

00_Energy Environ_i-xxviii 28/10/09 12:58 Page ii

00_Energy Environ_i-xxviii 28/10/09 12:58 Page ii

	

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation

One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2010 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means

without the written permission of the publisher.

Library of Congress Control Number: 2010939982

ISBN: 978-0-7356-4335-2

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. For further information about

international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly at

fax (425) 936-7329. Tell us what you think of this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademark/EM-

US.aspx are trademarks of the Microsoft group of companies. All other marks are the property of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events

depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address,

logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any

express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will

be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Developmental and Project Editor: Devon Musgrave

Editorial Production: Ashley Schneider, S4Carlisle Publishing Services

Technical Reviewer: Per Blomqvist; Technical Review Services provided by Content Master, a member of CM Group,

Ltd.

Cover: Tom Draper Design

Body Part No. X17-12906

iii	

Contents
at
a
Glance

Part I The
Basics

 1
 Hello,
Windows
Phone
7
..
2

Part II Silverlight

2
 Getting
Oriented..
29

 3
 An
Introduction
to
Touch...
47

 4
 Bitmaps,
Also
Known
as
Textures
...
62

 5
 Sensors
and
Services
...
80

 6
 Issues
in
Application
Architecture
...103

7
 XAML
Power
and
Limitations...138

8
 Elements
and
Properties...165

 9
 The
Intricacies
of
Layout
..192

10
 The
App
Bar
and
Controls
..232

 11
 Dependency
Properties
...296

 12
 Data
Bindings
...338

 13
 Vector
Graphics
..393

 14
 Raster
Graphics
..461

 15
 Animations
...508

16
 The
Two
Templates
...578

 17
 Items
Controls
..641

 18
 Pivot
and
Panorama
..712

iv	

Part III XNA

 19
 Principles
of
Movement
..750

20
 Textures
and
Sprites..775

 21
 Dynamic
Textures
..799

22
 From
Gestures
to
Transforms
..840

23
 Touch
and
Play...900

24
 Tilt
and
Play
...952

v	

	

Table
of
Contents

Introduction
...
xii

Part I The
Basics

1
 Hello,
Windows
Phone
7...
2

Targeting
Windows
Phone
7
...2

The
Hardware
Chassis
..4

Sensors
and
Services
..6

File
|
New
|
Project
...7

A
First
Silverlight
Phone
Program
..8

The
Standard
Silverlight
Files
..10

Color
Themes
..17

Points
and
Pixels...18

The
XAP
is
a
ZIP..20

An
XNA
Program
for
the
Phone
...21

2
 Getting
Oriented..
29

Silverlight
and
Dynamic
Layout
..29

Orientation
Events
..36

XNA
Orientation
...38

Simple
Clocks
(Very
Simple
Clocks)..41

3
 An
Introduction
to
Touch
...
47

Low-Level
Touch
Handling
in
XNA...47

The
XNA
Gesture
Interface
..51

Low-Level
Touch
Events
in
Silverlight..52

The
Manipulation
Events
...56

Routed
Events
...59

Some
Odd
Behavior?
..61

4
 Bitmaps,
Also
Known
as
Textures..
62

XNA
Texture
Drawing
..63

The
Silverlight
Image
Element
..65

Images
Via
the
Web
...66

Image
and
ImageSource
..70

Loading
Local
Bitmaps
from
Code
..71

vi	

Capturing
from
the
Camera
..73

The
Phone’s
Photo
Library
..76

5
 Sensors
and
Services
...
80

Accelerometer
...80

A
Simple
Bubble
Level
...86

Geographic
Location
..91

Using
a
Map
Service
...95

6
 Issues
in
Application
Architecture
...103

Basic
Navigation
..
103

Passing
Data
to
Pages ...
110

Sharing
Data
Among
Pages
..
112

Retaining
Data
across
Instances
..
117

The
Multitasking
Ideal
..
120

Task
Switching
on
the
Phone
...
120

Page
State
...
122

Isolated
Storage
...
126

Xna
Tombstoning
and
Settings..
130

Testing
and
Experimentation
...
136

Part II
Silverlight

7
 XAML
Power
and
Limitations...138

A
TextBlock
in
Code
..
139

Property
Inheritance
...
141

Property-Element
Syntax..
143

Colors
and
Brushes
..
144

Content
and
Content
Properties..
151

The
Resources
Collection..
154

Sharing
Brushes
...
156

x:Key
and
x:Name..
159

An
Introduction
to
Styles..
160

Style
Inheritance
..
161

Themes..
163

Gradient
Accents
...
163

8
 Elements
and
Properties...165

Basic
Shapes
...
165

vii	

	

Transforms
...
167

Animating
at
the
Speed
of
Video
..
175

Handling
Manipulation
Events
..
177

The
Border
Element
...
178

TextBlock
Properties
and
Inlines
...
182

More
on
Images...
185

Playing
Movies...
188

Modes
of
Opacity
..
188

Non-Tiled
Tile
Brushes..
190

9
 The
Intricacies
of
Layout
..192

The
Single-Cell
Grid...
193

The
StackPanel
Stack
..
195

Text
Concatenation
with
StackPanel...
199

Nested
Panels...
201

Visibility
and
Layout
..
202

Two
ScrollViewer
Applications
...
205

The
Mechanism
of
Layout
..
211

Inside
the
Panel
...
213

A
Single-Cell
Grid
Clone..
214

A
Custom
Vertical
StackPanel
..
218

The
Retro
Canvas...
220

Canvas
and
ZIndex
..
226

The
Canvas
and
Touch..
226

The
Mighty
Grid...
228

10
 The
App
Bar
and
Controls
..232

ApplicationBar
Icons
...
232

Jot
and
Application
Settings
..
240

Jot
and
Touch
..
245

Jot
and
the
ApplicationBar...
247

Elements
and
Controls
..
252

RangeBase
and
Slider ..
254

The
Basic
Button
..
261

The
Concept
of
Content
..
265

Theme
Styles
and
Precedence
..
270

The
Button
Hierarchy..
271

Toggling
a
Stopwatch
...
274

Buttons
and
Styles...
284

viii	

	

TextBox
and
Keyboard
Input
...
286

11
 Dependency
Properties...296

The
Problem
Illustrated
..
296

The
Dependency
Property
Difference
...
299

Deriving
from
UserControl
...
310

A
New
Type
of
Toggle
..
321

Panels
with
Properties
..
326

Attached
Properties
..
332

 12
 Data
Bindings...338

Source
and
Target
...
338

Target
and
Mode
...
341

Binding
Converters..
343

Relative
Source
..
348

The
“this”
Source...
349

Notification
Mechanisms..
353

A
Simple
Binding
Server
...
354

Setting
the
DataContext
...
360

Simple
Decision
Making
...
366

Converters
with
Properties
...
370

Give
and
Take...
374

TextBox
Binding
Updates
...
380

 13
 Vector
Graphics
...393

The
Shapes
Library
..
393

Canvas
and
Grid...
395

Overlapping
and
ZIndex
...
396

Polylines
and
Custom
Curves
...
398

Caps,
Joins,
and
Dashes
..
403

Polygon
and
Fill
...
411

The
Stretch
Property
...
413

Dynamic
Polygons
...
414

The
Path
Element
..
417

Geometries
and
Transforms
...
423

Grouping
Geometries
..
428

The
Versatile
PathGeometry...
429

The
ArcSegment ...
431

Bézier
Curves
..
440

ix	

The
Path
Markup
Syntax
..
450

How
This
Chapter
Was
Created
...
455

 14
 Raster
Graphics
..461

The
Bitmap
Class
Hierarchy..
461

WriteableBitmap
and
UIElement
...
463

The
Pixel
Bits..
470

Vector
Graphics
on
a
Bitmap
..
474

Images
and
Tombstoning...
480

Saving
to
the
Picture
Library
..
489

Becoming
a
Photo
Extras
Application...
497

 15
 Animations
...508

Frame-Based
vs.
Time-Based
..
508

Animation
Targets...
512

Click
and
Spin...
513

Some
Variations
...
516

XAML-Based
Animations
..
520

A
Cautionary
Tale
..
523

Key
Frame
Animations
..
530

Trigger
on
Loaded
...
534

Animating
Attached
Properties
(or
Not)
..
543

Splines
and
Key
Frames...
548

The
Bouncing
Ball
Problem
..
557

The
Easing
Functions...
561

Animating
Perspective
Transforms
...
567

Animations
and
Property
Precedence...
573

 16
 The
Two
Templates
...578

ContentControl
and
DataTemplate..
578

Examining
the
Visual
Tree
..
583

ControlTemplate
Basics...
589

The
Visual
State
Manager...
601

Sharing
and
Reusing
Styles
and
Templates
..
610

Custom
Controls
in
a
Library
..
614

Variations
on
the
Slider
..
619

The
Ever-Handy
Thumb
..
629

Custom
Controls
..
634

x	

 17
 Items
Controls
..641

Items
Controls..
641

Items
Controls
and
Visual
Trees...
642

Customizing
Item
Displays
...
649

ListBox
Selection
..
653

Binding
to
ItemsSource
...
658

Databases
and
Business
Objects
..
663

Fun
with
DataTemplates...
682

Sorting
..
685

Changing
the
Panel
...
690

The
DataTemplate
Bar
Chart..
692

A
Card
File
Metaphor
..
699

 18
 Pivot
and
Panorama
..712

Compare
and
Contrast
..
712

Music
by
Composer ...
725

The
XNA
Connection...
728

The
XNA
Music
Classes:
MediaLibrary
..
731

Displaying
the
Albums..
737

The
XNA
Music
Classes:
MediaPlayer
...
742

Part III
XNA

 19
 Principles
of
Movement..750

The
Naïve
Approach
..
750

A
Brief
Review
of
Vectors
...
753

Moving
Sprites
with
Vectors
..
758

Working
with
Parametric
Equations
...
760

Fiddling
with
the
Transfer
Function
..
763

Scaling
the
Text
...
764

Two
Text
Rotation
Programs
...
768

 20
 Textures
and
Sprites..775

The
Draw
Variants
...
775

Another
Hello
Program?
...
777

Driving
Around
the
Block
...
782

Movement
Along
a
Polyline
...
786

The
Elliptical
Course
..
791

A
Generalized
Curve
Solution
..
794

xi	

 21
 Dynamic
Textures..799

The
Render
Target
...
799

Preserving
Render
Target
Contents
..
808

Drawing
Lines
..
812

Manipulating
the
Pixel
Bits
..
819

The
Geometry
of
Line
Drawing
..
823

Modifying
Existing
Images...
835

 22
 From
Gestures
to
Transforms
..840

Gestures
and
Properties..
840

Scale
and
Rotate
..
844

Matrix
Transforms
...
853

The
Pinch
Gesture..
856

Flick
and
Inertia
...
864

The
Mandelbrot
Set
...
867

Pan
and
Zoom..
878

Game
Components
..
885

Affine
and
Non-Affine
Transforms..
889

 23
 Touch
and
Play
..900

More
Game
Components
..
900

The
PhingerPaint
Canvas
..
905

A
Little
Tour
Through
SpinPaint
..
916

The
SpinPaint
Code
...
918

The
Actual
Drawing
...
923

PhreeCell
and
a
Deck
of
Cards
...
928

The
Playing
Field
...
929

Play
and
Replay
..
938

 24
 Tilt
and
Play
...952

3D
Vectors
..
952

A
Better
Bubble
Visualization
..
955

The
Graphical
Rendition
...
964

Follow
the
Rolling
Ball
..
972

Navigating
a
Maze
..
984

About
the
Authors
...996

xii	

	

	

	 	

	 	 	

	 	 	

	

	

	

	 	 	 	 	

	 	 	

	 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	

	

	

	 	

	

	 	

	 	

	 	 	

	

	

	 	 	

	 	

Introduction
This	book	is	a	gift	from	the	Windows	Phone	7	team	at	Microsoft	to	the	programming	

community,	and	I	am	proud	to	have	been	a	part	of	it.	Within	the	pages	that	follow,	I	show	

you	the	basics	of	writing	applications	for	Windows	Phone	7	using	the	C#	programming	

language	with	the	Silverlight	and	XNA	2D	frameworks.	

Yes,	Programming Windows Phone 7	is	truly	a	free	download,	but	for	those	readers	who	still	

love	paper—as	I	certainly	do—this	book	will	also	be	available	(for	sale)	divided	into	two	fully

indexed	print	editions:	Microsoft Silverlight Programming for Windows Phone 7	and	Microsoft

XNA Framework Programming for Windows Phone 7.

With	the	money	you’ve	saved	downloading	this	book,	please	buy	other	books.	Despite	the	

plethora	of	information	available	online,	books	are	still	the	best	way	to	learn	about	

programming	within	a	coherent	and	cohesive	tutorial	narrative.	Every	book	sale	brings	a	tear	

of	joy	to	an	author’s	eye,	so	please	help	make	them	weep	overflowing	rivers.		

In	particular,	you	might	want	to	buy	other	books	to	supplement	the	material	in	this	book.	For	

example,	I	barely	mention	Web	services	in	this	book,	and	that’s	a	serious	deficiency	because	

Web	services	are	likely	to	become	increasingly	important	in	Windows	Phone	7	applications.	

My	coverage	of	XNA	is	limited	to	2D	graphics	and	while	I	hope	to	add	several	3D	chapters	in	

the	next	edition	of	this	book,	I	don’t	really	get	into	the	whole	Xbox	LIVE	community	aspect	of	

game	development.	Nor	do	I	discuss	any	programming	tools	beyond	Visual	Studio—not	even	

Expression	Blend.	

My	publisher	Microsoft	Press	has	a	couple	additional	Windows	Phone	7	books	coming	soon:	

Windows Phone 7 Silverlight Development Step by Step by	Andy	Wigley	&	Peter	Foot	offers	a	

more	toolsoriented	approach.	Although	Michael	Stroh’s	Windows Phone 7 Plain & Simple	is	a	

guide	to	using	the	phone	rather	than	developing	for	it,	I	suspect	it	will	give	developers	some	

insights	and	ideas.	

Moreover,	I	also	hear	that	my	old	friend	Doug	Boling	is	working	hard	on	a	Windows	Phone	7	

enterpriseprogramming	book	that	is	likely	to	be	considered	his	masterpiece.	Be	sure	to	check	

out	that	one.	

Organization

This	book	is	divided	into	three	parts.	The	first	part	discusses	basic	concepts	of	Windows	Phone	

7	programming	using	example	programs	that	target	both	Silverlight	and	the	XNA	framework.	

It	is	likely	that	many	Windows	Phone	7	developers	will	choose	either	one	platform	or	the	

	

	

	 	 	

	 	 	

	 	 	 	 	

	 	

	 	 	

	

 	

	 	

	

	

	

	 	 	

	 	

	 	 	 	 	 	 	

	 	

	 	 	 	

	 	

	

		

	 	 	 	

	 	 	 	 	 	 	

	 	 	 	

other,	but	I	think	it’s	important	for	all	developers	who	have	at	least	a	little	knowledge	of	the	

alternative	to	their	chosen	path.	

The	second	part	of	this	book	focuses	entirely	on	Silverlight,	and	the	third	part	on	XNA	2D.	For	

your	convenience,	the	chapters	in	each	part	build	upon	previous	knowledge	in	a	progressive	

tutorial	narrative,	and	hence	are	intended	to	be	read	sequentially.	

My
Assumptions
About
You

I	assume	that	you	know	the	basic	principles	of	.NET	programming	and	you	have	a	working	

familiarity	with	the	C#	programming	language.	If	not,	you	might	benefit	from	reading	my	free	

online	book	.NET Book Zero: What the C or C++ Programmer Needs to Know about C# and

the .NET Framework,	available	from	my	website	at	www.charlespetzold.com/dotnet.	

System
Requirements

To	use	this	book	properly	you’ll	need	to	download	and	install	the	Windows	Phone	Developer	

Tools,	which	includes	Visual	Studio	2010	Express	for	Windows	Phone,	XNA	Game	Studio	4.0,	

and	an	onscreen	Windows	Phone	Emulator	to	test	your	programs	in	the	absence	of	an	actual	

device.	Get	the	latest	information	and	downloads	at	http://developer.windowsphone.com.	

You	can	install	these	tools	on	top	of	Visual	Studio	2010,	in	effect	enhancing	Visual	Studio	

2010	for	phone	development.	That’s	the	configuration	I	used.	

Although	you	can	do	quite	a	bit	with	the	phone	emulator,	at	some	point	you’ll	want	to	

deploy	your	programs	to	an	actual	Windows	Phone	7	device.	You	can	register	as	a	phone	

developer	at	http://developer.windowsphone.com	and	then	have	the	ability	to	unlock	your	

phone	so	you	can	deploy	your	programs	from	Visual	Studio.		

Since	late	July	2010,	I’ve	had	an	LG	GW910	phone	to	test	the	programs	in	this	book.	For	the	

record,	the	final	build	I	installed	was	7.0.7003.0.	

Using
the
Phone
Emulator

Windows	Phone	7	supports	multitouch,	and	working	with	multitouch	is	an	important	part	of	

developing	programs	for	the	phone.	When	using	the	Windows	Phone	Emulator,	mouse	clicks	

and	mouse	movement	on	the	PC	can	mimic	touch	on	the	emulator,	but	for	only	one	finger.	

You	can	test	out	multitouch	for	real	on	the	phone	emulator	if	you	have	a	multitouch	

monitor	running	under	Windows	7.	

	

	

	 	

	 	

	

	 	

	 	 	 	 	 	 	

	

	 	

	

	 	 	

	 	

	

	

	 	

	 	 	 	 	 	

	 	 	 	 	

		

	 	 	 	

	 	

	

	

	

	 	 	

In	the	absence	of	a	multitouch	monitor,	you	might	want	to	explore	simulating	multitouch	

with	multiple	mouse	devices.	The	site	http://multitouchvista.codeplex.com	has	the	download	

you’ll	need	and	includes	a	link	to	http://michaelsync.net/2010/04/06/step-by-step-tutorial-

installing-multi-touch-simulator-for-silverlight-phone-7	that	provides	instructions.	

Windows	Phone	7	devices	also	have	a	builtin	accelerometer,	which	can	be	very	difficult	to	

simulate	in	an	emulator.	Per	Blomqvist,	the	Technical	Reviewer	for	this	book,	found	an

application at http://accelkit.codeplex.com that utilizes the webcam and ARToolkit to emulate

the accelerometer sensor and feed that data into the Windows Phone 7 emulator through a

TCP/HTTP Server, and although neither of us have tried it out, it sounds quite intriguing.

Code
Samples

To	illustrate	Silverlight	and	XNA	programming	concepts,	this	book	describes	about	190	

complete	programs.	Many	of	them	are	small	and	simple,	but	others	are	larger	and	more	

interesting.		

Some	people	like	to	learn	new	programming	environments	by	recreating	the	projects	in	

Visual	Studio	and	typing	in	the	source	code	themselves	from	the	pages	of	the	book.	Others	

prefer	to	study	the	code	and	run	the	preexisting	programs	to	see	what	the	code	does.	If	you	

fall	into	the	latter	category,	you	can	download	all	the	source	code	in	a	ZIP	file.	The	location	of	

this	ZIP	file	is	available	from	my	website	at	www.charlespetzold.com/phone and	from	the	

Microsoft	Press	blog	at	http://blogs.msdn.com/b/microsoft_press/.	

If	you	find	something	in	the	code	that	is	useful	in	your	own	software	project,	feel	free	to	use	

the	code	without	restriction—either	straight	up	or	modified	in	whatever	way	you	want.	That’s	

what	it’s	there	for.	

Last-Minute
Items

As	I	was	nearing	the	completion	this	book,	the	first	version	of	the	Silverlight	for	Windows	

Phone	Toolkit	was	released	with	some	additional	elements	and	controls,	and	is	available	for	

downloading	at	http://silverlight.codeplex.com.	Historically,	these	Silverlight	toolkits	very	often	

contain	previews	of	elements	and	controls	that	are	incorporated	into	later	Silverlight	releases.	

I	regret	that	I	could	not	include	a	discussion	of	the	toolkit	contents	in	the	appropriate	

chapters	of	this	book.	

With	XNA	programs,	sometimes	Visual	Studio	complains	that	it	can’t	build	or	deploy	the	

program.	If	you	encounter	that	problem,	in	the	Solution	Platforms	dropdown	list	on	the	

standard	toolbar,	select	“Windows	Phone”	rather	than	“Any	CPU”.	Or,	invoke	the	

	

	

	 	

	

	 	 	

	 	

	 	 		

	 	 	

	 	

	 	 	 	

	 	 	 	

	 	 	 		

	 	 	

	 	

	 	

	 	

	 	 	

	 	 	 	

	

	 	

	

	

	 	

	

	 	 	

	

	

	

	

	

	

	

	

Configuration	Manager	from	the	Build	menu,	and	in	the	Active	Solution	Platform	dropdown	

select	“Windows	Phone”	rather	than	“Any	CPU”.	

The	www.charlespetzold.com/phone page	on	my	website	will	contain	information	about	this	

book	and	perhaps	even	some	information	about	a	future	edition.	I	also	hope	to	blog	about	

Windows	Phone	7	programming	as	much	as	possible.	

The
Essential
People

This	book	owes	its	existence	to	Dave	Edson—an	old	friend	from	the	early	1990s	era	of	

Microsoft Systems Journal—who	had	the	brilliant	idea	that	I	would	be	the	perfect	person	to	

write	a	tutorial	on	Windows	Phone	7.	Dave	arranged	for	me	to	attend	a	technical	deep	dive	

on	the	phone	at	Microsoft	in	December	2009,	and	I	was	hooked.	Todd	Brix	gave	the	thumbs	

up	on	the	book,	and	Anand	Iyer	coordinated	the	project	with	Microsoft	Press.	

At	Microsoft	Press,	Ben	Ryan	launched	the	project	and	Devon	Musgrave	had	the	unenviable	

job	of	trying	to	make	my	code	and	prose	resemble	an	actual	book.	(We	all	go	way	back:	You’ll	

see	Ben	and	Devon’s	names	on	the	bottom	of	the	copyright	page	of	Programming Windows,	

fifth	edition,	published	in	1998.)		

My	Technical	Reviewer	was	the	diligent	Per	Blomqvist,	who	apparently	tested	all	the	code	in	

both	the	sample	files	and	as	the	listings	appear	in	the	book,	and	who	in	the	process	caught	

several	errors	on	my	part	that	were	truly,	well,	shocking.	

Dave	Edson	also	reviewed	some	chapters	and	served	as	conduit	to	the	Windows	Phone	team	

to	deal	with	my	technical	problems	and	questions.	Early	on,	Aaron	Stebner	provided	essential	

guidance;	Michael	Klucher	reviewed	chapters,	and	Kirti	Deshpande,	Charlie	Kindel,	Casey	

McGee,	and	Shawn	Oster	also	had	important	things	to	tell	me.	Thanks	to	Bonnie	Lehenbauer	

for	reviewing	a	chapter.	

I	am	also	indebted	to	Shawn	Hargreaves	for	his	XNA	expertise,	and	Yochay	Kiriaty	and	Richard	

Bailey	for	the	lowdown	on	tombstoning.	

My	wife	Deirdre	Sinnott	has	been	a	marvel	of	patience	and	tolerance	over	the	past	months	as	

she	dealt	with	an	author	given	to	sudden	mood	swings,	insane	yelling	at	the	computer	screen,	

and	the	conviction	that	the	difficulty	of	writing	a	book	relieves	one	of	the	responsibility	of	

performing	basic	household	chores.	

Alas,	I	can’t	blame	any	of	them	for	bugs	or	other	problems	that	remain	in	this	book.	Those	are	

all	mine.	

	

	

	

	

	

	 	

	 	 	

	 	

	

	 	

	 	 	

	

	 	

Charles	Petzold		

New	York	City	and	Roscoe,	New	York		

October	22,	2010		

Errata
&
Book
Support

We’ve	made	every	effort	to	ensure	the	accuracy	of	this	book	and	its	companion	content.	If	

you	do	find	an	error,	email	Microsoft	Press	Book	Support	at	mspinput@microsoft.com.	

(Please	note	that	product	support	for	Microsoft	software	is	not	offered	through	this	address.)	

We
Want
to
Hear
from
You

At	Microsoft	Press,	your	satisfaction	is	our	top	priority,	and	your	feedback	our	most	valuable	

asset.	Please	tell	us	what	you	think	of	this	book	at:		

http://www.microsoft.com/learning/booksurvey

The	survey	is	short,	and	we	read	every one of	your	comments	and	ideas.	Thanks	in	advance	for	

your	input.	

Stay
in
Touch

Let’s	keep	the	conversation	going!	We’re	on	Twitter:	http://twitter.com/MicrosoftPress

	

	

	

	

Part	I		

The Basics

	 	 	

	 	 	 	 	 	 	

	

	 	

	

	 	

	 	

	 	

	 	

	 	 	

	 	

	

	 	

	 	

	 	

	

	

	

	 	 	 	 	

	

	 	 	 	

	

	 	

	

	 	 	

Chapter	1	

Hello, Windows Phone 7
Sometimes	it	becomes	apparent	that	previous	approaches	to	a	problem	haven’t	quite	worked	

the	way	you	anticipated.	Perhaps	you	just	need	to	clear	away	the	smoky	residue	of	the	past,	

take	a	deep	breath,	and	try	again	with	a	new	attitude	and	fresh	ideas.	In	golf,	it’s	known	as	a	

“mulligan”;	in	schoolyard	sports,	it’s	called	a	“doover”;	and	in	the	computer	industry,	we	say	

it’s	a	“reboot.”	

A	reboot	is	what	Microsoft	has	initiated	with	its	new	approach	to	the	mobile	phone	market.	

With	its	clean	look,	striking	fonts,	and	new	organizational	paradigms,	Microsoft	Windows	

Phone	7	not	only	represents	a	break	with	the	Windows	Mobile	past	but	also	differentiates	

itself	from	other	smartphones	currently	in	the	market.	Windows	Phone	7	devices	will	be	made	

by	several	manufacturers	and	available	with	a	variety	of	cell	providers.	

For	programmers,	Windows	Phone	7	is	also	exciting,	for	it	supports	two	popular	and	modern	

programming	platforms:	Silverlight	and	XNA.	

Silverlight—a	spinoff	of	the	clientbased	Windows	Presentation	Foundation	(WPF)—has	

already	given	Web	programmers	unprecedented	power	to	develop	sophisticated	user	

interfaces	with	a	mix	of	traditional	controls,	highquality	text,	vector	graphics,	media,	

animation,	and	data	binding	that	run	on	multiple	platforms	and	browsers.	Windows	Phone	7	

extends	Silverlight	to	mobile	devices.	

XNA—the	three	letters	stand	for	something	like	“XNA	is	Not	an	Acronym”—is	Microsoft’s	

game	platform	supporting	both	2D	spritebased	and	3D	graphics	with	a	traditional	game

loop	architecture.	Although	XNA	is	mostly	associated	with	writing	games	for	the	Xbox	360	

console,	developers	can	also	use	XNA	to	target	the	PC	itself,	as	well	as	Microsoft’s	classy	audio	

player,	the	Zune	HD.		

Either	Silverlight	or	XNA	would	make	good	sense	as	the	sole	application	platform	for	the	

Windows	Phone	7,	but	programmers	have	a	choice.	And	this	we	call	“an	embarrassment	of	

riches.”	

Targeting
Windows
Phone
7

All	programs	for	Windows	Phone	7	are	written	in	.NET	managed	code.	Although	the	sample	

programs	in	this	book	are	written	in	the	C#	programming	language,	it	is	also	possible	to	write	

Windows	Phone	7	applications	in	Visual	Basic	.NET.	The	free	downloadable	Microsoft	Visual	

Studio	2010	Express	for	Windows	Phone	includes	XNA	Game	Studio	4.0	and	an	onscreen	

phone	emulator,	and	also	integrates	with	Visual	Studio	2010.	You	can	develop	visuals	and	

animations	for	Silverlight	applications	using	Microsoft	Expression	Blend.	

2	

	 	 	 	

	 	 	

	 	 	 	 	 	 	

		

	 	

	

	 	 	 	

	 	

	 	

	 	

	

	 	 	 	 	 	

	 	 	 	 	 	 	

	 	

	 	

	 	 	

	 	 	 	 	 	

	 	 	 	

		

	 	

	

	 	

	 	 	 	

	 	 	

	

	 	

	 	

	

	 	 	 	 	

	 	

	 	 	

The	Silverlight	and	XNA	platforms	for	Windows	Phone	7	share	some	libraries,	and	you	can	use	

some	XNA	libraries	in	a	Silverlight	program	and	vice	versa.	But	you	can’t	create	a	program	

that	mixes	visuals	from	both	platforms.	Maybe	that	will	be	possible	in	the	future,	but	not	now.	

Before	you	create	a	Visual	Studio	project,	you	must	decide	whether	your	milliondollar	idea	is	

a	Silverlight	program	or	an	XNA	program.	

Generally	you’ll	choose	Silverlight	for	writing	programs	you	might	classify	as	applications	or	

utilities.	These	programs	are	built	from	a	combination	of	markup	and	code.	The	markup	is	the	

Extensible	Application	Markup	Language,	or	XAML	and	pronounced	“zammel.”	The	XAML	

mostly	defines	a	layout	of	userinterface	controls	and	panels.	Codebehind	files	can	also	

perform	some	initialization	and	logic,	but	are	generally	relegated	to	handling	events	from	the	

controls.	Silverlight	is	great	for	bringing	to	the	Windows	Phone	the	style	of	Rich	Internet	

Applications	(RIA),	including	media	and	the	Web.	Silverlight	for	Windows	Phone	is	a	version	of	

Silverlight	3	excluding	some	features	not	appropriate	for	the	phone,	but	compensating	with	

some	enhancements.	

XNA	is	primarily	for	writing	highperformance	games.	For	2D	games,	you	define	sprites	and	

backgrounds	based	around	bitmaps;	for	3D	games	you	define	models	in	3D	space.	The	action	

of	the	game,	which	includes	moving	graphical	objects	around	the	screen	and	polling	for	user	

input,	is	synchronized	by	the	builtin	XNA	game	loop.	

The	differentiation	between	Silverlightbased	applications	and	XNAbased	games	is	

convenient	but	not	restrictive.	You	can	certainly	use	Silverlight	for	writing	games	and	you	can	

even	write	traditional	applications	using	XNA,	although	doing	so	might	sometimes	be	

challenging.	

In	particular,	Silverlight	might	be	ideal	for	games	that	are	less	graphically	oriented,	or	use	

vector	graphics	rather	than	bitmap	graphics,	or	are	paced	by	usertime	rather	than	clock

time.	A	Tetristype	program	might	work	quite	well	in	Silverlight.	You’ll	probably	find	XNA	to	

be	a	bit	harder	to	stretch	into	Silverlight	territory,	however.	Implementing	a	list	box	in	XNA	

might	be	considered	“fun”	by	some	programmers	but	a	torture	by	many	others.	

The	first	several	chapters	in	this	book	describe	Silverlight	and	XNA	together,	and	then	the	

book	splits	into	different	parts	for	the	two	platforms.	I	suspect	that	some	developers	will	stick	

with	either	Silverlight	or	XNA	exclusively	and	won’t	even	bother	learning	the	other	

environment.	I	hope	that’s	not	a	common	attitude.	The	good	news	is	that	Silverlight	and	XNA	

are	so	dissimilar	that	you	can	probably	bounce	back	and	forth	between	them	without	

confusion!	

Microsoft	has	been	positioning	Silverlight	as	the	front	end	or	“face”	of	the	cloud,	so	cloud	

services	and	Windows	Azure	form	an	important	part	of	Windows	Phone	7	development.	The	

Windows	Phone	is	“cloudready.”	Programs	are	locationaware	and	have	access	to	maps	and	

other	data	through	Bing	and	Windows	Live.	One	of	the	available	cloud	services	is	Xbox	Live,	

3	

	 	 	 	

			

	

	 	 		

	

	 	

	 	 	 	

	 	 	

	 	 	

	 	

	

	

	 	

	 	 	 	

	

	 	 	 	

	 	 	

	

	 	 	 	 	 	 	 	

	

	

	

		

which	allows	XNAbased	programs	to	participate	in	online	multiplayer	games,	and	can	also	be	

accessed	by	Silverlight	applications.	

Programs	you	write	for	the	Windows	Phone	7	will	be	sold	and	deployed	through	the	

Windows	Phone	Marketplace,	which	provides	registration	services	and	certifies	that	programs	

meet	minimum	standards	of	reliability,	efficiency,	and	good	behavior.	

I’ve	characterized	Windows	Phone	7	as	representing	a	severe	break	with	the	past.	If	you	

compare	it	with	past	versions	of	Windows	Mobile,	that	is	certainly	true.	But	the	support	of	

Silverlight,	XNA,	and	C#	are	not	breaks	with	the	past,	but	a	balance	of	continuity	and	

innovation.	As	young	as	they	are,	Silverlight	and	XNA	have	already	proven	themselves	as	

powerful	and	popular	platforms.	Many	skilled	programmers	are	already	working	with	either	

one	framework	or	the	other—probably	not	so	many	with	both	just	yet—and	they	have	

expressed	their	enthusiasm	with	a	wealth	of	online	information	and	communities.	C#	has	

become	the	favorite	language	of	many	programmers	(myself	included),	and	developers	can	

use	C#	to	share	libraries	between	their	Silverlight	and	XNA	programs	as	well	as	programs	for	

other	.NET	environments.	

The
Hardware
Chassis

Developers	with	experience	targeting	Windows	Mobile	devices	of	the	past	will	find	significant	

changes	in	Microsoft’s	strategy	for	the	Windows	Phone	7.	Microsoft	has	been	extremely	

proactive	in	defining	the	hardware	specification,	often	referred	to	as	a	“chassis.”	

Initial	releases	of	Windows	Phone	7	devices	will	have	one	consistent	screen	size.	(A	second	

screen	size	is	expected	in	the	future.)	Many	other	hardware	features	are	guaranteed	to	exist	

on	each	device.	

The	front	of	the	phone	consists	of	a	multitouch	display	and	three	hardware	buttons	generally	

positioned	in	a	row	below	the	display.	From	left	to	right,	these	buttons	are	called	Back,	Start,	

and	Search:	

• Back
 Programs	can	use	this	button	for	their	own	navigation	needs,	much	like	the	Back	

button	on	a	Web	browser.	From	the	home	page	of	a	program,	the	button	causes	the	

program	to	terminate.	

• Start
 This	button	takes	the	user	to	the	start	screen	of	the	phone;	it	is	otherwise	

inaccessible	to	programs	running	on	the	phone.	

4	

	

	 	

	 	 	 	

	

		

	 	

	 	 	

	 	 	 	

	 	

	

	 	 	 	

	

	

	 	 	 	

	 	 	 	 	

	 	 	

	 	 	 	 		

	 	 	 	 	 	 	

	

	 	

	 	 	

	 	 	 	 	 	

	

	
		

• Search
 The	operating	system	uses	this	button	to	initiate	a	search	feature.	

The	initial	releases	of	Windows	Phone	7	devices	have	a	display	size	of	480	× 800	pixels.	In	the	

future,	screens	of	320	× 480	pixels	are	also	expected.	There	are	no	other	screen	options	for	

Windows	Phone	7,	so	obviously	these	two	screen	sizes	play	a	very	important	role	in	phone	

development.	

In	theory,	it’s	usually	considered	best	to	write	programs	that	adapt	themselves	to	any	screen	

size,	but	that’s	not	always	possible,	particularly	with	game	development.	You	will	probably	

find	yourself	specifically	targeting	these	two	screen	sizes,	even	to	the	extent	of	having	

conditional	code	paths	and	different	XAML	files	for	layout	that	is	sizedependent.	

I	will	generally	refer	to	these	two	sizes	as	the	“large”	screen	and	the	“small“	screen.	The	

greatest	common	denominator	of	the	horizontal	and	vertical	dimensions	of	both	screens	is	

160,	so	you	can	visualize	the	two	screens	as	multiples	of	160pixel	squares:	

480	

320	
4
8
0

8
0
0
	

I’m	showing	these	screens	in	portrait	mode	because	that’s	usually	the	way	smartphones	are	

designed.	The	screen	of	the	original	Zune	is	240	×	320	pixels;	the	Zune	HD	is	272	×	480.	

Of	course,	phones	can	be	rotated	to	put	the	screen	into	landscape	mode.	Some	programs	

might	require	the	phone	to	be	held	in	a	certain	orientation;	others	might	be	more	adaptable.	

You	have	complete	control	over	the	extent	to	which	you	support	orientation.	By	default,	

Silverlight	applications	appear	in	portrait	mode,	but	you’ll	probably	want	to	write	your	

Silverlight	applications	so	they	adjust	themselves	to	orientation	changes.	New	events	are	

available	specifically	for	the	purpose	of	detecting	orientation	change,	and	some	orientation	

shifts	are	handled	automatically.	In	contrast,	game	programmers	can	usually	impose	a	

particular	orientation	on	the	user.	XNA	programs	use	landscape	mode	by	default,	but	it’s	easy	

to	override	that.	

5	

	 	

	 	

	 	

	

	 	 	

	

	 	

	 	 	 	

	 	

	 	 	 	 	

	 	 	 	

	 	 	 			

	 	 	

	

	 	

	 	 	 	 	 	

	

	 	 	

	

	

	 	 	 	 	 	

	 	 	 	

	 	

	

	 	

	 	

	

	 	 	 	 	

	 	 	

	 	 	

	 	

In	portrait	mode,	the	small	screen	is	half	of	an	old	VGA	screen	(that	is,	640	× 480).	In	

landscape	mode,	the	large	screen	has	a	dimension	sometimes	called	WVGA	(“wide	VGA”).	In	

landscape	mode,	the	small	screen	has	an	aspect	ratio	of	3:2	or	1.5;	the	large	screen	has	an	

aspect	ratio	of	5:3	or	1.66….	Neither	of	these	matches	the	aspect	ratio	of	television,	which	for	

standard	definition	is	4:3	or	1.33…	and	for	highdefinition	is	16:9	or	1.77….	The	Zune	HD	

screen	has	an	aspect	ratio	of	16:9.	

Like	many	recent	phones	and	the	Zune	HD,	the	Windows	Phone	7	displays	will	likely	use	

OLED	(“organic	light	emitting	diode”)	technology,	although	this	isn’t	a	hardware	requirement.	

OLEDs	are	different	from	flat	displays	of	the	past	in	that	power	consumption	is	proportional	

to	the	light	emitted	from	the	display.	For	example,	an	OLED	display	consumes	less	than	half	

the	power	of	an	LCD	display	of	the	same	size,	but	only	when	the	screen	is	mostly	black.	For	an	

allwhite	screen,	an	OLED	consumes	more	than	three	times	the	power	of	an	LCD.	

Because	battery	life	is	extremely	important	on	mobile	devices,	this	characteristic	of	OLED	

displays	implies	an	aesthetic	of	mostly	black	backgrounds	with	sparse	graphics	and	light

stroked	fonts.	Regardless,	Windows	Phone	7	users	can	choose	between	two	major	color	

themes:	light	text	on	a	dark	background,	or	dark	text	on	a	light	background.	

Most	user	input	to	a	Windows	Phone	7	program	will	come	through	multitouch.	The	screens	

incorporate	capacitancetouch	technology,	which	means	that	they	respond	to	a	human	

fingertip	but	not	to	a	stylus	or	other	forms	of	pressure.	Windows	Phone	7	screens	are	required	

to	respond	to	at	least	four	simultaneous	touchpoints.	

A	hardware	keyboard	is	optional.	Keep	in	mind	that	phones	can	be	designed	in	different	ways,	

so	when	the	keyboard	is	in	use,	the	screen	might	be	in	either	portrait	mode	or	landscape	

mode.	A	Silverlight	program	that	uses	keyboard	input	must	respond	to	orientation	changes	so	

that	the	user	can	both	view	the	screen	and	use	the	keyboard	without	wondering	what	idiot	

designed	the	program	sideways.	An	onscreen	keyboard	is	also	provided,	known	in	Windows	

circles	as	the	Soft	Input	Panel	or	SIP.	XNA	programs	also	have	access	to	the	hardware	

keyboard	and	SIP.	

Sensors
and
Services

A	Windows	Phone	7	device	is	required	to	contain	several	other	hardware	features—	

sometimes	called	sensors—and	provide	some	software	services,	perhaps	through	the	

assistance	of	hardware.	These	are	the	ones	that	affect	developers	the	most:	

• Wi-Fi
 The	phone	has	WiFi	for	Internet	access	to	complement	3G	data	access	through	

the	cell	provider.	Software	on	the	phone	includes	a	version	of	Internet	Explorer.	

• Camera
 The	phone	has	at	least	a	5megapixel	camera	with	flash.	Programs	can	invoke	

the	camera	program	for	their	own	input,	or	register	themselves	as	a	Photos	Extra	

6	

	 	

	 	 	 	 	

	 	

	

	 	

	 	

	 	

	 	 	

	 	 	

	 	 	 	

	 	 	

	 	 	

	

	 	

	 	

	 	

	 	 	

	 	 	 	

	 	

	 	 	

	 	 	

	 	

	

	

	

	 	 	 	 	 	

Application	and	appear	on	a	menu	to	obtain	access	to	photographed	images,	perhaps	for	

some	image	processing.	

• Accelerometer
 An	accelerometer	detects	acceleration,	which	in	physics	is	a	change	in	

velocity.	When	the	camera	is	still,	the	accelerometer	responds	to	gravity.	Programs	can	

obtain	a	threedimensional	vector	that	indicates	how	the	camera	is	oriented	with	respect	

to	the	earth.	The	accelerometer	can	also	detect	sharp	movements	of	the	phone.	

• Location
 If	the	user	so	desires,	the	phone	can	use	multiple	strategies	for	determining	

where	it	is	geographically	located.	The	phone	supplements	a	hardware	GPS	device	with	

information	from	the	Web	or	cell	phone	towers.	If	the	phone	is	moving,	course	and	speed	

might	also	be	available.	Vibration
 The	phone	can	be	vibrated	through	program	control.	

• FM
Radio
 An	FM	Radio	is	available	and	accessible	through	program	control.	

• Push
Notifications
 Some	Web	services	would	normally	require	the	phone	to	frequently	

poll	the	service	to	obtain	updated	information.	This	can	drain	battery
life.
To	help	out,	a	

push	notification	service	has	been	developed	that	will	allow	any	required	polling	to	occur	

outside	the	phone	and	for	the	phone	to	receive	notifications	only	when	data	has	been	

updated.	

File
|
New
|
Project

I’ll	assume	that	you	have	Visual	Studio	2010	Express	for	Windows	Phone	installed,	either	by	

itself	or	supplementing	a	regular	version	of	Visual	Studio	2010.	For	convenience,	I’m	going	to	

refer	to	this	development	environment	simply	as	“Visual	Studio.”	

The	traditional	“hello,	world”	program	that	displays	just	a	little	bit	of	text	might	seem	silly	to	

nonprogrammers,	but	programmers	have	discovered	that	such	a	program	serves	at	least	two	

useful	purposes:	First,	the	program	provides	a	way	to	examine	how	easy	(or	ridiculously	

complex)	it	is	to	display	a	simple	text	string.	Second,	it	gives	the	programmer	an	opportunity	

to	experience	the	process	of	creating,	compiling,	and	running	a	program	without	a	lot	of	

distractions.	When	developing	programs	that	run	on	a	mobile	device,	this	process	is	a	little	

more	complex	than	customary	because	you’ll	be	creating	and	compiling	programs	on	the	PC	

but	you’ll	be	deploying	and	running	them	on	an	actual	phone	or	at	least	an	emulator.	

This	chapter	presents	programs	for	both	Microsoft	Silverlight	and	Microsoft	XNA	that	display	

the	text	“Hello,	Windows	Phone	7!”	

Just	to	make	these	programs	a	little	more	interesting,	I	want	to	display	the	text	in	the	center	

of	the	display.	The	Silverlight	program	will	use	the	background	and	foreground	colors	

selected	by	the	user	in	the	Themes	section	of	the	phone’s	Settings	screen.	In	the	XNA	

program,	the	text	will	be	white	on	a	dark	background	to	use	less	power	on	OLED.	

7	

	

	

	

	

	 	

	 	 	 	

	

	 	 	

	 	 	 	

	

	 	 	 	

	 	 	 	

	 	 	 	 	

	

	

	 	 	

	 	 	

	 	 	

	 	

	 	

	

	 	

	 	

	 	

	

	 	 	

	 	 	 	 	 	

	

If	you’re	playing	along,	it’s	time	to	bring	up	Visual	Studio	and	from	the	File	menu	select	New	

and	then	Project.	

A
First
Silverlight
Phone
Program

In	the	New	Project	dialog	box,	on	the	left	under	Installed	Templates,	choose	Visual	C#	and	

then	Silverlight	for	Windows	Phone.	In	the	middle	area,	choose	Windows	Phone	Application.	

Select	a	location	for	the	project,	and	enter	the	project	name:	SilverlightHelloPhone.	

As	the	project	is	created	you’ll	see	an	image	of	a	largescreen	phone	in	portrait	mode	with	a	

screen	area	480	×	800	pixels	in	size.	This	is	the	design	view.	Although	you	can	interactively	

pull	controls	from	a	toolbox	to	design	the	application,	I’m	going	to	focus	instead	on	showing	

you	how	to	write	your	own	code	and	markup.	

Several	files	have	been	created	for	this	SilverlightHelloPhone	project	and	are	listed	under	the	

project	name	in	the	Solution	Explorer	over	at	the	right.	In	the	Properties	folder	are	three	files	

that	you	can	usually	ignore	when	you’re	just	creating	little	sample	Silverlight	programs	for	the	

phone.	Only	when	you’re	actually	in	the	process	of	making	a	real	application	do	these	files	

become	important.	

However,	you	might	want	to	open	the	WMAppManifest.xml	file.	In	the	App	tag	near	the	top,	

you’ll	see	the	attribute:	

Title="SilverlightHelloPhone"

That’s	just	the	project	name	you	selected.	Insert	some	spaces	to	make	it	a	little	friendlier:	

Title="Silverlight Hello Phone"

This	is	the	name	used	by	the	phone	and	the	phone	emulator	to	display	the	program	in	the	list	

of	installed	applications	presented	to	the	user.	If	you’re	really	ambitious,	you	can	also	edit	the	

ApplicationIcon.png	and	Background.png	files	that	the	phone	uses	to	visually	symbolize	the	

program.	The	SplashScreenImage.jpg	file	is	what	the	program	displays	as	it’s	initializing.	

In	the	standard	Visual	Studio	toolbar	under	the	program’s	menu,	you’ll	see	a	dropdown	list	

probably	displaying	“Windows	Phone	7	Emulator.”	The	other	choice	is	“Windows	Phone	7	

Device.”	This	is	how	you	deploy	your	program	to	either	the	emulator	or	an	actual	phone	

connected	to	your	computer	via	USB.	

Just	to	see	that	everything’s	working	OK,	select	Windows	Phone	7	Emulator	and	press	F5	(or	

select	Start	Debugging	from	the	Debug	menu).	Your	program	will	quickly	build	and	in	the	

status	bar	you’ll	see	the	text	“Connecting	to	Windows	Phone	7	Emulator…”	The	first	time	you	

use	the	emulator	during	a	session,	it	might	take	a	little	time	to	start	up.	If	you	leave	the	

emulator	running	between	edit/build/run	cycles,	Visual	Studio	doesn’t	need	to	establish	this	

connection	again.	

8	

	 	

	 	 	

	

	 	

	 	 	

	 	

	

	

	

	

Soon	the	phone	emulator	will	appear	on	the	desktop	and	you’ll	see	the	opening	screen,	

followed	soon	by	this	little	donothing	Silverlight	program	as	it	is	deployed	and	run	on	the	

emulator.	On	the	phone	you’ll	see	pretty	much	the	same	image	you	saw	in	the	design	view.	

