user with a session ID and

 to reconcile information stored on the server to that user

Following are four significant methods ASP.NET offers for preserving state:

1. Session state Allows you to maintain the variables and objects for a client over multiple requests

 and responses.

2. Hidden variables Allow you to persist objects between server round-trips by posting the data to

 the client as hidden fields.

3. View state Allows you to maintain the values of a mobile Web Forms page on the server. The

 runtime stores this information in an instance of the StateBag class, which itself gets stored

 within the session. We’ll discuss later (in the section “View State,”) the server then sends some

 information to the client.

4. Application state Allows you to maintain the variables and objects of an application over multiple

 requests by multiple clients.

1. Managing Session State

ASP.NET offers an updated and improved version of the Session object.

This object allows you to perform the following tasks:

-Identify a user through a unique session ID.

-Store information specific to a user's session.

-Manage a session lifetime through event handler methods.

-Release session data after a specified timeout

The Session property of the System.Web.HttpApplication class (the parent class

 of the Global.asax page) and the Session property of the MobilePage class

(the parent class of your mobile Web Forms page)

 both give access to the Session object.

Typically, you'll manipulate the Session object either in

1. the code-behind module of your application's Global.asax file or

2. the code-behind module of your mobile Web Forms page.

Like mobile Web Forms pages, the Global.asax file supports a code-behind module. This module

follows the naming convention global.asax.extension, where extension indicates the programming

language used. For example, you'd name a C# code-behind module Global.asax.cs.

Following is a fragment of code that adds a string representing the user's start

 time to the Session object with a key of UserStartTime from within the Global.asax file.

A way of adding items to the Session object is shown:

the use of Add method to define an entry with the key HelpAccess.

Global.asax.cs file for the SessionObjectExample project:

….

namespace SessionState1

{

 public class Global : System.Web.HttpApplication

 {

 protected void Session_Start(Object sender, EventArgs e)

 { Session["UserStartTime"]=DateTime.Now.ToLongTimeString();

 Boolean HelpAccess=false;

 Session.Add("HelpAccess",HelpAccess);

 }

 }

}

The Global.asax file that references the code-behind module consists of a single line containing

just an @ Application directive:

<%@ Application Codebehind="Global.asax.cs" Inherits=" SessionObjectExample.Global" %>

Constructed for every new session

MobileWebForm1.aspx of project SessionObjectExample:

<%@ Register TagPrefix="mobile" Namespace="System.Web.UI.MobileControls"

 Assembly="System.Web.Mobile" %>

<%@ Page language="c#" Codebehind="MobileWebForm1.aspx.cs"

 Inherits="MobileWebForm1" AutoEventWireup="true" %>

<mobile:Form id="Form1" runat="server">

 <mobile:Label id="Label1" runat="server"/>

 <mobile:Command id="Command1" runat="server">Go To Help

 </mobile:Command>

</mobile:Form> <mobile:Form id="Form2" runat="server">

 <mobile:Label id="Label2" runat="server">

 This is a help page. </mobile:Label>

 <mobile:Label id="Label3" runat="server">

 </mobile:Label> </mobile:Form>

MobileWebForm1.aspx.cs of project SessionObjectExample:

public class MobileWebForm1 : System.Web.UI.MobileControls.MobilePage

{

 protected System.Web.UI.MobileControls.Label Label1;

 protected System.Web.UI.MobileControls.Label Label3;

 protected System.Web.UI.MobileControls.Command Command1;

 protected System.Web.UI.MobileControls.Form Form1;

 protected System.Web.UI.MobileControls.Form Form2;

 private void Page_Load(object sender, System.EventArgs e)

 { Label1.Text = "Help accessed: ";

 Label1.Text += Session["HelpAccess"].ToString();

 Command1.Click += new System.EventHandler(Command1_OnClick);

 }

 private void Command1_OnClick(object sender, System.EventArgs e)

 { //Switch to the Help form, set the flag in Session object

 Session["HelpAccess"] = true;

 Label3.Text = "Help accessed: ";

 Label3.Text += Session["HelpAccess"].ToString();

 ActiveForm = Form2;

 }

}
When this simple application executes, the HelpAccess flag in the Session object is initialized as false

in Global.asax.cs. When the Web Form displays, the label on Form1 displays a message to show that

this is the case.

When the user clicks the Command control marked Go To Help, the Command1_Click event handler

in the code-behind module executes, setting the HelpAccess flag to true and setting the text of

Label3 to reflect this new state.