The	phone	emulator	has	a	little	floating	menu	at	the	upper	right	that	comes	into	view	when	

you	move	the	mouse	to	that	location.	You	can	change	orientation	through	this	menu,	or	

change	the	emulator	size.	By	default,	the	emulator	is	displayed	at	50%	actual	size,	about	the	

same	size	as	the	image	on	this	page.	When	you	display	the	emulator	at	100%,	it	becomes	

enormous,	and	you	might	wonder	“How	will	I	ever	fit	a	phone	this	big	into	my	pocket?”	

The	difference	involves	pixel	density.	Your	computer	screen	probably	has	about	100	pixels	per	

inch.	(By	default,	Windows	assumes	that	screens	are	96	DPI.)	The	screen	on	an	actual	Windows	

9	

	

	 	

	

	

	 	 	 	 	

	 	 	 	

	

	

	 	

	 	

	 	 	 	 	 	

	

	 	 	

	 	

	 	 	

		

	 	

	

	

	 	 	 	 	

	 	 	 	

	

	

	 	

	

Phone	7	device	is	more	than	2½	times	that.	When	you	display	the	emulator	at	100%,	you’re	

seeing	all	the	pixels	of	the	phone’s	screen,	but	at	about	250%	their	actual	size.	

You	can	terminate	execution	of	this	program	and	return	to	editing	the	program	either	though	

Visual	Studio	(using	ShiftF5	or	by	selecting	Stop	Debugging	from	the	Debug	menu)	or	by	

clicking	the	Back	button	on	the	emulator.	

Don’t	exit	the	emulator	itself	by	clicking	the	X	at	the	top	of	the	floating	menu!	Keeping	the	

emulator	running	will	make	subsequent	deployments	go	much	faster.	

While	the	emulator	is	still	running,	it	retains	all	programs	deployed	to	it.	If	you	click	the	arrow	

at	the	upperright	of	the	Start	screen,	you’ll	get	a	list	that	will	include	this	program	identified	

by	the	text	“Silverlight	Hello	Phone”	and	you	can	run	the	program	again.	The	program	will	

disappear	from	this	list	when	you	exit	the	emulator.	

If	you	have	a	Windows	Phone	7	device,	you’ll	need	to	register	for	the	marketplace	at	the	

Windows	Phone	7	portal,	http://developer.windowsphone.com.	After	you’re	approved,	you’ll	to	

connect	the	phone	to	your	PC	and	run	the	Zune	desktop	software.	You	can	unlock	the	phone	

for	development	by	running	the	Windows	Phone	Developer	Registration	program	and	

entering	your	Windows	Live	ID.	You	can	then	deploy	programs	to	the	phone	from	Visual	

Studio.	

The
Standard
Silverlight
Files

With	the	project	loaded	in	Visual	Studio,	take	a	look	at	the	Solution	Explorer	for	the	project.	

You’ll	see	two	pairs	of	skeleton	files:	App.xaml	and	App.xaml.cs,	and	MainPage.xaml	and	

MainPage.xaml.cs.	The	App.xaml	and	MainPage.xaml	files	are	Extensible	Application	Markup	

Language	(XAML)	files,	while	App.xaml.cs	and	MainPage.xaml.cs	are	C#	code	files.	This	

peculiar	naming	scheme	is	meant	to	imply	that	the	two	C#	code	files	are	“codebehind”	files	

associated	with	the	two	XAML	files.	They	provide	code	in	support	of	the	markup.	This	is	a	

basic	Silverlight	concept.	

I	want	to	give	you	a	little	tour	of	these	four	files.	If	you	look	at	the	App.xaml.cs	file,	you’ll	see	a	

namespace	definition	that	is	the	same	as	the	project	name	and	a	class	named	App	that	derives	

from	the	Silverlight	class	Application.	Here’s	an	excerpt	showing	the	general	structure:	

Silverlight Project: File: (excerpt)

namespace SilverlightHelloPhone

{

public partial class App : Application

 {

public App()

{

 …

10	

	

	

	 	 	

	 	

	

	 	 	

	 	

	 	

	 	 	

	 	

	 	

	

	 	 	

	 	 	 	

	

	 	 	 	

	 	

	 	

		

	 	

	 	 	 	

	

 InitializeComponent();

 …

}

…

}

}

All	Silverlight	programs	contain	an	App	class	that	derives	from	Application;	this	class	performs	

applicationwide	initialization,	startup,	and	shutdown	chores.	You’ll	notice	this	class	is	defined	

as	a	partial	class,	meaning	that	the	project	should	probably	include	another	C#	file	that	

contains	additional	members	of	the	App class.	But	where	is	it?	

The	project	also	contains	an	App.xaml	file,	which	has	an	overall	structure	like	this:	

Silverlight Project: File: (excerpt)

<Application

x:Class="SilverlightHelloPhone.App"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone"

 xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone">

…

</Application>

You’ll	recognize	this	file	as	XML,	but	more	precisely	it	is	a	XAML	file,	which	is	an	important	

part	of	Silverlight	programming.	In	particular,	developers	often	use	the	App.xaml	file	for	

storing	resources	that	are	used	throughout	the	application.	These	resources	might	include	

color	schemes,	gradient	brushes,	styles,	and	so	forth.	

The	root	element	is	Application,	which	is	the	Silverlight	class	that	the	App	class	derives	from.	

The	root	element	contains	four	XML	namespace	declarations.	Two	are	common	in	all	

Silverlight	applications;	two	are	unique	to	the	phone.	

The	first	XML	namespace	declaration	(“xmlns”)	is	the	standard	namespace	for	Silverlight,	and	

it	helps	the	compiler	locate	and	identify	Silverlight	classes	such	as	Application	itself.	As	with	

most	XML	namespace	declarations,	this	URI	doesn’t	actually	point	to	anything;	it’s	just	a	URI	

that	Microsoft	owns	and	which	it	has	defined	for	this	purpose.	

The	second	XML	namespace	declaration	is	associated	with	XAML	itself,	and	it	allows	the	file	to	

reference	some	elements	and	attributes	that	are	part	of	XAML	rather	than	specifically	

Silverlight.	By	convention,	this	namespace	is	associated	with	a	prefix	of	“x”	(meaning	“XAML”).	

Among	the	several	attributes	supported	by	XAML	and	referenced	with	this	“x”	prefix	is	Class,	

which	is	often	pronounced	“x	class.”	In	this	particular	XAML	file	x:Class is	assigned	the	name	

SilverlightHelloPhone.App.	This	means	that	a	class	named	App	in	the	.NET	

11

	

	 	 	

	 	 	 	

	 	 	

	 	 	

	

	 	 	

	

	

	

	 	

	 	 	

	 	

	 	 	 		 	 	

	 	

	 	 	 	

	 	

	 		

	 	

SilverlightHelloPhone	namespace	derives	from	the	Silverlight	Application class,	the	root	

element.	It’s	the	same	class	definition	you	saw	in	the	App.xaml.cs	file	but	with	very	different	

syntax.	

The	App.xaml.cs	and	App.xaml	files	really	define	two	halves	of	the	same	App	class.	During	

compilation,	Visual	Studio	parses	App.xaml	and	generates	another	code	file	named	App.g.cs.	

The	“g”	stands	for	“generated.”	If	you	want	to	look	at	this	file,	you	can	find	it	in	the	

\obj\Debug	subdirectory	of	the	project.	The	App.g.cs	file	contains	another	partial	definition	of	

the	App	class,	and	it	contains	a	method	named	InitializeComponent	that	is	called	from	the	

constructor	in	the	App.xaml.cs	file.	

You’re	free	to	edit	the	App.xaml	and	App.xaml.cs	files,	but	don’t	mess	around	with	App.g.cs.	

That	file	is	recreated	when	you	build	the	project.	

When	a	program	is	run,	the	App	class	creates	an	object	of	type	PhoneApplicationFrame	and	

sets	that	object	to	its	own	RootVisual	property.	This	frame	is	480	pixels	wide	and	800	pixels	

tall	and	occupies	the	entire	display	surface	of	the	phone.	 The	PhoneApplicationFrame	object	

then	behaves	somewhat	like	a	web	browser	by	navigating	to	an	object	called	MainPage.	

MainPage	is	the	second	major	class	in	every	Silverlight	program	and	is	defined	in	the	second	

pair	of	files,	MainPage.xaml	and	MainPage.xaml.cs.	In	smaller	Silverlight	programs,	it	is	in	

these	two	files	that	you’ll	be	spending	most	of	your	time.	

Aside	from	a	long	list	of	using	directives,	the	MainPage.xaml.cs	file	is	very	simple:	

Silverlight Project: File: (excerpt)

using System;

using System.Collections.Generic;

using System.Linq;

using System.Net;

using System.Windows;

using System.Windows.Controls;

using System.Windows.Documents;

using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Animation;

using System.Windows.Shapes;

using Microsoft.Phone.Controls;

namespace SilverlightHelloPhone

{

public partial class MainPage : PhoneApplicationPage

 {

// Constructor

public MainPage()

{

 InitializeComponent();

}

12	

	

	 	 	

	 	 	

	 	

	 	

	 	 	

	 	

	 	 	 	 	

	 	

	 	 	 	 	 	 	

 }

}

The	using	directives	for	namespaces	that	begin	with	the	words	System.Windows	are	for	the	

Silverlight	classes;	sometimes	you’ll	need	to	supplement	these	with	some	other	using

directives	as	well.	The	Microsoft.Phone.Controls	namespace	contains	extensions	to	Silverlight	

for	the	phone,	including	the	PhoneApplicationPage	class.	

Again,	we	see	another	partial	class	definition.	This	one	defines	a	class	named	MainPage	that	

derives	from	the	Silverlight	class	PhoneApplicationPage.	This	is	the	class	that	defines	the	

visuals	you’ll	actually	see	on	the	screen	when	you	run	the	SilverlightHelloPhone	program.	

The	other	half	of	this	MainPage	class	is	defined	in	the	MainPage.xaml	file.	Here’s	the	nearly	

complete	file,	reformatted	a	bit	to	fit	the	printed	page,	and	excluding	a	section	that’s	

commented	out	at	the	end,	but	still	a	rather	frightening	chunk	of	markup:	

Silverlight Project: File: (almost complete)

<phone:PhoneApplicationPage

 x:Class="SilverlightHelloPhone.MainPage"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone"

 xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone"

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

 mc:Ignorable="d" d:DesignWidth="480" d:DesignHeight="768"

 FontFamily="{StaticResource PhoneFontFamilyNormal}"

 FontSize="{StaticResource PhoneFontSizeNormal}"

 Foreground="{StaticResource PhoneForegroundBrush}"

 SupportedOrientations="Portrait" Orientation="Portrait"

 shell:SystemTray.IsVisible="True">

 <!--LayoutRoot is the root grid where all page content is placed-->

 <Grid x:Name="LayoutRoot" Background="Transparent">

<Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="*"/>

</Grid.RowDefinitions>

<!--TitlePanel contains the name of the application and page title-->

<StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,17,0,28">

 <TextBlock x:Name="ApplicationTitle" Text="MY APPLICATION"

 Style="{StaticResource PhoneTextNormalStyle}"/>

 <TextBlock x:Name="PageTitle" Text="page name" Margin="9,-7,0,0"

 Style="{StaticResource PhoneTextTitle1Style}"/>

</StackPanel>

<!--ContentPanel - place additional content here-->

13

	

	 	 	 	

	 	 	

	 	

	 	

	 	 	 	

	 	 	

	

	 	

	 	 	

	 	

	 	 	 	

	 	

	 	 	 	

	 	 	 	 	 	

	 	 	 	

	 	 	

	 	

	 	

	 	

	

	

	 	 	 	 	

	 	 	

	 	

	

	

	 	

	 	 	 	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

</Grid>

 </Grid>

</phone:PhoneApplicationPage>

The	first	four	XML	namespace	declarations	are	the	same	as	in	App.xaml.	As	in	the	App.xaml	

file,	an	x:Class attribute	also	appears	in	the	root	element.	Here	it	indicates	that	the	MainPage

class	in	the	SilverlightHelloPhone namespace	derives	from	the	Silverlight	

PhoneApplicationPage	class.	This	PhoneApplicationPage	class	requires	its	own	XML	namespace	

declaration	because	it	is	not	a	part	of	standard	Silverlight.	

The	“d”	(for	“designer”)	and	“mc”	(for	“markup	compatibility”)	namespace	declarations	are	for	

the	benefit	of	XAML	design	programs,	such	as	Expression	Blend	and	the	designer	in	Visual	

Studio	itself.	The	DesignerWidth	and	DesignerHeight	attributes	are	ignored	during	

compilation.	

The	compilation	of	the	program	generates	a	file	name	MainPage.g.cs	that	contains	another	

partial	class	definition	for	MainPage	(you	can	look	at	it	in	the	\obj\Debug	subdirectory)	with	

the	InitializeComponent	method	called	from	the	constructor	in	MainPage.xaml.cs.	

In	theory,	the	App.g.cs	and	MainPage.g.cs	files	generated	during	the	build	process	are	solely	

for	internal	use	by	the	compiler	and	can	be	ignored	by	the	programmer.	However,	sometimes	

when	a	buggy	program	raises	an	exception,	one	of	these	files	comes	popping	up	into	view.	It	

might	help	your	understanding	of	the	problem	to	have	seen	these	files	before	they	

mysteriously	appear	in	front	of	your	face.	However,	don’t	try	to	edit	these	files	to	fix	the	

problem!	The	real	problem	is	probably	somewhere	in	the	corresponding	XAML	file.	

In	the	root	element	of	MainPage.xaml	you’ll	see	settings	for	FontFamily,	FontSize,	and	

Foreground	that	apply	to	the	whole	page.	I’ll	describe	StaticResource	and	this	syntax	in	

Chapter	7.	

The	body	of	the	MainPage.xaml	file	contains	several	nested	elements	named	Grid,	StackPanel,	

and	TextBlock	in	a	parentchild	hierarchy.		

Notice	the	word	I	used:	element.	In	Silverlight	programming,	this	word	has	two	related	

meanings.	It’s	an	XML	term	used	to	indicate	items	delimited	by	start	tags	and	end	tags.	But	

it’s	also	a	word	used	in	Silverlight	to	refer	to	visual	objects,	and	in	fact,	the	word	element

shows	up	in	the	names	of	two	actual	Silverlight	classes.	

Many	of	the	classes	you	use	in	Silverlight	are	part	of	this	important	class	hierarchy:	

Object

DependencyObject	(abstract)	

UIElement	(abstract)	

FrameworkElement	(abstract)	

14	

	

	 	

	 	

	 	 	 	

	 	 	 	

	 	

	 	 	 	 	 	 	 	

	 	

	

	

	 	

	 	

	 	

	 	 	 	 	 	

	

	

	 	 	 	

	

	 	 	 		

	

	 	 	 	

	 	 	

	 	

	 	 	

	 	 	

	 	 	 	 	 	

	

	

	 	 	

	 	

	

Besides	UIElement,	many	other	Silverlight	classes	derive	from	DependencyObject.	But	

UIElement has	the	distinction	of	being	the	class	that	has	the	power	to	appear	as	a	visual	

object	on	the	screen	and	to	receive	user	input.	(In	Silverlight,	all	visual	objects	can	receive	user	

input.)	Traditionally,	this	user	input	comes	from	the	keyboard	and	mouse;	on	the	phone,	most	

user	input	comes	from	touch.	

The	only	class	that	derives	from	UIElement	is	FrameworkElement.	The	distinction	between	

these	two	classes	is	a	historical	artifact	of	the	Windows	Presentation	Foundation.	In	WPF,	it	is	

possible	for	developers	to	create	their	own	unique	frameworks	by	deriving	from	UIElement.	In	

Silverlight	this	is	not	possible,	so	the	distinction	is	fairly	meaningless.	

One	of	the	classes	that	derives	from	FrameworkElement	is	Control,	a	word	more	common	than	

element	in	traditional	graphical	userinterface	programming.	Some	objects	commonly	

referred	to	as	controls	in	other	programming	environments	are	more	correctly	referred	to	as	

elements	in	Silverlight.	Control	derivatives	include	buttons	and	sliders	that	I’ll	discuss	in	

Chapter	10.	

Another	class	that	derives	from	FrameworkElement	is	Panel,	which	is	the	parent	class	to	the	

Grid	and	StackPanel	elements	you	see	in	MainPage.xaml.	Panels	are	elements	that	can	host	

multiple	children	and	arrange	them	in	particular	ways	on	the	screen.	I’ll	discuss	panels	in	more	

depth	in	Chapter	9.	

Another	class	that	derives	from	FrameworkElement	is	TextBlock,	the	element	you’ll	use	most	

often	in	displaying	blocks	of	text	up	to	about	a	paragraph	in	length.	The	two	TextBlock

elements	in	MainPage.xaml	display	the	two	chunks	of	title	text	in	a	new	Silverlight	program.	

PhoneApplicationPage,	Grid,	StackPanel,	and	TextBlock	are	all	Silverlight	classes.	In	Markup	

these	become	XML	elements.	Properties	of	these	classes	become	XML	attributes.	

The	nesting	of	elements	in	MainPage.xaml	is	said	to	define	a	visual tree.	In	a	Silverlight	

program	for	Windows	Phone	7,	the	visual	tree	always	begins	with	an	object	of	type	

PhoneApplicationFrame,	which	occupies	the	entire	visual	surface	of	the	phone.	A	Silverlight	

program	for	Windows	Phone	7	always	has	one	and	only	one	instance	of	

PhoneApplicationFrame,	referred	to	informally	as	the	frame.	

In	contrast,	a	program	can	have	multiple	instances	of	PhoneApplicationPage,	referred	to	

informally	as	a	page.	At	any	one	time,	the	frame	hosts	one	page,	but	lets	you	navigate	to	the	

other	pages.	By	default,	the	page	does	not	occupy	the	full	display	surface	of	the	frame	

because	it	makes	room	for	the	system	tray	(also	known	as	the	status	bar)	at	the	top	of	the	

phone.	

Our	simple	application	has	only	one	page,	appropriately	called	MainPage.	This	MainPage

contains	a	Grid,	which	contains	a	StackPanel	with	a	couple	TextBlock	elements,	and	another	

Grid,	all	in	a	hierarchical	tree.	The	visual	tree	of	a	Silverlight	program	creates	by	Visual	Studio	

is:	

15	

	

	

	 	

	 	 	

	 	 	 	 	

	 	 	 	 	 	

	 	 	 	

	 	 	 	

	 	

	 	

	 	 	 	

	 	

	

	 	

	 	

	

	 	

	 	 	

	 	 	

	

PhoneApplicationFrame

PhoneApplicationPage

Grid	named	“LayoutRoot”	

StackPanel	named	“TitlePanel”	

TextBlock	named	“ApplicationTitle”	

TextBlock	named	“PageTitle”	

Grid	named	“ContentPanel”	

Our	original	goal	was	to	create	a	Silverlight	program	that	displays	some	text	in	the	center	of	

the	display,	but	given	the	presence	of	a	couple	titles,	let’s	amend	that	goal	to	displaying	the	

text	in	the	center	of	the	page	apart	from	the	titles.	The	area	of	the	page	for	program	content	

is	the	Grid	towards	the	bottom	of	the	file	preceded	by	the	comment	“ContentPanel		place	

additional	content	here.”	This	Grid	has	a	name	of	“ContentPanel”	and	I’m	going	to	refer	to	it	

informally	as	the	“content	panel”	or	“content	grid”.	The	area	of	the	screen	corresponding	to	

this	Grid	apart	from	the	titles	I’ll	often	refer	to	as	the	“content	area”.	

In	the	content	grid,	you	can	insert	a	new	TextBlock:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<TextBlock Text="Hello, Windows Phone 7!"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Grid>

Text,	HorizontalAlignment,	and	VerticalAlignment	are	all	properties	of	the	TextBlock	class.	The	

Text	property	is	of	type	string.	The	HorizontalAlignment	and	VerticalAlignment	properties	are	

of	numeration	types	HorizontalAlignment	and	VerticalAlignment,	respectively.	When	you	

reference	an	enumeration	type	in	XAML,	you	only	need	the	member	name.	

While	you’re	editing	MainPage.xaml	you	might	also	want	to	fix	the	other	TextBlock	elements	

so	that	they	aren’t	so	generic.	Change	

<TextBlock … Text="MY APPLICATION" … />

to	

<TextBlock … Text="SILVERLIGHT HELLO PHONE" … />

and	

<TextBlock … Text="page title" … />

to:	

<TextBlock … Text="main page" … />

16	

	

	 	 	

	 	

	 	

	

	 	 	

	

	

	 	

	 	

	 	 	 	

	 	 	 	

	 	 	

	 	

	

	 	 	

	 	

	It	doesn’t	make	much	sense	to	have	a	page	title	in	a	Silverlight	application	with	only	a	single	

page,	and	you	can	delete	that	second	TextBlock	if	you’d	like.	The	changes	you	make	to	this	

XAML	file	will	be	reflected	in	the	design	view.	You	can	now	compile	and	run	this	program:	

This	screen	shot—and	most	of	the	remaining	screen	shots	in	this	book—are	shown	on	the	

pages	of	this	book	with	a	size	that	approximates	the	size	of	the	actual	phone,	surrounded	by	

some	simple	“chrome”	that	symbolizes	either	the	actual	phone	or	the	phone	emulator.	

As	simple	as	it	is,	this	program	demonstrates	some	essential	concepts	of	Silverlight	

programming,	including	dynamic	layout.	The	XAML	file	defines	a	layout	of	elements	in	a	

visual	tree.	These	elements	are	capable	of	arranging	themselves	dynamically.	The	

HorizontalAlignment	and	VerticalAlignment properties	can	put	an	element	in	the	center	of	

another	element,	or	(as	you	might	suppose)	along	one	of	the	edges	or	in	one	of	the	corners.	

TextBlock	is	one	of	a	number	of	possible	elements	you	can	use	in	a	Silverlight	program;	others	

include	bitmap	images,	movies,	and	familiar	controls	like	buttons,	sliders,	and	list	boxes.	

Color
Themes

From	the	Start	screen	of	the	phone	or	phone	emulator,	click	or	touch	the	right	arrow	at	the	

upper	right	and	navigate	to	the	Settings	page	and	then	select	Theme.	A	Windows	Phone	7	

theme	consists	of	a	Background	and	an	Accent	color.	For	the	Background	you	can	select	

either	Dark	(light	text	on	a	dark	background,	which	you’ve	been	seeing)	or	Light	(the	

17

	

	

	

	

	 	 	

	 	 	

	

	 	 	 	 	

	 	

	

	 	

	 	

	

	

opposite).	Select	the	Light	theme,	run	SilverlightHelloPhone	again,	and	express	some	

satisfaction	that	the	theme	colors	are	automatically	applied:	

Although	these	colors	are	applied	automatically,	you’re	not	stuck	with	them	in	your	

application.	If	you’d	like	the	text	to	be	displayed	in	a	different	color,	you	can	try	setting	the	

Foreground	attribute	in	the	TextBlock	tag,	for	example:	

Foreground="Red"

You	can	put	it	anywhere	in	the	tag	as	long	as	you	leave	spaces	on	either	side.	As	you	type	this	

attribute,	you’ll	see	a	list	of	colors	pop	up.	Silverlight	supports	the	140	color	names	supported	

by	many	browsers,	as	well	as	a	bonus	141st	color,	Transparent.	

In	a	realworld	program,	you’ll	want	to	test	out	any	custom	colors	with	the	available	themes	

so	text	doesn’t	mysteriously	disappear	or	becomes	hard	to	read.	

Points
and
Pixels

Another	property	of	the	TextBlock	that	you	can	easily	change	is	FontSize:	

FontSize="36"

But	what	exactly	does	this	mean?	

18	

	

	 	 	 	

	

	

	 	

	

	 	 	 	

	

	 	

	

	

	

	 	

	 	 	 	 	 	

	 	

	

	 	

	 	 	

	

	 	

	

	

	 	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	

	 	 	

	 	

	 	 	 	

	 	

	 	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	 	

All	dimensions	in	Silverlight	are	in	units	of	pixels,	and	the	FontSize	is	no	exception.	When	you	

specify	36,	you	get	a	font	that	from	the	top	of	its	ascenders	to	the	bottom	of	its	descenders	

measures	approximately	36	pixels.	

But	fonts	are	never	this	simple.	The	resultant	TextBlock	will	actually	have	a	height	more	like	48	

pixels—about	33%	higher	than	the	FontSize	would	imply.	This	additional	space	(called	

leading)	prevents	successive	lines	of	text	from	jamming	against	each	other.	

Traditionally,	font	sizes	are	expressed	in	units	of	points.	In	classical	typography,	a	point	is	very	

close	to	1/72nd	inch	but	in	digital	typography	the	point	is	often	assumed	to	be	exactly	1/72nd	

inch.	A	font	with	a	size	of	72	points	measures	approximately	an	inch	from	the	top	of	its	

characters	to	the	bottom.	(I	say	“approximately”	because	the	point	size	indicates	a	

typographic	design	height,	and	it’s	really	the	creator	of	the	font	who	determines	exactly	how	

large	the	characters	of	a	72point	font	should	be.)	

How	do	you	convert	between	pixels	and	points?	Obviously	you	can’t	except	for	a	particular	

output	device.	On	a	600	dotsperinch	(DPI)	printer,	for	example,	the	72point	font	will	be	600	

pixels	tall.	

Desktop	video	displays	in	common	use	today	usually	have	a	resolution	somewhere	in	the	

region	of	100	DPI.	For	example,	consider	a	21”	monitor	that	displays	1600	pixels	horizontally	

and	1200	pixels	vertically.	That’s	2000	pixels	diagonally,	which	divided	by	21”	is	about	95	DPI.	

By	default,	Microsoft	Windows	assumes	that	video	displays	have	a	resolution	of	96	DPI.	Under	

that	assumption,	font	sizes	and	pixels	are	related	by	the	following	formulas:	

points	=	¾	×	pixels	

pixels	=	 4/3	×	points	

Although	this	relationship	applies	only	to	common	video	displays,	people	so	much	enjoy	

having	these	conversion	formulas,	they	show	up	in	Windows	Phone	7	programming	as	well.	

So,	when	you	set	a	FontSize	property	such	as	

FontSize="36"

you	can	also	claim	to	be	setting	a	27point	font.	

For	a	particular	point	size,	increase	by	33%	to	get	a	pixel	size.	This	is	what	you	set	to	the	

FontSize	property	of	TextBlock.	The	resultant	TextBlock	will	then	be	another	33%	taller	than	

the	FontSize	setting.	

The	issue	of	font	size	becomes	more	complex	when	dealing	with	highresolution	screens	

found	on	devices	such	as	Windows	Phone	7.	The	480	× 800	pixel	display	has	a	diagonal	of	933	

pixels.	The	phone	I	used	for	this	book	has	a	screen	with	about	3½”	for	a	pixel	density	closer	to	

19	

	

	

	 	 	 	 	 	 	

	

	 	

	 	 	

	 	 	 	

	 	 	 	 	

	 	 	

	 	

	

	 	 	 	

	 	

	 	

		

	

	

	

	

	

	 	 	 	 	 	

	

	

	 	

	 	

	

264	DPI.	(Screen	resolution	is	usually	expressed	as	a	multiple	of	24.)	Roughly	that’s		2½		times	

the 	resolution	of	conventional	video	displays.	

This	doesn’t	necessarily	mean	that	all	the	font	sizes	used	on	a	conventional	screen	need	to	be	

increased	by	2½	times	on	the	phone.	The	higher	resolution	of	the	phone—and	the	closer	

viewing	distance	common	with	phones—allows	smaller	font	sizes	to	be	more	readable.		

When	running	in	a	Web	browser,	the	default	Silverlight	FontSize is	11	pixels,	corresponding	to	

a	font	size	of	8.25	points,	which	is	fine	for	a	desktop	video	display	but	a	little	too	small	for	the	

phone.	For	that	reason,	Silverlight	for	Windows	Phone	defines	a	collection	of	common	font	

sizes	that	you	can	use.	(I’ll	describe	how	these	work	in	Chapter	7.)	The	standard	

MainPage.xaml	file	includes	the	following	attribute	in	the	root	element:	

FontSize="{StaticResource PhoneFontSizeNormal}"

This	FontSize is	inherited	through	the	visual	tree	and	applies	to	all	TextBlock	elements	that	

don’t	set	their	own	FontSize	properties.	It	has	a	value	of	20	pixels—almost	double	the	default	

Silverlight	FontSize	on	the	desktop.	Using	the	standard	formulas,	this	20pixel	FontSize

corresponds	to	15	points,	but	as	actually	displayed	on	the	phone,	it’s	about	2/5	the	size	that	a	

15point	font	would	appear	in	printed	text.	

The	actual	height	of	the	TextBlock	displaying	text	with	this	font	is	about	33%	more	than	the	

FontSize,	in	this	case	about	27	pixels.	

The
XAP
is
a
ZIP

If	you	navigate	to	the	\bin\Debug	directory	of	the	Visual	Studio	project	for	

SilverlightHelloPhone,	you’ll	find	a	file	named	SilverlightHelloPhone.xap.	This	is	commonly	

referred	to	as	a	XAP	file,	pronounced	“zap.”	This	is	the	file	that	is	deployed	to	the	phone	or	

phone	emulator.	

The	XAP	file	is	a	package	of	other	files,	in	the	very	popular	compression	format	known	as	ZIP.	

(Shouting	“The	XAP	is	a	ZIP”	in	a	crowded	room	will	quickly	attract	other	Silverlight	

programmers.)	If	you	rename	SilverlightHelloPhone.xap	to	SilverlightHelloPhone.zip,	you	can	

look	inside.	You’ll	see	several	bitmap	files	that	are	part	of	the	project,	an	XML	file,	a	XAML	file,	

and	a	SilverlightHelloPhone.dll	file,	which	is	the	compiled	binary	of	your	program.	

Any	assets	that	your	program	needs	can	be	made	part	of	the	Visual	Studio	project	and	added	

to	this	XAP	file.	Your	program	can	access	these	files	at	runtime.	I’ll	discuss	some	of	the	

concepts	in	Chapter	4.	

20	

	

	

	 	 	

	 	 	 	 	

	 	 	 	

	

	 	

	

	 	 	

	 	

	 	 	 	 	 	 	 	

	 	

	 	 	

	 	

	 	 	

	 	

	 	 	 	

	

	 	 	 	

	 	 	 	

	 	 	

	 	 	 	

	 	 	

	 	 	

	

	 	 	

	

	 	

	 	

	 	 	

	

	 	 	 	 	 	

	 	

An
XNA
Program
for
the
Phone

Next	up	on	the	agenda	is	an	XNA	program	that	displays	a	little	greeting	in	the	center	of	the	

screen.	While	text	is	often	prevalent	in	Silverlight	applications,	it	is	less	common	in	graphical	

games.		In	games,	text	is	usually	relegated	to	describing	how	the	game	works	or	displaying	

the	score,	so	the	very	concept	of	a	“hello,	world”	program	doesn’t	quite	fit	in	with	the	whole	

XNA	programming	paradigm.	

In	fact,	XNA	doesn’t	even	have	any	builtin	fonts.	You	might	think	that	an	XNA	program	

running	on	the	phone	can	make	use	of	the	same	native	fonts	as	Silverlight	programs,	but	this	

is	not	so.	Silverlight	uses	vectorbased	TrueType	fonts	and	XNA	doesn’t	know	anything	about	

such	exotic	concepts.	To	XNA,	everything	is	a	bitmap,	including	fonts.	

If	you	wish	to	use	a	particular	font	in	your	XNA	program,	that	font	must	be	embedded	into	

the	executable	as	a	collection	of	bitmaps	for	each	character.	XNA	Game	Studio	(which	is	

integrated	into	Visual	Studio)	makes	the	actual	process	of	font	embedding	very	easy,	but	it	

raises	some	thorny	legal	issues.	You	can’t	legally	distribute	an	XNA	program	unless	you	can	

also	legally	distribute	the	embedded	font,	and	with	most	of	the	fonts	distributed	with	

Windows	itself	or	Windows	applications,	this	is	not	the	case.	

To	help	you	out	of	this	legal	quandary,	Microsoft	licensed	some	fonts	from	Ascender	

Corporation	specifically	for	the	purpose	of	allowing	you	to	embed	them	in	your	XNA	

programs.	Here	they	are:	

Kootenay Lindsey

Miramonte Pescadero

Miramonte Bold Pescadero Bold

Pericles Segoe UI Mono

Pericles Light

Notice	that	the	Pericles	font	uses	small	capitals	for	lowercase	letters,	so	it’s	probably	suitable	

only	for	headings.	

From	the	File	menu	of	Visual	Studio	select	New	and	Project.	On	the	left	of	the	dialog	box,	

select	Visual	C#	and	XNA	Game	Studio	4.0.	In	the	middle,	select	Windows	Phone	Game	(4.0).	

Select	a	location	and	enter	a	project	name	of	XnaHelloPhone.	

Visual	Studio	creates	two	projects,	one	for	the	program	and	the	other	for	the	program’s	

content.	XNA	programs	usually	contain	lots	of	content,	mostly	bitmaps	and	3D	models,	but	

fonts	as	well.	To	add	a	font	to	this	program,	rightclick	the	Content	project	(labeled	

“XnaHelloPhoneContent	(Content)”	and	from	the	popup	menu	choose	Add	and	New	Item.	

Choose	Sprite	Font,	leave	the	filename	as	SpriteFont1.spritefont,	and	click	Add.	

21	

	

	

	 	 	 	 		

	 	 	 	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	

	 	 	

	 	

	

	 	 	 	 	

	 	 	

	 	

	

	

	 	 	

	 	 	 	 	

	 	

	 	 	

The	word	“sprite”	is	common	in	game	programming	and	usually	refers	to	a	small	bitmap	that	

can	be	moved	very	quickly,	much	like	the	sprites	you	might	encounter	in	an	enchanted	forest.	

In	XNA,	even	fonts	are	sprites.	

You’ll	see	SpriteFont1.spritefont	show	up	in	the	file	list	of	the	Content	directory,	and	you	can	

edit	an	extensively	commented	XML	file	describing	the	font.		

XNA Project: File: (complete w/o comments)

<XnaContent xmlns:Graphics="Microsoft.Xna.Framework.Content.Pipeline.Graphics">

 <Asset Type="Graphics:FontDescription">

 <FontName>Segoe UI Mono</FontName>

<Size>14</Size>

<Spacing>0</Spacing>

<UseKerning>true</UseKerning>

<Style>Regular</Style>

<CharacterRegions>

<CharacterRegion>

<Start> </Start>

<End>~</End>

</CharacterRegion>

 </CharacterRegions>

</Asset>

</XnaContent>

Within	the	FontName	tags	you’ll	see	Segoe	UI	Mono,	but	you	can	change	that	to	one	of	the	

other	fonts	I	listed	earlier.	If	you	want	Pericles	Light,	put	the	whole	name	in	there,	but	if	you	

want	Miramonte	Bold	or	Pescadero	Bold	or	Segoe	UI	Mono	Bold,	use	just	Miramonte	or	

Pescadero	or	Segoe	UI	Mono,	and	enter	the	word	Bold	between	the	Style	tags.	You	can	use	

Bold	for	the	other	fonts	as	well,	but	for	the	other	fonts,	bold	will	be	synthesized,	while	for	

Miramonte	or	Pescadero	or	Segoe	UI	Mono,	you’ll	get	the	font	actually	designed	for	bold.	

The	Size	tags	indicate	the	point	size	of	the	font.	In	XNA	as	in	Silverlight,	you	deal	almost	

exclusively	with	pixel	coordinates	and	dimensions,	but	the	conversion	between	points	and	

pixels	used	within	XNA	is	based	on	96	DPI	displays.	The	point	size	of	14	becomes	a	pixel	size	

of	182/3	within	your	XNA	program.	This	is	very	close	to	the	15point	and	20pixel	“normal”	

FontSize in	Silverlight	for	Windows	Phone.	

The	CharacterRegions	section	of	the	file	indicates	the	ranges	of	hexadecimal	Unicode	

character	encodings	you	need.	The	default	setting	from	0x32	through	0x126	includes	all	the	

noncontrol	characters	of	the	ASCII	character	set.	

The	filename	of	SpriteFont1.spritefont	is	not	very	descriptive.	I	like	to	rename	it	to	something	

that	describes	the	actual	font;	if	you’re	sticking	with	the	default	font	settings,	you	can	rename	

it	to	Segoe14.spritefont.	If	you	look	at	the	properties	for	this	file—rightclick	the	filename	and	

select	Properties—you’ll	see	an	Asset	Name	that	is	also	the	filename	without	the	extension:	

22	

	

	 	 	 	 	 	

	 	 	 	 	

	

	 	

	 	

	 	 	 	 	

	 	 	 	

	

	 	 	

	

	

	

	 	 	

	 	 	

	 	 	

	 	 		

	 	 	 	 	

	 	 	 	

Segoe14.	This	Asset	Name	is	what	you	use	to	refer	to	the	font	in	your	program	to	load	the	

font.	If	you	want	to	confuse	yourself,	you	can	change	the	Asset	Name	independently	of	the	

filename.	

In	its	initial	state,	the	XNAHelloPhone	project	contains	two	C#	code	files:	Program.cs	and	

Game1.cs.	The	first	is	very	simple	and	turns	out	to	be	irrelevant	for	Windows	Phone	7	games!	

A	preprocessor	directive	enables	the	Program	class	only	if	a	symbol	of	WINDOWS	or	XBOX	is	

defined.	When	compiling	Windows	Phone	programs,	the	symbol	WINDOWS_PHONE	is	

defined	instead.	

For	most	small	games,	you’ll	be	spending	all	your	time	in	the	Game1.cs	file.	The	Game1	class	

derives	from	Game	and	in	its	pristine	state	it	defines	two	fields:	graphics	and	spriteBatch.	To	

those	two	fields	I	want	to	add	three	more:	

XNA Project: File: (excerpt showing fields)

namespace XnaHelloPhone

{

public class Game1 : Microsoft.Xna.Framework.Game

 {

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

string text = "Hello, Windows Phone 7!";

SpriteFont segoe14;

Vector2 textPosition;

…

 }

}

These	three	new	fields	simply	indicate	the	text	that	the	program	will	display,	the	font	it	will	

use	to	display	it,	and	the	position	of	the	text	on	the	screen.	That	position	is	specified	in	pixel	

coordinates	relative	to	the	upperleft	corner	of	the	display.	The	Vector2	structure	has	two	

fields	named	X	and	Y	of	type	float.	For	performance	purposes,	all	floatingpoint	values	in	XNA	

are	singleprecision.	(Silverlight	is	all	doubleprecision.)	The	Vector2	structure	is	often	used	for	

twodimensional	points,	sizes,	and	even	vectors.	

When	the	game	is	run	on	the	phone,	the	Game1	class	is	instantiated	and	the	Game1

constructor	is	executed.	This	standard	code	is	provided	for	you:	

XNA Project: File: (excerpt)

public Game1()

{

 graphics = new GraphicsDeviceManager(this);

 Content.RootDirectory = "Content";

23	

	

	 	 	

	 	 	

	

	 	 	 	

	 	 	

	

	 	 	

	 	

	

	 	

	 	 	 	

	 	 	 	

	 	 	 	

	 	

	 	

// Frame rate is 30 fps by default for Windows Phone.

 TargetElapsedTime = TimeSpan.FromTicks(333333);

}

The	first	statement	initializes	the	graphics field.	In	the	second	statement,	Content	is	a	property	

of	Game	of	type	ContentManager,	and	RootDirectory	is	a	property	of	that	class.	Setting	this	

property	to	“Content”	is	consistent	with	the	Content	directory	that	is	currently	storing	the	14

point	Segoe	font.	The	third	statement	sets	a	time	for	the	program’s	game	loop,	which	governs	

the	pace	at	which	the	program	updates	the	video	display.	The	Windows	Phone	7	screen	is	

refreshed	at	30	frames	per	second.	

After	Game1	is	instantiated,	a	Run	method	is	called	on	the	Game1	instance,	and	the	base	

Game	class	initiates	the	process	of	starting	up	the	game.	One	of	the	first	steps	is	a	call	to	the	

Initialize method,	which	a	Game	derivative	can	override.	XNA	Game	Studio	generates	a	

skeleton	method	to	which	I	won’t	add	anything:	

XNA Project: File: (excerpt)

protected override void Initialize()

{

 base.Initialize();

}

The	Initialize	method	is	not	the	place	to	load	the	font	or	other	content.	That	comes	a	little	

later	when	the	base	class	calls	the	LoadContent	method.	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 segoe14 = this.Content.Load<SpriteFont>("Segoe14");

Vector2 textSize = segoe14.MeasureString(text);

Viewport viewport = this.GraphicsDevice.Viewport;

 textPosition = new Vector2((viewport.Width - textSize.X) / 2,

 (viewport.Height - textSize.Y) / 2);

}

The	first	statement	in	this	method	is	provided	for	you.	You’ll	see	shortly	how	this	spriteBatch

object	is	used	to	shoot	sprites	out	to	the	display.	

The	other	statements	are	ones	I’ve	added,	and	you’ll	notice	I	tend	to	preface	property	names	

like	Content	and	GraphicsDevice	with	the	keyword	this	to	remind	myself	that	they’re	

24	

	

	 	 	 	

	 	

	 	 	

	 	 	 	

	

	 	 	 	 	

	 	 	

	

	 	 	

	 	 	 	

	 	 	 	

	

	 	

	

	 	 	

	 	

	 	

	 	 	

	 	 	 	 	

	 	

	

	 	

	 	 	 	

	 	 	

	 	

	 	 	 	

	

	

		

	 	 	

	

	 	 	 	

properties	and	not	a	static	class.	As	I	mentioned,	the	Content property	is	of	type	

ContentManager.	The	generic	Load	method	allows	loading	content	into	the	program,	in	this	

case	content	of	type	SpriteFont.	The	name	in	quotation	marks	is	the	Asset	Name	as	indicated	

in	the	content’s	properties.	This	statement	stores	the	loaded	font	in	the	segoe14	field	of	type	

SpriteFont.	

In	XNA,	sprites	(including	text	strings)	are	usually	displayed	by	specifying	the	pixel	coordinates	

relative	to	the	upperleft	corner	or	the	sprite	relative	to	the	upperleft	corner	of	the	display.	

To	calculate	these	coordinates,	it’s	helpful	to	know	both	the	screen	size	and	the	size	of	the	

text	when	displayed	with	a	particular	font.	

The	SpriteFont	class	has	a	very	handy	method	named	MeasureString	that	returns	a	Vector2

object	with	the	size	of	a	particular	text	string	in	pixels.	(For	the	14point	Segoe	UI	Mono	font,	

which	has	an	equivalent	height	of	182/3	pixels,	the	MeasureString call	returns	a	height	of	28	

pixels.)	

An	XNA	program	generally	uses	the	Viewport	property	of	the	GraphicsDevice	class	to	obtain	

the	size	of	the	screen.	This	is	accessible	through	the	GraphicsDevice	property	of	Game	and	

provides	Width	and	Height	properties.		

It	is	then	straightforward	to	calculate	textPosition—the	point	relative	to	the	upperleft	corner	

of	the	viewport	where	the	upperleft	corner	of	the	text	string	is	to	be	displayed.	

The	initialization	phase	of	the	program	has	now	concluded,	and	the	real	action	begins.	The	

program	enters	the	game loop.	In	synchronization	with	the	30	framepersecond	refresh	rate	

of	the	video	display,	two	methods	in	your	program	are	called:	Update	followed	by	Draw.	Back	

and	forth:	Update,	Draw,	Update,	Draw,	Update,	Draw….	(It’s	actually	somewhat	more	

complicated	than	this	if	the	Update	method	requires	more	than	1/30th	 of	a	second	to	

complete,	but	I’ll	discuss	these	timing	issues	in	more	detail	in	a	later	chapter.)	

In	the	Draw	method	you	want	to	draw	on	the	display.	But	that’s	all	you	want	to	do.	If	you	

need	to	perform	some	calculations	in	preparation	for	drawing,	you	should	do	those	in	the	

Update	method.	The	Update method	prepares	the	program	for	the	Draw method.	Very	often	

an	XNA	program	will	be	moving	sprites	around	the	display	based	on	user	input.	For	the	

phone,	this	user	input	mostly	involves	fingers	touching	the	screen.	All	handling	of	user	input	

should	also	occur	during	the	Update	method.	You’ll	see	an	example	in	Chapter	3.	

You	should	write	your	Update	and	Draw	methods	so	that	they	execute	as	quickly	as	possible.	

That’s	rather	obvious,	I	guess,	but	here’s	something	very	important	that	might	not	be	so	

obvious:	

You	should	avoid	code	in	Update	and	Draw	that	routinely	allocates	memory	from	the	

program’s	local	heap.	Eventually	the	.NET	garbage	collector	will	want	to	reclaim	some	of	this	

memory,	and	while	the	garbage	collector	is	doing	its	job,	your	game	might	stutter	a	bit.	

25	

	

	 	

	 	 	

	 	

	

	 	

	 	 	

	 	 	

	 	 	

	 	

	 	 	

	 	 	

	 	 	 	

	

	 	 	

	 	

	 	

	

	 	 	

	 	 	

Throughout	the	chapters	on	XNA	programming,	you’ll	see	techniques	to	avoid	allocating	

memory	from	the	heap.	

Your	Draw methods	probably	won’t	contain	any	questionable	code;	it’s	usually	in	the	Update

method	where	trouble	lurks.	Avoid	any	new	expressions	involving	classes.	These	always	cause	

memory	allocation.	Instantiating	a	structure	is	fine,	however,	because	structure	instances	are	

stored	on	the	stack	and	not	in	the	heap.	(XNA	uses	structures	rather	than	classes	for	many	

types	of	objects	you’ll	often	need	to	create	in	Update.)	But	heap	allocations	can	also	occur	

without	explicit	new	expressions.	For	example,	concatenating	two	strings	creates	another	

string	on	the	heap.	If	you	need	to	perform	string	manipulation	in	Update,	you	should	use	

StringBuilder.	Conveniently,	XNA	provides	methods	to	display	text	using	StringBuilder	objects.	

In	XnaHelloPhone,	however,	the	Update method	is	trivial.	The	text	displayed	by	the	program	is	

anchored	in	one	spot.	All	the	necessary	calculations	have	already	been	performed	in	the	

LoadContent method.	For	that	reason,	the	Update method	will	be	left	simply	as	XNA	Game	

Studio	originally	created	it:	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

 base.Update(gameTime);

}

The	default	code	uses	the	static	GamePad	class	to	check	if	the	phone’s	hardware	Back	button	

has	been	pressed	and	uses	that	to	exit	the	game.	

Finally,	there	is	the	Draw	method.	The	version	created	for	you	simply	colors	the	background	

with	a	light	blue:	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.CornflowerBlue);

base.Draw(gameTime);

}

The	color	known	as	CornflowerBlue	has	achieved	iconic	status	in	the	XNA	programming	

community.	When	you’re	developing	an	XNA	program,	the	appearance	of	the	light	blue	

screen	is	very	comforting	because	it	means	the	program	has	at	least	gotten	as	far	as	Draw.	

26	

	

	 	

	

	 	

	 	 	

	 	 	

	 	 	 	 	

	 	 	 	

	 	

	

But	if	you	want	to	conserve	power	on	OLED	displays,	you	want	to	go	with	darker	

backgrounds.	In	my	revised	version,	I’ve	compromised	by	setting	the	background	to	a	darker	

blue.	As	in	Silverlight,	XNA	supports	the	140	colors	that	have	come	to	be	regarded	as	

standard.	The	text	is	colored	white:	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.DrawString(segoe14, text, textPosition, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}

Sprites	get	out	on	the	display	by	being	bundled	into	a	SpriteBatch	object,	which	was	created	

during	the	call	to	LoadContent.	Between	calls	to	Begin	and	End there	can	be	multiple	calls	to	

DrawString	to	draw	text	and	Draw	to	draw	bitmaps.	Those	are	the	only	options.	This	particular	

DrawString call	references	the	font,	the	text	to	display,	the	position	of	the	upperleft	corner	of	

the	text	relative	to	the	upperleft	corner	of	the	screen,	and	the	color.	And	here	it	is:	

27	

	

	

	 	 	 	 	 	 	

	

	

	

	

Oh,	that’s	interesting!	By	default,	Silverlight	programs	come	up	in	portrait	mode,	but	XNA	

programs	come	up	in	landscape	mode.	Let’s	turn	the	phone	or	emulator	sideways:	

Much	better!		

But	this	raises	a	question:	Do	Silverlight	programs	always	run	in	portrait	mode	and	XNA		

programs	always	run	in	landscape	mode?		

Is	program	biology	destiny?		

28	

	

	 	

	

	

	 	

	 	 	

	

	

	

	

	 	

	

	

	 	

	 		

	 	 	

	 	

Chapter	2	

Getting Oriented
By	default,	Silverlight	programs	for	Windows	Phone	7	run	in	portrait	mode,	and	XNA	

programs	run	in	landscape	mode.	This	chapter	discusses	how	to	transcend	those	defaults	and	

explores	other	issues	involving	screen	sizes,	element	sizes,	and	events.	

Silverlight
and
Dynamic
Layout

If	you	run	the	SilverlightHelloPhone	program	from	the	last	chapter,	and	you	turn	the	phone	

or	emulator	sideways,	you’ll	discover	that	the	display	doesn’t	change	to	accommodate	the	

new	orientation.	That’s	easy	to	fix.	In	the	root	PhoneApplicationPage	tag,	of	MainPage.xaml	

change	the	attribute	

SupportedOrientations="Portrait"

to:	

SupportedOrientations="PortraitOrLandscape"

SupportedOrientations	is	a	property	of	PhoneApplicationPage.	It’s	set	to	a	member	of	the	

SupportedPageOrientation	enumeration,	either	Portrait,	Landscape,	or	PortraitOrLandscape.	

Recompile.	Now	when	you	turn	the	phone	or	emulator	sideways,	the	contents	of	the	page	

shift	around	accordingly:	

The	SupportedOrientations property	also	allows	you	to	restrict	your	program	to	Landscape	if	

you	need	to.	

This	response	to	orientation	really	shows	off	dynamic	layout	in	Silverlight.	Everything	has	

moved	around	and	some	elements	have	changed	size.	Silverlight	originated	in	WPF	and	the	

29	

	

	

	

	

	 	

	 	

		

	 	

	 	 		

	 	

	 	 	

	 	 	 	

	 	 	 	 	

	 	 	

	 	

	 	

desktop,	so	historically	it	was	designed	to	react	to	changes	in	window	sizes	and	aspect	ratios.	

This	facility	carries	well	into	the	phone.	

Two	of	the	most	important	properties	in	working	with	dynamic	layout	are	

HorizontalAlignment	and	VerticalAlignment.	In	the	last	chapter,	using	these	properties	to	

center	text	in	a	Silverlight	program	was	certainly	easier	than	performing	calculations	based	on	

screen	size	and	text	size	that	XNA	required.	

On	the	other	hand,	if	you	now	needed	to	stack	a	bunch	of	text	strings,	you	would	probably	

find	it	straightforward	in	XNA,	but	not	so	obvious	in	Silverlight.	

Rest	assured	that	there	are	ways	to	organize	elements	in	Silverlight.	A	whole	category	of	

elements	called	panels	exist	solely	for	that	purpose.	You	can	even	position	elements	based	on	

pixel	coordinates,	if	that’s	your	preference.	But	a	full	coverage	of	panels	won’t	come	until	

Chapter	9.	

In	the	meantime,	you	can	try	putting	multiple	elements	into	the	content	grid.	Normally	a	Grid

organizes	its	content	into	cells	identified	by	row	and	column,	but	this	program	puts	nine	

TextBlock	elements	in	a	singlecell	Grid	to	demonstrate	the	use	of	HorizontalAlignment	and	

VerticalAlignment	in	nine	different	combinations:	

Silverlight Project: SilverlightCornersAndEdges File: MainPage.xaml

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<TextBlock Text="Top-Left"

 VerticalAlignment="Top"

 HorizontalAlignment="Left" />

<TextBlock Text="Top-Center"

 VerticalAlignment="Top"

 HorizontalAlignment="Center" />

<TextBlock Text="Top-Right"

 VerticalAlignment="Top"

 HorizontalAlignment="Right" />

<TextBlock Text="Center-Left"

 VerticalAlignment="Center"

 HorizontalAlignment="Left" />

<TextBlock Text="Center"

 VerticalAlignment="Center"

 HorizontalAlignment="Center" />

<TextBlock Text="Center-Right"

 VerticalAlignment="Center"

 HorizontalAlignment="Right" />

<TextBlock Text="Bottom-Left"

30	

	

	

	 	 	 	

	

	 	

	 	

	 	

	 	 	 	

	 	

		

	 	 	

	 	 	 	 	 	 	 	

 VerticalAlignment="Bottom"

 HorizontalAlignment="Left" />

<TextBlock Text="Bottom-Center"

 VerticalAlignment="Bottom"

 HorizontalAlignment="Center" />

<TextBlock Text="Bottom-Right"

 VerticalAlignment="Bottom"

 HorizontalAlignment="Right" />

</Grid>

As	with	many	of	the	simpler	Silverlight	programs	in	this	book,	I’ve	set	the	

SupportedOrientations	property	of	MainPage	to	PortraitOrLandscape.	And	here	it	is	turned	

sideways:	

Although	this	screen	appears	to	show	all	the	combinations,	the	program	does	not	actually	

show	the	default settings	of	the	HorizontalAlignment	and	VerticalAlignment	properties.	The	

default	settings	are	enumeration	members	named	Stretch.	If	you	try	them	out,	you’ll	see	that	

the	TextBlock	sits	in	the	upperleft	corner,	just	as	with	values	of	Top	and	Left.	But	what	won’t	

be	so	obvious	is	that	the	TextBlock	occupies	the	entire	interior	of	the	Grid.	The	TextBlock	has	a	

transparent	background	(and	you	can’t	set	an	alternative)	so	it’s	a	little	difficult	to	tell	the	

difference.	But	I’ll	demonstrate	the	effect	in	the	next	chapter.	

Obviously	the	HorizontalAlignment	and	VerticalAlignment	properties	are	very	important	in	the	

layout	system	in	Silverlight.	So	is	Margin.	Try	adding	a	Margin	setting	to	the	first	TextBlock	in	

this	program:	

<TextBlock Text="Top-Left"

 VerticalAlignment="Top"

 HorizontalAlignment="Left"

 Margin="100" />

Now	there’s	a	100pixel	breathing	room	between	the	TextBlock	and	the	left	and	top	edges	of	

the	client	area.	The	Margin	property	is	of	type	Thickness,	a	structure	that	has	four	properties	

31

	

	 	 	 	 	

	

	 	 	 	 	

	 	 	 	

	

	

	 	 	

	

	 	 	

	 	 	

	 	 	

	 	

	

	 	 	 	

	 	 	

	 	 	

	

	

	

	 	

named	Left,	Top,	Right,	and	Bottom.	If	you	specify	only	one	number	in	XAML,	that’s	used	for	

all	four	sides.	You	can	also	specify	two	numbers	like	this:	

Margin="100 200"

The	first	applies	to	the	left	and	right;	the	second	to	the	top	and	bottom.	With	four	numbers	

Margin="100 200 50 300"

they're	in	the	order	left,	top,	right,	and	bottom.	Watch	out:	If	the	margins	are	too	large,	the	

text	or	parts	of	the	text	will	disappear.	Silverlight	preserves	the	margins	even	at	the	expense	of	

truncating	the	element.	

If	you	set	both	HorizontalAlignment	and	VerticalAlignment	to	Center,	and	set	Margin	to	four	

different	numbers,	you’ll	notice	that	the	text	is	no	longer	visually	centered	in	the	content	area.	

Silverlight	bases	the	centering	on	the	size	of	the	element	including	the	margins.	

TextBlock	also	has	a	Padding	property:	

<TextBlock Text="Top-Left"

 VerticalAlignment="Top"

 HorizontalAlignment="Left"

 Padding="100 200" />

Padding	is	also	of	type	Thickness,	and	when	used	with	the	TextBlock,	Padding	is	visually	

indistinguishable	from	Margin.	 But	they	are	definitely	different:	Margin	is	space	on	the	

outside	of	the	TextBlock;	Padding	is	space	inside	the	TextBlock	not	occupied	by	the	text	itself.	

If	you	were	using	TextBlock	for	touch	events	(as	I’ll	demonstrate	in	the	next	chapter),	it	would	

respond	to	touch	in	the	Padding area	but	not	the	Margin	area.	

The	Margin	property	is	defined	by	FrameworkElement;	in	reallife	Silverlight	programming,	

almost	everything	gets	a	nonzero	Margin	property	to	prevent	the	elements	from	being	

jammed	up	against	each	other.	The	Padding	property	is	rarer;	it’s	defined	only	by	TextBlock,	

Border,	and	Control.	

It’s	possible	to	use	Margin	to	position	multiple	elements	within	a	singlecell	Grid.	It’s	not	

common—and	there	are	better	ways	to	do	the	job—but	it	is	possible.	I’ll	have	an	example	in	

Chapter	5.	

What’s	crucial	to	realize	is	what	we’re	not doing.	We’re	not	explicitly	setting	the	Width	and	

Height	of	the	TextBlock	like	in	some	antique	programming	environment:	

<TextBlock Text="Top-Left"

 VerticalAlignment="Top"

 HorizontalAlignment="Left"

 Width="100"

 Height="50" />

32	

	

	 	

	

	 	 	

	 	 	 	

	 	 	

	 	 	 	

	 	

	 	

	

	 	 	

	 	

	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 	

	 	 	 	

	 	

	 	 	

	 	 	

	 	 	

	 	 	

	

You’re	second	guessing	the	size	of	the	TextBlock	without	knowing	as	much	about	the	element	

as	the	TextBlock	itself.	In	some	cases,	setting	Width	and	Height	is	appropriate,	but	not	here.	

The	Width	and	Height properties	are	of	type	double,	and	the	default	values	are	those	special	

floatingpoint	values	called	Not	a	Number	or	NaN.	 If	you	need	to	get	the	actual	width	and	

height	of	an	element	as	it’s	rendered	on	the	screen,	access	the	properties	named	ActualWidth

and	ActualHeight	instead.	(But	watch	out:	These	values	will	have	nonzero	values	only	when	

the	element	has	been	rendered	on	the	screen.)	

Some	useful	events	are	also	available	for	obtaining	information	involving	element	sizes.	The	

Loaded	event	is	fired	when	visuals	are	first	arranged	on	the	screen;	SizeChanged	is	supported	

by	elements	to	indicate	when	they’ve	changed	size;	LayoutUpdated	is	useful	when	you	want	

notification	that	a	layout	cycle	has	occurred,	such	as	occurs	when	orientation	changes.	

The	SilverlightWhatSize	project	demonstrates	the	use	of	the	SizeChanged	method	by	

displaying	the	sizes	of	several	elements	in	the	standard	page.	It’s	not	often	that	you	need	

these	precise	sizes,	but	they	might	be	of	interest	occasionally.	

You	can	associate	a	particular	event	with	an	event	handler	right	in	XAML,	but	the	actual	event	

handler	must	be	implemented	in	code.	When	you	type	an	event	name	in	XAML	(such	as	

SizeChanged)	Visual	Studio	will	offer	to	create	an	event	handler	for	you.	That’s	what	I	did	with	

the	SizeChanged	event	for	the	content	grid:	

SilverlightProject: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0"

SizeChanged="ContentPanel_SizeChanged">

<TextBlock Name="txtblk"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Grid>

I	also	assigned	the	TextBlock	property	Name	to	“txtblk.”	The	Name	property	plays	a	very	

special	role	in	Silverlight.	If	you	compile	the	program	at	this	point	and	look	inside	

MainPage.g.cs—the	code	file	that	the	compiler	generates	based	on	the	MainPage.xaml	file—	

you’ll	see	a	bunch	of	fields	in	the	MainPage	class,	among	them	a	field	named	txtblk	of	type	

TextBlock:	

internal System.Windows.Controls.TextBlock txtblk;

You’ll	also	notice	that	this	field	is	assigned	from	code	in	the	InitializeComponent	method:	

this.txtblk = ((System.Windows.Controls.TextBlock)(this.FindName("txtblk")));

33	

	

	

	 	 	 	 	

	

	 	

	 	

	

	 	 	

	

	

	

	 	 	

	 	 	 	

	 	 	

	 	 	 	 	

	

	 	 	

	 	 	

	

	 	

	 	 	

	

	 	 	

	

This	means	that	anytime	after	the	constructor	in	MainPage.xaml.cs	calls	InitializeComponent,	

any	code	in	the	MainPage class	can	reference	that	TextBlock	element	in	the	XAML	file	using	

the	txtblk	variable	stored	as	a	field	in	the	class.	

You’ll	notice	that	several	of	the	elements	in	the	MainPage.xaml	file	are	assigned	names	with	

x:Name	rather	than	Name.	As	used	in	XAML,	these	two	attributes	are	basically	equivalent.	

Name	only	works	with	elements	(that	is,	instances	of	classes	that	derive	from	

FrameworkElement	because	that’s	where	the	Name	property	is	defined)	but	x:Name	works	

with	everything.	

This	means	that	code	in	the	MainPage	class	in	MainPage.xaml.cs	has	a	field	available	named	

ContentPanel	to	reference	the	standard	Grid	that	appears	in	MainPage.xaml,	and	similarly	for	

the	other	elements	in	MainPage.xaml.	

Assigning	names	to	elements	is	one	of	two	primary	ways	in	which	code	and	XAML	interact.	

The	second	way	is	for	the	element	defined	in	XAML	to	fire	an	event	that	is	handled	in	code.	

Here’s	the	handler	for	the	SizeChanged event	of	the	content	grid	as	Visual	Studio	created	it:	

SilverlightProject: File: (excerpt)

private void ContentPanel_SizeChanged(object sender, SizeChangedEventArgs e)

{

}

I	usually	don’t	like	the	way	Visual	Studio	creates	these	handlers.	Normally	I	remove	the	

keyword	private,	I	rename	the	event	handlers	to	start	them	with	the	word	On,	and	I	eliminate	

underscores.	This	one	I’d	call	OnContentPanelSizeChanged.	I	also	tend	to	change	the	event	

arguments	from	e	to	args.	

But	for	this	program	I’ll	leave	it	as	is.	On	entry	to	the	method,	the	sender	argument	is	the	

element	that	fired	the	event,	in	this	case	the	Grid	named	ContentPanel.	The	second	argument	

contains	information	specific	to	the	event.	

I	added	a	body	to	this	method	that	just	sets	the	Text	property	of	txtblk to	a	longish	multiline	

string:	

SilverlightProject: File: (excerpt)

private void ContentPanel_SizeChanged(object sender, SizeChangedEventArgs e)

{

 txtblk.Text = String.Format("ContentPanel size: {0}\n" +

"TitlePanel size: {1}\n" +

"LayoutRoot size: {2}\n" +

"MainPage size: {3}\n" +

34	

	

	 	

	 	

	 	

	 	

	 	 	

	 	 	 	

	

	 	

	 	

	 	

	

	 	

	

"Frame size: {4}",

 e.NewSize,

new Size(TitlePanel.ActualWidth,

TitlePanel.ActualHeight),

new Size(LayoutRoot.ActualWidth,

LayoutRoot.ActualHeight),

new Size(this.ActualWidth, this.ActualHeight),

Application.Current.RootVisual.RenderSize);

}

The	five	items	are	of	type	Size,	a	structure	with	Width	and	Height	properties.	The	size	of	the	

ContentPanel	itself	is	available	from	the	NewSize	property	of	the	event	arguments.	For	the	

next	three,	I	used	the	ActualWidth	and	ActualHeight	properties.	

Notice	the	last	item.	The	static	property	Application.Current	returns	the	Application	object	

associated	with	the	current	process.	This	is	the	App	object	created	by	the	program.	It	has	a	

property	named	RootVisual that	references	the	frame,	but	the	property	is	defined	to	be	of	

type	UIElement.	The	ActualWidth	and	ActualHeight	properties	are	defined	by	

FrameworkElement,	the	class	that	derives	from	UIElement.	Rather	than	casting,	I	chose	to	use	a	

property	of	type	Size	that	UIElement	defines.	

The	first	SizeChanged	event	occurs	when	the	page	is	created	and	laid	out,	that	is,	when	the	

content	grid	changes	size	from	0	to	a	finite	value:	

The	32pixel	difference	between	the	MainPage	size	and	the	frame	size	accommodates	the	

system	tray	at	the	top.	You	can	prevent	that	tray	from	appearing	while	your	application	is	

35	

	

	 	 	 	

	

	 	

	 	 	 	 	

	 	 	 	

	 	

	 	

	 	 	

	

	 	 	 	

	 	

	

	

	 	 	

	

	 	

	 	 	 	

running	(and	in	effect,	get	access	to	the	entire	screen)	by	changing	an	attribute	in	the	root	

element	of	MainPage.xaml	from:	

shell:SystemTray.IsVisible="True"

to	

shell:SystemTray.IsVisible="False"

The	syntax	of	this	attribute	might	seem	a	little	peculiar.	SystemTray	is	a	class	in	the	

Microsoft.Phone.Shell	namespace	and	IsVisible is	a	property	of	that	class,	and	both	the	class	

and	property	appear	together	because	it’s	a	special	kind	of	property	called	an	attached

property.	I’ll	have	much	more	to	say	about	attached	properties	in	Chapter	9.	

The	topmost	Grid	named	LayoutRoot	is	the	same	size	as	MainPage.	The		vertical	size	of	the	

TitlePanel	(containing	the	two	titles)	and	the	vertical	size	of	ContentPanel	don’t	add	up	to	the	

vertical	size	of	LayoutRoot	because	of	the	45pixel	vertical	margin	(17	pixels	on	the	top	and	28	

pixels	on	the	bottom)	of	the	TitlePanel.	

Subsequent	SizeChanged events	occur	when	something	in	the	visual	tree	causes	a	size	

change,	or	when	the	phone	changes	orientation:	

Notice	that	the	frame	doesn’t	change	orientation.	In	the	landscape	view,	the	system	tray	takes	

away	72	pixels	of	width	from	MainPage.	

Orientation
Events

In	many	of	the	simpler	Silverlight	programs	in	this	book,	I’ll	set	SupportedOrientations	to	

PortraitOrLandscape,	and	try	to	write	orientationindependent	applications.	For	Silverlight	

programs	that	get	text	input,	it’s	crucial	for	the	program	to	be	aligned	with	the	hardware	

keyboard	(if	one	exists)	and	the	location	of	that	keyboard	can’t	be	anticipated.	

Obviously	there	is	more	to	handling	orientation	changes	than	just	setting	the	

SupportedOrientations property!	In	some	cases,	you	might	want	to	manipulate	your	layout	

36	

	

	 	 	 	 	 	

	 	

	 	

	

	

	 	 	 	

	 	

	 	 	

	

	 	

from	code	in	the	page	class.	If	you	need	to	perform	any	special	handling,	both	

PhoneApplicationFrame	and	PhoneApplicationPage	include	OrientationChanged	events.	

PhoneApplicationPage	supplements	that	event	with	a	convenient	and	equivalent	protected	

overridable	method	called	OnOrientationChanged.	

The	MainPage	class	in	the	SilverlightOrientationDisplay	project	shows	how	to	override	

OnOrientationChanged,	but	what	it	does	with	this	information	is	merely	to	display	the	current	

orientation.	The	content	grid	in	this	project	contains	a	simple	TextBlock:	

SilverlightProject: SilverlightOrientationDisplay File: MainPage.xaml (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<TextBlock Name="txtblk"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Grid>

Here’s	the	complete	codebehind	file.	The	constructor	initializes	the	TextBlock	text	with	the	

current	value	of	the	Orientation	property,	which	is	a	member	of	the	PageOrientation

enumeration:	

SilverlightProject: SilverlightOrientationDisplay File: MainPage.xaml.cs

using System.Windows.Controls;

using Microsoft.Phone.Controls;

namespace SilverlightOrientationDisplay

{

public partial class MainPage : PhoneApplicationPage

 {

public MainPage()

{

 InitializeComponent();

 txtblk.Text = Orientation.ToString();

}

protected override void OnOrientationChanged(OrientationChangedEventArgs

args)

{

 txtblk.Text = args.Orientation.ToString();

base.OnOrientationChanged(args);

}

 }

}

The	OnOrientationChanged method	obtains	the	new	value	from	the	event	arguments.	

37	

	

	 	 	

	 	 	 	

	 	 	 	

	 	

	

	 	 	 	

	 	

	 	 	 	 	 	

	 	

	 	 	 	 	

	 	

XNA
Orientation

By	default,	XNA	for	Windows	Phone	is	set	up	for	a	landscape	orientation,	perhaps	to	be	

compatible	with	other	screens	on	which	games	are	played.	Both	landscape	orientations	are	

supported,	and	the	display	will	automatically	flip	around	when	you	turn	the	phone	from	one	

landscape	orientation	to	the	other.	If	you	prefer	designing	your	game	for	a	portrait	display,	

it’s	easy	to	do	that.	In	the	constructor	of	the	Game1	class	of	XnaHelloPhone,	try	inserting	the	

following	statements:	

graphics.PreferredBackBufferWidth = 320;

graphics.PreferredBackBufferHeight = 480;

The	back buffer	is	the	surface	area	on	which	XNA	constructs	the	graphics	you	display	in	the	

Draw	method.	You	can	control	both	the	size	and	the	aspect	ratio	of	this	buffer.	Because	the	

buffer	width	I’ve	specified	here	is	smaller	than	the	buffer	height,	XNA	assumes	that	I	want	a	

portrait	display:	

Look	at	that!	The	back	buffer	I	specified	is	not	the	same	aspect	ratio	as	the	Windows	Phone	7	

display,	so	the	drawing	surface	is	letterboxed!	The	text	is	larger	because	it’s	the	same	pixel	

size	but	now	the	display	resolution	has	been	reduced.	

Although	you	may	not	be	a	big	fan	of	the	retro	graininess	of	this	particular	display,	you	

should	seriously	consider	specifying	a	smaller	back	buffer	if	your	game	doesn’t	need	the	high	

resolution	provided	by	the	phone.	Performance	will	improve	and	battery	consumption	will	

decrease.	You	can	set	the	back	buffer	to	anything	from	240	×	240	up	to	480	×	800	(for	

38	

	

	 	

	

	 	

	 	

	 	 	

	

	

	

	 	

	 	

	

	 	

	 	

portrait	mode)	or	800	×	480	(for	landscape).	XNA	uses	the	aspect	ratio	to	determine	whether	

you	want	portrait	or	landscape.	

Setting	a	desired	back	buffer	is	also	an	excellent	way	to	target	a	specific	display	dimension	in	

code	but	allow	for	devices	of	other	sizes	that	may	come	in	the	future.	

By	default	the	back	buffer	is	800	× 480,	but	it’s	actually	not	displayed	at	that	size.	It’s	scaled	

down	a	bit	to	accommodate	the	system	tray.	To	get	rid	of	the	system	tray	(and	possibly	annoy	

your	users	who	like	to	always	know	what	time	it	is)	you	can	set	

graphics.IsFullScreen = true;

in	the	Game1	constructor.		

It’s	also	possible	to	have	your	XNA	games	respond	to	orientation	changes,	but	they’ll	

definitely	have	to	be	restructured	a	bit.	The	simplest	type	of	restructuring	to	accommodate	

orientation	changes	is	demonstrated	in	the	XnaOrientableHelloPhone	project.	The	fields	now	

include	a	textSize	variable:	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

string text = "Hello, Windows Phone 7!";

SpriteFont segoe14;

Vector2 textSize;

Vector2 textPosition;

 …

}

The	Game1	constructor	includes	a	statement	that	sets	the	SupportedOrientations	property	of	

the	graphics	field:	

XNA Project: XnaOrientableHelloPhone File: Game1.cs (excerpt)

public Game1()

{

 graphics = new GraphicsDeviceManager(this);

 Content.RootDirectory = "Content";

// Allow portrait mode as well

 graphics.SupportedOrientations = DisplayOrientation.Portrait |

DisplayOrientation.LandscapeLeft |

DisplayOrientation.LandscapeRight;

// Frame rate is 30 fps by default for Windows Phone.

39	

	

	 	 	

	 	 	

	

	

	 	 	

	 	 	

	 	 	 	 	

	 	 	

	 	

	 		

	 	 	

	

 TargetElapsedTime = TimeSpan.FromTicks(333333);

}

You	can	also	use	SupportedOrientation	to	restrict	the	phone	to	just	one	of	the	two	landscape	

orientations.	The	statement	to	support	both	portrait	and	landscape	looks	simple,	but	there	are	

repercussions.	When	the	orientation	changes,	the	graphics	device	is	effectively	reset	(which	

generates	some	events)	and	the	back	buffer	dimensions	are	swapped.	You	can	subscribe	to	

the	OrientationChanged	event	of	the	GameWindow	class	(accessible	through	the	Window

property)	or	you	can	check	the	CurrentOrientation	property	of	the	GameWindow	object.	

I	chose	a	little	different	approach.	Here’s	the	new	LoadContent method,	which	you’ll	notice	

obtains	the	text	size	and	stores	it	as	a	field,	but	does	not	get	the	viewport.	

XNA Project: XnaOrientableHelloPhone File: Game1.cs (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 segoe14 = this.Content.Load<SpriteFont>("Segoe14");

 textSize = segoe14.MeasureString(text);

}

Instead,	the	viewport	is	obtained	during	the	Update	method	because	the	dimensions	of	the	

viewport	reflect	the	orientation	of	the	display.	

XNA Project: XnaOrientableHelloPhone File: Game1.cs (excerpt)

protected override void Update(GameTime gameTime)

{

// Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

Viewport viewport = this.GraphicsDevice.Viewport;

 textPosition = new Vector2((viewport.Width - textSize.X) / 2,

 (viewport.Height - textSize.Y) / 2);

 base.Update(gameTime);

}

Whatever	the	orientation	currently	is,	the	Update	method	calculates	a	location	for	the	text.	

The	Draw	method	is	the	same	as	several	you’ve	seen	before.	

XNA Project: XnaOrientableHelloPhone File: Game1.cs (excerpt)

protected override void Draw(GameTime gameTime)

{

40

	

	 	

	 	

	 	

	 	 	 	

	 	 	 	 	 	

	 	

	 	

	

	 	 	 	

	 	 	 	 	 	

	

	 	 	

	 	 	 	

	 	 	 	

	

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.DrawString(segoe14, text, textPosition, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}

Now	the	phone	or	emulator	can	be	turned	between	portrait	and	landscape,	and	the	display	

will	switch	as	well.	

If	you	need	to	obtain	the	size	of	the	phone’s	display	independent	of	any	back	buffers	or	

orientation	(but	taking	account	of	the	system	tray),	that’s	available	from	the	ClientBounds

property	of	the	GameWindow class,	which	you	can	access	from	the	Window	property	of	the	

Game	class:	

Rectangle clientBounds = this.Window.ClientBounds;

Simple
Clocks
(Very
Simple
Clocks)

So	far	in	this	chapter	I’ve	described	two	Silverlight	events—SizeChanged	and	

OrientationChanged—but	used	them	in	different	ways.	For	SizeChanged,	I	associated	the	

event	with	the	event	handler	in	XAML,	but	for	OrientationChanged,	I	overrode	the	equivalent	

OnOrientationChanged	method.	

Of	course,	you	can	attach	handlers	to	events	entirely	in	code	as	well.	One	handy	class	for	

Silverlight	programs	is	DispatcherTimer,	which	periodically	nudges	the	program	with	a	Tick

event	and	lets	the	program	do	some	work.	A	timer	is	essential	for	a	clock	program,	for	

example.	

The	content	grid	of	the	SilverlightSimpleClock	project	contains	just	a	centered	TextBlock:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<TextBlock Name="txtblk"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Grid>

Here’s	the	entire	codebehind	file.	Notice	the	using	directive	for	the	

System.Windows.Threading	namespace,	which	isn’t	included	by	default.	That’s	the	namespace	

where	DispatcherTimer	resides:	

41

	

	 	

	 	 	 	

Silverlight Project: SilverlightSimpleClock File: MainPage.xaml.cs

using System;

using System.Windows.Threading;

using Microsoft.Phone.Controls;

namespace SilverlightSimpleClock

{

public partial class MainPage : PhoneApplicationPage

 {

public MainPage()

{

 InitializeComponent();

DispatcherTimer tmr = new DispatcherTimer();

 tmr.Interval = TimeSpan.FromSeconds(1);

 tmr.Tick += OnTimerTick;

 tmr.Start();

}

void OnTimerTick(object sender, EventArgs args)

{

 txtblk.Text = DateTime.Now.ToString();

}

 }

}

The	constructor	initializes	the	DispatcherTimer,	instructing	it	to	call	OnTimerTick	once	every	

second.	The	event	handler	simply	converts	the	current	time	to	a	string	to	set	it	to	the	

TextBlock.	

42	

	

	

	 	

	 	

	 	 	

	

	

	

	 	 	 	

	 	

	 	 	 	 	

		

	

	

	

	 	 	

	 	 	

	 	

	 	

Although	DispatcherTimer	is	defined	in	the	System.Windows.Threading	namespace,	the	

OnTimerTick method	is	called	in	the	same	thread	as	the	rest	of	the	program.	If	that	was	not	

the	case,	the	program	wouldn’t	be	able	to	access	the	TextBlock	directly.	Silverlight	elements	

and	related	objects	are	not	thread	safe,	and	they	will	prohibit	access	from	threads	that	did	not	

create	them.	I’ll	discuss	the	procedure	for	accessing	Silverlight	elements	from	secondary	

threads	in	Chapter	5.	

The	clock	is	yet	another	Silverlight	program	in	this	chapter	that	changes	the	Text	property	of	a	

TextBlock dynamically	during	runtime.	The	new	value	shows	up	rather	magically	without	any	

additional	work.	This	is	a	very	different	from	older	graphical	environments	like	Windows	API	

programming	or	MFC	programming,	where	a	program	draws	“on	demand,”	that	is,	when	an	

area	of	a	window	becomes	invalid	and	needs	to	be	repainted,	or	when	a	program	deliberately	

invalidates	an	area	to	force	painting.	

A	Silverlight	program	often	doesn’t	seem	to	draw	at	all!	Deep	inside	of	Silverlight	is	a	visual	

composition	layer	that	operates	in	a	retained	graphics	mode	and	organizes	all	the	visual	

elements	into	a	composite	whole.	Elements	such	as	TextBlock	exist	as	actual	entities	inside	this	

composition	layer.	At	some	point,	TextBlock	is	rendering	itself—and	rerendering	itself	when	

one	of	its	properties	such	as	Text	changes—but	what	it	renders	is	retained	along	with	the	

rendered	output	of	all	the	other	elements	in	the	visual	tree.	

In	contrast,	an	XNA	program	is	actively	drawing	during	every	frame	of	the	video	display.	This	

is	conceptually	different	from	older	Windows	programming	environments	as	well	as	

43	

	

	 	

	

	 	

	 	 	 	

	

	 	

	 	 	 	 	

	 	 	 	

	 	 	

	 	 	 	

	 	 	 	

	

	

	 	 	 	

	 	 	

	 	

	

	

	 	 	

	

	 	

	

Silverlight.	It	is	very	powerful,	but	I’m	sure	you	know	quite	well	what	must	also	come	with	

great	power.	

Sometimes	an	XNA	program’s	display	is	static;	the	program	might	not	need	to	update	the	

display	every	frame.	To	conserve	power,	it	is	possible	for	the	Update method	to	call	the	

SuppressDraw method	defined	by	the	Game	class	to	inhibit	a	corresponding	call	to	Draw.	The	

Update	method	will	still	be	called	30	times	per	second	because	it	needs	to	check	for	user	

input,	but	if	the	code	in	Update	calls	SuppressDraw,	Draw won’t	be	called	during	that	cycle	of	

the	game	loop.	If	the	code	in	Update	doesn’t	call	SuppressDraw,	Draw	will	be	called.	

An	XNA	clock	program	doesn’t	need	a	timer	because	a	timer	is	effectively	built	into	the	

normal	game	loop.	However,	the	clock	I	want	to	code	here	won’t	display	milliseconds	so	the	

display	only	needs	to	be	updated	every	second.	For	that	reason	it	uses	the	SuppressDraw

method	to	inhibit	superfluous	Draw	calls.	

Here	are	the	XnaSimpleClock	fields:	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

SpriteFont segoe14;

Viewport viewport;

Vector2 textPosition;
StringBuilder text = new StringBuilder();

DateTime lastDateTime;

 …

}

Notice	that	instead	of	defining	a	field	of	type	string	named	text,	I’ve	defined	a	StringBuilder

instead.	If	you’re	creating	new	strings	in	your	Update	method	for	display	during	Draw	(as	this	

program	will	do),	you	should	use	StringBuilder	to	avoid	the	heap	allocations	associated	with	

the	normal	string	type.	This	program	will	only	be	creating	a	new	string	every	second,	so	I	

really	didn’t	need	to	use	StringBuilder	here,	but	it	doesn’t	hurt	to	get	accustomed	to	it.		

StringBuilder	requires	a	using directive	for	the	System.Text	namespace.	

Notice	also	the	lastDateTime	field.	This	is	used	in	the	Update	method	to	determine	if	the	

displayed	time	needs	to	be	updated.	

The	LoadContent	method	gets	the	font	and	the	viewport	of	the	display:	

44	

	

	

	 	

	 	 	 	

	

	 	

	

	

	 	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 segoe14 = this.Content.Load<SpriteFont>("Segoe14");

 viewport = this.GraphicsDevice.Viewport;

}

The	logic	to	compare	two	DateTime	values	to	see	if	the	time	has	changed	is	just	a	little	tricky	

because	DateTime objects	obtained	during	two	consecutive	Update	calls	will	always	be	

different	because	they	have	will	have	different	Millisecond	fields.	For	this	reason,	a	new	

DateTime	is	calculated	based	on	the	current	time	obtained	from	DateTime.Now,	but	

subtracting	the	milliseconds:	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

// Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

// Get DateTime with no milliseconds

DateTime dateTime = DateTime.Now;

 dateTime = dateTime - new TimeSpan(0, 0, 0, 0, dateTime.Millisecond);

 if (dateTime != lastDateTime)

 {
 text.Remove(0, text.Length);

 text.Append(dateTime);

Vector2 textSize = segoe14.MeasureString(text);

textPosition = new Vector2((viewport.Width - textSize.X) / 2,

(viewport.Height - textSize.Y) / 2);

lastDateTime = dateTime;

 }

 else

 {

SuppressDraw();

 }

 base.Update(gameTime);

}

At	that	point	it’s	easy.	If	the	time	has	changed,	new	values	of	text,	textSize,	and	textPosition	are	

calculated.	Because	text	is	a	StringBuilder	rather	than	a	string,	the	old	contents	are	removed	

45	

	

	 	

	

	 	 	 	 	 	

	

	

	

	

	 	 	 	

	

and	the	new	contents	are	appended.	The	MeasureString	method	of	SpriteFont has	an	overload	

for	StringBuilder,	so	that	call	looks	exactly	the	same.	

If	the	time	has	not	changed,	SuppressDraw is	called.	The	result:	Draw is	called	only	once	per	

second.	

DrawString	also	has	an	overload	for	StringBuilder:	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.DrawString(segoe14, text, textPosition, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}

And	here’s	the	result:	

SuppressDraw	can	be	a	little	difficult	to	use—I’ve	found	it	particularly	tricky	during	the	time	

that	the	program	is	first	starting	up—but	it’s	one	of	the	primary	techniques	used	in	XNA	to	

reduce	the	power	requirements	of	the	program.	

46	

	

	 	 	 	 	 	

	 	

	 	

		

	 	 	

	 	 	

	 	

	 	 	

	 	

	 	

	 	 	

	 	

	 	

	 	 	 	

	 	 	

	 	 	 	

	 	

	 	

	

	 	

	

	 	

	

	

	 	

	 	

Chapter	3	

An Introduction to Touch
Even	for	experienced	Silverlight	and	XNA	programmers,	Windows	Phone	7	comes	with	a	

feature	that	is	likely	to	be	new	and	unusual.	The	screen	on	the	phone	is	sensitive	to	touch.	

And	not	like	old	touch	screens	that	basically	mimic	a	mouse,	or	the	tablet	screens	that	

recognize	handwriting.	

The	multitouch	screen	on	a	Windows	Phone	7	device	can	detect	at	least	four	simultaneous	

fingers.	It	is	the	interaction	of	these	fingers	that	makes	multitouch	so	challenging	for	

programmers.	For	this	chapter,	however,	I	have	much	a	less	ambitious	goal.	I	want	only	to	

introduce	the	touch	interfaces	in	the	context	of	sample	programs	that	respond	to	simple	taps.	

For	testing	critical	multitouch	code,	an	actual	Windows	Phone	7	device	is	essential.	In	the	

interim,	the	phone	emulator	will	respond	to	mouse	activity	and	convert	it	to	touch	input.	If	

you	run	the	emulator	under	Windows	7	with	a	multitouch	display	and	a	Windows	7	driver,	

you	can	also	use	touch	directly	on	the	emulator.	

The	programs	in	this	chapter	look	much	like	the	“Hello,	Windows	Phone	7!”	programs	in	the	

first	chapter,	except	that	when	you	tap	the	text	with	your	finger,	it	changes	to	a	random	color,	

and	when	you	tap	outside	the	area	of	the	text,	it	goes	back	to	white	(or	whatever	color	the	

text	was	when	the	program	started	up).	

In	a	Silverlight	program,	touch	input	is	obtained	through	events.	In	an	XNA	program,	touch	

input	comes	through	a	static	class	polled	during	the	Update	method.	One	of	the	primary	

purposes	of	the	XNA	Update method	is	to	check	the	state	of	touch	input	and	make	changes	

that	affect	what	goes	out	to	the	screen	during	the	Draw	method.	

Low-Level
Touch
Handling
in
XNA

The	multitouch	input	device	is	referred	to	in	XNA	as	a	touch panel.	You	use	methods	in	the	

static	TouchPanel	class	to	obtain	this	input.	Although	you	can	obtain	gestures,	let’s	begin	with	

the	lowerlevel	touch	information.	

It	is	possible	(although	not	necessary)	to	obtain	information	about	the	multitouch	device	

itself	by	calling	the	static	TouchPanel.GetCapabilities	method.	The	TouchPanelCapabilities

object	returned	from	this	method	has	two	properties:	

• IsConnected	is	true	if	the	touch	panel	is	available.	For	the	phone,	this	will	always	be	true.	

• MaximumTouchCount	returns	the	number	of	touch	points,	at	least	4	for	the	phone.	

47	

	

	 	

	

	

	 	 	 	 	

	 	 	

	 	 	

	

	 	 	

	 	 	

	 	 	 	 	

	 	 	 	 	

	 	 	

	 	

	 	

	 	 	 	

	 	 	 	

	

	 	 	 	

	 	

	

	 	 	 	

	

	 	 	 	

	

	 	 	

	

	 	 	

	

	 	 	

For	most	purposes,	you	just	need	to	use	one	of	the	other	two	static	methods	in	TouchPanel.	

To	obtain	lowlevel	touch	input,	you’ll	probably	be	calling	this	method	during	every	call	to	

Update	after	program	initialization:	

TouchCollection touchLocations = TouchPanel.GetState();

The	TouchCollection is	a	collection	of	zero	or	more	TouchLocation	objects.	TouchLocation	has	

three	properties:	

• State	is	a	member	of	the	TouchLocationState	enumeration:	Pressed,	Moved,	Released.	

• Position	is	a	Vector2	indicating	the	finger	position	relative	to	the	upperleft	corner	of	the	

viewport.	

• Id	is	an	integer	identifying	a	particular	finger	from	Pressed	through	Released.	

If	no	fingers	are	touching	the	screen,	the	TouchCollection	will	be	empty.	When	a	finger	first	

touches	the	screen,	TouchCollection	contains	a	single	TouchLocation	object	with	State	equal	to	

Pressed.	On	subsequent	calls	to	TouchPanel.GetState,	the	TouchLocation	object	will	have	State

equal	to	Moved	even	if	the	finger	has	not	physically	moved.	When	the	finger	is	lifted	from	the	

screen,	the	State property	of	the	TouchLocation	object	will	equal	Released.	On	subsequent	

calls	to	TouchPanel.GetState,	the	TouchCollection	will	be	empty.	

One	exception:	If	the	finger	is	tapped	and	released	on	the	screen	very	quickly—that	is,	within	

a	1/30th	 of	a	second—it’s	possible	that	the	TouchLocation	object	with	State	equal	to	Pressed

will	be	followed	with	State	equal	to	Released	with	no	Moved	states	in	between.	

That’s	just	one	finger	touching	the	screen	and	lifting.	In	the	general	case,	multiple	fingers	will	

be	touching,	moving,	and	lifting	from	the	screen	independently	of	each	other.	You	can	track	

particular	fingers	using	the	Id	property.	For	any	particular	finger,	that	Id	will	be	the	same	from	

Pressed,	through	all	the	Moved	values,	to	Released.	

Very	often	when	dealing	with	lowlevel	touch	input,	you’ll	use	a	Dictionary object	with	keys	

based	on	the	Id	property	to	retain	information	for	a	particular	finger.	

TouchLocation	also	has	a	very	handy	method	called	TryGetPreviousLocation,	which	you	call	

like	this:	

TouchLocation previousTouchLocation;

bool success = touchLocation.TryGetPreviousLocation(out previousTouchLocation);

Almost	always,	you	will	call	this	method	when	touchLocation.State	is	Moved because	you	can	

then	obtain	the	previous	location	and	calculate	a	difference.	If	touchLocation.State	equals	

Pressed,	then	TryGetPreviousLocation	will	return	false	and	previousTouchLocation.State	will	

equal	the	enumeration	member	TouchLocationState.Invalid.	You’ll	also	get	these	results	if	you	

use	the	method	on	a	TouchLocation	that	itself	was	returned	from	TryGetPreviousLocation.	

48	

	

	 	

	 	 	

	

	 	 	 	 	 	 	 	

	 	 	

	

	

	 	 	

	 	

	 	

	 	

The	program	I’ve	proposed	changes	the	text	color	when	the	user	touches	the	text	string,	so	

the	processing	of	TouchPanel.GetStates will	be	relatively	simple.	The	program	will	examine	

only	TouchLocation	objects	with	State	values	of	Pressed.	

This	project	is	called	XnaTouchHello.	Like	the	other	XNA	projects	you’ve	seen	so	far,	it	needs	a	

font,	which	I’ve	made	a	little	larger	so	it	provides	a	more	substantial	touch	target.	A	few	more	

fields	are	required:	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

Random rand = new Random();

string text = "Hello, Windows Phone 7!";

SpriteFont segoe36;

Vector2 textSize;

Vector2 textPosition;

Color textColor = Color.White;

 …

}

The	LoadContent	method	is	similar	to	earlier	versions	except	that	textSize	is	saved	as	a	field	

because	it	needs	to	be	accessed	in	later	calculations:	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 segoe36 = this.Content.Load<SpriteFont>("Segoe36");

 textSize = segoe36.MeasureString(text);

Viewport viewport = this.GraphicsDevice.Viewport;

 textPosition = new Vector2((viewport.Width - textSize.X) / 2,

 (viewport.Height - textSize.Y) / 2);

}

As	is	typical	with	XNA	programs,	much	of	the	“action”	occurs	in	the	Update	method.	The	

method	calls	TouchPanel.GetStates	and	then	loops	through	the	collection	of	TouchLocation

objects	to	find	only	those	with	State	equal	to	Pressed.	

49	

	

	

	

	 	

	 	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

TouchCollection touchLocations = TouchPanel.GetState();

foreach (TouchLocation touchLocation in touchLocations)

 {

if (touchLocation.State == TouchLocationState.Pressed)

{

Vector2 touchPosition = touchLocation.Position;

if (touchPosition.X >= textPosition.X &&

 touchPosition.X < textPosition.X + textSize.X &&

 touchPosition.Y >= textPosition.Y &&

 touchPosition.Y < textPosition.Y + textSize.Y)

 {

 textColor = new Color((byte)rand.Next(256),

 (byte)rand.Next(256),

 (byte)rand.Next(256));

 }

else

 {

 textColor = Color.White;

 }

}

 }

base.Update(gameTime);

}

If	the	Position	is	inside	the	rectangle	occupied	by	the	text	string,	the	textColor	field	is	set	to	a	

random	RGB	color	value	using	one	of	the	constructors	of	the	Color	structure.	Otherwise,	

textColor	is	set	to	Color.White.	

The	Draw	method	looks	very	similar	to	the	versions	you’ve	seen	before,	except	that	the	text	

color	is	a	variable:	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

this.GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

50	

	

	 	 	 	

	 	 	 	 	 	 	

	 	 	 	

	 	 		

	

	

	

	

	 	 	 	 	 	 	

	 		

 spriteBatch.DrawString(segoe36, text, textPosition, textColor);

 spriteBatch.End();

base.Draw(gameTime);

}

One	problem	you	might	notice	is	that	touch	is	not	quite	as	deterministic	as	you	might	like.	

Even	when	you	touch	the	screen	with	a	single	finger,	the	finger	might	make	contact	with	the	

screen	in	more	than	one	place.	In	some	cases,	the	same	foreach	loop	in	Update	might	set	

textColor more	than	once!	

The
XNA
Gesture
Interface

The	TouchPanel	class	also	includes	gesture	recognition,	which	is	demonstrated	by	the	

XnaTapHello	project.	The	fields	of	this	project	are	the	same	as	those	in	XnaTouchHello,	but	

the	LoadContent	method	is	a	little	different:	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 segoe36 = this.Content.Load<SpriteFont>("Segoe36");

 textSize = segoe36.MeasureString(text);

Viewport viewport = this.GraphicsDevice.Viewport;

 textPosition = new Vector2((viewport.Width - textSize.X) / 2,

 (viewport.Height - textSize.Y) / 2);

TouchPanel.EnabledGestures = GestureType.Tap;

}

Notice	the	final	statement.	GestureType	is	an	enumeration	with	members	Tap,	DoubleTap,	

Flick,	Hold,	Pinch,	PinchComplete,	FreeDrag,	HorizontalDrag,	VerticalDrag,	and	 DragComplete,	

defined	as	bit	flags	so	you	can	combine	the	ones	you	want	with	the	C#	bitwise	OR	operator.	

The	Update method	is	very	different.	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

// Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

 while (TouchPanel.IsGestureAvailable)

51

	

	 	 	 	 	

	 	

	 	 	

	 	

	

	 	

	 	

	

	 	

	 	 	 	

	 	

	

	 	

 {

GestureSample gestureSample = TouchPanel.ReadGesture();

if (gestureSample.GestureType == GestureType.Tap)

{

Vector2 touchPosition = gestureSample.Position;

 if (touchPosition.X >= textPosition.X &&

 touchPosition.X < textPosition.X + textSize.X &&

 touchPosition.Y >= textPosition.Y &&

 touchPosition.Y < textPosition.Y + textSize.Y)

 {

 textColor = new Color((byte)rand.Next(256),

 (byte)rand.Next(256),

 (byte)rand.Next(256));

 }

 else

 {

 textColor = Color.White;

 }

}

 }

 base.Update(gameTime);

}

Although	this	program	is	interested	in	only	one	type	of	gesture,	the	code	is	rather	

generalized.	If	a	gesture	is	available,	it	is	returned	from	the	TouchPanel.ReadGesture	method	

as	an	object	of	type	GestureSample.	Besides	the	GestureType	and	Position	used	here,	a	Delta

property	provides	movement	information	in	the	form	of	a	Vector2	object.	For	some	gestures	

(such	as	Pinch),	the	GestureSample	also	reports	the	status	of	a	second	touch	point	with	

Position2	and	Delta2	properties.	

The	Draw	method	is	the	same	as	the	previous	program,	but	you’ll	find	that	the	program	

behaves	a	little	differently	from	the	first	one:	In	the	first	program,	the	text	changes	color	when	

the	finger	touches	the	screen;	in	the	second,	the	color	change	occurs	when	the	finger	lifts	

from	the	screen.	The	gesture	recognizer	needs	to	wait	until	that	time	to	determine	what	type	

of	gesture	it	is.	