2. Working with Cookies

Cookies provide an invaluable way for Web servers to identify wired clients such as HTML desktop

browsers. However, the potential of cookies is limited with regard to applications for wireless clients.

This is because many wireless devices, including some Wireless Application Protocol (WAP) and

i-mode devices, don't support cookies.

If you know that your target devices support cookies or that a proxy supports them on the client's

behalf, as is the case with some WAP gateways, cookies provide an excellent way to track and

identify sessions.

3. Hidden Variables

Sometimes you might want to pass small amounts of information between Web pages without using

session state. For example, suppose you need to collect information from a form that the user

fills in. In HTML, you'd pass the information from one page to another using input tags with a type value

of hidden.

The MobilePage class's HiddenVariables property provides this type of functionality. This property

allows you to store variable name-value pairs, which the runtime then passes back and forth between

 the server and the client as hidden fields.

You should use HiddenVariables only for small amounts of information.

Example: …

 HiddenVariables.Add(TextBoxName.ID,TextBoxName.Text);

4. View State

ASP.NET gives the user the impression that the runtime maintains pages over several server round-trips.

The pages don't really exist over multiple requests and responses; instead, the runtime saves the

properties of the page into a server control view state (an instance of the StateBag class). When the

user makes a request, the runtime automatically reconstructs the page using the property values

persisted in the StateBag instance.

 For example, if you define a property in your code-behind class, that property isn't automatically saved

and restored each time the page is torn down and then reconstructed on the next request. If you set this

property in code on one request, you might want to persist this value across server round-trips.

You could add the property to the session or even persist it by using hidden variables.

However, if you use the ViewState property of the MobilePage to maintain the property's value,

the runtime will automatically save and restore that value on your behalf.

 …public String MyMessage {

 get

 { // Explicit cast to String

 return (String) ViewState["MyMessage"];

 }

 set

 {

 ViewState["MyMessage"]=value;

 } }

private void Command1_Click(object sender, System.EventArgs e)

{ // Consume the persisted property.

 Label1.Text=this.MyMessage;

}

When using the session with view state, you have two important considerations.

First, sessions can expire, which means you can lose your view state information.

The number of minutes allowed to elapse before a response is received from a client is set

by the timeout attribute of the sessionState element in the application's Web.config file;

20 minutes is the default.

<sessionState

 mode="inProc"

 cookieless="true"

 timeout="20" />

Second, the page displayed on the client and the current state of the session information held on

the server can fall out of sync. This can occur when a user uses a Back feature on the browser to

return to a page viewed previously—for instance, by pressing a Back button. For example,

imagine that a user goes to the first page of an application and then clicks a link to go to the second

page. If the user then navigates backward to the first page, the user views the first page while the

server holds session data for the application's second page. The Mobile Internet Toolkit overcomes

this issue by maintaining a small history of view state information in the user's session.

You can configure the size of the view state history. The default history size is 6. To change the

history size, use the sessionStateHistorySize attribute of the mobileControls element within the

Web.config file, as the following code shows:

<configuration>

 <system.web>

 <mobileControls sessionStateHistorySize="10"/>

 <system.web>

</configuration>

5. Application State
In ASP.NET, an application is the total of all the files that the runtime can invoke or run within the

scope of a virtual directory and all its subdirectories. At times, you might want to instantiate variables

and objects that have scope at an application level rather than at a session level.

The HttpApplicationState class allows you to do this. The Application object is the generic term

for the instance of this class for your application, which is exposed through the Application

property of the System.Web.HttpApplication class (the parent class of the Global.asax page)

and the Application property of the MobilePage class (the parent class of your mobile Web Forms page).

Using Application State in Global.asax

You define information that relates to application state in the Global.asx file, which always resides

at the root of a virtual directory. For the moment, you'll use Global.asax to implement event handlers

associated with application state, but remember that you can also use this file to store other

information such as session state, as described earlier.

You define application state data within the code-behind module of Global.asax by writing code for

the two event handler methods”:

Application_Start
and

Application_End.

Things to Consider When Using Application State

At times, you might wonder whether to use session state or application state.

- First of all, information stored in application state is memory hungry.

In other words, the application holds all application state information in memory and doesn't release the

memory, even when a user exits an application.

- Second, all threads in a multithread application can access application data simultaneously, since

ASP.NET doesn't automatically lock resources.