Low-Level
Touch
Events
in
Silverlight

Like	XNA,	Silverlight	also	supports	two	different	programming	interfaces	for	working	with	

multitouch,	which	can	be	most	easily	categorized	as	lowlevel	and	highlevel.	The	lowlevel	

interface	is	based	around	the	static	Touch.FrameReported	event,	which	is	very	similar	to	the	

XNA	TouchPanel	except	that	it’s	an	event	and	it	doesn’t	include	gestures.	

The	highlevel	interface	consists	of	three	events	defined	by	the	UIElement	class:	

ManipulationStarted,	ManipulationDelta,	and	ManipulationCompleted.	The	Manipulation

52

	

	

	

	 	

	 	 	

	

	 	

	 	 	

	 	 	

	

	

	 	

	 	 	 	 	

	 	 	 	

	 	

	

	 	

	

	 	

	

	

	 	 	 	 	

	 	 	

	 	

	

events,	as	they’re	collectively	called,	consolidate	the	interaction	of	multiple	fingers	into	

movement	and	scaling	factors.	

The	core	of	the	lowlevel	touch	interface	in	Silverlight	is	a	class	called	TouchPoint,	an	instance	

of	which	represents	a	particular	finger	touching	the	screen.	TouchPoint	has	four	getonly	

properties:	

• Action	of	type	TouchAction,	an	enumeration	with	members	Down,	Move,	and	Up.	

• Position	of	type	Point,	relative	to	the	upperleft	corner	of	a	particular	element.	Let’s	call	

this	element	the	reference	element.	

• Size	of	type	Size.	This	is	supposed	to	represent	the	touch	area	(and,	hence,	finger	

pressure,	more	or	less)	but	Windows	Phone	7	doesn’t	return	useful	values.	

• TouchDevice	of	type	TouchDevice.	

The	TouchDevice object	has	two	getonly	properties:	

• Id	of	type	int,	used	to	distinguish	between	fingers.	A	particular	finger	is	associated	with	a	

unique	Id	for	all	events	from	Down	through	Up.	

• DirectlyOver	of	type	UIElement,	the	topmost	element	underneath	the	finger.	

As	you	can	see,	the	Silverlight	TouchPoint	and	TouchDevice	objects	give	you	mostly	the	same	

information	as	the	XNA	TouchLocation	object,	but	the	DirectlyOver	property	of	TouchDevice	is	

often	very	useful	for	determining	what	element	the	user	is	touching.	

To	use	the	lowlevel	touch	interface,	you	install	a	handler	for	the	static	Touch.FrameReported

event:	

Touch.FrameReported += OnTouchFrameReported;

The	OnTouchFrameReported	method	looks	like	this:	

void OnTouchFrameReported(object sender, TouchFrameEventArgs args)

{

…

}

The	event	handler	gets	all	touch	events	throughout	your	application.	The	

TouchFrameEventArgs	object	has	a	TimeStamp	property	of	type	int,	plus	three	methods:	

• GetTouchPoints(refElement)	returns	a	TouchPointCollection

• GetPrimaryTouchPoint(refElement)	returns	one	TouchPoint

• SuspendMousePromotionUntilTouchUp()	

53	

	

	 	 	

	 	 	 	

	 	

	

	 	 	 	

	 	 	 	

	 	

	 	 	 	

	

	 	 	

	 	 	

	 	 	 	

	

	 	

	

	 	 	

	 	 	 	

	 	 		

	

	

	 	 	

	 	

	 	 	

	 	

	 	 	

	

In	the	general	case,	you	call	GetTouchPoints,	passing	to	it	a	reference	element.	The	TouchPoint

objects	in	the	returned	collection	have	Position	properties	relative	to	that	element.	You	can	

pass	null	to	GetTouchPoints	to	get	Position properties	relative	to	the	upperleft	corner	of	the	

application.	

The	reference	element	and	the	DirectlyOver element	have	no	relationship	to	each	other.	The	

event	always	gets	all	touch	activity	for	the	entire	program.	Calling	GetTouchPoints	or	

GetPrimaryTouchPoints	with	a	particular	element	does	not	limit	the	events	to	only	those	

events	involving	that	element.	All	that	it	does	is	cause	the	Position	property	to	be	calculated	

relative	to	that	element.	(For	that	reason,	Position	coordinates	can	easily	be	negative	if	the	

finger	is	to	the	left	of	or	above	the	reference	element.)	The	DirectlyOver	element	indicates	the	

element	under	the	finger.	

A	discussion	of	the	second	and	third	methods	requires	some	background:	The	

Touch.FrameReported	event	originated	on	Silverlight	for	the	desktop,	where	it	is	convenient	

for	the	mouse	logic	of	existing	controls	to	automatically	use	touch.	For	this	reason,	touch	

events	are	“promoted”	to	mouse	events.	

But	this	promotion	only	involves	the	“primary”	touch	point,	which	is	the	activity	of	the	first	

finger	that	touches	the	screen	when	no	other	fingers	are	touching	the	screen.	If	you	don’t	

want	the	activity	of	this	finger	to	be	promoted	to	mouse	events,	the	event	handler	usually	

begins	like	this:	

void OnTouchFrameReported(object sender, TouchFrameEventArgs args)

{

TouchPoint primaryTouchPoint = args.GetPrimaryTouchPoint(null);

if (primaryTouchPoint != null && primaryTouchPoint.Action == TouchAction.Down)

 {

args.SuspendMousePromotionUntilTouchUp();

 }

 …

}

The	SuspendMousePromotionUntilTouchUp method	can	only	be	called	when	a	finger	first	

touches	the	screen	when	no	other	fingers	are	touching	the	screen.	

On	Windows	Phone	7,	such	logic	presents	something	of	a	quandary.	As	written,	it	basically	

wipes	out	all	mouse	promotion	throughout	the	application.	If	your	phone	application	

incorporates	Silverlight	controls	that	were	originally	written	for	mouse	input	but	haven’t	been	

upgraded	to	touch,	you’re	basically	disabling	those	controls.	

Of	course,	you	can	also	check	the	DirectlyOver property	to	suspend	mouse	promotion	

selectively.	But	on	the	phone,	no	elements	should	be	processing	mouse	input	except	for	those	

controls	that	don’t	process	touch	input!	So	it	might	make	more	sense	to	never	suspend	mouse	

promotion.	

54	

	

	 	

	

	 	

	 	

	 	

	 	 	

	 	 	

	 	

	 	 	

	 	 	

	 	

	 	

I’ll	leave	that	matter	for	your	consideration	and	your	older	mousehandling	controls.	

Meanwhile,	the	program	I	want	to	write	is	only	interested	in	the	primary	touch	point	when	it	

has	a	TouchAction	of	Down,	so	I	can	use	that	same	logic.	

The	SilverlightTouchHello	project	has	a	TextBlock	in	the	XAML	file:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<TextBlock Name="txtblk"

 Text="Hello, Windows Phone 7!"

 Padding="0 34"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Grid>

Notice	the	Padding	value.	I	know	that	the	font	displayed	here	has	a	FontSize	property	of	20	

pixels,	which	actually	translates	into	a	TextBlock	that	is	about	27	pixels	tall.	I	also	know	that	it’s	

recommended	that	touch	targets	not	be	smaller	than	9	millimeters.	If	the	resolution	of	the	

phone	display	is	264	DPI,	then	9	millimeters	is	94	pixels.	(The	calculation	is	9	millimeters	

divided	by	25.4	millimeters	to	the	inch,	times	264	pixels	per	inch.)	The	TextBlock	is	short	by	67	

pixels.	So	I	set	a	Padding	value	that	puts	34	more	pixels	on	both	the	top	and	bottom	(but	not	

the	sides).	

I	used	Padding	rather	than	Margin	because	Padding	is	space	inside	the	TextBlock.	The	

TextBlock	actually	becomes	larger	than	the	text	size	would	imply.	Margin	is	space	outside	the	

TextBlock.	It’s	not	part	of	the	TextBlock itself	and	is	excluded	for	purposes	of	hittesting.	

Here’s	the	complete	codebehind	file.	The	constructor	of	MainPage	installs	the	

Touch.FrameReported	event	handler.	

Silverlight Project: SilverlightTouchHello File: MainPage.xaml.cs

using System;

using System.Windows.Input;

using System.Windows.Media;

using Microsoft.Phone.Controls;

namespace SilverlightTouchHello

{

public partial class MainPage : PhoneApplicationPage

 {

Random rand = new Random();

Brush originalBrush;

public MainPage()

{

55	

	

	 	 	 	

	 	 	

	 	 	

	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	

	 	

		

	

	 	 	

	 	 	 	 	

	

	

	 	

 InitializeComponent();

 originalBrush = txtblk.Foreground;

Touch.FrameReported += OnTouchFrameReported;

}

void OnTouchFrameReported(object sender, TouchFrameEventArgs args)

{

TouchPoint primaryTouchPoint = args.GetPrimaryTouchPoint(null);

if (primaryTouchPoint != null && primaryTouchPoint.Action ==

TouchAction.Down)

 {

if (primaryTouchPoint.TouchDevice.DirectlyOver == txtblk)

 {

 txtblk.Foreground = new SolidColorBrush(

Color.FromArgb(255, (byte)rand.Next(256),

 (byte)rand.Next(256),

 (byte)rand.Next(256)));

 }

else

 {

 txtblk.Foreground = originalBrush;

 }

 }

}

 }

}

The	event	handler	is	only	interested	in	primary	touch	points	with	an	Action	of	Down.	If	the	

DirectlyOver property	is	the	element	named	txtblk,	a	random	color	is	created.	Unlike	the	Color

structure	in	XNA,	the	Silverlight	Color	structure	doesn’t	have	a	constructor	to	set	a	color	from	

red,	green,	and	blue	values,	but	it	does	have	a	static	FromArgb	method	that	creates	a	Color

object	based	on	alpha,	red,	green,	and	blue	values,	where	alpha	is	opacity.	Set	the	alpha	

channel	to	255	to	get	an	opaque	color.	Although	it’s	not	obvious	at	all	in	the	XAML	files,	the	

Foreground	property	is	actually	of	type	Brush,	an	abstract	class	from	which	SolidColorBrush

descends.	

If	DirectlyOver	is	not	txtblk,	then	the	program	doesn’t	change	the	color	to	white,	because	that	

wouldn’t	work	if	the	user	chose	a	color	theme	of	black	text	on	a	white	background.	Instead,	it	

sets	the	Foreground	property	to	the	brush	originally	set	on	the	TextBlock.	This	is	obtained	in	

the	constructor.	

The
Manipulation
Events

The	highlevel	touch	interface	in	Silverlight	involves	three	events:	ManipulationStarted,	

ManipulationDelta,	and	ManipulationCompleted.	These	events	don’t	bother	with	reporting	the	

activity	of	individual	fingers.	Instead,	they	consolidate	the	activity	of	multiple	fingers	into	

56

	

	

	 	

	 	 	

	

	

	 	

	

	 	

	 	 	

translation	and	scaling	operations.	The	events	also	accumulate	velocity	information,	so	while	

they	don’t	support	inertia	directly,	they	can	be	used	to	implement	inertia.	

The	Manipulation	events	will	receive	more	coverage	in	the	chapters	ahead.	In	this	chapter	I’m	

going	to	stick	with	ManipulationStarted	just	to	detect	contact	of	a	finger	on	the	screen,	and	I	

won’t	bother	with	what	the	finger	does	after	that.	

While	Touch.FrameReported	delivered	touch	information	for	the	entire	application,	the	

Manipulation events	are	based	on	individual	elements,	so	in	SilverlightTapHello1,	a	

ManipulationStarted	event	handler	can	be	set	on	the	TextBlock:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <TextBlock Text="Hello, Windows Phone 7!"
 Padding="0 34"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 ManipulationStarted="OnTextBlockManipulationStarted" />

</Grid>

The	MainPage.xaml.cs	contains	this	event	handler:	

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage

{

Random rand = new Random();

 public MainPage()

 {

InitializeComponent();

 }

 void OnTextBlockManipulationStarted(object sender,

ManipulationStartedEventArgs args)

 {

TextBlock txtblk = sender as TextBlock;

Color clr = Color.FromArgb(255, (byte)rand.Next(256),

 (byte)rand.Next(256),

 (byte)rand.Next(256));

txtblk.Foreground = new SolidColorBrush(clr);

 args.Complete();

 }

}

57	

	

	 	 	

	

	

	 	 	 	

	

	

	 	

	 	 	

	 	 	 	 	 	 	

	 	 	

	

	

	 	 	

	 	 	

	 	

	

	 	

	 	 	

	 	

	 	 	

The	event	handler	is	able	to	get	the	element	generating	the	message	from	the	sender

argument.	That	will	always	be	the	TextBlock.	The	TextBlock	is	also	available	from	the	

args.OriginalSource	property	and	the	args.ManipulationContainer	property.	

Notice	the	call	to	the	Complete	method	of	the	event	arguments	at	the	end.	This	is	not	

required	but	effectively	tells	the	system	that	further	Manipulation	events	involving	this	finger	

won’t	be	necessary.		

This	program	is	flawed:	If	you	try	it	out,	you’ll	see	that	it	works	only	partially.	Touching	the	

TextBlock	changes	the	text	to	a	random	color.	But	if	you	touch	outside	the	TextBlock,	the	text	

does	not go	back	to	white.	Because	this	event	was	set	on	the	TextBlock,	the	event	handler	is	

called	only	when	the	user	touches	the	TextBlock.	No	other	Manipulation	events	are	processed	

by	the	program.	

A	program	that	functions	correctly	according	to	my	original	specification	needs	to	get	touch	

events	occurring	anywhere on	the	page.	A	handler	for	the	ManipulationStarted	event	needs	to	

be	installed	on	MainPage	rather	than	just	on	the	TextBlock.	

Although	that’s	certainly	possible,	there’s	actually	an	easier	way.	The	UIElement	class	defines	

all	the	Manipulation	events.	But	the	Control	class	(from	which	MainPage	derives)	supplements	

those	events	with	protected	virtual	methods.	You	don’t	need	to	install	a	handler	for	the	

ManipulationStarted	event	on	MainPage;	instead	you	can	override	the	OnManipulationStarted

virtual	method.	

This	approach	is	implemented	in	the	SilverlightTapHello2	project.	The	XAML	file	doesn’t	refer	

to	any	events	but	gives	the	TextBlock	a	name	so	that	it	can	be	referred	to	in	code:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<TextBlock Name="txtblk"

 Text="Hello, Windows Phone 7!"
 Padding="0 34"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Grid>

The	MainPage	class	overrides	the	OnManipulationStarted	method:	

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage

{

Random rand = new Random();

Brush originalBrush;

58	

	

	 	

	 	 	 	

	 	

	

	 	 	

	 	

	 	

	 	 	

	

	 	 	 	 	 	

	 	

	 	 	

	 	 	 	

	

 public MainPage()

 {

InitializeComponent();

originalBrush = txtblk.Foreground;

 }

 protected override void OnManipulationStarted(ManipulationStartedEventArgs args)

 {

if (args.OriginalSource == txtblk)

{

 txtblk.Foreground = new SolidColorBrush(

Color.FromArgb(255, (byte)rand.Next(256),

 (byte)rand.Next(256),

 (byte)rand.Next(256)));

}

else

{

 txtblk.Foreground = originalBrush;

}

 args.Complete();

base.OnManipulationStarted(args);

 }

}

In	the	ManipulationStartedEventArgs	a	property	named	OriginalSource	indicates	where	this	

event	began—in	other	words,	the	topmost	element	that	the	user	tapped.	If	this	equals	the	

txtblk object,	the	method	creates	a	random	color	for	the	Foreground	property.	If	not,	then	the	

Foreground	property	is	set	to	the	original	brush.	

In	this	OnManiulationStarted	method	we’re	handling	events	for	MainPage,	but	that	

OriginalSource	property	tells	us	the	event	actually	originated	lower	in	the	visual	tree.	This	is	

part	of	the	benefit	of	the	Silverlight	feature	known	as	routed event handling.	

Routed
Events

In	Microsoft	Windows	programming,	keyboard	and	mouse	input	always	go	to	particular	

controls.	Keyboard	input	always	goes	to	the	control	with	the	input	focus.	Mouse	input	always	

goes	to	the	topmost	enabled	control	under	the	mouse	pointer.	Stylus	and	touch	input	is	

handled	similarly	to	the	mouse.	But	sometimes	this	is	inconvenient.	Sometimes	the	control	

underneath	needs	the	userinput	more	than	the	control	on	top.	

To	be	a	bit	more	flexible,	Silverlight	implements	a	system	called	routed event handling.	Most	

user	input	events—including	the	three	Manipulation	events—do	indeed	originate	using	the	

same	paradigm	as	Windows.	The	Manipulation	events	originate	at	the	topmost	enabled	

element	touched	by	the	user.	However,	if	that	element	is	not	interested	in	the	event,	the	

event	then	goes	to	that	element’s	parent,	and	so	forth	up	the	visual	tree	ending	at	the	

59

	

	 	

	

	 	 	

	 	 	

	 	 	 	

	 	 	 	

	 	 	

	

	 	 	

	 	

	 	

	

PhoneApplicationFrame	element.	Any	element	along	the	way	can	grab	the	input	and	do	

something	with	it,	and	also	inhibit	further	progress	of	the	event	up	the	tree.	

This	is	why	you	can	override	the	OnManipulationStarted	method	in	MainPage	and	also	get	

manipulation	events	for	the	TextBlock.	By	default	the	TextBlock	isn’t	interested	in	those	events.	

The	event	argument	for	the	ManipulationStarted	event	is	ManipulationStartedEventArgs,	

which	derives	from	RoutedEventArgs.	 It	is	RoutedEventArgs	that	defines	the	OriginalSource

property	that	indicates	the	element	on	which	the	event	began.	

But	this	suggests	another	approach	that	combines	the	two	techniques	shown	in	

SilverlightTapHello1	and	SilverlightTapHello2.	Here’s	the	XAML	file	of	SilverlightTapHello3:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<TextBlock Name="txtblk"

 Text="Hello, Windows Phone 7!"

 Padding="0 34"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 ManipulationStarted="OnTextBlockManipulationStarted" />

</Grid>

The	TextBlock	has	a	Name	as	in	the	first	program.	A	handler	for	the	ManipulationStarted	event	

is	set	on	the	TextBlock	as	in	the	first	program.	Both	the	event	handler	and	an	override	of	

OnManipulationStarted	appear	in	the	codebehind	file:	

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage

{

Random rand = new Random();

Brush originalBrush;

 public MainPage()

 {

InitializeComponent();

originalBrush = txtblk.Foreground;

 }

 void OnTextBlockManipulationStarted(object sender,

ManipulationStartedEventArgs args)

 {

txtblk.Foreground = new SolidColorBrush(

Color.FromArgb(255, (byte)rand.Next(256),

 (byte)rand.Next(256),

 (byte)rand.Next(256)));

 args.Complete();

60	

	

	 	

	

	

	

	 	 	 	

	

	 	 	 	

	 	

	 	

	 	 	

	

	 	 	

	 	

	 	

	

	 	

	 		

	 	

	

args.Handled = true;

 }

 protected override void OnManipulationStarted(ManipulationStartedEventArgs args)

 {

txtblk.Foreground = originalBrush;

 args.Complete();

base.OnManipulationStarted(args);

 }

}

The	logic	has	been	split	between	the	two	methods,	making	the	whole	thing	rather	more	

elegant,	I	think.	The	OnTextBlockManipulationStarted	method	only	gets	events	when	the	

TextBlock	is	touched.	The	OnManipulationStarted event	gets	all	events	for	MainPage.	

At	first	there	might	seem	to	be	a	bug	here.	After	OnTextBlockManipulationStarted	is	called,	

the	event	continues	to	travel	up	the	visual	tree	and	OnManipulationStarted	sets	the	color	back	

to	white.	But	that’s	not	what	happens:	The	crucial	statement	that	makes	this	work	right	is	this	

one	at	the	end	of	the	OnTextBlockManipulationStarted	handler	for	the	TextBlock:	

args.Handled = true;

That	statement	says	that	the	event	has	now	been	handled	and	it	should	not	travel	further	up	

the	visual	tree.	Remove	that	statement	and	the	TextBlock	never	changes	from	its	initial	color—	

at	least	not	long	enough	to	see.	

Some
Odd
Behavior?

Now	try	this.	In	many	of	the	Silverlight	programs	I’ve	shown	so	far,	I’ve	centered	the	TextBlock

within	the	content	grid	by	setting	the	following	two	attributes:	

HorizontalAlignment="Center"

VerticalAlignment="Center"

Delete	them	from	SilverlightTapHello3,	and	recompile	and	run	the	program.	The	text	appears	

at	the	upperleft	corner	of	the	Grid.	But	now	if	you	touch	anywhere	within	the	large	area	

below	the	TextBlock,	the	text	will	change	to	a	random	color,	and	only	by	touching	the	title	

area	above	the	text	can	you	change	it	back	to	white.	

By	default	the	HorizontalAlignment	and	VerticalAlignment	properties	are	set	to	enumeration	

values	called	Stretch.	The	TextBlock	is	actually	filling	the	Grid.	You	can’t	see	it,	of	course,	but	

the	fingers	don’t	lie.	

With	other	elements—those	that	display	bitmaps,	for	example—this	stretching	effect	is	much	

less	subtle.	

61	

	

	 	 	

	 	 	 		

	

	 	 	

	 	 	 	

	

	

	 	

	 	

	 	 	 	

	 	

	

	 	

	

	

	 	

	

	 	

	 	

	

	

	

Chapter	4	

Bitmaps, Also Known as Textures
Aside	from	text,	one	of	the	most	common	objects	to	appear	in	both	Silverlight	and	XNA	

applications	is	the	bitmap,	formally	defined	as	a	twodimensional	array	of	bits	corresponding	

to	the	pixels	of	a	graphics	display	device.	

In	Silverlight,	a	bitmap	is	sometimes	referred	to	as	an	image,	but	that’s	mostly	a	remnant	of	

the	Windows	Presentation	Foundation,	where	the	word	image	refers	to	both	bitmaps	and	

vectorbased	drawings.	In	both	WPF	and	Silverlight,	the	Image	element	displays	bitmaps	but	

the	Image	element	is	not	the	bitmap	itself.	

In	XNA,	a	bitmap	has	a	data	type	of	Texture2D	and	hence	is	often	referred	to	as	a	texture,	but	

that	term	is	mostly	related	to	3D	programming	where	bitmaps	are	used	to	cover	surfaces	of	

3D	solids.	In	XNA	2D	programming,	bitmaps	are	often	used	as	sprites.	

Bitmaps	are	also	used	to	symbolize	your	application	on	the	phone.	A	new	XNA	or	Silverlight	

project	in	Visual	Studio	results	in	the	creation	of	three	bitmaps	for	various	purposes.	

The	native	Windows	bitmap	format	has	an	extension	of	BMP	but	it’s	become	less	popular	in	

recent	years	as	compressed	formats	have	become	widespread.	At	this	time,	the	three	most	

popular	bitmap	formats	are	probably:		

• JPEG	(Joint	Photography	Experts	Group)	

• PNG	(Portable	Network	Graphics)	

• GIF	(Graphics	Interchange	File)	

XNA	supports	all	three	(and	more).	Silverlight	supports	only	JPEG	and	PNG.	(And	if	you’re	like	

most	Silverlight	programmers,	you’ll	not	always	remember	this	simple	fact	and	someday	

wonder	why	your	Silverlight	program	simply	refuses	to	display	a	GIF	or	a	BMP.)	

The	compression	algorithms	implemented	by	PNG	and	GIF	do	not	result	in	the	loss	of	any	

data.	The	original	bitmap	can	be	reconstituted	exactly.	For	that	reason,	these	are	often	

referred	to	as	“lossless”	compression	algorithms.	

JPEG	implements	a	“lossy”	algorithm	by	discarding	visual	information	that	is	less	perceptible	

by	human	observers.	This	type	of	compression	works	well	for	realworld	images	such	as	

photographs,	but	is	less	suitable	for	bitmaps	that	derive	from	text	or	vectorbased	images,	

such	as	architectural	drawings	or	cartoons.	

Both	Silverlight	and	XNA	allow	manipulating	bitmaps	at	the	pixel	level	for	generating	

bitmaps—or	altering	existing	bitmaps—interactively	or	algorithmically.	That	topic	is	relegated	

to	Chapter	14	(for	Silverlight)	and	21	(for	XNA).	This	chapter	will	focus	more	on	the	

62	

	

	 	

	

	

	

	 		

	 	

	 	 	 	

	 	 	 	

	 	 	 	 	

	

	

	 	

	 	 	 	

	

	

	 	 	 	 	 	 	

	

techniques	of	obtaining	bitmaps	from	various	sources,	including	the	program	itself,	the	Web,	

the	phone’s	builtin	camera,	and	the	phone’s	photo	library.	

XNA
Texture
Drawing

Because	XNA	2D	programming	is	almost	entirely	a	process	of	moving	sprites	around	the	

screen,	you	might	expect	that	loading	and	drawing	bitmaps	in	an	XNA	program	is	fairly	easy,	

and	you	would	be	correct.	

The	first	project	is	called	XnaLocalBitmap,	so	named	because	this	bitmap	will	be	stored	as	part	

of	the	program’s	content.	To	add	a	new	bitmap	to	the	program’s	content	project,	rightclick	

the	XnaLocalBitmapContent	project	name,	select	Add	and	then	New	Item,	and	then	Bitmap	

File.	You	can	create	the	bitmap	right	in	Visual	Studio.	

Or,	you	can	create	the	bitmap	in	an	external	program,	as	I	did.	Windows	Paint	is	often	

convenient,	so	for	this	exercise	I	created	the	following	bitmap	with	a	dimension	of	320	pixels	

wide	and	160	pixels	high:	

I	saved	it	under	the	name	Hello.png.	

To	add	this	file	as	part	of	the	program’s	content,	rightclick	the	XnaLocalBitmapContent	

project	in	Visual	Studio,	select	Add	and	Existing	Item,	and	then	navigate	to	the	file.	Once	the	

file	shows	up,	you	can	rightclick	it	to	display	Properties,	and	you’ll	see	that	it	has	an	Asset	

Name	of	“Hello.”	

The	goal	is	to	display	this	bitmap	centered	on	the	screen.	Define	a	field	in	the	Game1.cs	file	to	

store	the	Texture2D	and	another	field	for	the	position:	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

GraphicsDeviceManager graphics;

63	

	

	 	

	 	 	

	 	

	 	

	

	 	 	

	 	 	

SpriteBatch spriteBatch;

Texture2D helloTexture;

Vector2 position;

 …

}

Both	fields	are	set	during	the	LoadContent method.	Use	the	same	generic	method	to	load	the	

Texture2D	as	you	use	to	load	a	SpriteFont.	The	Texture2D	class	has	properties	named	Width

and	Height that	provide	the	dimensions	of	the	bitmap	in	pixels.	As	with	the	programs	that	

centered	text	in	the	Chapter	1,	the	position	field	indicates	the	pixel	location	on	the	display	

that	corresponds	to	the	upperleft	corner	of	the	bitmap:	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 helloTexture = this.Content.Load<Texture2D>("Hello");

Viewport viewport = this.GraphicsDevice.Viewport;

 position = new Vector2((viewport.Width - helloTexture.Width) / 2,

 (viewport.Height - helloTexture.Height) / 2);

}

The	SpriteBatch	class	has	seven	Draw	methods	to	render	bitmaps.	This	one	is	certainly	the	

simplest:	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.Draw(helloTexture, position, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}

The	final	argument	to	Draw	is	a	color	that	can	be	used	to	attenuate	the	existing	colors	in	the	

bitmap.	Use	Color.White	if	you	want	the	bitmap’s	colors	to	display	without	any	alteration.	

64	

	

	

	

	

	 	 	

	 	 	 	 	

	 	

	 	

	 	

	 	 	 	

	 	

	 	 	

	 	 	 	 	

	

	 	

	

	

	 	

	 	 	 	 	

	 	 	 	

And	here	it	is:	

The
Silverlight
Image
Element

The	equivalent	program	in	Silverlight	is	even	simpler.	Let’s	create	a	project	named	

SilverlightLocalBitmap.	First	create	a	directory	in	the	project	to	store	the	bitmap.	This	isn’t	

strictly	required	but	it	makes	for	a	tidier	project.	Programmers	usually	name	this	directory	

Images	or	Media	or	Assets	depending	on	the	types	of	files	that	might	be	stored	there.	Right

click	the	project	name	and	choose	Add	and	then	New	Folder.	Let’s	name	it	Images.	Then	

rightclick	the	folder	name	and	choose	Add	and	Existing	Item.	Navigate	to	the	Hello.png	file.	

(If	you’ve	created	a	different	bitmap	on	your	own,	keep	in	mind	that	Silverlight	supports	only	

JPEG	and	PNG	files.)	

From	the	Add	button	choose	either	Add	or	Add	as	Link.	If	you	choose	Add,	a	copy	will	be	

made	and	the	file	will	be	physically	copied	into	a	subdirectory	of	the	project.	If	you	choose	

Add	as	Link,	only	a	file	reference	will	be	retained	with	the	project	but	the	file	will	still	be	

copied	into	the	executable.	

The	final	step:	Rightclick	the	bitmap	filename	and	display	Properties.	Note	that	the	Build	

Action	is	Resource.	It’s	possible	to	change	that	Build	Action	to	Content,	but	let’s	leave	it	for	

now	and	I’ll	discuss	the	difference	shortly.	

In	Silverlight,	you	use	the	Image	element	to	display	bitmaps	just	as	you	use	the	TextBlock

element	to	display	text.	Set	the	Source	property	of	Image	to	the	folder	and	filename	of	the	

bitmap	within	the	project:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Image Source="Images/Hello.png" />

</Grid>

65	

	

	 	

	 	 	 	

	

	 	

	

	 	 	

	

	

	 	

The	display	looks	a	little	different	than	the	XNA	program,	and	it’s	not	just	the	titles.	By	default,	

the	Image element	expands	or	contracts	the	bitmap	as	much	as	possible	to	fill	its	container	

(the	content	grid)	while	retaining	the	correct	aspect	ratio.	This	is	most	noticeable	if	you	set	

the	SupportedOrientations	attribute	of	the	PhoneApplicationPage	start	tag	to	

PortraitOrLandscape	and	turn	the	phone	sideways:	

If	you	want	to	display	the	bitmap	in	its	native	pixel	size,	you	can	set	the	Stretch	property	of	

Image	to	None:	

<Image Source="Images/Hello.png"

Stretch="None" />

I’ll	discuss	more	options	in	Chapter	8.	

Images
Via
the
Web

One	feature	that’s	really	nice	about	the	Image	element	is	that	you	can	set	the	Source	property	

to	a	URL,	such	as	in	this	Silverlight	project:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Image Source="http://www.charlespetzold.com/Media/HelloWP7.jpg" />

</Grid>

66	

	

	

	

	 	

	 	 	 	 	 	 	

	 	 	

	 	 	

	 	

	 	 	 	 	 	

	 	

	 	 	

	 	

	 	

		

	 	 	

	 	

	 	 	 	 	 	

	

Here	it	is:	

This	is	certainly	easy	enough,	and	pulling	images	off	the	Web	rather	than	binding	them	into	

the	application	certainly	keeps	the	size	of	the	executable	down.	But	an	application	running	on	

Windows	Phone	7	is	not	guaranteed	to	have	an	Internet	connection,	and	you’re	undoubtedly	

associated	with	other	problems	associated	with	downloading.	The	Image	element	has	two	

events	named	ImageOpened	and	ImageFailed	that	you	can	use	to	determine	if	the	download	

was	successful	or	not.	

For	Windows	Phone	7	programs	that	display	a	lot	of	bitmaps,	you	need	to	do	some	hard	

thinking.	You	can	embed	the	bitmaps	into	the	executable	and	have	their	access	guaranteed,	

or	you	can	save	space	and	download	them	when	necessary.		

In	XNA,	downloading	a	bitmap	from	the	Web	is	not	quite	as	easy,	but	a	.NET	class	named	

WebClient	makes	the	job	relatively	painless.	It’s	somewhat	easier	to	use	than	the	common	

alternative	(HttpWebRequest	and	HttpWebResponse)	and	is	often	the	preferred	choice	for	

downloading	individual	items.	

You	can	use	WebClient	to	download	either	strings	(commonly	XML	files)	or	binary	objects.	

The	actual	transfer	occurs	asynchronously	and	then	WebClient	calls	a	method	in	your	program	

to	indicate	completion	or	failure.	This	method	call	is	in	your	program’s	thread,	so	you	get	the	

benefit	of	an	asynchronous	data	transfer	without	explicitly	dealing	with	secondary	threads.	

67	

	

	 	

	 	 	 	

	

	

	 	

	 	

	 	

	 	 	

	 	 	 	 	

	 	 	 	

	 	

	

To	use	WebClient	in	an	XNA	program,	you’ll	need	to	add	a	reference	to	the	System.Net	

library:	In	the	Solution	Explorer,	under	the	project	name,	right	click	References	and	select	Add	

Reference.	In	the	.NET	table,	select	System.Net.	(Silverlight	programs	get	a	reference	to	

System.Net	automatically.)	

The	Game1.cs	file	of	the	XnaWebBitmap	project	also	requires	a	using	directive	for	the	

System.Net namespace.	The	program	defines	the	same	fields	as	the	earlier	program:	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

Texture2D helloTexture;

Vector2 position;

 …

}

The	LoadContent	method	creates	an	instance	of	WebClient,	sets	the	callback	method,	and	

then	initiates	the	transfer:	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

WebClient webClient = new WebClient();

 webClient.OpenReadCompleted += OnWebClientOpenReadCompleted;

 webClient.OpenReadAsync(new

Uri("http://www.charlespetzold.com/Media/HelloWP7.jpg"));

}

The	OnWebClientOpenReadCompleted	method	is	called	when	the	entire	file	has	been	

downloaded.	You’ll	want	to	check	if	the	download	hasn’t	been	cancelled	and	that	no	error	has	

been	reported.	If	everything	is	OK,	the	Result	property	of	the	event	arguments	is	of	type	

Stream.	You	can	use	that	Stream	with	the	static	Texture2D.FromStream	method	to	create	a	

Texture2D	object:	

XNA Project: File: (excerpt)

void OnWebClientOpenReadCompleted(object sender, OpenReadCompletedEventArgs args)

{

if (!args.Cancelled && args.Error == null)

{

68	

	

	

	 	

	 	 	 	

	

	 	 	

	 	 	

	 	 	

	 	 	

	 	

	 	

	 	

	

	 	 	

	

 helloTexture = Texture2D.FromStream(this.GraphicsDevice, args.Result);

Viewport viewport = this.GraphicsDevice.Viewport;

 position = new Vector2((viewport.Width - helloTexture.Width) / 2,

 (viewport.Height - helloTexture.Height) / 2);

}

}

The	Texture2D.FromStream method	supports	JPEG,	PNG,	and	GIF.	

By	default,	the	 AllowReadStreamBuffering	property	of	WebClient	is	true,	which	means	that	the	

entire	file	will	have	been	downloaded	when	the	OpenReadCompleted	event	is	raised.	The	

Stream	object	available	in	the	Result	property	is	actually	a	memory	stream,	except	that	it’s	an	

instance	of	a	class	internal	to	the	.NET	libraries	rather	than	MemoryStream	itself.	

If	you	set	AllowReadStreamBuffering	to	false,	then	the	Result	property	will	be	a	network	

stream.	The	Texture2D class	will	not	allow	you	to	read	from	that	stream	on	the	main	program	

thread.	

Normally	the	LoadContent	method	of	a	Game	derivative	is	called	before	the	first	call	to	the	

Update	or	Draw	method,	but	it	is	essential	to	remember	that	a	gap	of	time	will	separate	

LoadContent	from	the	OnWebClientOpenReadCompleted	method.	During	that	time	an	

asynchronous	read	is	occurring,	but	the	Game1	class	is	proceeding	as	normal	with	calls	to	

Update	and	Draw.	For	that	reason,	you	should	only	attempt	to	access	the	Texture2D	object	

when	you	know	that	it’s	valid:	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 if (helloTexture != null)

{

spriteBatch.Begin();

spriteBatch.Draw(helloTexture, position, Color.White);

spriteBatch.End();

 }

 base.Draw(gameTime);

}

In	a	real	program,	you’d	also	want	to	provide	some	kind	of	notification	to	the	user	if	the	

bitmap	could	not	be	downloaded.	

69

	

	 	 	 	

	

	 	

	

	 	

	

	 	 	

	

	

	 	

	 	

	

	 	 	

	 	 	

	 	 	

	

	

Image
and
ImageSource

Although	you	can	certainly	use	WebClient	in	a	Silverlight application,	it’s	not	generally	

necessary	with	bitmaps	because	the	bitmaprelated	classes	already	implement	asynchronous	

downloading.	

However,	once	you	begin	investigating	the	Image element,	it	may	seem	a	little	confusing.	The	

Image	element	is	not	the	bitmap;	the	Image	element	merely	displays	the	bitmap.	In	the	uses	

you’ve	seen	so	far,	the	Source	property	of	Image	has	been	set	to	a	relative	file	path	or	a	URL:	

<Image Source="Images/Hello.png" />

<Image Source="http://www.charlespetzold.com/Media/HelloWP7.jpg" />

You	might	have	assumed	that	this	Source	property	was	of	type	string.	Sorry,	not	even	close!	

You’re	actually	seeing	XAML	syntax	that	hides	some	extensive	activity	behind	the	scenes.	The	

Source	property	is	really	of	type	ImageSource,	an	abstract	class	from	which	derives	

BitmapSource,	another	abstract	class	but	one	that	defines	a	method	named	SetSource	that	

allows	loading	the	bitmap	from	a	Stream	object.	

From	BitmapSource	derives	BitmapImage,	which	supports	a	constructor	that	accepts	a	Uri

object	and	also	includes	a	UriSource	property	of	type	Uri.	The	SilverlightTapToDownload1	

project	mimics	a	program	that	needs	to	download	a	bitmap	whose	URL	is	known	only	at	

runtime.	The	XAML	contains	an	Image	element	with	no	bitmap	to	display:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Image Name="img" />

</Grid>

BitmapImage	requires	a	using directive	for	the	System.Windows.Media.Imaging	namespace.	

When	MainPage	gets	a	tap,	it	creates	a	BitmapImage	from	the	Uri	object	and	sets	that	to	the	

Source	property	of	the	Image:	

Silverlight Project: SilverlightTapToDownload1 File: MainPage.xaml.cs (excerpt)

protected override void OnManipulationStarted(ManipulationStartedEventArgs args)

{

Uri uri = new Uri("http://www.charlespetzold.com/Media/HelloWP7.jpg");

BitmapImage bmp = new BitmapImage(uri);

 img.Source = bmp;

 args.Complete();

 args.Handled = true;

base.OnManipulationStarted(args);

}

70	

	

	

	

	

	 	

	 	 	

	 	

	

	

	 	

	

	 	 	 	 	

	

	 	 	

	

Remember	to	tap	the	screen	to	initiate	the	download!	

The	BitmapImage	class	defines	ImageOpened	and	ImageFailed	events	(which	the	Image

element	also	duplicates)	and	also	includes	a	DownloadProgess	event.	

If	you	want	to	explicitly	use	WebClient	in	a	Silverlight	program,	you	can	do	that	as	well,	as	the	

next	project	demonstrates.	The	SilverlightTapToDownload2.xaml	file	is	the	same	as	

SilverlightTapToDownload1.xaml.	The	codebehind	file	uses	WebClient	much	like	the	earlier	

XNA	program:	

Silverlight Project: SilverlightTapToDownload2 File: MainPage.xaml.cs (excerpt)

protected override void OnManipulationStarted(ManipulationStartedEventArgs args)

{

WebClient webClient = new WebClient();

 webClient.OpenReadCompleted += OnWebClientOpenReadCompleted;

 webClient.OpenReadAsync(new

Uri("http://www.charlespetzold.com/Media/HelloWP7.jpg"));

 args.Complete();

 args.Handled = true;

base.OnManipulationStarted(args);

}

void OnWebClientOpenReadCompleted(object sender, OpenReadCompletedEventArgs args)

{

if (!args.Cancelled && args.Error == null)

{

BitmapImage bmp = new BitmapImage();

bmp.SetSource(args.Result);

img.Source = bmp;

 }

}

Notice	the	use	of	SetSource	to	create	the	bitmap	from	the	Stream	object.	

Loading
Local
Bitmaps
from
Code

In	a	Silverlight	program,	you’ve	seen	that	a	bitmap	added	to	the	project	as	a	resource	is	

bound	into	the	executable.	It’s	so	customary	to	reference	that	local	bitmap	directly	from	

XAML	that	very	few	experienced	Silverlight	programmers	could	tell	you	offhand	how	to	do	it	

in	code.	The	SilverlightTapToLoad	project	shows	you	how.	

Like	the	other	Silverlight	programs	in	this	chapter,	the	SilverlightTapToLoad	project	contains	

an	Image element	in	its	content	grid.	The	Hello.png	bitmap	is	stored	in	the	Images	directory	

and	has	a	Build	Action	of	Resource.	

71	

	

	 	 	

	 	 	

	

	 	

	 	 	

	 	 	 	

	 	 	

	

	

	

	 	

	 	

	 	 	

	

	 	 	 	 	

	 	

	 	

	 	 	 	

	 	 	 	

	 	

The	MainPage.xaml.cs	file	requires	a	using directive	for	the	System.Windows.Media.Imaging

namespace	for	the	BitmapImage	class.	Another	using	directive	for	System.Windows.Resources

is	required	for	the	StreamResourceInfo	class.	

When	the	screen	is	tapped,	the	event	handler	accesses	the	resource	using	the	static	

GetResourceStream method	defined	by	the	Application	class:	

Silverlight Project: SilverlightTapToLoad File: MainPage.xaml.cs

protected override void OnManipulationStarted(ManipulationStartedEventArgs args)

{

Uri uri = new Uri("/SilverlightTapToLoad;component/Images/Hello.png",

UriKind.Relative);

StreamResourceInfo resourceInfo = Application.GetResourceStream(uri);

BitmapImage bmp = new BitmapImage();

 bmp.SetSource(resourceInfo.Stream);

 img.Source = bmp;

 args.Complete();

 args.Handled = true;

base.OnManipulationStarted(args);

}

Notice	how	complicated	that	URL	is!	It	begins	with	the	name	of	the	program	followed	by	a	

semicolon,	followed	by	the	word	“component”	and	then	the	folder	and	filename	of	the	file.	If	

you	change	the	Build	Action	of	the	Hello.png	file	to	Content	rather	than	Resource,	you	can	

simplify	the	syntax	considerably:	

Uri uri = new Uri("Images/Hello.png", UriKind.Relative);

What’s	the	difference?	

Navigate	to	the	Bin/Debug	subdirectory	of	the	Visual	Studio	project	and	find	the	

SilverlightTapToLoad.xap	file	that	contains	your	program.	If	you	rename	it	the	file	to	a	ZIP	

extension	you	can	look	inside.	The	bulk	of	the	file	will	be	SilverlightTapToLoad.dll,	the	

compiled	binary.	

In	both	cases,	the	bitmap	is	obviously	stored	somewhere	within	the	XAP	file.	The	difference	is	

this:	

• With	a	Build	Action	of	Resource	for	the	bitmap,	it	is	stored	inside	the	

SilverlightTapToLoad.dll	file	along	with	the	compiled	program	

• With	a	Build	Action	of	Content,	the	bitmap	is	stored	external	to	the	

SilverlightTapToLoad.dll	file	but	within	the	XAP	file,	and	when	you	rename	the	XAP	file	to	

a	ZIP	file,	you	can	see	the	Images	directory	and	the	file.	

Which	is	better?		

72	

	

	

	 	 	

	 	

	

	 	

	 	 	

	 	 	

	 	 	

	

	

	 	

	

	 	 	

	 	

	 	 	 	 	 	

	 	 	

	 	 	 	 	 	

	

	 	

	 	 	 	 	

	 	 	 	 	 	 	

	 	

	 	 	

	

In	a	document	entitled	“Creating	High	Performance	Silverlight	Applications	for	Windows	

Phone,”	Microsoft	has	recommending	using	a	Build	Action	of	Content	rather	than	Resource	

for	assets	included	in	your	application	to	minimize	the	size	of	the	binary	and	startup	time.	

However,	if	these	assets	are	in	a	Silverlight	library	that	the	program	references,	then	it	is	

better	for	them	to	be	embedded	in	the	binary	with	a	Build	Action	of	Resource.	

If	you	have	a	number	of	images	in	your	program,	and	you	don’t	want	to	include	them	all	in	

the	XAP	file,	but	you’re	nervous	about	downloading	the	images,	why	not	do	a	little	of	both?	

Include	low	resolution	(or	highly	compressed)	images	in	the	XAP	file,	but	download	better	

versions	asynchronously	while	the	application	is	running.	

Capturing
from
the
Camera

Besides	embedding	bitmaps	in	your	application	or	accessing	them	from	the	web,	Windows	

Phone	7	also	allows	you	to	acquire	images	from	the	builtin	camera.	

Your	application	has	no	control	over	the	camera	itself.	For	reasons	of	security,	your	program	

cannot	arbitrarily	snap	a	picture,	or	“see”	what’s	coming	through	the	camera	lens.	Your	

application	basically	invokes	a	standard	camera	utility,	the	user	points	and	shoots,	and	the	

picture	is	returned	back	to	your	program.	

The	classes	you	use	for	this	job	are	in	the	Microsoft.Phone.Tasks namespace,	which	contains	

several	classes	referred	to	as	choosers	and	launchers.	Conceptually,	these	are	rather	similar,	

except	that	choosers	return	data	to	your	program	but	launchers	do	not.	

The	CameraCaptureTask	is	derived	from	the	generic	ChooserBase	class	which	defines	a	

Completed	event	and	a	Show	method.	Your	program	attaches	a	handler	for	the	Completed

event	and	calls	Show.	When	the	Completed	event	handler	is	called,	the	PhotoResult	event	

argument	contains	a	Stream	object	to	the	photo.	From	there,	you	already	know	what	to	do.	

Like	the	earlier	programs	in	this	chapter,	the	SilverlightTapToShoot	program	contains	an	

Image	element	in	the	content	grid	of	its	MainPage.xaml	file.	Here’s	the	entire	codebehind	

file:	

Silverlight Project: SilverlightTapToShoot File: MainPage.xaml.cs

using System.Windows.Input;

using System.Windows.Media.Imaging;

using Microsoft.Phone.Controls;

using Microsoft.Phone.Tasks;

namespace SilverlightTapToShoot

{

public partial class MainPage : PhoneApplicationPage

 {

CameraCaptureTask camera = new CameraCaptureTask();;

73	

	

	 	 	 	 	

	 	

	 	 	

	

	 	 	 		

	 	

	 	

	 	

	 	 	 	 	 	 	 	

	 	

	 	 	

	

	 	 	

	 	 	 	 	

	 	 	

public MainPage()

{

 InitializeComponent();

 camera.Completed += OnCameraCaptureTaskCompleted;

}

protected override void OnManipulationStarted(ManipulationStartedEventArgs

args)

{

 camera.Show();

 args.Complete();

 args.Handled = true;

base.OnManipulationStarted(args);

}

void OnCameraCaptureTaskCompleted(object sender, PhotoResult args)

{

if (args.TaskResult == TaskResult.OK)

 {

BitmapImage bmp = new BitmapImage();

 bmp.SetSource(args.ChosenPhoto);

 img.Source = bmp;

 }

}

 }

}

You	can	run	this	program	on	the	phone	emulator.	When	you	tap	the	emulator	screen,	the	call	

to	Show	causes	the	camera	task	to	start	up	and	you’ll	navigate	to	a	page	that	resembles	the	

actual	camera.	You	can	“shoot”	a	photo	by	tapping	an	icon	in	the	upperright	corner	of	the	

screen.	The	simulated	“photo”	just	looks	like	a	large	white	square	with	a	small	black	square	

inside	one	of	the	edges.	Then	you	need	to	click	the	Accept	button.	

You	can	also	run	this	program	on	the	phone	itself,	of	course,	but	not	when	the	phone	is	

tethered	to	the	PC	and	the	Zune	software	is	running.	After	deploying	the	application	to	the	

phone	using	Visual	Studio,	you’ll	need	to	close	the	Zune	software	before	testing	the	program.	

If	you	need	to	use	Visual	Studio	to	debug	an	application	that	uses	the	camera	while	the	

application	is	running	on	the	phone,	you	can	use	a	little	commandline	program	called	

WPDTPTConnect32.exe	or	WPDTPTConnect64.exe	(depending	on	whether	your	development	

machine	is	32bit	or	64bit).	These	program	is	an	alternative	to	the	Zune	software	for	allowing	

the	Visual	Studio	debugger	to	control	your	program	as	it’s	running	on	the	phone.	The	Zune	

software	must	be	closed	before	you	use	these	programs.	

In	either	case,	when	you	press	the	Accept	button,	the	camera	goes	away	and	the	program’s	

OnCameraCaptureTaskCompleted	method	takes	over.	It	creates	a	BitmapImage	object,	sets	

74	

	

	 	

	

	

	

	 	 	

	 	 	

	

	 	 	

	

	

	 	 	

	 	

	 	 	

	

	

	

	

	 	

	

	 	 	 	

	 	

	 	

	 	

	 	 	 	

	 	 	 	

	 	 	 	 	

	 	 	

	 	 	 	

	 	 	 	

the	input	stream	from	args.ChoosenPhoto,	and	then	sets	the	BitmapImage	object	to	the	Image

element,	displaying	the	photo	on	the	screen.	

The	whole	process	seems	fairly	straightforward.	Conceptually	it	seems	as	if	the	program	is	

spawning	the	camera	process,	and	then	resuming	control	when	that	camera	process	

terminates.		

However,	the	Windows	Phone	7	documentation	that	I’m	consulting	warns	that	this	is	not	the	

case.	There’s	something	else	going	on	that	is	not	so	evident	at	first	and	which	you	will	

probably	find	somewhat	unnerving.	

When	the	SilverlightTapToShoot	program	calls	the	Show method	on	the	CameraCaptureTask

object,	the	SilverlightTapToShoot	program	is	terminated.	(Not	immediately,	though.	The	

OnManipulationStarted	method	is	allowed	to	return	back	to	the	program,	and	a	couple	other	

events	are	fired,	but	then	the	program	is	definitely	terminated.)	

The	camera	utility	then	runs.	When	the	camera	utility	has	done	its	job,	the	

SilverlightTapToShoot	program	is	reexecuted.	It’s	a	new	instance	of	the	program.	The	

program	starts	up	from	the	beginning,	the	MainPage constructor	is	eventually	called	which	

sets	the	Completed	event	of	the	CameraCaptureTask	to	OnCameraCaptureTaskCompleted,	

and	then	that	method	is	called.	

For	these	reasons,	the	documentation	advises	that	when	you	use	a	chooser	or	launcher	such	

as	CameraCaptureTask,	the	object	must	be	defined	as	a	field,	and	the	handler	for	the	

Completed	event	must	be	attached	in	the	program’s	constructor,	and	as	late	in	the	

constructor	as	possible	because	once	the	handler	is	attached	when	the	program	starts	up	

again,	it	will	be	called.	

This	termination	and	reexecution	of	your	program	is	a	characteristic	of	Windows	Phone	7	

programming	call	tombstoning.	When	the	program	is	terminated	as	the	camera	task	begins,	

sufficient	information	is	retained	by	the	phone	operating	system	to	start	the	program	up	

again	when	the	camera	finishes.	However,	not	enough	information	is	retained	to	restore	the	

program	entirely	to	its	pretombstone	state.	That’s	your	responsibility.	

Running	a	launcher	or	chooser	is	one	way	tombstoning	can	occur.	But	it	also	occurs	when	the	

user	leaves	your	program	by	pressing	the	Start	button	on	the	phone.	Eventually	the	user	

could	return	to	your	program	by	pressing	the	Back	button,	and	your	program	needs	to	be	re

executed	from	its	tombstoned	state.	Tombstoning	also	takes	place	when	a	lack	of	activity	on	

the	phone	causes	it	to	go	into	a	lock	state.		

Tombstoning	does	not	occur	when	your	program	is	running	and	the	user	presses	the	Back	

button.	The	Back	button	simply	terminates	the	program	normally.	

75	

	

	

	 	

	 	 	

	 	

	

	

	 	 	

	 	 	

	 	

	 	 	 	

	 	

	 	 	

	 	

	

	

	

	

	

	 	 	

	 	 	 	

	 	 	

	

	 	 	

	

When	tombstoning	occurs,	obviously	you’ll	want	to	save	some	of	the	state	of	your	program	

so	you	can	restore	that	state	when	the	program	starts	up	again,	and	obviously	Windows	

Phone	7	has	facilities	to	help	you	out.	That’s	in	Chapter	6.	

With	all	that	said,	in	later	versions	of	the	Windows	Phone	7	operating	system,	including	the	

one	I’m	using	as	I’m	finishing	the	chapters	for	this	book,	I	am	not	seeing	tombstoning	occur	

when	using	CameraCaptureTask.	But	it	doesn’t	hurt	to	prepare	for	it.	

The
Phone’s
Photo
Library

As	you	take	pictures	with	the	phone	and	synchronize	your	phone	with	the	PC,	the	phone	

accumulates	a	photo	library.	A	program	running	on	the	phone	can	access	this	library	in	one	of	

two	ways:	

• From	the	perspective	of	your	program,	the	PhotoChooserTask	is	much	like	the	

CameraCaptureTask	except	it	takes	the	user	to	the	photo	library	and	allows	the	user	to	

choose	one	photo,	which	is	then	returned	to	the	program.	

• The	XNA	namespace	Microsoft.Xna.Framework.Media	has	a	MediaLibrary	and	related	

classes	that	let	a	program	obtain	collections	of	all	the	photos	stored	in	the	photo	library,	

and	present	these	to	the	user.	

I’m	going	to	show	you	these	two	approaches	with	two	programs.	Just	for	variety	(and	to	

demonstrate	how	to	use	XNA	classes	in	a	Silverlight	program),	I’ll	use	XNA	for	the	first	

approach	and	Silverlight	for	the	second.	

You	can	run	these	two	programs	on	the	phone	emulator.	The	emulator	includes	a	small	

collection	of	photos	specifically	for	testing	programs	such	as	these.	When	testing	the	

programs	on	the	actual	phone,	however,	the	phone	must	be	untethered	from	the	PC	or	the	

Zune	software	must	be	closed,	because	the	Zune	software	won’t	allow	simultaneous	access	to	

the	phone’s	photo	library.	After	you	close	Zune,	you	can	run	WPDTPTConnect32.exe	or	

WPDTPTConnect64.exe	program	to	allow	Visual	Studio	to	debug	the	program	running	on	the	

phone.	

The	XnaTapToBrowse	program	requires	a	using	directive	for	Microsoft.Phone.Tasks.	It	creates	a	

PhotoChooserTask	object	along	with	the	other	fields:	

Silverlight Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

Texture2D texture;

PhotoChooserTask photoChooser = new PhotoChooserTask();

76	

	

	 	

	 	

	 	

	

	

	 	

 …

}

In	compliance	with	the	recommendations	of	the	documentation,	the	class	attaches	a	handler	

for	the	Completed	event	in	the	constructor:	

Silverlight Project: File: (excerpt)

public Game1()

{

 graphics = new GraphicsDeviceManager(this);

 Content.RootDirectory = "Content";

// Frame rate is 30 fps by default for Windows Phone.

 TargetElapsedTime = TimeSpan.FromTicks(333333);

TouchPanel.EnabledGestures = GestureType.Tap;

 photoChooser.Completed += OnPhotoChooserCompleted;

}

As	usual,	the	Update	method	checks	for	user	input.	If	a	tap	has	occurred,	the	method	calls	the	

Show	event	of	the	PhotoChooserTask	object:	

Silverlight Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

// Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

 while (TouchPanel.IsGestureAvailable)

if (TouchPanel.ReadGesture().GestureType == GestureType.Tap)

 photoChooser.Show();

 base.Update(gameTime);

}

void OnPhotoChooserCompleted(object sender, PhotoResult args)

{

if (args.TaskResult == TaskResult.OK)

texture = Texture2D.FromStream(this.GraphicsDevice, args.ChosenPhoto);

}

The	handler	for	the	Completed	event	then	creates	a	Texture2D	from	the	stream	available	from	

the	ChosenPhoto	property.	The	Draw	override	doesn’t	attempt	to	render	this	object	until	it’s	

available:	

77

	

	

	 	

	 	

	 	 	

	 	

	 	

	

	

	 	

	 	

Silverlight Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 if (texture != null)

 {

spriteBatch.Begin();

spriteBatch.Draw(texture, this.GraphicsDevice.Viewport.Bounds, Color.White);

spriteBatch.End();

 }

 base.Draw(gameTime);

}

I’m	using	a	slight	variation	of	the	Draw	method	of	SpriteBatch	here.	Rather	than	provide	a	

position	for	the	Texture2D	in	the	second	argument,	I’m	providing	a	whole	rectangle	equal	to	

the	size	of	the	viewport.	This	causes	the	photo	to	expand	(or,	more	likely,	shrink)	in	size,	very	

possibly	distorting	the	image	by	not	taking	account	of	the	original	aspect	ratio.	More	

sophisticated	code	can	handle	those	problems,	of	course.	

The	SilverlightAccessLibrary	program	requires	a	reference	to	the	Microsoft.Xna.Framework	

DLL,	and	you’ll	probably	get	a	warning	about	including	an	XNA	library	in	your	Silverlight	

program.	It’s	OK!	The	content	area	in	the	MainPage.xaml	file	contains	both	a	bitmapless	

Image	and	a	textless	TextBlock	in	the	Grid:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Image Name="img" />

<TextBlock Name="txtblk"

 TextWrapping="Wrap"

 TextAlignment="Center"

 VerticalAlignment="Bottom" />

</Grid>

Rather	than	present	the	entire	photo	library	to	the	user	(a	task	that	would	be	a	little	difficult	

with	only	the	rudimentary	Silverlight	layout	elements	I’ve	described	so	far),	the	program	picks	

one	at	random,	and	picks	another	when	the	user	taps	the	screen:	

78	

	

	

	 	 	

	 	

	 	

	 	

	

	 	

	

Silverlight Project: SilverlightAccessLibrary File: MainPage.xaml.cs (excerpt)

public partial class MainPage : PhoneApplicationPage

{

MediaLibrary mediaLib = new MediaLibrary();

Random rand = new Random();

 public MainPage()

 {

InitializeComponent();

GetRandomPicture();

 }

 protected override void OnManipulationStarted(ManipulationStartedEventArgs args)

 {

GetRandomPicture();

args.Complete();

base.OnManipulationStarted(args);

 }

 void GetRandomPicture()

 {

PictureCollection pictures = mediaLib.Pictures;

if (pictures.Count > 0)

{

 int index = rand.Next(pictures.Count);

Picture pic = pictures[index];

BitmapImage bmp = new BitmapImage();

 bmp.SetSource(pic.GetImage());

 img.Source = bmp;

 txtblk.Text = String.Format("{0}\n{1}\n{2}",

 pic.Name, pic.Album.Name, pic.Date);

}

 }

}

The	XNA	MediaLibrary class	is	instantiated	as	a	field.	In	the	GetRandomPicture	method,	the	

program	obtains	a	PictureCollection	object	from	the	MediaLibrary	class	and	picks	one	at	

random.	The	Picture object	has	a	GetImage method	that	returns	a	stream,	and	a	Name,	

Album,	and	Data	information	that	the	program	displays	in	the	overlaying	TextBlock.	

A	Windows	Phone	7	program	can	also	save	a	bitmap	back	into	the	library.	All	such	bitmaps		

go	into	a	special	album	called	Saved	Pictures.	I’ll	show	you	how	to	do	that	in	Chapters	14	and	

22.	

79	

	

	 	

	 	 	 	

	 	

	

	

	

	 	 	

	 	

	

	 	 	

	 	

	 	

	 	

	

	 	

	

	 	

	 	 	 	

	 	 	

	 	

	

	 	

	

	 	

	 	 	

	

	 	

Chapter	5	

Sensors and Services
This	chapter	covers	two	of	the	facilities	in	Windows	Phone	7	that	provide	information	about	

the	outside	world.	With	the	user’s	permission,	the	location	service	lets	your	application	obtain	

the	phone’s	location	on	the	earth	in	the	traditional	geographic	coordinates	of	longitude	and	

latitude,	whereas	the	accelerometer	tells	your	program	which	way	is	down.	

The	accelerometer	and	location	service	are	related	in	that	neither	of	them	will	work	very	well	

in	outer	space.	

Although	the	accelerometer	and	the	location	service	are	ostensibly	rather	easy,	this	chapter	

also	explores	issues	involved	with	working	with	secondary	threads	of	execution,	handling	

asynchronous	operations,	and	accessing	web	services.	

Accelerometer

Windows	Phones	contain	an	accelerometer—a	small	hardware	device	that	essentially	

measures	force,	which	elementary	physics	tells	us	is	proportional	to	acceleration.	When	the	

phone	is	held	still,	the	accelerometer	responds	to	the	force	of	gravity,	so	the	accelerometer	

can	tell	your	application	the	direction	of	the	Earth	relative	to	the	phone.

	A	simulation	of	a	bubble	level	is	an	archetypal	application	that	makes	use	of	an	

accelerometer,	but	the	accelerometer	can	also	provide	a	basis	for	interactive	animations.	For	

example,	you	might	pilot	a	messenger	bike	through	the	streets	of	Manhattan	by	tilting	the	

phone	left	or	right	to	indicate	steering.	

The	accelerometer	also	responds	to	sudden	movements	such	as	shakes	or	jerks,	useful	for	

simulations	of	dice	or	some	other	type	of	randomizing	activity.	Coming	up	with	creative	uses	

of	the	accelerometer	is	one	of	the	many	challenges	of	phone	development.	

It	is	convenient	to	represent	the	accelerometer	output	as	a	vector	in	threedimensional	space.	

Vectors	are	commonly	written	in	boldface,	so	the	acceleration	vector	can	be	symbolized	as	(x,

y,
z).	XNA	defines	a	threedimensional	vector	type;	Silverlight	does	not.	

While	a	threedimensional	point	(x,	y,	z)	indicates	a	particular	location	in	space,	the	vector	(x,

y,
z)	encapsulates	instead	a	direction	and	a	magnitude.	Obviously	the	point	and	the	vector	

are	related:	The	direction	of	the	vector	(x,
y,
z)	is	the	direction	from	the	point	(0,	0,	0)	to	the	

point(x,	y,	z).	But	the	vector	(x,
y,
z)	is	definitely	not	the	line	from	(0,	0,	0)	to	(x,	y,	z).	It’s	only	

the	direction	of	that	line.	

80	

	

	 	 	 	 	

	

	

	 	

	 	

	

	

	 	

	 	

	 	 	

	 	 	

	 	

	 	 	

	 	 	 	

	

	

	 	

	 	

The	magnitude	of	the	vector	(x,
y,
z)
is	calculable	from	the	threedimensional	form	of	the	

Pythagorean	Theorem:	

For	working	with	the	accelerometer,	you	can	imagine	the	phone	as	defining	a	three

dimensional	coordinate	system.	No	matter	how	the	phone	is	oriented,	the	positive	Y	axis	

points	from	the	bottom	of	the	phone	(with	the	buttons)	to	the	top,	the	positive	X	axis	points	

from	left	to	right,	

This	is	a	traditional	threedimensional	coordinate	system,	the	same	coordinate	system	used	in	

XNA	3D	programming.	It’s	termed	a	right-hand	coordinate	system:	Point	the	index	finger	of	

your	right	hand	to	increasing	X,	the	middle	finger	to	increase	Y,	and	your	thumb	points	to	

increasing	Z.	Or,	curve	the	fingers	of	your	right	hand	from	the	positive	X	axis	to	the	positive	Y	

axis.	Your	thumb	again	points	to	increasing	Z.	

This	coordinate	system	remains	fixed	relative	to	the	phone	regardless	how	you	hold	the	

phone,	and	regardless	of	the	orientation	of	any	programs	running	on	the	phone.	In	fact,	as	

you	might	expect,	the	accelerometer	is	the	basis	for	performing	orientation	changes	of	

Windows	Phone	7	applications.	

When	the	phone	is	still,	the	accelerometer	vector	points	towards	the	Earth.	The	magnitude	is	

1,	meaning	1	g,	which	is	the	force	of	gravity	on	the	earth's	surface.	When	holding	your	phone	

in	the	upright	position,	the	acceleration	vector	is	(0,
–1,
0),	that	is,	straight	down.		

81	

	

	 	

	 	

	

	

	 	

	 	

	 	 	 	

	 	

	

	

	

	 	

	 	 	

	

	

	

	

	

	

	

	 	

	 	

	 	 	

	

	 	 	 	

Turn	the	phone	90°	counterclockwise	(called	landscape	left)	and	the	acceleration	vector	

becomes	(–1,
0,
0),	upside	down	it's	(0,
1,
0),	and	another	90°	counterclockwise	turn	brings	

you	to	the	landscape	right	orientation	and	an	accelerometer	value	of	(1,
0,
0).	Sit	the	phone	

down	on	the	desk	with	the	display	facing	up,	and	the	acceleration	vector	is	(0,
0,
–1).	(That	

final	value	is	what	the	Windows	Phone	7	emulator	always	reports.)	

Of	course,	the	acceleration	vector	will	rarely	be	those	exact	values,	and	even	the	magnitude	

won't	be	exact.	For	a	still	phone,	the	magnitude	may	vary	by	a	few	percentage	points	with	

different	orientations.	When	you	visit	the	Moon	with	your	Windows	Phone	7,	you	can	expect	

acceleration	vector	magnitudes	in	the	region	of	0.17	but	limited	cell	phone	reception.	

I've	been	describing	values	of	the	acceleration	vector	when	the	device	is	still.	The	acceleration	

vector	can	point	in	other	directions	(and	the	magnitude	can	become	larger	or	smaller)	when	

the	phone	is	accelerating,	that	is,	gaining	or	losing	velocity.	For	example,	if	you	jerk	the	phone	

to	the	left,	the	acceleration	vector	points	to	the	right	but	only	when	the	device	is	gaining	

velocity.	As	the	velocity	stabilizes,	the	acceleration	vector	again	registers	only	gravity.	When	

you	decelerate	this	jerk	to	the	left,	the	acceleration	vector	goes	to	the	left	briefly	as	the	device	

comes	to	a	stop.	

If	the	phone	is	in	free	fall,	the	magnitude	of	the	accelerometer	vector	should	theoretically	go	

down	to	zero.	

To	use	the	accelerometer,	you’ll	need	a	reference	to	the	Microsoft.Devices.Sensors	library,	and	

a	using	directive	for	the	Microsoft.Devices.Sensors	namespace.	In	WMAppManifest.xml,	you	

need	

<Capability Name="ID_CAP_SENSORS" />

This	is	set	by	default.	

In	your	program	you	create	an	instance	of	the	Accelerometer	class,	set	an	event	handler	for	

the	ReadingChanging	event,	and	call	Start.	

And	then	it	gets	a	little	tricky.	Let’s	take	a	look	at	a	project	named	SilverlightAccelerometer.	

that	simply	displays	the	current	reading	in	its	content	grid.	A	centered	TextBlock	is	defined	in	

the	XAML	file:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<TextBlock Name="txtblk"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Grid>

82	

	

	

	 	 	

	 	

	

	 	 	 	 	 	 	

	

	 	 	

	 	 	 	 	

	

	 	 	 	 	 	 	

	 	 	 	 	 	

	 	

	 	 	 	 	

	

	 	 	 	 		

	

	 	

	

	 	

This	is	a	program	that	will	display	the	accelerometer	vector	throughout	its	lifetime,	so	it	

creates	the	Accelerometer	class	in	its	constructor	and	calls	Start:	

Silverlight Project: SilverlightAccelerometer File: MainPage.xaml.cs (excerpt)

public MainPage()

{

 InitializeComponent();

Accelerometer acc = new Accelerometer();

 acc.ReadingChanged += OnAccelerometerReadingChanged;

try

 {

acc.Start();

 }

catch (Exception exc)

 {

txtblk.Text = exc.Message;

 }

}

The	documentation	warns	that	calling	Start	might	raise	an	exception,	so	the	program	protects	

itself	against	that	eventuality.	The	Accelerometer	also	supports	Stop	and	Dispose	methods,	but	

this	program	doesn’t	make	use	of	them.	A	State	property	is	also	available	if	you	need	to	know	

if	the	accelerometer	is	available	and	what	it’s	currently	doing.	

A	ReadingChanged	event	is	accompanied	by	the	AccelerometerReadingEventArgs	event	

arguments.	The	object	has	properties	named	X,	Y,	and	Z	of	type	double	and	TimeStamp	of	

type	DateTimeOffset.	In	the	SilverlightAccelerometer	program,	the	job	of	the	event	handler	is	

to	format	this	information	into	a	string	and	set	it	to	the	Text property	of	the	TextBlock.	

The	catch	here	is	that	the	event	handler	(in	this	case	OnAccelerometerReadingChanged)	is	

called	on	a	different	thread	of	execution,	and	this	means	it	must	be	handled	in	a	special	way.	

A	little	background:	All	the	userinterface	elements	and	objects	in	a	Silverlight	application	are	

created	and	accessed	in	a	main	thread	of	execution	often	called	the	user interface thread	or	

the	UI thread.	These	userinterface	objects	are	not	thread	safe;	they	are	not	built	to	be	

accessed	simultaneously	from	multiple	threads.	For	this	reason,	Silverlight	will	not	allow	you	

to	access	a	userinterface	object	from	a	nonUI	thread.	

This	means	that	the	OnAccelerometerReadingChanged	method	cannot	directly	access	the	

TextBlock	element	to	set	a	new	value	to	its	Text	property.	

Fortunately,	there’s	a	solution	involving	a	class	named	Dispatcher	defined	in	the	

System.Windows.Threading	namespace.	Through	the	Dispatcher	class,	you	can	post	jobs	from	

a	nonUI	thread	on	a	queue	where	they	are	later	executed	by	the	UI	thread.	This	process	

83	

	

	 	 	 	

	 	

	 	

	 	 	 	

	 	

	 	 	

	

	 	 	

	 	

	 	

	 	

	

	

	 	

	 	 	 	

	

	 	 	 	 	

	

sounds	complex,	but	from	the	programmer’s	perspective	it’s	fairly	easy	because	these	jobs	

take	the	form	of	simple	method	calls.	

An	instance	of	this	Dispatcher	is	readily	available.	The	DependencyObject	class	defines	a	

property	named	Dispatcher	of	type	Dispatcher,	and	many	Silverlight	classes	derive	from	

DependencyObject.	Instances	of	all	of	these	classes	can	be	accessed	from	nonUI	threads	

because	they	all	have	Dispatcher	properties.	You	can	use	any	Dispatcher	object	from	any	

DependencyObject	derivative	created	in	your	UI	thread.	They	are	all	the	same.	

The	Dispatcher class	defines	a	method	named	CheckAccess	that	returns	true if	you	can	access	

a	particular	user	interface	object	from	the	current	thread.	(The	CheckAccess method	is	also	

duplicated	by	DependencyObject	itself.)	If	an	object	can’t	be	accessed	from	the	current	thread,	

then	Dispatcher	provides	two	versions	of	a	method	named	Invoke	that	you	use	to	post	the	job	

to	the	UI	thread.	

The	SilverlightAccelerometer	project	implements	a	syntactically	elaborate	version	of	the	code,	

but	then	I’ll	show	you	how	to	chop	it	down	in	size.	

The	verbose	version	requires	a	delegate	and	a	method	defined	in	accordance	with	that	

delegate.	The	delegate	(and	method)	should	have	no	return	value,	but	as	many	arguments	as	

you	need	to	do	the	job,	in	this	case	the	job	of	setting	a	string	to	the	Text	property	of	a	

TextBlock:	

Project: SilverlightAccelerometer File: MainPage.xaml.cs (excerpt)

delegate void SetTextBlockTextDelegate(TextBlock txtblk, string text);

void SetTextBlockText(TextBlock txtblk, string text)

{

 txtblk.Text = text;

}

The	OnAccelerometerReadingChanged	is	responsible	for	calling	SetTextBlockText.	It	first	makes	

use	of	CheckAccess	to	see	if	it	can	just	call	the	SetTextBlockText	method	directly.	If	not,	then	

the	handler	calls	the	BeginInvoke	method.	The	first	argument	is	an	instantiation	of	the	

delegate	with	the	SetTextBlockText	method;	this	is	followed	by	all	the	arguments	that	

SetTextBlockText	requires:	

Project: SilverlightAccelerometer File: MainPage.xaml.cs (excerpt)

void OnAccelerometerReadingChanged(object sender, AccelerometerReadingEventArgs

args)

{

string str = String.Format("X = {0:F2}\n" +

"Y = {1:F2}\n" +

84	

	

	 	 	

	 	

	

	 	 	

	 	 	

	 	 	 	

	

	 	

	 	 	

	 	 	

"Z = {2:F2}\n\n" +

"Magnitude = {3:F2}\n\n" +

"{4}",

 args.X, args.Y, args.Z,

Math.Sqrt(args.X * args.X + args.Y * args.Y +

args.Z * args.Z),

 args.Timestamp);

if (txtblk.CheckAccess())

{

SetTextBlockText(txtblk, str);

 }

else

 {

txtblk.Dispatcher.BeginInvoke(new

SetTextBlockTextDelegate(SetTextBlockText),

 txtblk, str);

 }

}

This	is	not	too	bad,	but	the	need	for	the	code	to	jump	across	threads	has	necessitated	an	

additional	method	and	a	delegate.	Is	there	a	way	to	do	the	whole	job	right	in	the	event	

handler?	

Yes!	The	BeginInvoke	method	has	an	overload	that	accepts	an	Action	delegate,	which	defines	

a	method	that	has	no	return	value	and	no	arguments.	You	can	create	an	anonymous	method	

right	in	the	BeginInvoke	call.	The	complete	code	following	the	creation	of	the	string	object	

looks	like	this:	

if (txtblk.CheckAccess())

{

 txtblk.Text = str;

}

else

{

 txtblk.Dispatcher.BeginInvoke(delegate()

{

txtblk.Text = str;

 });

}

The	anonymous	method	begins	with	the	keyword	delegate	and	concludes	with	the	curly	brace	

following	the	method	body.	The	empty	parentheses	following	the	delegate	keyword	are	not	

required.	

The	anonymous	method	can	also	be	defined	using	a	lambda	expression:	

if (txtblk.CheckAccess())

{

 txtblk.Text = str;

}

85	

	

	 	 	 	

	 	 	 	 	

	 	 	 	 	 	

	 	 	

	 	

	

	

	

	

	

	 	 	 	

	 	

else

{

 txtblk.Dispatcher.BeginInvoke(() =>

 {

txtblk.Text = str;

 });

}

The	duplicated	code	that	sets	the	Text	property	of	TextBlock	to	str	looks	a	little	ugly	here	(and	

would	be	undesirable	if	it	involved	more	than	just	one	statement),	but	you	don’t	really	need	

to	call	CheckAccess.	You	can	just	call	BeginInvoke	and	nothing	bad	will	happen	even	if	you	are	

calling	it	from	the	UI	thead.	

The	Windows	Phone	7	emulator	doesn’t	contain	any	actual	accelerometer,	so	it	always	reports	

a	value	of	(0,	0,	–1),	which	indicates	the	phone	is	lying	on	a	flat	surface.	The	program	only	

makes	sense	when	running	on	an	actual	phone:	

The	values	here	indicate	the	phone	is	roughly	upright	but	tilted	back	a	bit,	which	is	a	very	

natural	orientation	in	actual	use.	

A
Simple
Bubble
Level

One	handy	tool	found	in	any	workshop	is	a	bubble	level,	also	called	a	spirit	level.	A	little	

bubble	always	floats	to	the	top	of	a	liquid,	so	it	visually	indicates	whether	something	is	

parallel	or	orthogonal	to	the	earth,	or	tilted	in	some	way.	

86	

	

	 	 	

	

	

	 	 	 	 	 	

	 	

	 	 	

	

	

The	XnaAccelerometer	project	includes	a	48by48	pixel	bitmap	named	Bubble.bmp	that	

consists	of	a	red	circle:	

The	magenta	on	the	corners	makes	those	areas	of	the	bitmap	transparent	when	XNA	renders	

it.	

As	with	the	Silverlight	program,	you’ll	need	a	reference	to	the	Microsoft.Devices.Sensors	

library	and	a	using	directive	for	the	Microsoft.Devices.Sensors	namespace.	

The	fields	in	the	Game1	class	mostly	involve	variables	necessary	to	position	that	bitmap	on	

the	screen:	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

const float BUBBLE_RADIUS_MAX = 25;

const float BUBBLE_RADIUS_MIN = 12;

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

Vector2 screenCenter;

float screenRadius; // less BUBBLE_RADIUS_MAX

Texture2D bubbleTexture;

Vector2 bubbleCenter;

Vector2 bubblePosition;

float bubbleScale;

Vector3 accelerometerVector;

object accelerometerVectorLock = new object();

…

}

87	

	

	 	 	

	

	 	 	

	 	

	 	 	

	 	 	

	 	 	

	 	 	 	

	

	 	

	 	 	 	

	 	

	 	 	 	

	 	 	 	 	

	 	

	

	

Towards	the	bottom	you’ll	see	a	field	named	acclerometerVector	of	type	Vector3.	The	

OnAccelerometerReadingChanged	event	handler	will	store	a	new	value	in	that	field,	and	the	

Update	method	will	utilize	the	value	in	calculating	a	position	for	a	bitmap.	

OnAccelerometerReadingChanged	and	Update	run	in	separate	threads.	One	is	setting	the	field;	

the	other	is	accessing	the	field.	This	is	no	problem	if	the	field	is	set	or	accessed	in	a	single	

machine	code	instruction.	That	would	be	the	case	if	Vector3	were	a	class,	which	is	a	reference	

type	and	basically	referenced	with	something	akin	to	a	pointer.	But	Vector3	is	a	structure	(a	

value	type)	consisting	of	three	properties	of	type	float,	each	of	which	occupies	four	bytes,	for	

a	total	of	12	bytes	or	96	bits.	Setting	or	accessing	this	Vector3 field	requires	this	many	bits	to	

be	transferred.	

A	Windows	Phone	7	device	contains	at	least	a	32bit	ARM	processor,	and	a	brief	glance	at	the	

ARM	instruction	set	does	not	reveal	any	machine	code	that	would	perform	a	12byte	memory	

transfer	in	one	instruction.	This	means	that	the	accelerometer	thread	storing	a	new	Vector3

value	could	be	interrupted	midway	in	the	process	by	the	Update	method	in	the	program’s	

main	thread	when	it	retrieves	that	value.	The	resultant	value	might	have	X,	Y,	and	Z	values	

mixed	up	from	two	readings.	

While	that	could	hardly	be	classified	as	a	catastrophe	in	this	program,	let’s	play	it	entirely	safe	

and	use	the	C#	lock	statement	to	make	sure	the	Vector3 value	is	stored	and	retrieved	by	the	

two	threads	without	interruption.	That’s	the	purpose	of	the	accelerometerVectorLock	variable	

among	the	fields.	

I	chose	to	create	the	Accelerometer	object	and	set	the	event	handler	in	the	Initialize	method:	

XNA Project: File: (excerpt)

protected override void Initialize()

{

Accelerometer accelerometer = new Accelerometer();

 accelerometer.ReadingChanged += OnAccelerometerReadingChanged;

 try

 {

accelerometer.Start();

 }

 catch

 {

 }

 base.Initialize();

}

void OnAccelerometerReadingChanged(object sender, AccelerometerReadingEventArgs

args)

{

 lock (accelerometerVectorLock)

88	

	

	 	 	 	

	 	 	

	

	 	

	 	 	

	

	 	

	 	

	 	

	 	 	

 {

accelerometerVector = new Vector3((float)args.X, (float)args.Y,

(float)args.Z);

}

}

Notice	that	the	event	handler	uses	the	lock statement	to	set	the	accelerometerVector	field.	

That	prevents	code	in	the	Update	method	from	accessing	the	field	during	this	short	duration.	

The	LoadContent	method	loads	the	bitmap	used	for	the	bubble	and	initializes	several	

variables	used	for	positioning	the	bitmap:	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

Viewport viewport = this.GraphicsDevice.Viewport;

 screenCenter = new Vector2(viewport.Width / 2, viewport.Height / 2);

 screenRadius = Math.Min(screenCenter.X, screenCenter.Y) - BUBBLE_RADIUS_MAX;

 bubbleTexture = this.Content.Load<Texture2D>("Bubble");

 bubbleCenter = new Vector2(bubbleTexture.Width / 2, bubbleTexture.Height / 2);

}

When	the	X	and	Y	properties	of	accelerometer	are	zero,	the	bubble	is	displayed	in	the	center	

of	the	screen.	That’s	the	reason	for	both	screenCenter	and	bubbleCenter.	The	screenRadius

value	is	the	distance	from	the	center	when	the	magnitude	of	the	X	and	Y	components	is	1.	

The	Update	method	safely	access	the	accelerometerVector	field	and	calculates	bubblePosition

based	on	the	X	and	Y	components.	It	might	seem	like	I’ve	mixed	up	the	X	and	Y	components	

in	the	calculation,	but	that’s	because	the	default	screen	orientation	is	portrait	in	XNA,	so	it’s	

opposite	the	coordinates	of	the	acceleration	vector.	Because	both	landscape	modes	are	

supported	by	default,	it’s	also	necessary	to	multiply	the	acceleration	vector	values	by	–1	when	

the	phone	has	been	tilted	into	the	LandscapeRight	mode:	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

// Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

Vector3 accVector;

89

	

	 	

	 	 	

	 	 	 	

	 	

	 	 	 	 	 	 	

	 	

	 	

	 	

 lock (accelerometerVectorLock)

 {

accVector = accelerometerVector;

 }

 int sign = this.Window.CurrentOrientation ==

DisplayOrientation.LandscapeLeft ? 1 : -1;

 bubblePosition = new Vector2(screenCenter.X + sign * screenRadius * accVector.Y,

screenCenter.Y + sign * screenRadius *

accVector.X);

 float bubbleRadius = BUBBLE_RADIUS_MIN + (1 - accVector.Z) / 2 *

(BUBBLE_RADIUS_MAX - BUBBLE_RADIUS_MIN);

 bubbleScale = bubbleRadius / (bubbleTexture.Width / 2);

 base.Update(gameTime);

}

In	addition,	a	bubbleScale	factor	is	calculated	based	on	the	Z component	of	the	vector.	The	

idea	is	that	the	bubble	is	largest	when	the	screen	is	facing	up	and	smallest	when	the	screen	is	

facing	down,	as	if	the	screen	is	really	one	side	of	a	rectangular	pool	of	liquid	that	extends	

below	the	phone,	and	the	size	of	the	bubble	indicates	how	far	it	is	from	the	surface.	

The	Draw override	uses	a	long	version	of	the	Draw	method	of	SpriteBatch.	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.Draw(bubbleTexture, bubblePosition, null, Color.White, 0,

 bubbleCenter, bubbleScale, SpriteEffects.None, 0);

 spriteBatch.End();

 base.Draw(gameTime);

}

Notice	the	bubbleScale	argument,	which	scales	the	bitmap	to	a	particular	size.	The	center	of	

scaling	is	provided	by	the	previous	argument	to	the	method,	bubbleCenter.	That	point	is	also	

aligned	with	the	bubblePosition	value	relative	to	the	screen.	

90

	

	

	 	 	

	

	

	 	 	 	

	 	 	

	 	 	

	

	 	 	

	 	

		

	 	 	

	 	 	

	

	 	

The	program	doesn’t	look	like	much,	and	is	even	more	boring	running	on	the	emulator.	

Here’s	an	indication	that	the	phone	is	roughly	upright	and	tilted	back	a	bit:	

You’ll	discover	that	the	accelerometer	is	very	jittery	and	cries	out	for	some	data	smoothing.	I’ll	

discuss	this	and	other	accelerometerrelated	issues	in	Chapter	24.	

Geographic
Location

With	the	user’s	permission,	a	Windows	Phone	7	program	can	obtain	the	geographic	location	

of	the	phone	using	a	technique	called	AssistedGPS	or	AGPS.	

The	most	accurate	method	of	determining	location	is	accessing	signals	from	Global	

Positioning	System	(GPS)	satellites.	However,	GPS	can	be	slow.	It	doesn’t	work	well	in	cities	or	

indoors,	and	it’s	considered	expensive	in	terms	of	battery	use.	To	work	more	cheaply	and	

quickly,	an	AGPS	system	can	attempt	to	determine	location	from	cellphone	towers	or	the	

network.	These	methods	are	faster	and	more	reliable,	but	less	accurate.	

The	core	class	involved	in	location	detection	is	GeoCoordinateWatcher.	You’ll	need	a	reference	

to	the	System.Device	assembly	and	a	using	direction	for	the	System.Device.Location

namespace.	The	WMAppManifest.xml	file	requires	the	tag:	

<Capability Name="ID_CAP_LOCATION" />

This	is	included	by	default.	

91	

	

	 	 	 	

	

	

	

	 	

	 	 	 	

	 	

	 	 	

	 	 	

	 	

	 	 	 	

	 	

	 	

	 	 	

	

	

	

	

	 	

	 	 	 	

	 	 	 	 	 	

	 	 	 	

	

	

	

	 	

	

	 	 	

	

	

The	GeoCoordinateWatcher	constructor	optionally	takes	a	member	of	the	

GeoPositionAccuracy	enumeration:	

• Default

• High

After	creating	a	GeoCoordinateWatcher	object,	you’ll	want	to	install	a	handler	for	the	

PositionChanged	event	and	call	Start.	The	PositionChanged	event	delivers	a	GeoCoordinate

object	that	has	eight	properties:	

• Latitude,	a	double	between	–90	and	90	degrees	

• Longitude,	a	double	between	–180	and	180	degrees	

• Altitude	of	type	double

• HorizontalAccuracy	and	VerticalAccuracy	of	type	double

• Course,	a	double	between	0	and	360	degrees	

• Speed	of	type	double

• IsUnknown,	a	Boolean	that	is	true	if	the	Latitude	or	Longitude	is	not	a	number	

If	the	application	does	not	have	permission	to	get	the	location,	then	Latitude	and	Longitude

will	be	Double.NaN,	and	IsUnknown	will	be	true.	

In	addition,	GeoCoordinate	has	a	GetDistanceTo	method	that	calculates	the	distance	between	

two	GeoCoordinate	objects.	

I’m	going	to	focus	on	the	first	two	properties,	which	together	are	referred	to	as	geographic

coordinates	to	indicate	a	point	on	the	surface	of	the	Earth.	Latitude	is	the	angular	distance	

from	the	equator.	In	common	usage,	latitude	is	an	angle	between	0	and	90	degrees	and	

followed	with	either	N	or	S	meaning	north	or	south.	For	example,	the	latitude	of	New	York	

City	is	approximately	40°N. In	the	GeoCoordinate object,	latitudes	north	of	the	equator	are	

positive	values	and	south	of	the	equator	are	negative	values,	so	that	90° is	the	North	Pole	and	

–90°	is	the	South	Pole.	

All	locations	with	the	same	latitude	define	a	line of latitude.	Along	a	particular	line	of	latitude,	

longitude	is	the	angular	distance	from	the	Prime	Meridian,	which	passes	through	the	Royal	

Observatory	at	Greenwich	England.	In	common	use,	longitudes	are	either	east	or	west.	New	

York	City	is	74°W	because	it’s	west	of	the	Prime	Meridian.	In	a	GeoCoordinate	object,	positive	

longitude	values	denote	east	and	negative	values	are	west.	Longitude	values	of	180	and	–180	

meet	up	at	the	International	Date	Line.	

92	

	

	

	

	

	 	

	 	 	

	 	 	

	

Although	the	System.Device.Location	namespace	includes	classes	that	use	the	geographic	

coordinates	to	determine	civic	address	(streets	and	cities),	these	are	not	implemented	in	the	

initial	release	of	Windows	Phone	7.	

The	XnaLocation	project	simply	displays	numeric	values.	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

SpriteFont segoe14;

string text = "Obtaining location...";

Viewport viewport;

Vector2 textPosition;

 …

}

As	with	the	accelerometer,	I	chose	to	create	and	initialize	the	GeoCoordinateWatcher	in	the	

Initialize override.	The	event	handler	is	called	in	the	same	thread,	so	nothing	special	needs	to	

be	done	to	format	the	results	in	a	string:	

XNA Project: File: (excerpt)

protected override void Initialize()

{

GeoCoordinateWatcher geoWatcher = new GeoCoordinateWatcher();

 geoWatcher.PositionChanged += OnGeoWatcherPositionChanged;

 geoWatcher.Start();

 base.Initialize();

}

void OnGeoWatcherPositionChanged(object sender,

GeoPositionChangedEventArgs<GeoCoordinate> args)

{

 text = String.Format("Latitude: {0:F3}\r\n" +

"Longitude: {1:F3}\r\n" +

"Altitude: {2}\r\n\r\n" +

"{3}",

args.Position.Location.Latitude,

args.Position.Location.Longitude,

args.Position.Location.Altitude,

args.Position.Timestamp);

}

93	

	

	

	

	 	 	 	

	 	

	

The	LoadContent	method	simply	obtains	the	font	and	saves	the	Viewport	for	later	text	

positioning:	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 segoe14 = this.Content.Load<SpriteFont>("Segoe14");

 viewport = this.GraphicsDevice.Viewport;

}

The	size	of	the	displayed	string	could	be	different	depending	on	different	values.	That’s	why	

the	position	of	the	string	is	calculated	from	its	size	and	the	Viewport	values	in	the	Update

method:	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

// Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

Vector2 textSize = segoe14.MeasureString(text);

 textPosition = new Vector2((viewport.Width - textSize.X) / 2,

 (viewport.Height - textSize.Y) / 2);

 base.Update(gameTime);

}

The	Draw	method	is	trivial:	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.DrawString(kootenay14, text, textPosition, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}

94	

	

	 	 	 	 	 	

	 	

	

	 	

	

	 	

	

	 	 	

	

	

	 	 	 	

	

	

	 	 	 	 	 	

	 	 	

	 	

	 	

	 	 	

	

	

	

	 	 	

Because	the	GeoCoordinateWatcher is	left	running	for	the	duration	of	the	program,	it	should	

update	the	location	as	the	phone	is	moved.	Here’s	where	I	live:	

With	the	phone	emulator,	however,	the	GeoCoordinateWatcher	program	might	not	work.	

With	some	beta	software	releases	of	Windows	Phone	7	development	tools,	the	Accelerometer	

always	returned	the	coordinates	of	a	spot	in	Princeton,	New	Jersey,	perhaps	as	a	subtle	

reference	to	the	college	where	Alan	Turing	earned	his	PhD.	

Using
a
Map
Service

Of	course,	most	people	curious	about	their	location	prefer	to	see	a	map	rather	than	numeric	

coordinates.	The	Silverlight	demonstration	of	the	location	service	displays	a	map	that	comes	

to	the	program	in	the	form	of	bitmaps.		

In	a	real	phone	application,	you’d	probably	be	using	Bing	Maps,	particularly	considering	the	

existence	of	a	Bing	Maps	Silverlight	Control	tailored	for	the	phone.	Unfortunately,	making	use	

of	Bing	Maps	in	a	program	involves	opening	a	developer	account,	and	getting	a	maps	key	

and	a	credential	token.	This	is	all	free	and	straightforward	but	it	doesn’t	work	well	for	a	

program	that	will	be	shared	among	all	the	readers	of	a	book.	

For	that	reason,	I’ll	be	using	an	alternative	that	doesn’t	require	keys	or	tokens.	This	alternative	

is	Microsoft	Research	Maps,	which	you	can	learn	all	about	at	msrmaps.com.	The	aerial	images	

are	provided	by	the	United	States	Geological	Survey	(USGS).	Microsoft	Research	Maps	makes	

these	images	available	through	a	web	service	called	MSR	Maps	Service,	but	still	sometimes	

referred	to	by	its	old	name	of	TerraService.	

The	downside	is	that	the	images	are	not	quite	stateoftheart	and	the	service	doesn’t	always	

seem	entirely	reliable.	

MSR	Maps	Service	is	a	SOAP	(Simple	Object	Access	Protocol)	service	with	the	transactions	

described	in	a	WSDL	(Web	Services	Description	Language)	file.	Behind	the	scenes,	all	the	

transactions	between	your	program	and	the	web	service	are	in	the	form	of	XML	files.	

95	

	

	 	 	

	

	

	 	 	 	 	

	 	

	 	 	

	 	 	

	 	

	 	 	

	 	 	 	

	 	

	 	 	 	

	 	 	

	 	 	

	 	

	 	 	

	 	 	

	

	

		

	 	 	 	

	

	 	 	 	

	

	 	

	 	 	

	

	 	

	 	

However,	to	avoid	programmer	anguish,	generally	the	WSDL	file	is	used	to	generate	a	proxy,	

which	is	a	collection	of	classes	and	structures	that	allow	your	program	to	communicate	with	

the	web	service	with	method	calls	and	events.		

You	can	generate	this	proxy	right	in	Visual	Studio.	Here’s	how	I	did	it:	I	first	created	an	

Windows	Phone	7	project	in	Visual	Studio	called	SilverlightLocationMapper.	In	the	Solution	

Explorer,	I	rightclicked	the	project	name	and	selected	Add	Service	Reference.	In	the	Address	

field	I	entered	the	URL	of	the	MSR	Maps	Service	WSDL	file:	

http://MSRMaps.com/TerraService2.asmx.	

(You	might	wonder	if	the	URL	should	be	http://msrmaps.com/TerraService2.asmx?WSDL

because	that’s	how	WSDL	files	are	often	referenced.	That	address	will	actually	seem	to	work	at	

first,	but	you’ll	get	files	containing	obsolete	URLs.)	

After	you’ve	entered	the	URL	in	the	Address	field,	press	Go.	Visual	Studio	will	access	the	site	

and	report	back	what	it	finds.	There	will	be	one	service,	called	by	the	old	name	of	

TerraService.	

Next	you’ll	want	to	enter	a	name	in	the	Namespace	field	to	replace	the	generic	

ServiceReference1.	I	used	MsrMapsService	and	pressed	OK.	

You’ll	then	see	MsrMapsService	show	up	under	the	project	in	the	Solution	Explorer.	If	you	

click	the	little	Show	All	Files	icon	at	the	top	of	the	Solution	Explorer,	you	can	view	the	

generated	files.	In	particular,	nested	under	MsrMapsService	and	Reference.svcmap,	you’ll	see	

Reference.cs,	a	big	file	(over	4000	lines)	with	a	namespace	of	

XnaLocationMapper.MsrMapsService,	which	combines	the	original	project	name	and	the	

name	you	selected	for	the	web	service.	

This	Reference.cs	file	contains	all	the	classes	and	structures	you	need	to	access	the	web	

service,	and	which	are	documented	on	the	msrmaps.com	web	site.	To	access	these	classes	in	

your	program,	add	a	using	direction:	

using SilverlightLocationMapper.MsrMapsService;

You	also	need	a	reference	to	the	System.Device	assembly	and	using	directives	for	the	

System.Device.Location,	System.IO,	and	System.Windows.Media.Imaging	namespacess.	

In	the	MainPage.xaml	file,	I	left	the	SupportedOrientations	property	at	its	default	setting	of	

Portrait,	I	removed	the	page	title	to	free	up	more	space,	and	I	moved	the	title	panel	below	the	

content	grid	just	in	case	there	was	a	danger	of	something	spilling	out	of	the	content	grid	and	

obscuring	the	title.	Moving	the	title	panel	below	the	content	grid	in	the	XAML	file	ensures	

that	it	will	be	visually	on	top.	

96	

	

	

	 	 	 	

	 	

	

	 	 	 	

	

	 	 	 	

	 	 	 	 	 	

	 	 	

	

	 	 	

	

Here’s	the	content	grid:	

Silverlight Project: SilverlightLocationMapper File: MainPage.xaml (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<TextBlock Name="statusText"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 TextWrapping="Wrap" />

<Image Source="Images/usgslogoFooter.png"

 Stretch="None"

 HorizontalAlignment="Right"

 VerticalAlignment="Bottom" />

</Grid>

The	TextBlock is	used	to	display	status	and	(possibly)	errors;	the	Image	displays	a	logo	of	the	

United	States	Geological	Survey.	

The	map	bitmaps	will	be	inserted	between	the	TextBlock	and	Image	so	they	obscure	the	

TextBlock	but	the	Image	remains	on	top.	

The	codebehind	file	has	just	two	fields,	one	for	the	GeoCoordinateWatcher	that	supplies	the	

location	information,	and	the	other	for	the	proxy	class	created	when	the	web	service	was	

added:	

Silverlight Project: SilverlightLocationMapper File: MainPage.xaml.cs (excerpt)

public partial class MainPage : PhoneApplicationPage

{

GeoCoordinateWatcher geoWatcher = new GeoCoordinateWatcher();

TerraServiceSoapClient proxy = new TerraServiceSoapClient();

 …

}

You	use	the	proxy	by	calling	its	methods,	which	make	network	requests.	All	these	methods	are	

asynchronous.	For	each	method	you	call,	you	must	also	supply	a	handler	for	a	completion	

event	that	is	fired	when	the	information	you	requested	has	been	transferred	to	your	

application.	

The	completion	event	is	accompanied	by	event	arguments:	a	Cancelled	property	of	type	bool,	

an	Error	property	that	is	null if	there	is	no	error,	and	a	Result	property	that	depends	on	the	

request.	

97	

	

	 	

	 	 	

	

	 	

	

	 	 	

	 	 	

I	wanted	the	process	to	begin	after	the	program	was	loaded	and	displayed,	so	I	set	a	handler	

for	the	Loaded	event.	That	Loaded	handler	sets	the	handlers	for	the	two	completion	events	I’ll	

require	of	the	proxy,	and	also	starts	up	the	GeoCoordinateWatcher:	

 Silverlight Project: SilverlightLocationMapper File: MainPage.xaml.cs (excerpt)

public MainPage()

{

 InitializeComponent();

 Loaded += OnMainPageLoaded;

}

void OnMainPageLoaded(object sender, RoutedEventArgs args)

{

// Set event handlers for TerraServiceSoapClient proxy

 proxy.GetAreaFromPtCompleted += OnProxyGetAreaFromPtCompleted;

 proxy.GetTileCompleted += OnProxyGetTileCompleted;

// Start GeoCoordinateWatcher going

 statusText.Text = "Obtaining geographic location...";

 geoWatcher.PositionChanged += OnGeoWatcherPositionChanged;

 geoWatcher.Start();

}

When	coordinates	are	obtained,	the	following	OnGeoWatcherPositionChanged	method	is	

called.	This	method	begins	by	turning	off	the	GeoCoordinateWatcher.	The	program	is	not	

equipped	to	continuously	update	the	display,	so	it	can’t	do	anything	with	any	additional	

location	information.	It	appends	the	longitude	and	latitude	to	the	TextBlock	called	

ApplicationTitle	displayed	at	the	top	of	the	screen.	

Silverlight Project: SilverlightLocationMapper File: MainPage.xaml.cs (excerpt)

void OnGeoWatcherPositionChanged(object sender,

GeoPositionChangedEventArgs<GeoCoordinate> args)

{

// Turn off GeoWatcher

 geoWatcher.PositionChanged -= OnGeoWatcherPositionChanged;

 geoWatcher.Stop();

// Set coordinates to title text

GeoCoordinate coord = args.Position.Location;

 ApplicationTitle.Text += ": " + String.Format("{0:F2}°{1} {2:F2}°{3}",

Math.Abs(coord.Latitude),

coord.Latitude > 0 ? 'N' : 'S',

Math.Abs(coord.Longitude),

coord.Longitude > 0 ? 'E' : 'W');

// Query proxy for AreaBoundingBox

LonLatPt center = new LonLatPt();

 center.Lon = args.Position.Location.Longitude;

98	

	

	 	 	

	 	 	

	 	

	 	 	

	

	 	 	 	 	

	

	 	

		

	 	

	 	 	

	 	

	

	

	 	 	 	 	 	

	 	

	 	 	

	 	

	 	 	 	

	

	

		

 center.Lat = args.Position.Location.Latitude;

 statusText.Text = "Accessing Microsoft Research Maps Service...";

 proxy.GetAreaFromPtAsync(center, 1, Scale.Scale16m,

(int)ContentPanel.ActualWidth,

(int)ContentPanel.ActualHeight);

}

The	method	concludes	by	making	its	first	call	to	the	proxy.	The	GetAreaFromPtAsync	call	

requires	a	longitude	and	latitude	as	a	center	point,	but	some	other	information	as	well.	The	

second	argument	is	1	to	get	an	aerial	view	and	2	for	a	map	(as	you’ll	see	at	the	end	of	this	

chapter).	The	third	argument	is	the	desired	scale,	a	member	of	the	Scale	enumeration.	The	

member	I’ve	chosen	means	that	each	pixel	of	the	returned	bitmaps	is	equivalent	to	16	meters.	

Watch	out:	Some	scaling	factors—in	particular,	Scale2m,	Scale8m,	and	Scale32m—result	in	

GIF	files	being	returned.	Remember,	remember,	remember	that	Silverlight	doesn’t	do	GIF!	For	

the	other	scaling	factors,	JPEGS	are	returned.	

The	final	arguments	to	GetAreaFromPtAsync	are	the	width	and	height	of	the	area	you	wish	to	

cover	with	the	map.	

All	the	bitmaps	you	get	back	from	the	MSR	Maps	Service	are	200	pixels	square.	Almost	

always,	you’ll	need	multiple	bitmaps	to	tile	a	complete	area.	For	example,	if	the	last	two	

arguments	to	GetAreaFromPtAsync	are	400	and	600,	you’ll	need	6	bitmaps	to	tile	the	area.	

Well,	actually	not:	An	area	of	400	pixels	by	600	pixels	will	require	12	bitmaps,	3	horizontally	

and	4	vertically.	

Here’s	the	catch:	These	bitmaps	aren’t	specially	created	when	a	program	requests	them.	They	

already	exist	on	the	server	in	all	the	various	scales.	The	geographic	coordinates	where	these	

bitmaps	begin	and	end	are	fixed.	So	if	you	want	to	cover	a	particular	area	of	your	display	with	

a	tiled	map,	and	you	want	the	center	of	this	area	to	be	precisely	the	coordinate	you	specify,	

the	existing	tiles	aren’t	going	to	fit	exactly.	You	want	sufficient	tiles	to	cover	your	area,	but	the	

tiles	around	the	boundary	are	going	to	hang	over	the	edges.	

What	you	get	back	from	the	GetAreaFromPtAsync	call	(in	the	following	

OnProxyGetAreaFromPtCompleted	method)	is	an	object	of	type	AreaBoundingBox.	This	is	a	

rather	complex	structure	that	nonetheless	has	all	the	information	required	to	request	the	

individual	tiles	you	need	and	then	assemble	them	together	in	a	grid.	

Silverlight Project: SilverlightLocationMapper File: MainPage.xaml.cs (excerpt)

void OnProxyGetAreaFromPtCompleted(object sender, GetAreaFromPtCompletedEventArgs

args)

{

99

	

	 	 	 	

	 	 	

	 	 	 	 	 	 	

	

	 	

	 	 	 	

if (args.Error != null)

{

statusText.Text = args.Error.Message;

return;

}

 statusText.Text = "Getting map tiles...";

AreaBoundingBox box = args.Result;

int xBeg = box.NorthWest.TileMeta.Id.X;

int yBeg = box.NorthWest.TileMeta.Id.Y;

int xEnd = box.NorthEast.TileMeta.Id.X;

int yEnd = box.SouthWest.TileMeta.Id.Y;

// Loop through the tiles

for (int x = xBeg; x <= xEnd; x++)

for (int y = yBeg; y >= yEnd; y--)

{

// Create Image object to display tile

Image img = new Image();

 img.Stretch = Stretch.None;

 img.HorizontalAlignment = HorizontalAlignment.Left;

 img.VerticalAlignment = VerticalAlignment.Top;

 img.Margin = new Thickness((x - xBeg) * 200 -

box.NorthWest.Offset.XOffset,

(yBeg - y) * 200 -

box.NorthWest.Offset.YOffset,

0, 0);

// Insert after TextBlock but before Image with logo

 ContentPanel.Children.Insert(1, img);

// Define the tile ID

TileId tileId = box.NorthWest.TileMeta.Id;

 tileId.X = x;

 tileId.Y = y;

// Call proxy to get the tile (Notice that Image is user object)

 proxy.GetTileAsync(tileId, img);

}

}

I	won’t	discuss	the	intricacies	of	AreaBoundingBox	because	it’s	more	or	less	documented	on	

the	msrmaps.com	web	site,	and	I	was	greatly	assisted	by	some	similar	logic	on	the	site	written	

for	Windows	Forms	(which	I	suppose	dates	it	a	bit).	

Notice	that	the	loop	creates	each	Image	object	to	display	each	tile.	Each	of	these	Image

objects	has	the	same	Stretch,	HorizontalAlignment,	and	VerticalAlignment	properties,	but	a	

different	Margin.	This	Margin	is	how	the	individual	tiles	are	positioned	within	the	content	grid.	

The	XOffset	and	YOffset	values	cause	the	tiles	to	hang	off	the	top	and	left	edges	of	the	

100	

	

	 	 	 	 	

	

	 	 	 	

	 	

	 	

	

	 	

	

	 	

	 	 	

	 	

content	grid.	The	content	grid	doesn’t	clip	its	contents,	so	these	tiles	possibly	extend	to	the	

top	of	the	program’s	page.	

Notice	also	that	each	Image object	is	passed	as	a	second	argument	to	the	proxy’s	

GetTileAsync method.	This	is	called	the	UserState	argument.	The	proxy	doesn’t	do	anything	

with	this	argument	except	return	it	as	the	UserState property	of	the	completion	arguments,	as	

shown	here:	

Silverlight Project: SilverlightLocationManager File: MainPage.xaml.cs (excerpt)

void OnProxyGetTileCompleted(object sender, GetTileCompletedEventArgs args)

{

if (args.Error != null)

{

return;

}

Image img = args.UserState as Image;

BitmapImage bmp = new BitmapImage();

 bmp.SetSource(new MemoryStream(args.Result));

 img.Source = bmp;

}

That’s	how	the	method	links	up	the	particular	bitmap	tile	with	the	particular	Image	element	

already	in	place	in	the	content	grid.	

It	is	my	experience	that	in	most	cases,	the	program	doesn’t	get	all	the	tiles	it	requests.	If	

you’re	very	lucky—and	you	happen	to	be	running	the	program	somewhere	in	my	

neighborhood—your	display	might	look	like	this:	

101	

	

	

	 	 	 	 	

	 	

	

	 	

If	you	change	the	second	argument	of	the	proxy.GetAreaFromPtAsync call	from	a	1	to	a	2,	you	

get	back	images	of	an	actual	map	rather	than	an	aerial	view:	

It	has	a	certain	retro	charm—and	I	love	the	watercolor	look—but	I’m	afraid	that	modern	users	

are	accustomed	to	something	just	a	little	more	21st	century.	

102	

	

	 	

	

	

	

	

	 	

	 	 	 	

	

	 	

	

	 	 	

	

	

Chapter	6	

Issues in Application Architecture
A	Silverlight	application	for	Windows	Phone	7	consists	of	several	standard	classes:	

• an	App class	that	derives	from	Application;	

• an	instance	of	the	PhoneApplicationFrame	class;	and	

• one	or	more	classes	that	derive	from	PhoneApplicationPage.	

This	chapter	is	partially	about	the	“or	more”	of	that	last	item.	The	programs	you’ve	seen	so	far	

have	consisted	of	a	single	class	named	MainPage	that	derives	from	PhoneApplicationPage.	In	

more	complex	applications,	you	might	want	to	have	multiple	pages	and	allow	the	user	to	

navigate	among	them,	much	like	navigating	among	Web	pages.	

Page	navigation	would	seem	to	be	an	advanced	Silverlight	programming	topic,	and	a	topic	

that	applies	only	to	Silverlight	programming	rather	than	XNA	programming.	However,	there	

are	issues	involved	with	navigation	that	are	related	to	the	very	important	topic	of	

tombstoning,	which	is	what	happens	to	your	Windows	Phone	7	application	when	the	user	

navigates	to	another	application	through	the	phone’s	Start	screen.	Tombstoning	is	very	much	

an	issue	that	also	affects	XNA	programmers.	

Basic
Navigation

The	SilverlightSimpleNavigation	project	begins	as	usual	with	a	MainPage	class,	and	as	usual	I	

set	the	two	TextBlock	elements	for	the	titles:	

Silverlight Project: SilverlightSimpleNavigation File: MainPage.xaml (excerpt)

<StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,17,0,28">

<TextBlock x:Name="ApplicationTitle" Text="SIMPLE NAVIGATION" … />

<TextBlock x:Name="PageTitle" Text="main page" … />

</StackPanel>

The	content	area	of	MainPage.xaml	contains	only	a	TextBlock	that	sets	a	handler	for	its	

ManipulationStarted	event:	

Silverlight Project: SilverlightSimpleNavigation File: MainPage.xaml (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<TextBlock Text="Navigate to 2nd Page"

103	

	

	 	

	

	

	

	

	 	

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 Padding="0 34"

 ManipulationStarted="OnTextBlockManipulationStarted" />

</Grid>

Notice	the	Text	property	on	the	TextBlock:	“Navigate	to	2nd	page.”	The	codebehind	file	

contains	the	handler	for	ManipulationStarted	but	also	overrides	the	OnManipulationStarted

method	for	the	whole	page:	

Silverlight Project: SilverlightSimpleNavigation File: MainPage.xaml.cs (excerpt)

public partial class MainPage : PhoneApplicationPage

{

Random rand = new Random();

 public MainPage()

 {

InitializeComponent();

 }

 void OnTextBlockManipulationStarted(object sender, ManipulationStartedEventArgs

args)

 {

this.NavigationService.Navigate(new Uri("/SecondPage.xaml",

UriKind.Relative));

args.Complete();

args.Handled = true;

 }

 protected override void OnManipulationStarted(ManipulationStartedEventArgs args)

 {

ContentPanel.Background = new SolidColorBrush(

Color.FromArgb(255, (byte)rand.Next(255),

 (byte)rand.Next(255),

 (byte)rand.Next(255)));

base.OnManipulationStarted(args);

 }

}

If	you	touch	anywhere	on	the	page	outside	of	the	TextBlock,	the	background	of	the	

ContentPanel	is	set	to	a	random	color.	Touch	the	TextBlock,	and	the	handler	accesses	the	

NavigationService	property	of	the	page.	This	is	an	object	of	type	NavigationService	that	

contains	properties,	methods,	and	events	related	to	navigation,	including	the	crucial	Navigate

method:	

this.NavigationService.Navigate(new Uri("/SecondPage.xaml", UriKind.Relative));

104

	

	

	 	

	 	

	 	 	 	 	

	

	

	 	

	 	

	

	 	 	 	

	 	 	

The	argument	is	an	object	of	type	Uri.	Notice	the	slash	in	front	of	SecondPage.xaml,	and	

notice	the	use	of	UriKind.Relative	to	indicate	a	URI	relative	to	MainPage.xaml.	

I	created	a	second	page	in	the	SilverlightSimpleNavigation	project	by	rightclicking	the	

project	name	in	the	Visual	Studio	solution	explorer,	and	selecting	Add	and	New	Item.	From	

the	Add	New	Item	dialog	box,	I	picked	Windows	Phone	Portrait	Page	and	gave	it	a	name	of	

SecondPage.xaml.	

This	process	creates	not	only	SecondPage.xaml	but	also	the	codebehind	file	SecondPage.cs.	

The	two	SecondPage	files	are	virtually	identical	to	the	two	MainPage	files	that	Visual	Studio	

customarily	creates.	Like	MainPage,	SecondPage	derives	from	PhoneApplicationPage.	

I	gave	the	titles	In	SecondPage.xaml	the	same	application	name	as	FirstPage.xaml	but	a	page	

title	of	“second	page”:	

Silverlight Project: SilverlightSimpleNavigation File: SecondPage.xaml (excerpt)

<StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,17,0,28">

<TextBlock x:Name="ApplicationTitle" Text="SIMPLE NAVIGATION" … />

<TextBlock x:Name="PageTitle" Text="second page" … />

</StackPanel>

The	content	area	of	SecondPage.xaml	is	very	much	like	MainPage.xaml	but	the	TextBlock

reads	“Go	Back	to	1st	Page”:	

Silverlight Project: SilverlightSimpleNavigation File: SecondPage.xaml (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<TextBlock Text="Go Back to 1st Page"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 Padding="0 34"

 ManipulationStarted="OnTextBlockManipulationStarted" />

</Grid>

The	codebehind	file	of	the	SecondPage	class	is	also	very	much	like	the	FirstPage	class:	

Silverlight Project: SilverlightSimpleNavigation File: SecondPage.xaml.cs (excerpt)

public partial class SecondPage : PhoneApplicationPage

{

Random rand = new Random();

 public SecondPage()

 {

 InitializeComponent();

105	

	

	 	 	 	 	 	

	 	 	 	

	 	 	 	 	

	

	 	 	

	 	 	 	 	

	 	 	

	

	 	

	

	

 }

 void OnTextBlockManipulationStarted(object sender, ManipulationStartedEventArgs

args)

 {

this.NavigationService.GoBack();

args.Complete();

args.Handled = true;

 }

 protected override void OnManipulationStarted(ManipulationStartedEventArgs args)

 {

ContentPanel.Background = new SolidColorBrush(

Color.FromArgb(255, (byte)rand.Next(255),

 (byte)rand.Next(255),

 (byte)rand.Next(255)));

base.OnManipulationStarted(args);

 }

}

Once	again,	when	you	touch	anywhere	on	the	page	except	the	TextBlock,	the	background	

changes	to	a	random	color.	When	you	touch	the	TextBlock,	the	handler	calls	another	method	

of	NavigationService:	

this.NavigationService.GoBack();

This	call	causes	the	program	to	go	back	to	the	page	that	navigated	to	SecondPage.xaml,	in	

this	case,	MainPage.xaml.	Take	a	look	at	the	Navigate	call	in	MainPage.cs	again:	

this.NavigationService.Navigate(new Uri("/SecondPage.xaml", UriKind.Relative));

Navigation	in	a	Silverlight	program	is	based	around	XAML	files	in	much	the	same	way	that	

navigation	in	a	traditional	Web	environment	is	based	around	HTML	files.	The	actual	instance	

of	the	SecondPage	class	is	created	behind	the	scenes.	The	PhoneApplicationFrame	instance	in	

the	application	handles	many	of	the	actual	mechanics	of	navigation,	but	the	public	interface	

of	PhoneApplicationFrame	also	involves	Uri	objects	and	XAML	files	rather	than	instances	of	

PhoneApplicationPage	derivatives.	

Let’s	run	the	program.	The	program	begins	with	the	main	page,	and	you	can	touch	the	screen	

to	change	the	color:	

106

	

	

	 	 	

	

	

Now	touch	the	TextBlock	that	says	“Navigate	to	2nd	Page”	and	the	second	page	comes	into	

view:	

You	can	touch	that	screen	to	change	to	a	different	color:	

107	

	

	

	 	

	 	 	 	

	

	

Now	touch	the	TextBlock	that	says	“Go	Back	to	1st	Page”.	(Alternatively,	you	can	press	the	

phone’s	hardware	Back	button.)	You’ll	be	whisked	back	to	the	main	page	with	the	color	just	

as	you	left	it:	

108	

	

	

	

	 	

	 	 	

	 	 	

	 	

	 	 	 	 	 	

	

	 	 	 	

	

	 	

	 	 	 	

	

	 	

	 	 	 	 	 	

	 	

	 	 	 	

	 	 	

Now	touch	the	TextBlock	again	to	navigate	to	the	second	page:	

The	background	is	black.	The	second	page	does	not	display	the	color	you	set	when	you	last	

visited	the	second	page.	This	is	very	obviously	a	brand	new	instance	of	the	SecondPage	class.	

The	navigation	system	in	Silverlight	for	Windows	Phone	is	based	around	the	metaphor	of	the	

lastinfirstout	data	structure	called	the	stack.	I’ll	sometimes	refer	to	the	page	calling	

Navigate	as	the	source	page	and	the	page	being	navigated	to	as	the	destination	page.	When	

the	source	page	calls	Navigate,	the	source	page	is	put	on	the	stack	and	a	new	instance	of	the	

destination	page	is	created	and	displayed.	When	a	page	calls	GoBack —	or	when	the	user	

presses	the	phone’s	hardware	Back	button	—	that	page	is	abandoned,	and	the	page	at	the	

top	of	the	stack	is	popped	off	and	displayed.	

Within	a	Silverlight	application,	the	phone’s	Back	button	performs	the	same	function	as	a	call	

to	GoBack	except	if	you’re	at	the	initial	page	of	the	program,	in	which	case	the	hardware	Back	

button	terminates	the	application.	

Try	this:	Replace	the	GoBack	call	in	SecondPage.xaml.cs	with	the	following:	

this.NavigationService.Navigate(new Uri("/MainPage.xaml", UriKind.Relative));

This	is	not	the	same	as	the	GoBack call.	You	won’t	go	back	to	the	original	instance	of	

MainPage.	This	call	causes	SecondPage	to	navigate	to	a	new	instance	of	MainPage,	and	if	you	

keep	pressing	the	TextBlock on	each	on	the	pages,	you’ll	build	up	a	whole	stack	of	alternating	

MainPage	and	SecondPage instances,	each	of	which	can	have	its	own	unique	color.	You’ll	

109	

	

	 	 	 	 	

	 	 	

	

	 	 	 	 	 	 	 	

	 	 	 	 	 	

	

	

	 	

	 	 	

	 	

	 	 	

	 	 	

	

	 	 	

	 	

	 	 	

	

	 	

	 	 	

	 	 	

need	to	use	the	hardware	Back	button	on	the	phone	to	back	up	through	all	these	pages	and	

finally	terminate	the	application.	

Navigate	and	GoBack	are	the	two	basic	methods	of	NavigationService,	and	it’s	unlikely	you’ll	

need	to	use	anything	beyond	these	for	your	applications.	Keep	in	mind	that	you’re	coding	for	

a	phone,	and	it	doesn’t	make	a	lot	of	sense	to	have	very	complex	navigation	schemes	within	

your	program	without	also	some	way	of	reminding	the	user	how	the	current	page	was	arrived	

at	and	how	to	unwind	the	process.	

Perhaps	the	most	important	use	of	secondary	pages	in	a	Silverlight	application	for	the	phone	

is	to	serve	as	dialog	boxes.	When	a	program	needs	some	information	from	the	user,	it	

navigates	to	a	new	page	to	collection	that	information.	The	user	enters	the	information,	and	

then	goes	back	to	the	main	page.	I’ll	have	a	demonstration	of	this	technique	in	Chapter	10.	

Passing
Data
to
Pages

The	possible	use	of	pages	as	dialog	boxes	provokes	two	questions:	

• How	do	I	pass	data	from	a	source	page	to	a	destination	page?	

• How	do	I	return	data	when	going	back	to	the	original	page?	

Interestingly,	a	facility	is	provided	specifically	for	the	first	item	but	not	for	the	second.	I’ll	show	

you	this	facility	and	then	look	at	more	generalized	solutions	to	the	second	problem.	

The	following	project	is	called	SilverlightPassData.	It	is	very	much	like	the	first	project	in	this	

chapter	except	that	when	MainPage	navigates	to	SecondPage,	it	provides	SecondPage	with	its	

current	background	color,	and	SecondPage initializes	itself	with	that	color.	

Here’s	the	content	area	of	MainPage.xaml,	the	same	as	in	the	previous	program:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<TextBlock Text="Navigate to 2nd Page"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 Padding="0 34"

 ManipulationStarted="OnTextBlockManipulationStarted" />

</Grid>

I	won’t	show	you	the	OnManipulationStarted	override	because	it’s	the	same	as	in	the	previous	

program,	but	the	ManipulationStarted	event	handler	for	the	TextBlock	is	a	bit	enhanced:	

110	

	

	

	 	

	 	 	

	 	

	

	

	 	

	 	 	

Silverlight Project: File: (excerpt)

void OnTextBlockManipulationStarted(object sender, ManipulationStartedEventArgs

args)

{

string destination = "/SecondPage.xaml";

if (ContentPanel.Background is SolidColorBrush)

{

Color clr = (ContentPanel.Background as SolidColorBrush).Color;

destination += String.Format("?Red={0}&Green={1}&Blue={2}",

 clr.R, clr.G, clr.B);

 }

this.NavigationService.Navigate(new Uri(destination, UriKind.Relative));

 args.Complete();

 args.Handled = true;

}

If	the	Background	brush	of	the	ContentPanel	is	a	SolidColorBrush,	then	the	handler	gets	the	

Color	and	formats	the	red,	green,	and	blue	values	into	a	string	that	is	appended	to	the	name	

of	the	destination	page.	The	URI	now	looks	something	like	this:	

“/SecondPage.xaml?Red=244&Green=43&Blue=91”	

You’ll	recognize	this	as	a	common	format	of	an	HTML	query	string.	

The	SilverlightPassData	project	also	contains	a	SecondPage	class	that	is	the	same	as	the	one	in	

the	first	project	except	that	the	codebehind	file	contains	an	override	of	the	OnNavigatedTo

method:	

Silverlight Project: File: (excerpt)

protected override void OnNavigatedTo(NavigationEventArgs args)

{

IDictionary<string, string> parameters = this.NavigationContext.QueryString;

if (parameters.ContainsKey("Red"))

 {

byte R = Byte.Parse(parameters["Red"]);

byte G = Byte.Parse(parameters["Green"]);

byte B = Byte.Parse(parameters["Blue"]);

ContentPanel.Background =

new SolidColorBrush(Color.FromArgb(255, R, G, B));

 }

111	

	

	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	

	 	 	

	 	 	

	 	 	 	 	

	 	

	 	 	

	 	 	

	

	 	 	 	

	 	 	 	 	 	

	 	

	 	

	 	

	 	 	 	 	

base.OnNavigatedTo(args);

}

You’ll	need	a	using	directive	for	the	System.Windows.Navigation	namespace	for	the	

NavigationEventArgs	class.	

The	OnNavigatedTo	method	is	defined	by	Page,	the	class	from	which	PhoneApplicationPage

derives.	The	method	is	called	right	after	the	page	has	been	created.	When	OnNavigatedTo	is	

called,	the	page’s	constructor	has	already	executed,	of	course,	but	not	much	else	has	

happened.		

The	destination	class	can	access	the	query	strings	used	to	invoke	the	page	through	the	page’s	

NavigationContext	property.	This	property	is	of	type	NavigationContext,	a	class	that	has	only	

one	public	property	named	QueryString,	which	returns	a	dictionary	that	I’ve	saved	in	a	

variable	called	parameters.	The	code	here	assumes	that	if	the	“Red”	query	string	is	present,	

the	“Blue”	and	“Green”	must	exist	as	well.	It	passes	all	the	strings	to	the	Byte.Parse	method	

and	reconstructs	the	color.	

Now	as	you	navigate	from	MainPage	to	SecondPage,	the	background	color	remains	the	same.	

As	you	go	back,	however,	that’s	not	the	case.	There	is	no	builtin	facility	like	the	query	string	

to	return	data	from	one	page	to	another.	

Sharing
Data
Among
Pages

Keep	in	mind	that	all	the	pages	in	your	program	have	convenient	access	to	the	App	class	that	

derives	from	Application.	The	static	Application.Current	property	returns	the	Application	object	

associated	with	the	program,	and	you	can	simply	cast	that	to	App.	This	means	that	you	can	

use	the	App	class	for	storing	data	you	want	to	share	among	multiple	pages	of	the	application.	

In	the	SilverlightShareData	project,	I	defined	a	simple	public	property	in	the	App	class:	

Silverlight Project: File: (excerpt)

public partial class App : Application

{

// public property for sharing data among pages

 public Color? SharedColor { set; get; }

…

}

I	defined	this	property	of	type	nullable	Color	rather	than	just	Color	for	those	cases	where	a	

SolidColorBrush has	not	been	set	on	the	Background	property	of	ContentPanel.	In	those	cases,	

112	

	

	

	 	 	 	 	 	

	 	 	 	

	 	 	

	 	 	

	 	

	

	

	 	

	 	 	

the	Background	property	is	null	and	there	shouldn’t	be	a	Color	stored	in	this	property.	If	the	

property	were	of	type	Color,	then	a	Color would	be	stored	by	default;	that	Color	value	would	

be	transparent	black,	and	that’s	wrong.	Even	nontransparent	black	is	wrong	if	the	user	has	

selected	the	Light	color	scheme.	

Much	of	the	program	remains	the	same,	except	that	when	you	touch	the	TextBlock	in	

MainPage,	the	handler	first	attempts	to	save	a	color	in	the	new	App	class	property	before	

navigating	to	SecondPage:	

Silverlight Project: File: (excerpt)

void OnTextBlockManipulationStarted(object sender, ManipulationStartedEventArgs

args)

{

if (ContentPanel.Background is SolidColorBrush)

(Application.Current as App).SharedColor =

 (ContentPanel.Background as SolidColorBrush).Color;

this.NavigationService.Navigate(new Uri("/SecondPage.xaml", UriKind.Relative));

 args.Complete();

 args.Handled = true;

}

The	OnNavigatedTo	override	in	SecondPage	than	accesses	that	property:	

Silverlight Project: File: (excerpt)

protected override void OnNavigatedTo(NavigationEventArgs args)

{

Color? sharedColor = (Application.Current as App).SharedColor;

if (sharedColor != null)

ContentPanel.Background =

new SolidColorBrush(sharedColor.Value);

base.OnNavigatedTo(args);

}

Similarly,	when	you	press	the	TextBlock	on	SecondPage,	the	handler	saves	whatever	color	the	

background	now	happens	to	be	back	in	the	App	class	before	calling	GoBack:	

Silverlight Project: File: (excerpt)

void OnTextBlockManipulationStarted(object sender, ManipulationStartedEventArgs

args)

{

113	

	

	

	

	 	 	

	 	 	 	

	 	 	 	 	 	 	

	

	 	 	 	

	

	 	 	 	 	 	

	 	

	 	

	 	

	

	 	

	

	 	 	 	

if (ContentPanel.Background is SolidColorBrush)

(Application.Current as App).SharedColor =

 (ContentPanel.Background as SolidColorBrush).Color;

this.NavigationService.GoBack();

 args.Complete();

 args.Handled = true;

}

The	MainPage	class	also	overrides	OnNavigatedTo	so	it	too	can	retrieve	the	stored	color	and	

set	it	to	the	background	of	the	grid:	

Silverlight Project: File: (excerpt)

protected override void OnNavigatedTo(NavigationEventArgs args)

{

Color? sharedColor = (Application.Current as App).SharedColor;

if (sharedColor != null)

ContentPanel.Background =

new SolidColorBrush(sharedColor.Value);

base.OnNavigatedTo(args);

}

Now	as	you	navigate	between	the	pages	they	always	share	the	same	color.	

Using	the	App class	as	a	repository	for	shared	data	among	pages	is	so	convenient	that	you	

might	find	yourself	using	it	exclusively.	But	you	should	really	consider	more	structured	

solutions	that	involve	only	the	pages	navigating	between	each	other	and	not	some	third

party	class	like	App.	

Besides	the	OnNavigatedTo	virtual	method,	Page	also	defines	an	OnNavigatedFrom	method,	

which	at	first	seems	much	less	useful.	After	all,	a	page	knows	that	it’s	navigating	from	itself	

because	it’s	just	called	Navigate	or	GoBack.	

However,	both	OnNavigatedFrom	and	OnNavigatedTo	have	event	arguments	of	type	

NavigationEventArgs,	which	defines	two	properties:	Uri	of	type	Uri,	and	Content	of	type	object.	

These	always	indicate	the	page	being	navigated	to.	

For	example,	MainPage	calls	Navigate	with	an	argument	of	“/SecondPage.xaml”.	The	

OnNavigatedFrom	method	in	MainPage	is	called	with	event	arguments	with	a	Uri	property	

indicating	“/SecondPage.xaml”	and	a	Content	property	of	type	SecondPage.	This	is	the	newly	

created	instance	of	SecondPage	that	is	about	to	be	displayed,	and	this	is	the	most	convenient	

way	to	obtain	that	instance.	The	OnNavigatedTo	method	of	SecondPage	is	then	called	with	

the	same	event	arguments	indicating	a	Uri of	“/SecondPage.xaml”	and	the	SecondPage	object.	

114	

	

	 	 	

	

	 	

	

	

	

	

	 	 	

	

	

	

	

Similarly,	when	SecondPage	calls	GoBack,	its	OnNavigatedFrom method	is	called	with	event	

arguments	that	include	a	Uri property	indicating	“/MainPage.xaml”	and	a	Content	property	

with	the	MainPage	instance.	The	OnNavigatedTo	method	of	MainPage	is	then	called	with	

those	same	event	arguments.		

This	means	that	during	the	OnNavigatedFrom	method,	a	class	has	an	opportunity	to	set	a	

property	or	call	a	method	in	the	class	of	the	destination	page.	

Let’s	look	at	an	example	called	SilverlightInsertData.	The	project	has	two	pages	named	

MainPage	and	SecondPage	and	the	XAML	files	are	the	same	as	those	you’ve	already	seen.	The	

MainPage	class	doesn’t	have	any	logic	to	randomly	change	its	color.	Instead,	it	uses	

SecondPage	to	obtain	a	color	for	it.	You	can	think	of	SecondPage	as	a	dialog	box	that	returns	

a	random	color	to	MainPage.	

Here’s	most	of	the	codebehind	file	in	MainPage:	

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage

{

 public MainPage()

 {

InitializeComponent();

 }

 public Color? ReturnedColor { set; get; }

 void OnTextBlockManipulationStarted(object sender, ManipulationStartedEventArgs

args)

 {

this.NavigationService.Navigate(new Uri("/SecondPage.xaml",

UriKind.Relative));

args.Complete();

args.Handled = true;

 }

 …

}

Notice	the	ReturnedColor	property,	of	type	nullable	Color	just	like	the	property	in	the	App

class	in	the	previous	program.	

Here’s	the	SecondPage	codebehind	file:	

Silverlight Project: SilverlightInsertData File: SecondPage.xaml.cs (excerpt)

public partial class SecondPage : PhoneApplicationPage

{

115	

	

	 	 	 	

	 	 	 	

	

	 	

	 	

Random rand = new Random();

 public SecondPage()

 {

InitializeComponent();

 }

 void OnTextBlockManipulationStarted(object sender, ManipulationStartedEventArgs

args)

 {

this.NavigationService.GoBack();

args.Complete();

args.Handled = true;

 }

 protected override void OnManipulationStarted(ManipulationStartedEventArgs args)

 {

ContentPanel.Background = new SolidColorBrush(

Color.FromArgb(255, (byte)rand.Next(255),

 (byte)rand.Next(255),

 (byte)rand.Next(255)));

base.OnManipulationStarted(args);

 }

 protected override void OnNavigatedFrom(NavigationEventArgs args)

 {

if (ContentPanel.Background is SolidColorBrush)

{

Color clr = (ContentPanel.Background as SolidColorBrush).Color;

 if (args.Content is MainPage)

 (args.Content as MainPage).ReturnedColor = clr;

}

base.OnNavigatedFrom(e);

 }

}

As	in	the	previous	programs,	SecondPage	changes	its	background	to	a	random	color	when	

touched,	and	calls	GoBack	when	the	TextBlock	is	touched.	The	new	code	is	in	the	

OnNavigatedFrom	override,	which	is	called	shortly	after	the	class	calls	GoBack.	If	there’s	a	valid	

SolidColorBrush	available,	the	method	checks	if	it’s	navigating	to	an	object	of	type	MainPage.	

If	so,	then	it	saves	the	Color	object	in	the	ReturnedColor	property	of	MainPage.	

MainPage	can	retrieve	the	value	of	that	property	in	its	OnNavigatedTo	override:	

116	

	

	

	

	 		

	 	

	

	 	 	

	

	

	 	 	 	

	 	

	 	

	 	

	 	

	

	

	

	 	

	

	

	 	 	

	 	

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage

{

…

 protected override void OnNavigatedTo(NavigationEventArgs args)

 {

if (ReturnedColor != null)

 ContentPanel.Background =

 new SolidColorBrush(ReturnedColor.Value);

base.OnNavigatedTo(args);

 }

}

In	a	sense,	MainPage	invokes	SecondPage	to	obtain	a	Color	value,	just	like	a	real	dialog	box.	

But	if	you	navigate	to	SecondPage	subsequent	times,	it	always	starts	out	with	a	black	screen	

(or	white	if	you’ve	selected	the	Light	color	theme).	

Interestingly,	SecondPage	can’t	initialize	itself	from	any	property	in	MainPage	because	the	

OnNavigatedTo	call	that	SecondPage	receives	doesn’t	reference	the	source	page.	To	work	in	a	

symmetrical	manner,	SecondPage	would	need	to	define	its	own	public	Color	property,	and	

MainPage	would	need	to	initialize	that	property	in	its	own	OnNavigatedFrom	override.	

You	might	consider	a	little	variation	on	this	program	where	SecondPage	defines	the	

ReturnedColor	property.	When	MainPage	navigates	to	SecondPage	the	OnNavigatedFrom

method	in	MainPage	is	called,	and	the	method	saves	the	instance	of	SecondPage	being	

navigated	to	in	a	field	in	MainPage.	When	SecondPage	is	finished,	it	saves	the	Color	value	in	

its	ReturnedColor	property	and	calls	GoBack.	The	OnNavigatedTo	method	in	MainPage	is	then	

called.	MainPage	can	use	the	SecondPage	instance	saved	as	a	field	to	access	the	

ReturnedColor	property.	

This	scheme	sounds	fine,	but	it	won’t	always	work.	The	problem	is	that	MainPage	can’t	be	

assured	that	the	SecondPage	instance	it	navigates	to	will	be	the	same	SecondPage	instance	

that	navigates	back	to	MainPage.	You’ll	have	a	better	sense	of	this	problem	soon.	

Retaining
Data
across
Instances

Every	time	MainPage	navigates	to	SecondPage,	it’s	a	different	instance	of	SecondPage.	That’s	

why	SecondPage	always	starts	out	the	same.	It’s	always	a	new	instance.	

If	we	want	SecondPage	to	“remember”	the	last	color	it	was	set	to,	something	outside	of	

SecondPage	must	be	responsible	for	saving	that	data.	That	could	be	MainPage.	

117	

	

	

	 	

	 	

	 	

	 	

	 	 	 	

	 	 	

	

	 	 	 	

	 	

	

	

	 	 	

	 	 	

	 	 	

	 	 	

	

	 	

	 	 	 	 	

	

	

	 	

	

	 	 	 	

	 	

	 	 	

	

	 	 	

Or,	SecondPage	could	save	its	state	in	isolated storage.	Isolated	storage	is	much	like	regular	

disk	storage.	To	access	it,	you	use	classes	in	the	System.IO.IsolatedStorage	namespace.	Every	

Windows	Phone	7	application	has	access	to	isolated	storage	but	only	to	files	that	the	

application	itself	has	created.	Isolated	storage	allows	an	application	to	save	data	between	

multiple	executions,	and	is	ideal	for	saving	application	settings.	

I’ll	present	examples	of	isolated	storage	later	in	this	chapter.		

A	third	solution	is	provided	by	a	class	named	PhoneApplicationService,	defined	in	the	

Microsoft.Phone.Shell namespace.	An	instance	of	PhoneApplicationService	is	created	in	the	

standard	App.xaml	file:	

<Application.ApplicationLifetimeObjects>

<!--Required object that handles lifetime events for the application-->

<shell:PhoneApplicationService

 Launching="Application_Launching" Closing="Application_Closing"

 Activated="Application_Activated" Deactivated="Application_Deactivated"/>

</Application.ApplicationLifetimeObjects>

Following	the	PhoneApplicationService tag	are	four	events	being	associated	with	handlers;	

you’ll	see	examples	of	these	events	later	in	this	chapter.	Don’t	create	a	new	

PhoneApplicationService.	You	can	obtain	this	existing	PhoneApplicationService	with	the	static	

PhoneApplicationService.Current	property.	

PhoneApplicationService	contains	a	property	named	State,	which	is	a	dictionary	that	lets	you	

save	and	restore	data.	This	State	property	is	of	type	IDictionary<string, object>.	You	store	

objects	in	this	dictionary	using	text	keys.	This	data	is	only	retained	while	the	application	is	

running,	so	it’s	not	suitable	for	application	settings	that	must	be	preserved	between	multiple	

executions	of	a	program.	Data	retained	by	the	applicaton	only	when	it’s	running	is	sometimes	

known	as	“transient”	data.	

Any	object	you	store	in	this	State	dictionary	must	be	serializable,	that	is,	it	must	be	possible	to	

convert	the	object	into	XML,	and	recreate	the	object	from	XML.	It	must	have	a	public	

parameterless	constructor,	and	all	its	public	properties	must	either	be	serializable	or	be	of	

types	that	have	Parse	methods	to	convert	the	strings	back	to	objects.	

It’s	not	always	obvious	what	objects	are	serializable	and	which	ones	are	not.	When	I	first	

started	experimenting,	I	tried	to	store	SolidColorBrush	objects	in	the	State	dictionary.	The	

program	raised	an	exception	that	said	“Type	‘System.Windows.Media.Transform’	cannot	be	

serialized.”	It	took	awhile	to	remember	that	Brush	has	a	property	named	Transform	of	type	

Transform,	an	abstract	class.	I	had	to	serialize	the	Color	instead.	

Let’s	modify	the	previous	program	so	that	SecondPage	uses	this	State property.	In	the	

SilverlightRetainData	project,	everything	is	the	same	except	for	a	using	directive	for	the	

Microsoft.Phone.Shell namespace	and	two	overrides	in	SecondPage.	Here	they	are:	

118	

	

	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	 	

	 	

	 	 	 	

	 	 	

	 	

	

	 	

	

	 	

	 	

		

Silverlight Project: SilverlightRetainData File: SecondPage.xaml.cs (excerpt)

protected override void OnNavigatedFrom(NavigationEventArgs args)

{

if (ContentPanel.Background is SolidColorBrush)

{

Color clr = (ContentPanel.Background as SolidColorBrush).Color;

if (args.Content is MainPage)

 (args.Content as MainPage).ReturnedColor = clr;

// Save color

PhoneApplicationService.Current.State["Color"] = clr;

 }

base.OnNavigatedFrom(args);

}

protected override void OnNavigatedTo(NavigationEventArgs args)

{

// Retrieve color

if (PhoneApplicationService.Current.State.ContainsKey("Color"))

 {

Color clr = (Color)PhoneApplicationService.Current.State["Color"];

ContentPanel.Background = new SolidColorBrush(clr);

 }

base.OnNavigatedTo(args);

}

During	the	OnNavigatedFrom	call,	if	there’s	a	valid	Color object	available,	then	it’s	saved	in	

the	State dictionary	with	a	key	of	“Color”:	

PhoneApplicationService.Current.State["Color"] = clr;

During	the	OnNavigatedTo	override,	if	the	key	exists,	then	the	Color	value	is	loaded	from	the	

dictionary	and	SolidColorBrush	is	made	from	the	Color.	The	key	will	not	exist	if	you’ve	just	

started	running	the	program	and	you’ve	navigated	to	SecondPage	for	the	first	time.	But	on	

subsequent	navigations	to	SecondPage,	the	page	is	restored	to	the	color	you	last	set.	

Every	time	you	exit	the	program	by	pressing	the	Back	button	on	the	main	page,	the	State

dictionary	is	discarded	with	the	rest	of	the	PhoneApplicationService.	This	State	dictionary	is	

only	suitable	for	saving	transient	data	that	a	program	needs	to	retain	while	it’s	running.	If	you	

need	to	save	data	between	multiple	executions	of	a	program,	use	isolated	storage.	

Now	try	this:	Navigate	to	SecondPage.	Touch	the	screen	to	change	the	color.	Now	press	the	

phone’s	hardware	Start	button.	You’ve	left	the	SilverlightRetainData	program.	From	the	

phone’s	start	screen,	you	can	navigate	to	other	programs,	but	eventually	you’ll	want	to	press	

the	phone’s	Back	button	to	return	to	the	SilverlightRetainData	program	and	SecondPage.	The	

color	is	still	there.	

119	

	

	 	

	 	

	 	

	 	

	 	

	 	 	

	 	 	

	 	 	

	 	

	 	

	 	

	 	 	

	 	

	 	 	 	

	 	

	 	 	 	 	 	

	

	 	

	 	 	 	

	

	 	

	 	

	 	

	 	 	

Now	go	back	to	MainPage.	The	color	you	set	in	SecondPage	is	displayed.	From	MainPage,	

press	the	phone’s	hardware	Start	button,	leaving	the	program.	Navigate	around	a	bit	if	you	

want	but	eventually	start	pressing	the	Back	button	to	come	back	to	SilverlightRetainData	and	

MainPage.	

Lo	and	behold,	the	screen	has	lost	its	color!	What	happened?	

The
Multitasking
Ideal

Over	the	past	few	decades,	it’s	been	a	common	desire	that	our	personal	computers	be	able	to	

do	more	than	one	thing	at	a	time.	But	when	user	interfaces	are	involved,	multitasking	is	never	

quite	as	seamless	as	we’d	like.	The	TerminateandStayResident	(TSR)	programs	of	MSDOS	

and	the	cooperative	multitasking	of	early	Windows	were	only	the	first	meager	attempts	in	an	

ongoing	struggle.	In	theory,	process	switching	is	easy.	But	sharing	resources—including	the	

screen	and	a	handful	of	various	input	devices—is	very	hard.	

While	the	average	user	might	marvel	at	the	ability	of	modern	Windows	to	juggle	many	

different	applications	at	once,	we	programmers	still	wrestle	with	the	difficulties	of	

multitasking—	carefully	coding	our	UI	threads	to	converse	amicably	with	our	nonUI	threads,	

always	on	the	lookout	for	the	hidden	treachery	of	asynchronous	operations.	

Every	new	application	programming	interface	we	encounter	makes	a	sort	of	awkward	

accommodation	with	the	ideals	of	multitasking,	and	as	we	become	familiar	with	the	API	we	

also	become	accustomed	to	this	awkward	accommodation,	and	eventually	we	might	even	

consider	this	awkward	accommodation	to	be	a	proper	solution	to	the	problem.	

On	Windows	Phone	7,	that	awkward	accommodation	is	known	as	tombstoning.	

Task
Switching
on
the
Phone

We	want	our	phones	to	be	much	like	our	other	computers.	We	want	to	have	a	lot	of	

applications	available.	We	want	to	start	up	a	particular	application	as	soon	as	we	conceive	a	

need	for	it.	While	that	application	is	running,	we	want	it	to	be	as	fast	as	possible	and	have	

access	to	unlimited	resources.	But	we	want	this	application	to	coexist	with	other	running	

applications	because	we	want	to	be	able	to	jump	among	multiple	applications	running	on	the	

machine.	

Arbitrarily	jumping	among	multiple	running	applications	is	somewhat	impractical	on	the	

phone.	It	would	require	some	kind	of	display	showing	all	the	currently	running	applications,	

much	like	the	Windows	taskbar.	Either	this	taskbar	would	have	to	be	constantly	visible—	

taking	valuable	screen	space	away	from	the	active	applications—or	a	special	button	or	

command	would	need	to	be	assigned	to	display	the	taskbar	or	task	list.	

120	

	

	

	 	

	 	 	 	 	

	 	 	 	

		

	

	 	 	 	 	 	 	

	 	 	

	 	 	

	 	

	 	 	

	 	 	 	

	 	

	 	 	 	

	 	

	

	 	 	

	 	 	

	 	 	

	 	

	

	 	 	 	 	

	 	 	 	 	

	

	

	

	 	 	

	 	 	 	 	 	 	 	

	

	

	

Instead,	Windows	Phone	7	manages	multiple	active	applications	by	implementing	a	stack.	In	a	

sense,	this	application	stack	extends	the	page	stack	within	a	single	Silverlight	program.	You	

can	think	of	the	phone	as	an	oldfashioned	web	browser	with	no	tab	feature	and	no	Forward	

button.	But	it	does	have	a	Back	button	and	it	also	has	a	Start	button,	which	brings	you	to	the	

Start	screen	and	allows	you	to	launch	a	new	program.	

Suppose	you	choose	to	launch	a	program	called	Analyze.	You	work	a	little	with	Analyze	and	

then	decide	you’re	finished.	You	press	the	Back	button.	The	Analyze	program	is	terminated	

and	you’re	back	at	the	Start	screen.	That’s	the	simple	scenario.	

Later	you	decide	you	need	to	run	Analyze	again.	While	you’re	using	Analyze,	you	need	to	

check	something	on	the	Web.	You	press	the	Start	button	to	get	to	the	Start	screen	and	select	

Internet	Explorer.	While	you’re	browsing,	you	remember	you	haven’t	played	any	games	

recently.	You	press	the	Start	button,	select	Backgammon	and	play	a	little	of	that.	While	

playing	Backgammon,	you	wonder	about	the	odds	of	a	particular	move,	so	you	press	the	Start	

button	again	and	run	Calc.	Then	you	feel	guilty	about	not	doing	any	work,	so	you	press	the	

Start	button	again	and	run	Draft.	

Draft	is	a	Silverlight	program	with	multiple	pages.	From	the	main	page,	you	navigate	to	

several	other	pages.	

Now	start	pressing	the	Back	button.	You	go	backwards	through	all	the	pages	in	the	page	

stack	of	the	Draft,	then	Draft	is	terminated	as	you	go	back	to	Calc.	Calc	still	displays	the	

remnants	of	your	work,	and	Calc	is	terminated	as	you	go	back	to	Backgammon,	which	shows	

a	game	in	progress,	and	Backgammon	is	terminated	as	you	go	back	to	Internet	Explorer,	and	

again	you	go	backwards	through	any	Web	pages	you	may	have	navigated	through,	and	IE	is	

terminated	as	you	go	back	to	Analyze,	and	Analyze	is	terminated	as	you	go	back	to	the	Start	

screen.	The	stack	is	now	empty.	

This	type	of	navigation	is	a	good	compromise	for	small	devices,	and	it’s	consistent	with	users’	

experiences	in	web	browsing.	The	stack	is	conceptually	very	simple:	The	Start	button	pushes	

the	current	application	on	the	stack	so	a	new	application	can	be	run;	the	Back	button	

terminates	the	current	application	and	pops	one	off	the	top	of	the	stack.	

However,	the	limited	resources	of	the	phone	convinced	the	Windows	Phone	7	developers	that	

applications	on	the	stack	should	have	as	minimum	a	footprint	as	possible.	For	this	reason,	an	

application	put	on	the	stack	does	not	continue	plugging	away	at	work.	It’s	not	even	put	into	a	

suspended	state	of	some	sort.	Something	more	severe	than	that	happens.	The	process	is	

actually	terminated.	When	this	terminated	program	comes	off	the	stack,	it	is	then	reexecuted	

from	scratch.	

This	is	tombstoning.	The	application	is	killed	but	then	allowed	to	come	back	to	life.	

121	

	

	

	 	 	

		

	 	 	 	 	 	

	 	

	 	

	 	 	 	 	

	 	 	

	 	 	 	

	 	 	

	 	 	 	

	

	

	 	 	 	

	

	

	

	

	 	

	 	 	

	 	 	

	 	 	 	

	 	 	

	 	 	 	 	 	

You’ve	probably	seen	enough	movies	to	know	that	reanimating	a	corpse	can	be	a	very	scary	

proposition.	Almost	always	the	hideous	thing	that	arises	out	of	the	filthy	grave	is	not	the	clean	

and	manicured	loved	one	who	went	in.	

The	trick	here	is	to	persuade	the	disinterred	program	to	look	and	feel	much	the	same	as	when	

it	was	last	alive	and	the	user	interacted	with	it.	This	process	is	a	collaboration	between	you	

and	Windows	Phone	7.	The	phone	gives	you	the	tools	(events	and	a	place	to	put	some	data);	

your	job	is	to	use	the	tools	to	restore	your	program	to	a	presentable	state.	Ideally	the	user	

should	have	no	idea	that	it’s	a	completely	new	process.	

For	some	applications,	resurrection	doesn’t	have	to	be	100%	successful.	We	all	have	

experience	with	navigating	among	Web	pages	to	know	what’s	acceptable	and	what’s	not.	For	

example,	suppose	you	visit	a	long	Web	page,	and	you	scroll	down	a	ways,	then	you	navigate	

to	another	page.	When	you	go	back	to	the	original	page,	it’s	not	too	upsetting	if	it’s	lost	your	

place	and	you’re	back	at	the	top	of	the	page.	

On	the	other	hand,	if	you’ve	just	spent	10	minutes	filling	out	a	large	form,	you	definitely	do	

not	want	to	see	all	your	work	gone	after	another	page	tells	you	that	you’ve	made	one	tiny	

error.	

Let’s	nail	down	some	terminology	that’s	consistent	with	some	events	I’ll	discuss	later:	

• When	an	application	is	run	from	the	Start	screen,	it	is	said	to	be	launched.	

• When	an	application	is	terminated	as	a	result	of	the	Back	button,	it	is	closed.	

• When	the	program	is	running	and	the	user	presses	the	Start	button,	the	program	is	said	

to	be	deactivated,	even	though	it	really	is	quite	dead.	This	is	the	tombstoned	state.	

• When	a	program	comes	out	of	tombstoning	as	the	user	navigates	back	to	it,	it	is	said	to	

be	activated,	even	though	it’s	really	starting	up	from	scratch.	

Page
State

The	SilverlightFlawedTombstoning	project	is	a	simple	Silverlight	program	with	just	one	page.	

The	program	responds	to	taps	on	the	screen	by	changing	the	background	of	ContentGrid	to	a	

random	color,	and	displaying	the	total	number	of	taps	in	its	page	title.	Everything	of	interest	

happens	in	the	codebehind	file:	

Silverlight Project: SilverlightFlawedTombstoning File: MainPage.xaml.cs (excerpt)

public partial class MainPage : PhoneApplicationPage

{

Random rand = new Random();

 int numTaps = 0;

122	

	

	

	

	 	 	 	

	

	 	 	

	 	 	

	

	 	 	

	

	 	

	

	

	 	

	 	 	 	

	 	

	

 public MainPage()

 {

InitializeComponent();

UpdatePageTitle(numTaps);

 }

 protected override void OnManipulationStarted(ManipulationStartedEventArgs args)

 {

ContentPanel.Background =

 new SolidColorBrush(Color.FromArgb(255, (byte)rand.Next(256),

 (byte)rand.Next(256),

 (byte)rand.Next(256)));

UpdatePageTitle(++numTaps);

args.Complete();

base.OnManipulationStarted(args);

 }

 void UpdatePageTitle(int numTaps)

 {

PageTitle.Text = String.Format("{0} taps total", numTaps);

 }

}

The	little	UpdatePageTitle	method	is	called	from	both	the	program’s	constructor	(where	it	

always	results	in	displaying	a	value	of	0)	and	from	the	OnManipulationStarted	override.	

Build	and	deploy	the	program	to	the	phone	or	phone	emulator	by	pressing	F5	(or	selecting	

Start	Debugging	from	the	Debug	menu).	Arrange	Visual	Studio	so	you	can	see	the	Output	

window.	When	the	program	starts	up,	tap	the	screen	several	times	to	change	the	color	and	

bump	up	the	tap	count.	Now	press	the	phone’s	Start	button.	You	can	see	from	Visual	Studio	

that	two	threads	in	the	program	end	and	the	program	has	terminated,	but	to	the	phone	the	

program	has	actually	been	deactivated	and	tombstoned.	

Now	press	the	Back	button	to	return	to	the	program.	You’ll	see	a	blank	screen	with	the	word	

“Resuming…”	and	the	Output	window	in	Visual	Studio	shows	libraries	being	loaded.	That’s	the	

program	coming	back	to	life.		

However,	when	the	program	comes	back	into	view,	you’ll	see	that	the	color	and	the	number	

of	taps	have	been	lost.	All	your	hard	work!	Totally	gone!	This	is	not	a	good	way	for	a	program	

to	emerge	from	tombstoning.	It	is	this	state	data	that	we	want	to	preserve	when	the	program	

is	flatlined.(Now	you	may	see	why	the	approach	I	described	after	the	SilverlightInsertData	

program	would	not	always	work.	That	scheme	involved	saving	the	instance	of	SecondPage

when	MainPage	navigated	to	that	page.	But	if	the	user	goes	to	the	Start	screen	from	

SecondPage	and	then	returned,	that	would	be	a	new	instance	of	SecondPage	and	not	the	one	

that	FrontPage	saved.)	

123

	

	 	 	

	

	 	

	 	 	 	 	 	

	

	 	

	 	

		

	 	

	 	 	 	

	 	

	 	 	

	 	

	 	

	

	 	

An	excellent	opportunity	to	save	and	reload	state	data	for	a	page	is	through	overrides	of	the	

OnNavigatedTo	and	OnNavigatedFrom	methods	defined	by	the	Page	class	from	which	

PhoneApplicationPage	derives.	As	you’ve	seen,	these	methods	are	called	when	a	page	is	

brought	into	view	by	being	loaded	by	the	frame,	and	when	the	page	is	detached	from	the	

frame.	

Using	these	methods	is	particularly	appropriate	if	your	Silverlight	application	will	have	

multiple	pages	that	the	user	can	navigate	among.	You’ve	already	discovered	that	a	new	

instance	of	PhoneApplicationPage	is	created	every	time	a	user	navigates	to	a	page,	so	you’ll	

probably	want	to	save	and	reload	page	state	data	for	normal	navigation	anyway.	By	

overriding	OnNavigatedTo	and	OnNavigatedFrom	you’re	effectively	solving	two	problems	

with	one	solution.	

Although	Windows	Phone	7	leaves	much	of	the	responsibility	for	restoring	a	tombstoned	

application	to	the	program	itself,	it	will	cause	the	correct	page	to	be	loaded	on	activation,	so	

it’s	possible	that	a	pageoriented	Silverlight	program	that	saves	and	restores	page	state	data	

using	the	State	property	of	PhoneApplicationSerivce	class	during	OnNavigatedTo	and	

OnNavigatedFrom	will	need	no	special	processing	for	tombstoning.	The	phone	operating	

system	preserves	this	State	property	during	the	time	a	program	is	deactivated	and	

tombstoned,	but	gets	rid	of	it	when	the	program	closes	and	is	terminated	for	real.	

The	codebehind	file	for	SilverlightBetterTombstoning	includes	a	using	directive	for	

Microsoft.Phone.Shell	and	uses	this	State dictionary.	Here’s	the	complete	class:	

Silverlight Project: SilverlightBetterTombstoning File: MainPage.xaml.cs (excerpt)

public partial class MainPage : PhoneApplicationPage

{

Random rand = new Random();

 int numTaps = 0;

PhoneApplicationService appService = PhoneApplicationService.Current;

 public MainPage()

 {

InitializeComponent();

UpdatePageTitle(numTaps);

 }

 protected override void OnManipulationStarted(ManipulationStartedEventArgs args)

 {

ContentPanel.Background =

 new SolidColorBrush(Color.FromArgb(255, (byte)rand.Next(256),

 (byte)rand.Next(256),

 (byte)rand.Next(256)));

UpdatePageTitle(++numTaps);

args.Complete();

base.OnManipulationStarted(args);

124	

	

	 	

	 	

	 	

	

	 	 	

	 	 	

 }

 void UpdatePageTitle(int numTaps)

 {

PageTitle.Text = String.Format("{0} taps total", numTaps);

 }

 protected override void OnNavigatedFrom(NavigationEventArgs args)

 {

appService.State["numTaps"] = numTaps;

if (ContentPanel.Background is SolidColorBrush)

{

 appService.State["backgroundColor"] =

 (ContentPanel.Background as SolidColorBrush).Color;

}

base.OnNavigatedFrom(args);

 }

 protected override void OnNavigatedTo(NavigationEventArgs args)

 {

// Load numTaps

if (appService.State.ContainsKey("numTaps"))

{

 numTaps = (int)appService.State["numTaps"];

 UpdatePageTitle(numTaps);

}

// Load background color

object obj;

if (appService.State.TryGetValue("backgroundColor", out obj))

 ContentPanel.Background = new SolidColorBrush((Color)obj);

base.OnNavigatedTo(args);

 }

}

Notice	the	appService	field	set	to	PhoneApplicationService.Current.	That’s	just	for	convenience	

for	accessing	the	State	property.	You	can	use	the	long	PhoneApplicationService.Current.State

instead	if	you	prefer.	

Storing	items	in	the	State dictionary	is	easier	than	getting	them	out.	The	syntax:	

appService.State["numTaps"] = numTaps;

replaces	an	existing	item	if	the	“numTaps”	key	exists,	or	adds	a	new	item	if	the	key	does	not	

exist.	Saving	the	background	color	is	a	little	trickier:	By	default	the	Background	property	of	

ContentPanel	is	null,	so	the	code	checks	for	a	nonnull	value	before	attempting	to	save	the	

Color	property.	

125

	

	 	 	 	 	

	

	 	 	

	 	 	 	

	 	

	

	

	

	 	 	

	 	 	

	 	 	

	 	 	

	

	 	

	 	

	

	 	

	 	

	 	

	 	

	 	 	 	 	

	 	 	 	

	

	

	 	 	

	 	

	 	 	 	

	 	

To	get	items	out	of	the	dictionary,	you	can’t	use	similar	syntax.	You’ll	raise	an	exception	if	the	

key	does	not	exist.	(And	these	keys	will	not exist	when	the	application	is	launched.)	The	

OnNavigatedTo	method	shows	two	different	standard	ways	of	accessing	the	items:	The	first	

checks	if	the	dictionary	contains	the	key;	the	second	uses	TryGetValue,	which	returns	true	if	

the	key	exists.	

In	a	real	program,	you’ll	probably	want	to	use	string	variables	for	the	keys	to	avoid	accidently	

typing	inconsistent	values.	(If	your	typing	is	impeccable,	don’t	worry	about	the	multiple	

identical	strings	taking	up	storage:	Strings	are	interned,	and	identical	strings	are	consolidated	

into	one.)	You’ll	probably	also	want	to	write	some	standard	routines	that	perform	these	jobs.	

Try	running	this	program	like	you	ran	the	earlier	one:	Press	F5	to	deploy	it	to	the	phone	or	

phone	emulator	from	Visual	Studio.	Tap	the	screen	a	few	times.	Press	the	Start	button	as	if	

you’re	going	to	start	a	new	program.	Visual	Studio	indicates	that	the	process	has	terminated.	

Now	press	the	Back	button.	When	the	program	resumes	the	settings	have	been	saved	and	the	

corpse	looks	as	good	as	new!	

As	you	experiment,	you’ll	discover	that	the	settings	are	saved	when	the	application	is	

tombstoned	(that	is,	when	you	navigate	away	from	the	application	with	the	Start	button	and	

then	return)	but	not	when	a	new	instance	starts	up	from	the	Start	list.	This	is	correct	behavior.	

The	operating	system	discards	the	State	dictionary	when	the	program	terminates	for	real.	The	

State	dictionary	is	only	for	transient	data	and	not	for	data	that	affects	other	instances	of	the	

same	application.	

If	you	want	some	similar	data	shared	among	all	instances	of	a	program,	you	probably	want	to	

implement	what’s	often	called	application settings.	You	can	do	that	as	well.	

Isolated
Storage

Every	program	installed	on	Windows	Phone	7	has	access	to	its	own	area	of	permanent	disk	

storage	referred	to	as	isolated storage,	which	the	program	can	access	using	classes	in	the	

System.IO.IsolatedStorage	namespace.	Whole	files	can	be	read	and	written	to	in	isolated	

storage,	and	I’ll	show	you	how	to	do	that	in	the	program	that	concludes	this	chapter.	For	the	

program	that	following	I’m	going	to	focus	instead	on	a	special	use	of	isolated	storage	for	

storing	application	settings.	The	IsolatedStorageSettings	class	exists	specifically	for	this	

purpose.	

For	application	settings,	you	should	be	thinking	in	terms	of	the	whole	application	rather	than	

a	particular	page.	Perhaps	some	of	the	application	settings	apply	to	multiple	pages.	Hence,	a	

good	place	to	deal	with	these	application	settings	is	in	the	program’s	App	class.	

Not	coincidently,	it	is	the	App.xaml	file	that	creates	a	PhoneApplicationService	object	(the	

same	PhoneApplicationService	object	used	for	saving	transient	data)	and	assigns	event	

handlers	for	four	events:	

126	

	

	

	 	 	

	 	 	

	 	

	 	

	 	 	 	

	 	

	 	 	 	

	

	 	 	 	

	 	

	 	 	

	 	

	

	

	 	 	 	 	

	

	

	

		

	 	 	

<shell:PhoneApplicationService Launching="Application_Launching"

 Closing="Application_Closing"

 Activated="Application_Activated"

 Deactivated="Application_Deactivated"/>

The	Launching	event	is	fired	when	the	program	is	first	executed	from	the	Start	screen.	The	

Deactivated	event	occurs	when	the	program	is	tombstoned,	and	the	Activated	event	occurs	

when	the	program	is	resurrected	from	tombstoning.	The	Closing	event	occurs	when	the	

program	is	really	terminated,	probably	by	the	user	pressing	the	Back	button.	

So,	when	a	program	starts	up,	it	gets	either	a	Launching event	or	an	Activated	event	(but	

never	both),	depending	whether	it’s	being	started	from	the	Start	screen	or	coming	out	of	a	

tombstoned	state.	When	a	program	ends,	it	gets	either	a	Deactivated	event	or	a	Closing	event,	

depending	whether	it’s	being	tombstoned	or	terminated	for	real.	

A	program	should	load	application	settings	during	the	Launching event	and	save	them	in	

response	to	the	Closing	event.	That	much	is	obvious.	But	a	program	should	also	save	

application	settings	during	the	Deactivated	event	because	the	program	really	doesn’t	know	if	

it	will	ever	be	resurrected.	And	if	it	is	resurrected,	it	should	load	application	settings	during	

the	Activated event	because	otherwise	it	won’t	know	about	those	settings.	

Conclusion:	application	settings	should	be	loaded	during	the	Launching	and	Activated	events	

and	saved	during	the	Deactivated	and	Closing	events.	

For	the	SilverlightIsolatedStorage	program,	I	decided	that	the	number	of	taps	should	continue	

to	be	treated	as	transient	data—part	of	the	state	of	the	page.	But	the	background	color	

should	be	an	application	setting	and	shared	among	all	instances.	

In	App.xaml.cs	I	defined	the	following	public	property:	

Silverlight Project: File: (excerpt)

public partial class App : Application

{

// Application settings

 public Brush BackgroundBrush { set; get; }

 …

}

Conceivably	this	can	be	one	of	many	application	settings	that	are	accessible	throughout	the	

application.	

App.xaml.cs	already	has	empty	event	handlers	for	all	the	PhoneApplicationService	events.	I	

gave	each	handler	a	body	consisting	of	a	single	method	call:	

127	

	

	

	 	

	 	 	

	 	

	 	 	

	

Silverlight Project: File: (excerpt)

private void Application_Launching(object sender, LaunchingEventArgs e)

{

 LoadSettings();

}

private void Application_Activated(object sender, ActivatedEventArgs e)

{

 LoadSettings();

}

private void Application_Deactivated(object sender, DeactivatedEventArgs e)

{

 SaveSettings();

}

private void Application_Closing(object sender, ClosingEventArgs e)

{

 SaveSettings();

}

Here	are	the	LoadSettings	and	SaveSettings	methods.	Both	methods	obtain	an	

IsolatedStorageSettings object.	Like	the	State	property	of	PhoneApplicationService,	the	

IsolatedStorageSettings object	is	a	dictionary.	One	method	in	the	program	loads	(and	the	

other	saves)	the	Color property	of	the	BackgroundBrush	property	with	code	that	is	similar	to	

what	you	saw	before.	

Silverlight Project: File: (excerpt)

void LoadSettings()

{

IsolatedStorageSettings settings = IsolatedStorageSettings.ApplicationSettings;

Color clr;

if (settings.TryGetValue<Color>("backgroundColor", out clr))

BackgroundBrush = new SolidColorBrush(clr);

}

void SaveSettings()

{

IsolatedStorageSettings settings = IsolatedStorageSettings.ApplicationSettings;

if (BackgroundBrush is SolidColorBrush)

{

settings["backgroundColor"] = (BackgroundBrush as SolidColorBrush).Color;

settings.Save();

128	

	

	 	 	

	 	 	 	

	 	

 }

}

And	finally,	here’s	the	new	MainPage.xaml.cs	file.	This	file—and	any	other	class	in	the	

program—can	get	access	to	the	App object	using	the	static	Application.Current	property	and	

casting	it	to	an	App.	The	constructor	of	MainPage	obtains	the	BackgroundBrush	property	from	

the	App	class,	and	the	OnManipulationStarted	method	sets	that	BackgroundBrush	property.	

Silverlight Project: SilverlightIsolatedStorage File: MainPage.xaml.cs (excerpt)

public partial class MainPage : PhoneApplicationPage

{

Random rand = new Random();

 int numTaps = 0;

PhoneApplicationService appService = PhoneApplicationService.Current;

 public MainPage()

 {

InitializeComponent();

UpdatePageTitle(numTaps);

// Access App class for isolated storage setting

Brush brush = (Application.Current as App).BackgroundBrush;

if (brush != null)

 ContentPanel.Background = brush;

 }

 protected override void OnManipulationStarted(ManipulationStartedEventArgs args)

 {

SolidColorBrush brush =

 new SolidColorBrush(Color.FromArgb(255, (byte)rand.Next(256),

 (byte)rand.Next(256),

 (byte)rand.Next(256)));

ContentPanel.Background = brush;

// Save to App class for isolated storage setting

(Application.Current as App).BackgroundBrush = brush;

UpdatePageTitle(++numTaps);

args.Complete();

base.OnManipulationStarted(args);

 }

 void UpdatePageTitle(int numTaps)

 {

PageTitle.Text = String.Format("{0} taps total", numTaps);

 }

 protected override void OnNavigatedFrom(NavigationEventArgs args)

 {

129

	

	 	 	 	

	 	

	 	

	

	 	 	 	

	 	 	

	 	 	

	 	

	 	

	

	 	 	 	 	

	

	 	 	 	

	

	 	 	 	 	

	

	

appService.State["numTaps"] = numTaps;

base.OnNavigatedFrom(args);

 }

 protected override void OnNavigatedTo(NavigationEventArgs args)

 {

// Load numTaps

if (appService.State.ContainsKey("numTaps"))

{

 numTaps = (int)appService.State["numTaps"];

 UpdatePageTitle(numTaps);

}

 }

}

Because	that	background	color	has	been	upgraded	from	transient	page	data	to	an	application	

setting,	references	to	it	have	been	removed	in	the	OnNavigatedFrom	and	OnNavigatedTo

overrides.	

Xna
Tombstoning
and
Settings

XNA	applications	aren’t	normally	built	around	pages	like	Silverlight	applications.	If	you	

wanted,	however,	you	could	certainly	implement	your	own	pagelike	structure	within	an	XNA	

program.	You’ll	recall	that	the	state	of	the	phone’s	Back	button	is	checked	during	every	call	to	

the	standard	Update	override.	You	can	use	this	logic	for	navigational	purposes	as	well	as	for	

terminating	the	program.	But	that’s	something	I’ll	let	you	work	out	on	your	own.	

An	XNA	program	can	also	make	use	of	the	same	PhoneApplicationService	class	used	by	

Silverlight	programs	for	saving	transient	state	information	during	tombstoning.	An	XNA	

program	can	also	use	this	class	to	install	handlers	for	the	four	PhoneApplicationService	events:	

Launching,	Activated,	Deactivated,	and	Closing.	You’ll	need	references	both	to	the	

Microsoft.Phone	library	(for	PhoneApplicationService	itself)	and	System.Windows	(for	the	

IApplicationService	interface	that	PhoneApplicationService	implements).	Within	the	Game1.cs	

file	you’ll	want	a	using	directive	for	Microsoft.Phone.Shell.	

In	the	constructor	of	the	Game1 class	you	can	obtain	the	PhoneApplicationService	instance	

associated	with	the	application	through	the	static	PhoneApplicationService.Current	property.	

The	Game	class	also	defines	a	couple	handy	virtual	methods	named	OnActivated	and	

OnDeactivated	that	are	also	useful	for	handling	tombstoning.	The	OnActivated	method	is	

called	during	launching	and	reactivation,	and	OnDeactivated is	called	during	deactivation	

and	program	closing,	much	like	the	OnNavigatedTo	and	OnNavigatedFrom	virtual	methods	of	

a	Silverlight	page.	

130	

	

	

	

	

	 	 	

	 	

	 	

In	the	XnaTombstoning	program	that	concludes	this	chapter	I’ve	tried	to	mimic	the	

functionality	and	structure	of	the	SilverlightIsolatedStorage	program.	The	program	uses	the	

PhoneApplicationService	events	for	saving	and	restoring	application	settings	(a	Color),	and	

overrides	of	the	OnDeactivated	and	OnActivated	events	for	retaining	transient	data	(the	

number	of	taps).	

But	I	went	a	little	further	in	providing	a	more	generalized	solution	for	application	settings.	I	

gave	the	XnaTombstoning	project	a	dedicated	Settings	class	that	uses	the	more	generalized	

features	of	isolated	storage	that	involve	real	files	rather	than	just	simple	settings.	You’ll	need	a	

reference	to	System.Xml.Serialization	library	for	this	class	as	well	using directives	for	the	

System.IO,	System.IO.IsolatedStorage,	and	System.Xml.Serialization	namespaces.	

Silverlight Project: File: (excerpt)

public class Settings

{

 const string filename = "settings.xml";

// Application settings

public Color BackgroundColor { set; get; }

public Settings()

 {

 BackgroundColor = Color.Navy;

 }

public void Save()

 {

IsolatedStorageFile storage = IsolatedStorageFile.GetUserStoreForApplication();

IsolatedStorageFileStream stream = storage.CreateFile(filename);

XmlSerializer xml = new XmlSerializer(GetType());

 xml.Serialize(stream, this);

 stream.Close();

 stream.Dispose();

 }

public static Settings Load()

{

IsolatedStorageFile storage = IsolatedStorageFile.GetUserStoreForApplication();

Settings settings;

if (storage.FileExists(filename))

 {

IsolatedStorageFileStream stream =

storage.OpenFile("settings.xml", FileMode.Open);

XmlSerializer xml = new XmlSerializer(typeof(Settings));

 settings = xml.Deserialize(stream) as Settings;

 stream.Close();

 stream.Dispose();

 }

else

131	

	

	 	 	 	

	

	 	

	 	 	

	 	 	 	 	

	 	 	

	

	 	 	 	 	

	

	 	 	 	 	

	 	

	 	

	 	 	 	

	 	 	

	

	 	

	 	 	 	

	

	

	

	 	

	 	

	 	 	

	 	

	 	 	 	 	 	

 {

 settings = new Settings();

 }

return settings;

 }

}

The	idea	here	is	that	an	instance	of	this	Settings class	itself	is	serialized	and	saved	in	isolated	

storage	in	the	Save	method,	and	then	retrieved	from	isolated	storage	and	deserialized	in	the	

Load	method.	Notice	that	the	Load	method	is	static	and	returns	an	instance	of	the	Settings

class.	

When	an	instance	of	this	Settings class	is	serialized,	all	its	public	properties	are	serialized.	This	

class	has	exactly	one	public	property	of	type	Color	named	BackgroundColor but	it	would	be	

very	easy	to	add	more	properties	to	this	class	as	the	application	develops	and	gets	more	

sophisticated.	

In	the	Save	method,	the	area	of	isolated	storage	reserved	for	this	application	is	obtained	from	

the	static	IsolatedStorageFile.GetUserStoreForApplication	method.	This	method	returns	an	

object	of	type	IsolatedStorageFile	but	the	name	is	a	little	misleading.	This	IsolatedStorageFile

object	is	closer	in	functionality	to	a	file system	than	a	file.	You	use	the	object	to	maintain	

directories,	and	to	create	and	open	files.	A	call	to	CreateFile	returns	an	

IsolatedStorageFileStream	which	here	is	used	with	an	XmlSerializer	object	to	serialize	and	save	

the	file.	

The	Load	method	is	a	bit	more	complex	because	it’s	possible	that	the	program	is	being	run	

for	the	very	first	time	and	the	settings.xml	file	does	not	exist.	In	that	case,	the	Load	method	

creates	a	new	instance	of	Settings.	

Notice	the	constructor	that	initializes	the	properties	to	their	default	values,	which	in	this	case	

only	involves	the	single	public	property	named	BackgroundColor.	If	you	add	a	second	public	

property	for	another	application	setting	at	some	point,	you’ll	want	to	also	specify	a	default	

value	of	that	property	in	the	constructor.	The	first	time	you	run	the	new	version	of	the	

program,	that	new	property	will	be	initialized	in	the	constructor,	but	the	Load	method	will	

retrieve	a	file	that	doesn’t	have	that	property,	so	the	new	version	smoothly	integrates	with	the	

previous	version.	

Here’s	another	consideration:	This	scheme	only	works	if	the	properties	representing	

application	settings	are	serializable.	For	a	more	complex	program,	that	might	not	be	the	case.	

For	objects	that	are	not	serializable	but	still	must	be	saved	to	isolated	storage,	you	can	still	

include	a	property	for	that	object	in	this	file	but	you’ll	want	to	flag	that	property	definition	

with	the	[XmlIgnore]	attribute.	The	property	will	be	ignored	for	serialization	purposes.	Instead	

you’ll	need	to	handle	that	property	with	special	code	in	the	Save	and	Load	methods.	

132

	

	 	 	 	

	 	 	

	 	

	

The	remainder	of	the	XnaTombstoning	project	lets	you	tap	the	screen	and	responds	by	

displaying	a	new	random	background	color	and	a	count	of	the	number	of	taps.	The	

background	color	is	treated	as	an	application	setting	(as	is	evident	by	its	inclusion	in	the	

Settings class)	and	the	number	of	taps	is	a	transient	setting.	

Here’s	an	excerpt	of	the	Game1	class	showing	the	fields,	constructor,	and	

PhoneApplicationService	events:	

Silverlight Project: File: (excerpt)

public class Game1 : Microsoft.Xna.Framework.Game

{

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

Settings settings;

SpriteFont segoe14;

Viewport viewport;

Random rand = new Random();

StringBuilder text = new StringBuilder();

Vector2 position;

int numTaps = 0;

public Game1()

 {

graphics = new GraphicsDeviceManager(this);

Content.RootDirectory = "Content";

// Frame rate is 30 fps by default for Windows Phone.

TargetElapsedTime = TimeSpan.FromTicks(333333);

TouchPanel.EnabledGestures = GestureType.Tap;

PhoneApplicationService appService = PhoneApplicationService.Current;

appService.Launching += OnAppServiceLaunching;

appService.Activated += OnAppServiceActivated;

appService.Deactivated += OnAppServiceDeactivated;

appService.Closing += OnAppServiceClosing;

 }

 …

void OnAppServiceLaunching(object sender, LaunchingEventArgs args)

 {

settings = Settings.Load();

 }

void OnAppServiceActivated(object sender, ActivatedEventArgs args)

 {

settings = Settings.Load();

 }

133	

	

	 	

	 	 	 	 	

	

	

	 	 	

	 	 	

void OnAppServiceDeactivated(object sender, DeactivatedEventArgs args)

 {

settings.Save();

 }

void OnAppServiceClosing(object sender, ClosingEventArgs args)

 {

settings.Save();

 }

}

A	Settings	object	named	settings	is	saved	as	a	field.	The	constructor	attaches	handlers	for	the	

four	events	of	PhoneApplicationService	and	it	is	in	the	handlers	for	these	events	that	the	

application	settings	are	saved	and	loaded.	

The	LoadContent	override	contains	nothing	surprising:	

Silverlight Project: File: (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 segoe14 = this.Content.Load<SpriteFont>("Segoe14");

 viewport = this.GraphicsDevice.Viewport;

}

The	Update	method	reads	taps,	updates	the	numTaps	field,	determines	a	new	random	color,	

and	also	prepares	a	StringBuilder object	for	displaying	the	number	of	taps:	

Silverlight Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

// Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

 while (TouchPanel.IsGestureAvailable)

if (TouchPanel.ReadGesture().GestureType == GestureType.Tap)

{

 numTaps++;

 settings.BackgroundColor = new Color((byte)rand.Next(255),

(byte)rand.Next(255),

(byte)rand.Next(255));

}

 text.Remove(0, text.Length);

 text.AppendFormat("{0} taps total", numTaps);

Vector2 textSize = segoe14.MeasureString(text.ToString());

134	

	

	 	 	

	

	 	 	 	 	

	

	 	

	 	

	 	

	 	 	

 position = new Vector2((viewport.Width - textSize.X) / 2,

 (viewport.Height - textSize.Y) / 2);

 base.Update(gameTime);

}

Notice	that	the	new	color	is	saved	not	as	a	field,	but	as	the	BackgroundColor	property	of	the	

Settings	instance.	That	property	is	then	referenced	in	the	Draw	override:	

Silverlight Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(settings.BackgroundColor);

 spriteBatch.Begin();

 spriteBatch.DrawString(segoe14, text, position, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}

The	transient	value	of	the	numTaps	field	is	saved	to	and	restored	from	the	State	dictionary	of	

the	PhoneApplicationService	in	overrides	of	OnActivated	and	OnDeactivated:	

Silverlight Project: File: (excerpt)

protected override void OnActivated(object sender, EventArgs args)

{

if (PhoneApplicationService.Current.State.ContainsKey("numTaps"))

numTaps = (int)PhoneApplicationService.Current.State["numTaps"];

base.OnActivated(sender, args);

}

protected override void OnDeactivated(object sender, EventArgs args)

{

PhoneApplicationService.Current.State["numTaps"] = numTaps;

base.OnDeactivated(sender, args);

}

It	might	seem	a	little	arbitrary	to	save	and	restore	application	settings	in	one	set	of	event	

handlers,	and	save	and	restore	transient	settings	in	another	set	of	overrides	to	virtual	

methods,	and	in	a	practical	sense	it	is	arbitrary.	The	program	will	get	a	call	to	OnActivated

about	the	same	time	the	Launching	and	Activated events	are	fired,	and	a	call	to	

OnDeactivated	about	the	same	time	the	Deactivated	and	Closing	events	are	fired.	The	

differentiation	is	more	conceptual	in	that	OnActivated	and	OnDeactivated	are	associated	with	

135

	

	 	 	 	

	 	 	

	 	 	

	 	 	

	 	 	

	 	 	 	 	 	 	 	

	 	 	 	

	 	 	 	 	

	 	 	 	 	 	 	

	 	 		

the	Game instance,	so	they	should	be	used	for	properties	associated	with	the	game	rather	

than	overall	application	settings.	

It’s	possible	that	you’ll	need	to	save	an	unserializable	object	as	a	transient	setting,	but	because	

it’s	not	serializable,	you	can’t	use	the	State dictionary	of	the	PhoneApplicationService	class.	

You’ll	need	to	use	isolated	storage	for	such	an	object,	but	you	don’t	want	to	accidently	

retrieve	that	object	and	reuse	it	when	the	program	is	run	again.	In	this	case,	you’ll	use	a	flag	in	

the	State	dictionary	indicating	whether	you	need	to	load	the	transient	object	from	isolated	

storage.	

Testing
and
Experimentation

Programmers	at	Microsoft	who	have	been	writing	Windows	Phone	7	applications	longer	than	many	of	

us	report	that	dealing	with	tombstoning	can	be	one	of	the	trickier	aspects	of	phone	development.	The	

techniques	I’ve	shown	you	in	this	chapter	illustrate	a	good	starting	point	but	all	applications	will	have	

slightly	different	requirements.	Surely	you’ll	want	to	do	a	lot	of	testing	in	your	own	programs,	and	it	

always	helps	to	know	exactly	what	methods	of	a	program	are	being	called	and	in	what	order.	For	this	

job,	the	Debug.WriteLine	method	of	the	System.Diagnostics namespace	can	be	very	helpful.	

136	

	

	

	

Part	II		

Silverlight

	

	 	 	

	 	

	 	 	 	

	 	 	 	 	

	 	 	 	 	 	

	

	 	 	 		

	

	 	 	

	

	 	

	 	

	

	 	 	 	 	

	 	

	 	

	 	

	 	

	 	 	

	 	 	

	 	

	 	

	

	 	

	

	 	 	 	 	

	

Chapter	7	

XAML Power and Limitations
As	you’ve	seen,	a	Silverlight	program	is	generally	a	mix	of	code	and	XAML.	Most	often,	you’ll	

use	XAML	for	defining	the	layout	of	the	visuals	of	your	application,	and	you’ll	use	code	for	

event	handling,	including	all	userinput	events	and	all	events	generated	by	controls	as	a	result	

of	processing	userinput	events.		

Much	of	the	object	creation	and	initialization	performed	in	XAML	would	traditionally	be	done	

in	the	constructor	of	a	page	or	window	class.	This	might	make	XAML	seem	just	a	tiny	part	of	

the	application,	but	it	turns	out	to	be	much	more	than	that.	As	the	name	suggests,	XAML	is	

totally	compliant	XML,	so	it’s	instantly	toolable—machine	writable	and	machine	readable	as	

well	as	human	writable	and	human	readable.	

Although	XAML	is	usually	concerned	with	object	creation	and	initialization,	certain	features	of	

Silverlight	provide	much	more	than	object	initialization	would	seem	to	imply.	One	of	these	

features	is	data	binding,	which	involves	connections	between	controls,	or	between	controls	

and	underlying	data,	so	that	properties	are	automatically	updated	without	the	need	for	

explicit	event	handlers.	Entire	animations	can	also	be	defined	in	XAML.		

Although	XAML	is	sometimes	referred	to	as	a	“declarative	language,”	it	is	certainly	not	a	

complete	programming	language.	You	can’t	perform	arithmetic	in	any	generalized	manner	in	

XAML,	and	you	can’t	dynamically	create	objects	in	XAML.		

Experienced	programmers	encountering	XAML	for	the	first	time	are	sometimes	resistant	to	it.	

I	know	I	was.	Everything	that	we	value	in	a	programming	language	such	as	C#—required	

declarations,	strong	typing,	arraybounds	checking,	tracing	abilities	for	debugging—largely	

goes	away	when	everything	is	reduced	to	XML	text	strings.	Over	the	years,	however,	I’ve	

gotten	very	comfortable	with	XAML,	and	I	find	it	very	liberating	in	using	XAML	for	the	visuals	

of	the	application.	In	particular	I	like	how	the	parentchild	relationship	of	controls	on	the	

surface	of	a	window	is	mimicked	by	the	parentchild	structure	inherent	in	XML.	I	also	like	the	

ability	to	experiment	with	XAML—even	just	in	the	Visual	Studio	designer.	

Everything	you	need	to	do	in	Silverlight	can	be	allocated	among	these	three	categories:	

• Stuff	you	can	do	in	either	code	or	XAML	

• Stuff	you	can	do	only	in	code	(e.g.,	event	handling	and	methods)	

• Stuff	you	can	do	only	in	XAML	(e.g.,	templates)	

138	

	

	 	

	 	 	 	

	 	

	 	 	 	

	 	 	

	 	

	 	 	 	

	 	 	

	 	 	

	 	 	

	 	

	 	 	

	 	 	 	 	

	

	

	 	 	 	 	 	 	

	 	 	 	

	 	 	

	 	

	

	 	 	 	

	 	

	 	 	 	 	

	 	

	 	 	 	 	

		

	 	 	

	 	

	 	

	 	 	

In	both	code	and	XAML	you	can	instantiate	classes	and	structures,	and	set	the	properties	of	

these	objects.	A	class	or	structure	instantiated	in	XAML	must	be	defined	as	public	(of	course),	

but	it	must	also	have	a	parameterless	constructor.	When	XAML	instantiates	the	class,	it	has	no	

way	of	passing	anything	to	the	constructor.	In	XAML	you	can	associate	a	particular	event	with	

an	event	handler,	but	the	event	handler	itself	must	be	implemented	in	code.	You	can’t	make	

method	calls	in	XAML	because,	again,	there’s	no	way	to	pass	arguments	to	the	method.	

If	you	want,	you	can	write	almost	all	of	your	Silverlight	application	entirely	in	code.	However,	

page	navigation	is	based	around	the	existence	of	XAML	files	for	classes	that	derive	from	

PhoneApplicationPage,	and	there	also	is	a	very	important	type	of	job	that	must be	done	in	

XAML.	This	is	the	construction	of	templates.	You	use	templates	in	two	ways:	First,	to	visually	

display	data	using	a	collection	of	elements	and	controls,	and	secondly,	to	redefine	the	visual	

appearance	of	a	control	while	maintaining	its	functionality.	You	can	write	alternatives	to	

templates	in	code,	but	you	can’t	write	the	templates	themselves.	

After	some	experience	with	Silverlight	programming,	you	might	decide	that	you	want	to	use	a	

design	program	such	as	Expression	Blend	to	generate	XAML	for	you.	But	I	urge	you—	

speaking	programmer	to	programmer—to learn how to write XAML by hand.	At	the	very	least	

you	need	to	know	how	to	read	the	XAML	that	design	programs	generate	for	you.	

One	of	the	very	nice	features	of	XAML	is	that	you	can	experiment	with	it	in	a	very	interactive	

manner,	and	by	experimenting	with	XAML	you	can	learn	a	lot	about	Silverlight.	Programming	

tools	designed	specifically	for	experimenting	with	XAML	are	available.	These	programs	take	

advantage	of	a	static	method	named	XamlReader.Load	that	can	convert	XAML	text	into	an	

object	at	runtime.	In	Chapter	13	you’ll	see	an	application	that	lets	you	experiment	with	XAML	

right	on	the	phone!	

Until	then,	however,	you	can	experiment	with	XAML	in	the	Visual	Studio	designer.	Generally	

the	designer	responds	promptly	and	accurately	to	changes	you	make	in	the	XAML.	Only	when	

things	get	a	bit	complex	will	you	actually	need	to	build	and	deploy	the	application	to	see	

what	it’s	doing.	

A
TextBlock
in
Code

Before	we	get	immersed	in	experimenting	with	XAML,	however,	I	must	issue	another	warning:	

As	you	get	accustomed	to	using	XAML	exclusively	for	certain	common	chores,	it’s	important	

not	to	forget	how	to	write	C#!	

You’ll	recall	the	XAML	version	of	the	TextBlock	in	the	Grid	from	Chapter	2:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <TextBlock Text="Hello, Windows Phone 7!"

 HorizontalAlignment="Center"

VerticalAlignment="Center" />

</Grid>

139	

	

	 	 	

	

	 	 	 	 	 	

	

	 	 	

	 	 	

	 	

	 	 	 	

	

Elements	in	XAML	such	as	TextBlock	are	actually	classes.	Attributes	of	these	elements	(such	as	

Text,	HorizontalAlignment,	and	VerticalAlignment)	are	properties	of	the	class.	Let’s	see	how	

easy	it	is	to	write	a	TextBlock	in	code,	and	to	also	use	code	to	insert	the	TextBlock	into	the	

XAML	Grid.	

The	TapForTextBlock	project	creates	a	new	TextBlock	in	code	every	time	you	tap	the	screen.	

The	MainPage.xaml	file	contains	a	TextBlock	centered	with	the	content	grid:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<TextBlock Name="txtblk"

 Text="Hello, Windows Phone 7!"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Grid>

The	codebehind	file	for	MainPage	creates	an	additional	TextBlock	whenever	you	tap	the	

screen.	It	uses	the	dimensions	of	the	existing	TextBlock	to	set	a	Margin	property	on	the	new	

TextBlock	element	to	randomly	position	it	within	the	content	grid:	

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage

{

Random rand = new Random();

 public MainPage()

 {

InitializeComponent();

 }

 protected override void OnManipulationStarted(ManipulationStartedEventArgs args)

 {

TextBlock newTextBlock = new TextBlock();

newTextBlock.Text = "Hello, Windows Phone 7!";

newTextBlock.HorizontalAlignment = HorizontalAlignment.Left;

newTextBlock.VerticalAlignment = VerticalAlignment.Top;

newTextBlock.Margin = new Thickness(

 (ContentPanel.ActualWidth - txtblk.ActualWidth) * rand.NextDouble(),

 (ContentPanel.ActualHeight - txtblk.ActualHeight) * rand.NextDouble(),

 0, 0);

ContentPanel.Children.Add(newTextBlock);

args.Complete();

args.Handled = true;

base.OnManipulationStarted(args);

140	

	

	 	 	

	

	 	 	

	 	 	 	

	 	

	

	 	

	 	 	

	

	

	

	

	 	 	 	

	 	

	 	 	

	 	 	 	

 }

}

You	don’t	need	to	perform	the	steps	precisely	in	this	order:	You	can	add	the	TextBlock	to	

ContentPanel	first	and	then	set	the	TextBlock	properties.	

But	this	is	the	type	of	thing	you	simply	can’t	do	in	XAML.	XAML	can’t	respond	to	events,	it	

can’t	arbitrarily	create	new	instances	of	elements,	it	can’t	make	calls	to	the	Random	class,	and	

it	certainly	can’t	perform	calculations.		

You	can	also	take	advantage	of	a	feature	introduced	in	C#	3.0	to	instantiate	a	class	and	define	

its	properties	in	a	block:	

TextBlock newTextBlock = new TextBlock

{

 Text = "Hello, Windows Phone 7!",

 HorizontalAlignment = HorizontalAlignment.Left,

 VerticalAlignment = VerticalAlignment.Top,

 Margin = new Thickness(

 (ContentPanel.ActualWidth - txtblk.ActualWidth) * rand.NextDouble(),

 (ContentPanel.ActualHeight - txtblk.ActualHeight) * rand.NextDouble(),

 0, 0)

};

ContentPanel.Children.Add(newTextBlock);

That	makes	the	code	look	a	little	more	like	the	XAML	(except	for	the	calculations	and	method	

calls	to	rand.NextDouble),	but	you	can	still	see	that	XAML	provides	several	shortcuts.	In	code	

the	HorizontalAlignment	and	VerticalAlignment	properties	must	be	set	to	members	of	the	

HorizontalAlignment	and	VerticalAlignment	enumerations,	respectively.	In	XAML,	you	need	

only	specify	the	member	name.	

Just	looking	at	the	XAML,	it	is	not	so	obvious	that	the	Grid	has	a	property	named	Children,	

and	that	this	property	is	a	collection,	and	nesting	the	TextBlock	inside	the	Grid	effectively	adds	

the	TextBlock	to	the	Children collection.	The	process	of	adding	the	TextBlock	to	the	Grid	must	

be	more	explicit	in	code.	

Property
Inheritance

To	experiment	with	some	XAML,	it’s	convenient	to	create	a	project	specifically	for	that	

purpose.	Let’s	call	the	project	XamlExperiment,	and	put	a	TextBlock	in	the	content	grid:	

141

	

	

	 	

	 	

	 	

	 	 	 	 	 	

	 	

	 	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	 	

	 	 	

	 	 	

	 	 	 	

	 	 	

	

	 	 	 	

	 	 	 	

	

	 	 	

	 	 	

	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <TextBlock Text="Hello, Windows Phone 7!" />

</Grid>

The	text	shows	up	in	the	upperleft	corner	of	the	page’s	client	area.	Let’s	make	the	text	italic.	

You	can	do	that	by	setting	the	FontStyle	property	in	the	TextBlock:	

<TextBlock Text="Hello, Windows Phone 7!"

 FontStyle="Italic" />

Alternatively,	you	can	put	that	FontStyle	attribute	in	the	PhoneApplicationPage	tag:	

<phone:PhoneApplicationPage … FontStyle="Italic" …

This	FontStyle attribute	can	go	anywhere	in	the	PhoneApplicationPage	tag.	Notice	that	setting	

the	property	in	this	tag	affects	all	the	TextBlock	elements	on	the	page.	This	is	a	feature	known	

as	property inheritance.	Certain	properties—not	many	more	than	Foreground	and	the	font

related	properties	FontFamily,	FontSize,	FontStyle,	FontWeight,	and	FontStretch—propagate	

through	the	visual	tree.	This	is	how	the	TextBlock	gets	the	FontFamily,	FontSize,	and	

Foreground	properties	(and	now	the	FontStyle	property)	set	on	the	PhoneApplicationPage.	

You	can	visualize	property	inheritance	beginning	at	the	PhoneApplicationPage	object.	The	

FontStyle	is	set	on	that	object	and	then	it’s	inherited	by	the	outermost	Grid,	and	then	the	

inner	Grid	objects,	and	finally	by	the	TextBlock.	This	is	a	good	theory.	The	problem	with	this	

theory	is	that	Grid	doesn’t	have	a	FontStyle	property!	If	you	try	setting	FontStyle	in	a	Grid

element,	Visual	Studio	will	complain.	Property	inheritance	is	somewhat	more	sophisticated	

than	a	simple	handing	off	from	parent	to	child,	and	it	is	one	of	the	features	of	Silverlight	that	

is	intimately	connected	with	the	role	of	dependency properties,	which	you’ll	learn	about	in	

Chapter	11.	

While	keeping	the	FontStyle	property	setting	to	Italic	in	the	PhoneApplicationPage	tag,	add	a	

FontStyle	setting	to	the	TextBlock:	

<TextBlock Text="Hello, Windows Phone 7!"

 FontStyle="Normal" />

Now	the	text	in	this	particular	TextBlock	goes	back	to	normal.	Obviously	the	FontStyle	setting	

on	the	TextBlock—which	is	referred	to	as	a	local value	or	a	local setting—has	precedence	over	

property	inheritance.	A	little	reflection	will	convince	you	that	this	behavior	is	as	it	should	be.	

Both	property	inheritance	and	the	local	setting	have	precedence	over	the	default	value.	We	

can	express	this	relationship	in	a	simple	chart:	

142	

	

	 	

	 	 	

	

	 	 	 	 	 	

	 	

	

	 	 	 	

	 	

	

	 	 	

	

	

	 	 	

	 	 	

	 	

	

	 	 	

	 	

	 	 	 	 	 	

Local
Settings	have	precedence	over	

Property
Inheritance,	which	has	precedence	over	

Default
Values

This	chart	will	grow	in	size	as	we	examine	all	the	ways	in	which	properties	can	be	set.	

Property-Element
Syntax

Let’s	remove	any	FontStyle	settings	that	might	stil	be	around,	set	the	TextBlock	attributes	to	

these	values:	

<TextBlock Text="Hello, Windows Phone 7!"

 FontSize="36"

 Foreground="Red" />

Because	this	is	XML,	we	can	separate	the	TextBlock	tag	into	a	start	tag	and	end	tag	with	

nothing	in	between:	

<TextBlock Text="Hello, Windows Phone 7!"

 FontSize="36"

 Foreground="Red">

</TextBlock>

But	you	can	also	do	something	that	will	appear	quite	strange	initially.	You	can	remove	the	

FontSize	attribute	from	the	start	tag	and	set	it	like	this:	

<TextBlock Text="Hello, Windows Phone 7!"

 Foreground="Red">

 <TextBlock.FontSize>

36

</TextBlock.FontSize>

</TextBlock>

Now	the	TextBlock	has	a	child	element	called	TextBlock.FontSize,	and	within	the	

TextBlock.FontSize	tags	is	the	value.	

This	is	called	property-element syntax,	and	it’s	an	extremely	important	part	of	XAML.	The	

introduction	of	propertyelement	syntax	also	allows	nailing	down	some	terminology	that	

unites	.NET	and	XML.	This	single	TextBlock element	now	contains	three	types	of	identifiers:	

• TextBlock	is	an	object element—a	.NET	object	based	on	an	XML	element.	

• Text	and	Foreground	are	property attributes—.NET	properties	set	with	XML	attributes.	

• FontSize is	now	a	property element—a	.NET	property	expressed	as	an	XML	element.	

When	I	first	saw	the	propertyelement	syntax,	I	wondered	if	it	was	some	kind	of	XML	

extension.	Of	course	it’s	not.	The	period	is	a	legal	character	for	XML	tags,	so	in	terms	of	

143	

	

	 	 	 	

	 	 	

	 	

	 	

	

	 		

	

	 	

	 	

	 	 	

	

	 	 	 	 	 	 	

	 	 	

nested	XML	tags,	these	are	perfectly	legitimate.	That	they	happen	to	consist	of	a	class	name	

and	a	property	name	is	something	known	only	to	XAML	parsers	(machine	and	human	alike).	

One	restriction,	however:	It	is	illegal	for	anything	else	to	appear	in	a	propertyelement	tag:	

<TextBlock Text="Hello, Windows Phone 7!"

 Foreground="Red">
 <!-- Not a legal property-element tag! -->

 <TextBlock.FontSize absolutely nothing else goes in here!>

36

 </TextBlock.FontSize>

</TextBlock>

Also,	you	can’t	have	both	a	property	attribute	and	a	property	element	for	the	same	property,	

like	this:	

<TextBlock Text="Hello, Windows Phone 7!"

 FontSize="36"

 Foreground="Red">

 <TextBlock.FontSize>

36

</TextBlock.FontSize>

</TextBlock>

This	is	an	error	because	the	FontSize	property	is	set	twice.	

If	you	look	towards	the	top	of	MainPage.xaml,	you’ll	see	another	property	element:	

<Grid.RowDefinitions>

RowDefinitions is	a	property	of	Grid.	In	App.xaml,	you’ll	see	two	more:	

<Application.Resources>

<Application.ApplicationLifetimeObjects>

Both	Resources	and	ApplicationLIfeTimeObjects	are	properties	of	Application.	

Colors
and
Brushes

Let’s	return	the	TextBlock	to	its	pristine	condition:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<TextBlock Text="Hello, Windows Phone 7!" />

</Grid>

The	text	shows	up	as	white	(or	black,	depending	on	the	theme	your	selected)	because	the	

Foreground	property	is	set	on	the	root	element	in	MainPage.xaml.	You	can	override	the	user’s	

preferences	by	setting	Background	for	the	Grid	and	Foreground	for	the	TextBlock:	

<Grid x:Name="ContentPanel" Background="Blue" Grid.Row="1" Margin="12,0,12,0">

<TextBlock Text="Hello, Windows Phone 7!"

 Foreground="Red" />

</Grid>

144	

	

	 	 	

	 	

	

	 	 	

	 	

	 	

	 	 	

	

	 	

	 	 	 	 	

	 	

	 	

	 	 	

	 		

	 	

	 	

	 	

	 	 	 	

	

	

	 	 	 	

	

The	Grid	has	a	Background	property	but	no	Foreground	property.	The	TextBlock	has	a	

Foreground property	but	no	Background	property.	The	Foreground	property	is	inheritable	

through	the	visual	tree,	and	it	may	sometimes	seem	that	the	Background property	is	as	well,	

but	it	is	not.	The	default	value	of	Background	is	null,	which	makes	the	background	

transparent.	When	the	background	is	transparent,	the	parent	background	shows	through,	and	

that	makes	it	seem	as	if	the	property	is	inherited.	

A	Background	property	set	to	null	is	visually	the	same	as	a	Background property	set	to	

Transparent,	but	the	two	settings	affect	hittesting	differently,	which	affects	how	the	element	

responds	to	touch.	A	Grid	with	its	Background	set	to	the	default	value	of	null	cannot	detect	

touch	input!	If	you	want	a	Grid	to	have	no	background	color	on	its	own	but	still	respond	to	

touch,	set	Background	to	Transparent.	You	can	also	do	the	reverse:	You	can	make	an	element	

with	a	nonnull	background	unresponsive	to	touch	by	setting	the	IsHitTestVisible	property	to	

false.	

Besides	the	standard	colors,	you	can	write	the	color	as	a	string	of	red,	green,	and	blue	one

byte	hexadecimal	values	ranging	from	00	to	FF.	For	example:	

Foreground="#FF0000"

That’s	also	red.	You	can	alternatively	specify	four	twodigit	hexadecimal	numbers	where	the	

first	one	is	an	alpha	value	indicating	transparency:	The	value	00	is	completely	transparent,	FF	

is	opaque,	and	values	in	between	are	partially	transparent.	Try	this	value:	

Foreground="#80FF0000"

The	text	will	appear	a	somewhat	faded	magenta	because	the	blue	background	shows	

through.		

If	you	preface	the	pound	sign	with	the	letters	sc	you	can	use	values	between	0	and	1	for	the	

red,	blue,	and	green	components:	

Foreground="sc# 1 0 0"

You	can	also	precede	the	three	numbers	with	an	alpha	value	between	0	and	1.	

These	two	methods	of	specifying	color	numerically	are	not	equivalent,	as	you	can	verify	by	

putting	these	two	TextBlocks in	the	same	Grid:	

<Grid x:Name="ContentPanel" Background="Blue" Grid.Row="1" Margin="12,0,12,0">

<TextBlock Text="RGB COLOR"

 HorizontalAlignment="Left"

 Foreground="#808080" />

<TextBlock Text="scRGB COLOR"

 HorizontalAlignment="Right"

 Foreground="sc# 0.5 0.5 0.5" />

</Grid>

145	

	

	 	

	 	

	

	 	 	 	 	

	 	

	 	 	

	 	

	

	 	

	 	 	 	

	 	

	 	 	

	 	

	

Both	color	specifications	seem	to	suggest	medium	gray,	except	that	the	one	on	the	right	is	

much	lighter	than	the	one	on	the	left.	

The	colors	you	get	with	the	hexadecimal	specification	are	probably	most	familiar.	The	one

byte	values	of	red,	green,	and	blue	are	directly	proportional	to	the	voltages	sent	to	the	pixels	

of	the	video	display.	Although	the	light	intensity	of	video	displays	is	not	linear	with	respect	to	

voltage,	the	human	eye	is	not	linear	with	respect	to	light	intensity	either.	These	two	non

linearities	cancel	each	other	out	(approximately)	so	the	text	on	the	left	appears	somewhat	

medium.	

With	the	scRGB	color	space,	you	specify	values	between	0	and	1	that	are	proportional	to	light	

intensity,	so	the	nonlinearity	of	the	human	eye	makes	the	color	seem	off.	If	you	really	want	a	

medium	gray	in	scRGB	you	need	values	much	lower	than	0.5,	such	as:	

Foreground="sc# 0.2 0.2 0.2"

Let’s	go	back	to	one	TextBlock	in	the	Grid:	

<Grid x:Name="ContentPanel" Background="Blue" Grid.Row="1" Margin="12,0,12,0">

<TextBlock Text="Hello, Windows Phone 7!"

 Foreground="Red" />

</Grid>

Just	as	I	did	earlier	with	the	FontSize	property,	break	out	the	Foreground	property	as	a	

property	element:	

<TextBlock Text="Hello, Windows Phone 7!">

<TextBlock.Foreground>

Red

</TextBlock.Foreground>

</TextBlock>

When	you	specify	a	Foreground	property	in	XAML,	a	SolidColorBrush	is	created	for	the	

element	behind	the	scenes.	You	can	also	explicitly	create	the	SolidColorBrush	in	XAML:	

<TextBlock Text="Hello, Windows Phone 7!">

<TextBlock.Foreground>

<SolidColorBrush Color="Red" />

</TextBlock.Foreground>

</TextBlock>

You	can	also	break	out	the	Color	property	as	a	property	element:	

<TextBlock Text="Hello, Windows Phone 7!">

<TextBlock.Foreground>

<SolidColorBrush>

<SolidColorBrush.Color>

Red

</SolidColorBrush.Color>

</SolidColorBrush>

</TextBlock.Foreground>

</TextBlock>

146	

	

	

	 	 	 	 	 	

	 	

	 	 	 	 	

	 	

	 	 	 	 	

	 	 	 	 	

	 	 	

	 	

And	you	can	go	even	further:	

<TextBlock Text="Hello, Windows Phone 7!">

<TextBlock.Foreground>

<SolidColorBrush>

<SolidColorBrush.Color>

<Color>

<Color.A>

 255

</Color.A>

<Color.R>

 #FF

</Color.R>

</Color>

</SolidColorBrush.Color>

</SolidColorBrush>

</TextBlock.Foreground>

</TextBlock>

Notice	that	the	A	property	of	the	Color	structure	needs	to	be	explicitly	set	because	the	default	

value	is	0,	which	means	transparent.	

This	excessive	use	of	property	elements	might	not	make	much	sense	for	simple	colors	and	

SolidColorBrush,	but	the	technique	becomes	essential	when	you	need	to	use	XAML	to	set	a	

property	with	a	value	that	can’t	be	expressed	as	a	simple	text	string—for	example,	when	you	

want	to	use	a	gradient	brush	rather	than	a	SolidColorBrush.	

Let’s	begin	with	a	simple	solid	TextBlock	but	with	the	Background	property	of	the	Grid	broken	

out	as	a	property	element:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Grid.Background>

<SolidColorBrush Color="Blue" />

</Grid.Background>

<TextBlock Text="Hello, Windows Phone 7!"

 Foreground="Red" />

</Grid>

Remove	that	SolidColorBrush	and	replace	it	with	a	LinearGradientBrush:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Grid.Background>

<LinearGradientBrush>

</LinearGradientBrush>

</Grid.Background>

<TextBlock Text="Hello, Windows Phone 7!"

 Foreground="Red" />

</Grid>

The	LinearGradientBrush	has	a	property	of	type	GradientStops,	so	let’s	add	property	element	

tags	for	the	GradientStops	property:	

147	

	

	 	 	

	 	

	 	 	 	 	

	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Grid.Background>

<LinearGradientBrush>

<LinearGradientBrush.GradientStops>

</LinearGradientBrush.GradientStops>

</LinearGradientBrush>

</Grid.Background>

<TextBlock Text="Hello, Windows Phone 7!"

 Foreground="Red" />

</Grid>

The	GradientStops	property	is	of	type	GradientStopCollection,	so	let’s	add	tags	for	that:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Grid.Background>

<LinearGradientBrush>

<LinearGradientBrush.GradientStops>

<GradientStopCollection>

</GradientStopCollection>

</LinearGradientBrush.GradientStops>

</LinearGradientBrush>

</Grid.Background>

<TextBlock Text="Hello, Windows Phone 7!"

 Foreground="Red" />

</Grid>

Now	let’s	put	a	couple	GradientStop	objects	in	there.	The	GradientStop	has	properties	named	

Offset	and	Color:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Grid.Background>

<LinearGradientBrush>

<LinearGradientBrush.GradientStops>

<GradientStopCollection>

<GradientStop Offset="0" Color="Blue" />

<GradientStop Offset="1" Color="Green" />

</GradientStopCollection>

</LinearGradientBrush.GradientStops>

</LinearGradientBrush>

</Grid.Background>

<TextBlock Text="Hello, Windows Phone 7!"

 Foreground="Red" />

</Grid>

And	with	the	help	of	property	elements,	that	is	how	you	create	a	gradient	brush	in	markup.	It	

looks	like	this:	

148	

	

	

	 	

	 	

	

	 	

	 	 	

	 	

	 	 	

The	Offset	values	range	from	0	to	1	and	they	are	relative	to	the	element	being	colored	with	

the	brush.	You	can	use	more	than	two:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Grid.Background>

<LinearGradientBrush>

<LinearGradientBrush.GradientStops>

<GradientStopCollection>

<GradientStop Offset="0" Color="Blue" />

<GradientStop Offset="0.5" Color="White" />

<GradientStop Offset="1" Color="Green" />

</GradientStopCollection>

</LinearGradientBrush.GradientStops>

</LinearGradientBrush>

</Grid.Background>

<TextBlock Text="Hello, Windows Phone 7!"

 Foreground="Red" />

</Grid>

Conceptually	the	brush	knows	the	size	of	the	area	that	it’s	coloring	and	adjusts	itself	

accordingly.		

By	default	the	gradient	starts	at	the	upperleft	corner	and	goes	to	the	lowerright	corner,	but	

that’s	only	because	of	the	default	settings	of	the	StartPoint	and	EndPoint	properties	of	

LinearGradientBrush.	As	the	names	suggest,	these	are	coordinate	points	relative	to	the	upper

left	corner	of	the	element	being	colored.	For	StartPoint	the	default	value	is	the	point	(0,	0),	

149	

	

	 	 	

	

	 	

	

	 	

	

meaning	the	upperleft,	and	for	EndPoint	(1,	1),	the	lowerright.	If	you	change	them	to	(0,	0)	

and	(0,	1),	for	example,	the	gradient	goes	from	top	to	bottom:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <Grid.Background>

<LinearGradientBrush StartPoint="0 0" EndPoint="0 1">

 <LinearGradientBrush.GradientStops>

 <GradientStopCollection>

 <GradientStop Offset="0" Color="Blue" />

 <GradientStop Offset="0.5" Color="White" />

 <GradientStop Offset="1" Color="Green" />

 </GradientStopCollection>

 </LinearGradientBrush.GradientStops>

</LinearGradientBrush>

 </Grid.Background>

 <TextBlock Text="Hello, Windows Phone 7!"

 Foreground="Red" />

</Grid>

Each	point	is	just	two	numbers	separated	by	space	or	a	comma.	There	are	also	properties	that	

determine	what	happens	outside	the	range	of	the	lowest	and	highest	Offset	values	if	they	

don’t	go	from	0	to	1.	

LinearGradientBrush	derives	from	GradientBrush.	Another	class	that	derives	from	

GradientBrush	is	RadialGradientBrush.	Here’s	markup	for	a	larger	TextBlock	with	a	

RadialGradientBrush	set	to	its	Foreground	property:	

<TextBlock Text="GRADIENT"

 FontFamily="Arial Black"

 FontSize="72"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

<TextBlock.Foreground>

<RadialGradientBrush>

<RadialGradientBrush.GradientStops>

<GradientStopCollection>

<GradientStop Offset="0" Color="Transparent" />

<GradientStop Offset="1" Color="Red" />

</GradientStopCollection>

</RadialGradientBrush.GradientStops>

</RadialGradientBrush>

</TextBlock.Foreground>

</TextBlock>

150	

	

	

	

	

	 	

	

And	here’s	what	the	combination	looks	like:	

Content
and
Content
Properties

Everyone	knows	that	XML	can	be	a	little	“wordy.”	However,	the	markup	I’ve	shown	you	with	

the	gradient	brushes	is	a	little	wordier	than	it	needs	to	be.	Let’s	look	at	the	

RadialGradientBrush	I	originally	defined	for	the	TextBlock:	

<TextBlock.Foreground>

<RadialGradientBrush>

<RadialGradientBrush.GradientStops>

<GradientStopCollection>

<GradientStop Offset="0" Color="Transparent" />

<GradientStop Offset="1" Color="Red" />

</GradientStopCollection>

</RadialGradientBrush.GradientStops>

</RadialGradientBrush>

</TextBlock.Foreground>

First,	if	you	have	at	least	one	item	in	a	collection,	you	can	eliminate	the	tags	for	the	collection	

itself.	This	means	that	the	tags	for	the	GradientStopCollection	can	be	removed:	

<TextBlock.Foreground>

<RadialGradientBrush>

<RadialGradientBrush.GradientStops>

<GradientStop Offset="0" Color="Transparent" />

<GradientStop Offset="1" Color="Red" />

</RadialGradientBrush.GradientStops>

151	

	

	

	 	 	

	

	

	

	 	

	

	

	

	 	

	

	 	 	 	

	 	

	 	

	 	

	 	 	 	

	 	 	 	

	

</RadialGradientBrush>

</TextBlock.Foreground>

Moreover,	many	classes	that	you	use	in	XAML	have	something	called	a	ContentProperty

attribute.	This	word	“attribute”	has	different	meanings	in	.NET	and	XML;	here	I’m	talking	

about	the	.NET	attribute,	which	refers	to	some	additional	information	that	is	associated	with	a	

class	or	a	member	of	that	class.	If	you	look	at	the	documentation	for	the	GradientBrush

class—the	class	from	which	both	LinearGradientBrush	and	RadialGradientBrush	derive—you’ll	

see	that	the	class	was	defined	with	an	attribute	of	type	ContentPropertyAttribute:	

[ContentPropertyAttribute("GradientStops", true)]

public abstract class GradientBrush : Brush

This	attribute	indicates	one	property	of	the	class	that	is	assumed	to	be	the	content	of	that	

class,	and	for	which	the	propertyelement	tags	are	not	required.	For	GradientBrush	(and	its	

descendents)	that	one	property	is	GradientStops.	This	means	that	the	

RadialGradientBrush.GradientStops	tags	can	be	removed	from	the	markup:	

<TextBlock.Foreground>

<RadialGradientBrush>

<GradientStop Offset="0" Color="Transparent" />

<GradientStop Offset="1" Color="Red" />

</RadialGradientBrush>

</TextBlock.Foreground>

Now	it’s	not	quite	as	wordy	but	it’s	still	comprehensible.	The	two	GradientStop	objects	are	the	

content	of	the	RadialGradientBrush	class.	

Earlier	in	this	chapter	I	created	a	TextBlock in	code	and	added	it	to	the	Children	collection	of	

the	Grid.	In	XAML,	we	see	no	reference	to	this	Children collection.	That’s	because	the	

ContentProperty	attribute	of	Panel—the	class	from	which	Grid	derives—defines	the	Children

property	as	the	content	of	the	Panel:	

[ContentPropertyAttribute("Children", true)]

public abstract class Panel : FrameworkElement

If	you	want	to	get	more	explicit	in	your	markup,	you	can	include	a	property	element	for	the	

Children	property:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <Grid.Children>

<TextBlock Text="Hello, Windows Phone 7!" />

 </Grid.Children>

</Grid>

Similarly,	PhoneApplicationPage	derives	from	UserControl,	which	also	has	a	ContentProperty

attribute:	

[ContentPropertyAttribute("Content", true)]

public class UserControl : Control

152	

	

	 	 	

	 	 	 	 	

	 	 	

	 	 	 	 	

	 	

	 	 	

	 	 	

	

The	ContentProperty	attribute	of	UserControl	is	the	Content	property.	(That	sentence	makes	

more	sense	when	you	see	it	on	the	page	rather	than	when	you	read	it	out	load!)	

Suppose	you	want	to	put	two	TextBlock	elements	in	a	Grid,	and	you	want	the	Grid	to	have	a	

LinearGradientBrush	for	its	Background.	You	can	put	the	Background	property	element	first	

within	the	Grid	tags	followed	by	the	two	TextBlock	elements:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <Grid.Background>

<LinearGradientBrush>

 <GradientStop Offset="0" Color="LightCyan" />

 <GradientStop Offset="1" Color="LightPink" />

</LinearGradientBrush>

 </Grid.Background>

 <TextBlock Text="TextBlock #1"

 HorizontalAlignment="Left" />

 <TextBlock Text="TextBlock #2"

 HorizontalAlignment="Right" />

</Grid>

It’s	also	legal	to	put	the	two	TextBlock	elements	first	and	the	Background	property	element	

last:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <TextBlock Text="TextBlock #1"

 HorizontalAlignment="Left" />

 <TextBlock Text="TextBlock #2"

 HorizontalAlignment="Right" />

 <Grid.Background>

<LinearGradientBrush>

 <GradientStop Offset="0" Color="LightCyan" />

 <GradientStop Offset="1" Color="LightPink" />

</LinearGradientBrush>

 </Grid.Background>

</Grid>

But	putting	the	Background property	element	between	the	two	TextBlock	elements	simply	

won’t	work:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <TextBlock Text="TextBlock #1"

 HorizontalAlignment="Left" />

<!-- Not a legal place for the property element! -->

 <Grid.Background>

<LinearGradientBrush>

 <GradientStop Offset="0" Color="LightCyan" />

 <GradientStop Offset="1" Color="LightPink" />

</LinearGradientBrush>

153	

	

	 	 	

	

	 	

	 	 	 	 	 	 	

	 	 	 	

	 	

	

	 	 	 	 	 	 	 	

	 	 	

	 		

	 	 	 	 	

	 		

	 	 	

	

	

	 	 	

 </Grid.Background>

 <TextBlock Text="TextBlock #2"

 HorizontalAlignment="Right" />

</Grid>

The	precise	problem	with	this	syntax	is	revealed	when	you	put	in	the	missing	property	

elements	for	the	Children	property	of	the	Grid:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <Grid.Children>

<TextBlock Text="TextBlock #1"

 HorizontalAlignment="Left" />

 </Grid.Children>

 <!-- Not a legal place for the property element! -->

 <Grid.Background>

<LinearGradientBrush>

 <GradientStop Offset="0" Color="LightCyan" />

 <GradientStop Offset="1" Color="LightPink" />

</LinearGradientBrush>

 </Grid.Background>

 <Grid.Children>

<TextBlock Text="TextBlock #2"

 HorizontalAlignment="Right" />

 </Grid.Children>

</Grid>

Now	it’s	obvious	that	the	Children	property	is	being	set	twice—and	that’s	clearly	illegal.	

The
Resources
Collection

In	one	sense,	computer	programming	is	all	about	the	avoidance	of	repetition.	(Or	at	least	

repetition	by	us	humans.	We	don’t	mind	if	our	machines	engage	in	repetition.	We	just	want	it	

to	be	efficient	repetition.)	XAML	would	seem	to	be	a	particularly	treacherous	area	for	

repetition	because	it’s	just	markup	and	not	a	real	programming	language,	You	can	easily	

imagine	situations	where	a	bunch	of	elements	have	the	same	HorizontalAlignment	or	

VerticalAlignment	or	Margin	settings,	and	it	would	certainly	be	convenient	if	there	were	a	way	

to	avoid	a	lot	of	repetitive	markup.	If	you	ever	needed	to	change	one	of	these	properties,	

changing	it	just	once	is	much	better	than	changing	it	scores	or	hundreds	of	times.	

Fortunately	XAML	has	been	designed	by	programmers	who	(like	the	rest	of	us)	prefer	not	to	

type	in	the	same	stuff	over	and	over	again.	

The	most	generalized	solution	to	repetitive	markup	is	the	Silverlight	style.	But	a	prerequisite	

to	styles	is	a	more	generalized	sharing	mechanism.	This	is	called	the	resource,	and	right	away	

we	need	to	distinguish	between	the	resources	I’ll	be	showing	you	here,	and	the	resources	

encountered	in	Chapter	4	when	embedding	images	into	the	application.	Whenever	there’s	a	

154

	

	 	 	 	

	 	 	

	 	 	 	 	 	 	

	 	

	 	 	

	 	 	 	

	 	 	

	 	 	

	 	

	

	 	

	 	 	 	 	 	 	 	 	

	

	 	 	

	 	 	 	

	 	 	

	 	 	 	

	

	

		

	 	

	

chance	of	confusion,	I	will	refer	to	the	resources	in	this	chapter	as	XAML	resources,	even	

though	they	can	exist	in	code	as	well.	

XAML	resources	are	always	instances	of	a	particular	.NET	class	or	structure,	either	an	existing	

class	or	structure	or	a	custom	class.	When	a	particular	class	is	defined	as	a	XAML	resource,	

only	one	instance	is	made,	and	that	one	instance	is	shared	among	everybody	using	that	

resource.	

The	sharing	of	resources	immediately	disqualifies	many	classes	from	being	defined	as	XAML	

resources.	For	example,	a	single	instance	of	TextBlock	can’t	be	used	more	than	once	because	

the	TextBlock must	have	a	unique	parent	and	a	unique	location	within	that	parent.	And	that	

goes	for	any	other	element	as	well.	Anything	derived	from	UIElement	is	probably	not	going	to	

show	up	as	a	resource	because	it	can’t	be	shared.	

However,	it	is	very	common	to	share	brushes.	This	is	a	typical	way	to	give	a	particular	

application	a	certain	consistent	and	distinctive	visual	appearance.	Animations	are	also	

candidates	for	sharing.	It’s	also	possible	to	share	text	strings	and	numbers.	Think	of	these	as	

the	XAML	equivalents	of	string	or	numeric	constants	in	a	C#	program.	When	you	need	to	

change	one	of	them,	you	can	just	change	the	single	resource	rather	than	hunting	through	the	

XAML	to	change	a	bunch	of	individual	occurrences.	

To	support	the	storage	of	resources,	FrameworkElement defines	a	property	named	Resources

of	type	ResourceDictionary.	On	any	element	that	derives	from	FrameworkElement,	you	can	

define	Resources	as	a	property	element.	By	converntion	this	appears	right	under	the	start	tag.	

Here’s	a	Resources collection	for	a	page	class	that	derives	from	PhoneApplicationPage:	

<phone:PhoneApplicationPage … >

<phone:PhoneApplicationPage.Resources>

…

</phone:PhoneApplicationPage.Resources>

…

</phone:PhoneApplicationPage>

The	collection	of	resources	within	those	Resources	tags	is	sometimes	called	a	resource section,	

and	anything	in	that	particular	PhoneApplicationPage	can	then	use	those	resources.	

The	Application	class	also	defines	a	Resources	property,	and	the	App.xaml	file	that	Visual	

Studio	creates	for	you	in	a	new	Silverlight	application	already	includes	an	empty	resource	

section:	

<Application … >

<Application.Resources>

</Application.Resources>

 …

</Application>

155	

	

	 	 	

	

	

	 	 	 	 	 	

	 	 	 	 	 	

	

	 	 	

	 	

	 	 	

	 	 	

	 	 	

	 	 	

	

	 	

	

	 	 	

	

	 	 	 	

The	resources	defined	in	the	Resources collection	on	a	FrameworkElement	are	available	only	

within	that	element	and	nested	elements;	the	resources	defined	in	the	Application	class	are	

available	throughout	the	application.	

Sharing
Brushes

Let’s	suppose	your	page	contains	several	TextBlock	elements,	and	you	want	to	apply	the	same	

LinearGradientBrush	to	the	Foreground of	each	of	them.	This	is	an	ideal	use	of	a	resource.	

The	first	step	is	to	define	a	LinearGradientBrush	in	a	resource	section	of	a	XAML	file.	If	you’re	

defining	the	resource	in	a	FrameworkElementderivative,	the	resource	must	be	defined	before	

it	is	used,	and	it	can	only	be	accessed	by	the	same	element	or	a	nested	element.	

<phone:PhoneApplicationPage.Resources>

<LinearGradientBrush x:Key="brush">

<GradientStop Offset="0" Color="Pink" />

<GradientStop Offset="1" Color="SkyBlue" />

</LinearGradientBrush>

</phone:PhoneApplicationPage.Resources>

Notice	the	x:Key	attribute.	Every	resource	must	have	a	key	name.	There	are	only	four	

keywords	that	must	be	prefaced	with	“x”	and	you’ve	already	seen	three	of	them:	Besides	x:Key

they	are	x:Class,	x:Name	and	x:Null.	

Accessing	that	resource	is	possible	with	a	couple	kinds	of	syntax.	The	rather	verbose	way	is	to	

break	out	the	Foreground	property	of	the	TextBlock	as	a	property	element	and	set	it	to	an	

object	of	type	StaticResource	referencing	the	key	name:	

<TextBlock Text="Hello, Windows Phone 7!">

<TextBlock.Foreground>

<StaticResource ResourceKey="brush" />

</TextBlock.Foreground>

</TextBlock>

There	is,	however,	a	shortcut	syntax	that	makes	use	of	what	is	called	a	XAML markup

extension.	A	markup	extension	is	always	delimited	by	curly	braces.	Here’s	what	the	

StaticResource	markup	extension	looks	like:	

<TextBlock Text="Hello, Windows Phone 7!"

 Foreground="{StaticResource brush}" />

Notice	that	within	the	markup	extension	the	word	“brush”	is	not	in	quotation	marks.	

Quotation	marks	within	a	markup	extension	are	always	prohibited.	

Suppose	you	want	to	share	a	Margin	setting.	The	Margin	is	of	type	Thickness,	and	in	XAML	

you	can	specify	it	with	1,	2,	or	4	numbers.	Here’s	a	Thickness	resource:	

156	

	

	 	 	 	 	

	 	

	 	 	 	 	

	 	

	 	 	 	

	 	 	

	 	

	 	 	 	

	 	 	 	 	 	

	 	 	

	

	

	

	 	 	 	

	 	 	

<Thickness x:Key="margin">

 12 96

</Thickness>

Suppose	you	want	to	share	a	FontSize	property.	That’s	of	type	double,	and	you’re	going	to	

need	a	little	help.	The	Double	structure,	which	is	the	basis	for	the	double	C#	data	type,	is	

defined	in	the	System namespace,	but	the	XML	namespace	declarations	in	a	typical	XAML	file	

only	refer	to	Silverlight	classes	in	Silverlight	namespaces.	What’s	needed	is	an	XML	namespace	

declaration	for	the	System namespace	in	the	root	element	of	the	page,	and	here	it	is:	

xmlns:system="clr-namespace:System;assembly=mscorlib"

This	is	the	standard	syntax	for	associating	an	XML	namespace	with	a	.NET	namespace.	First,	

make	up	an	XML	namespace	name	that	reminds	you	of	the	.NET	namespace.	The	word	

“system”	is	good	for	this	one;	some	programmers	use	“sys”	or	just	“s.”	The	hyphenated	“clr

namespace”	is	followed	by	a	colon	and	the	.NET	namespace	name.	If	you’re	interested	in	

referencing	objects	that	are	in	the	current	assembly,	you’re	done.	Otherwise	you	need	a	

semicolon	followed	by	“assembly=”	and	the	assembly,	in	this	case	the	standard	mscorlib.lib	

(“Microsoft	Common	Runtime	Library”).	

Now	you	can	have	a	resource	of	type	double:	

<system:Double x:Key="fontsize">

 48

</system:Double>

The	ResourceSharing	project	defines	all	three	of	these	resources	and	references	them	in	two	

TextBlock elements.	Here’s	the	complete	resource	section:	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.Resources>

<LinearGradientBrush x:Key="brush">

<GradientStop Offset="0" Color="Pink" />

<GradientStop Offset="1" Color="SkyBlue" />

</LinearGradientBrush>

<Thickness x:Key="margin">

12 96

</Thickness>

<system:Double x:Key="fontsize">

48

</system:Double>

</phone:PhoneApplicationPage.Resources>

The	content	grid	contains	the	two	TextBlock	elements:	

157	

	

	

	

	 	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	 	 	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<TextBlock Text="Whadayasay?"

 Foreground="{StaticResource brush}"

 Margin="{StaticResource margin}"

 FontSize="{StaticResource fontsize}"

 HorizontalAlignment="Left"

 VerticalAlignment="Top" />

<TextBlock Text="Fuhgedaboudit!"

 Foreground="{StaticResource brush}"

 Margin="{StaticResource margin}"

 FontSize="{StaticResource fontsize}"

 HorizontalAlignment="Right"

 VerticalAlignment="Bottom" />

</Grid>

The	screen	shot	demonstrates	that	it	works:	

The	Resources property	is	a	dictionary,	so	within	any	resource	section	the	key	names	must	be	

unique.	However,	you	can	reuse	key	names	in	different	resource	collections.	For	example,	try	

inserting	the	following	markup	right	after	the	start	tag	of	the	content	grid:	

<Grid.Resources>

<Thickness x:Key="margin">96</Thickness>

</Grid.Resources>

This	resource	will	override	the	one	defined	on	MainPage.	Resources	are	searched	going	up	

the	visual	tree	for	a	matching	key	name,	and	then	the	Resources	collection	in	the	App	class	is	

searched.	For	this	reason,	the	Resources collection	in	App.xaml	is	an	excellent	place	to	put	

resources	that	are	used	throughout	the	application.	

158	

	

	 	 	 	

	 	 	

	 	

	 	 		

	 	

	

	 	 	 	 	 	

	 	

	 	

	 	

	 	

	

	 	 	 	

	

	 	 	 	 	

	 	 	 	

	 	

	

	 	

	

	 	

	 	 	

If	you	put	that	little	piece	of	markup	in	the	Grid	named	“LayoutRoot”	it	will	also	be	accessible	

to	the	TextBlock	elements	because	this	Grid	is	an	ancestor.	But	if	you	put	the	markup	in	the	

StackPanel	entitled	“TitlePanel,”	(and	changing	Grid	to	StackPanel	in	the	process)	it	will	be	

ignored.	Resources	are	searched	going	up	the	visual	tree,	and	that’s	another	branch.	

This	little	piece	of	markup	will	also	be	ignored	if	you	put	it	in	the	content	grid	but	after	the	

two	TextBlock elements.	Now	it’s	not	accessible	because	it’s	lexicographically	after	the	

reference.	

x:Key
and
x:Name
If	you	need	to	reference	a	XAML	resource	from	code,	you	can	simply	index	the	Resources

property	with	the	resource	name.	For	example,	in	the	MainPage.xaml.cs	codebehind	file,	this	

code	will	retrieve	the	resource	named	“brush”	stored	in	the	Resources	collection	of	MainPage:	

this.Resources["brush"]

You	would	then	probably	cast	that	object	to	an	appropriate	type,	in	this	case	either	Brush	or	

LinearGradientBrush.	Because	the	Resources	collection	isn’t	built	until	the	XAML	is	processed,	

you	can’t	access	the	resource	before	the	InitializeComponent call	in	the	constructor	of	the	

codebehind	file.	

If	you	have	resources	defined	in	other	Resource collections	in	the	same	XAML	file,	you	can	

retrieve	those	as	well.	For	example,	if	you’ve	defined	a	resource	named	“margin”	in	the	

Resources	collection	of	the	content	grid,	you	can	access	that	resource	using:	

ContentPanel.Resources["margin"]

If	no	resource	with	that	name	is	found	in	the	Resources	collection	of	an	element,	then	the	

Resources collection	of	the	App	class	is	searched.	If	the	resource	is	not	found	there,	then	the	

indexer	returns	null.	

Due	to	a	legacy	issue	involving	Silverlight	1.0,	you	can	use	x:Name	rather	than	using	x:Key	to	

identify	a	resource:	

<phone:PhoneApplicationPage.Resources>

<LinearGradientBrush x:Name="brush">

 …

</phone:PhoneApplicationPage.Resources>

There	is	one	big	advantage	to	this:	The	name	is	stored	as	a	field	in	the	generated	code	file	so	

you	can	reference	the	resource	in	the	codebehind	file	just	like	any	other	field:	

txtblk.Foreground = brush;

This	is	a	much	better	syntax	for	sharing	resources	between	XAML	and	code.	However,	if	you	

use	x:Name	for	a	resource,	that	name	must	be	unique	in	the	XAML	file.	

159	

	

	 	 	 	

	 	

	 	 	

	

	 	 	

	

	

	 	 	 	

	 	 	 	 	 	

	

An
Introduction
to
Styles

One	very	common	item	in	a	Resources collection	is	a	Style,	which	is	basically	a	collection	of	

property	assignments	for	a	particular	element	type.	Besides	a	key,	the	Style	also	requires	a	

TargetType:	

<Style x:Key="txtblkStyle"

TargetType="TextBlock">

…

</Style>

Between	the	start	and	end	tags	go	one	or	more	Setter	definitions.	Setter	has	two	properties:	

One	is	actually	called	Property	and	you	set	it	to	a	property	name.	The	other	is	Value.	A	few	

examples:	

<Style x:Key="txtblkStyle"

TargetType="TextBlock">

<Setter Property="HorizontalAlignment" Value="Center" />

<Setter Property="VerticalAlignment" Value="Center" />

<Setter Property="Margin" Value="12 96" />

<Setter Property="FontSize" Value="48" />

</Style>

Suppose	you	also	want	to	include	a	Setter	for	the	Foreground	property	but	it’s	a	

LinearGradientBrush.	There	are	two	ways	to	do	it.	If	you	have	a	previously	defined	resource	

with	a	key	of	“brush”	(as	in	the	ResourceSharing	project)	you	can	reference	that:	

<Setter Property="Foreground" Value="{StaticResource brush}" />

Or,	you	can	use	propertyelement	syntax	with	the	Value	property	to	embed	the	brush	right	in	

the	Style	definition.	That’s	how	it’s	done	in	the	Resources	collection	of	the	StyleSharing	

project:	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.Resources>

<Style x:Key="txtblkStyle"

 TargetType="TextBlock">

<Setter Property="HorizontalAlignment" Value="Center" />

<Setter Property="VerticalAlignment" Value="Center" />

<Setter Property="Margin" Value="12 96" />

<Setter Property="FontSize" Value="48" />

<Setter Property="Foreground">

<Setter.Value>

<LinearGradientBrush>

<GradientStop Offset="0" Color="Pink" />

<GradientStop Offset="1" Color="SkyBlue" />

</LinearGradientBrush>

</Setter.Value>

</Setter>

160	

	

	 	 	

	 	 	 	

	

	

	 	 	

	 	

	 	 	 	

	 	

	

	 	 	

	

	 	

	 	

	

</Style>

</phone:PhoneApplicationPage.Resources>

To	apply	this	style	to	an	element	of	type	TextBlock,	set	the	Style	property	(which	is	defined	by	

FrameworkElement so	every	kind	of	element	has	it):	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<TextBlock Text="Whadayasay?"

 Style="{StaticResource txtblkStyle}"

 HorizontalAlignment="Left"

 VerticalAlignment="Top" />

<TextBlock Text="Fuhgedaboudit!"

 Style="{StaticResource txtblkStyle}"

 HorizontalAlignment="Right"

 VerticalAlignment="Bottom" />

</Grid>

The	display	looks	the	same	as	the	previous	program,	which	teaches	an	important	lesson.	

Notice	that	values	of	HorizontalAlignment	and	VerticalAlignment	are	defined	in	the	Style,	yet	

these	are	overridden	by	local	settings	in	the	two	TextBlock	elements.	But	the	Foreground	set	in	

the	Style	overrides	the	value	normally	inherited	through	the	visual	tree.	

That	means	that	the	little	chart	I	started	earlier	in	this	chapter	can	now	be	enhanced	slightly.	

Local
Settings	have	precedence	over	

 Style
Settings,	which	have	precedence	over	

Property
Inheritance,	which	has	precedence	over	

Default
Values

Style
Inheritance

Styles	can	enhance	or	modify	other	styles	through	the	process	of	inheritance.	Set	the	Style

property	BasedOn	to	a	previously	defined	Style.	Here’s	the	Resources	collection	of	the	

StyleInheritance	project:	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.Resources>

<Style x:Key="txtblkStyle"

 TargetType="TextBlock">

161	

	

	 	

	 	

	

	

<Setter Property="HorizontalAlignment" Value="Center" />

<Setter Property="VerticalAlignment" Value="Center" />

<Setter Property="Margin" Value="12 96" />

<Setter Property="FontSize" Value="48" />

<Setter Property="Foreground">

<Setter.Value>

<LinearGradientBrush>

<GradientStop Offset="0" Color="Pink" />

<GradientStop Offset="1" Color="SkyBlue" />

</LinearGradientBrush>

</Setter.Value>

</Setter>

</Style>

<Style x:Key="upperLeftStyle"

 TargetType="TextBlock"

 BasedOn="{StaticResource txtblkStyle}">

<Setter Property="HorizontalAlignment" Value="Left" />

<Setter Property="VerticalAlignment" Value="Top" />

</Style>

<Style x:Key="lowerRightStyle"

 TargetType="TextBlock"

 BasedOn="{StaticResource txtblkStyle}">

<Setter Property="HorizontalAlignment" Value="Right" />

<Setter Property="VerticalAlignment" Value="Bottom" />

</Style>

</phone:PhoneApplicationPage.Resources>

The	two	new	Style definitions	at	the	end	override	the	HorizontalAlignment	and	

VerticalAlignment	properties	set	in	the	earlier	style.	This	allows	the	two	TextBlock	elements	to	

reference	these	two	different	styles:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<TextBlock Text="Whadayasay?"

 Style="{StaticResource upperLeftStyle}" />

<TextBlock Text="Fuhgedaboudit!"

 Style="{StaticResource lowerRightStyle}" />

</Grid>

Implicit	styles,	which	were	introduced	into	Silverlight	4,	are	not	supported	in	Silverlight	for	

Windows	Phone.	

162	

	

	 	

	 	 	 	 	

	 	 	 	

	

	 	 	 	 	

	 	 	 	 	 	

	 	

	 	 	 	

	

	

	 	 	 	

	 	

	

	 	 	

	

	 	 	

	 	 	

	 	 	 	 	 	

	 	 	 	

Themes

Windows	Phone	7	predefines	many	resources	that	you	can	use	throughout	your	application	

with	the	StaticResource markup	extension.	There	are	predefined	colors,	brushes,	font	names,	

font	sizes,	margins,	and	text	styles.	Some	of	them	show	up	in	the	root	element	of	

MainPage.xaml	to	supply	the	defaults	for	the	whole	page:	

FontFamily="{StaticResource PhoneFontFamilyNormal}"

FontSize="{StaticResource PhoneFontSizeNormal}"

Foreground="{StaticResource PhoneForegroundBrush}"

You	can	find	all	these	predefined	themes	in	the	Themes	section	of	the	Windows	Phone	7	

documentation.	You	should	try	to	use	these	resources	particularly	for	foreground	and	

background	brushes	so	you	comply	with	the	user’s	wishes,	and	you	don’t	inadvertently	cause	

your	text	to	become	invisible.	Some	of	the	predefined	font	sizes	may	be	different	when	the	

smallscreen	phone	is	released,	and	these	differences	might	help	you	port	your	largescreen	

programs	to	the	new	device.	

What	happens	if	the	user	navigates	to	the	Settings	page	of	the	phone	and	sets	a	different	

theme	while	your	program	is	running?	Well,	the	only	way	this	can	happen	is	if	your	program	

is	tombstoned	at	the	time,	and	when	your	program	is	reactivated,	it	starts	up	from	scratch	

and	hence	references	the	new	colors	automatically.	

The	color	theme	that	the	user	selects	includes	a	foreground	and	background	(either	white	on	

a	black	background	or	black	on	a	white	background)	but	also	an	accent	color:	magenta,	

purple,	teal,	lime,	brown,	pink,	orange,	blue	(the	default),	red,	or	green.	This	color	is	available	

as	the	PhoneAccentColor	resource,	and	a	brush	based	on	this	color	is	available	as	

PhoneAccentBrush.	

Gradient
Accents

You	might	want	to	use	the	user’s	preferred	accent	color	in	your	program,	but	as	a	gradient	

brush.	In	other	words,	you	want	the	same	hue,	but	you	want	to	get	darker	or	lighter	versions.	

In	code,	this	is	fairly	easy	by	manipulating	the	red,	green,	and	blue	components	of	the	color.	

It’s	also	fairly	easy	in	XAML,	as	the	GradientAccent	project	demonstrates:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Grid.Background>

<LinearGradientBrush StartPoint="0 0" EndPoint="0 1">

<GradientStop Offset="0" Color="White" />

<GradientStop Offset="0.5" Color="{StaticResource PhoneAccentColor}" />

<GradientStop Offset="1" Color="Black" />

</LinearGradientBrush>

163	

	

	

	

	 	

	

	 	 	 	 	

	 	 	

	

	

	 	 	 	

	

</Grid.Background>

</Grid>

Here	it	is:	

You	can	get	a	more	subtle	affect	by	changing	the	gradient	offsets.	These	can	actually	be	set	

outside	the	range	of	0	to	1,	perhaps	like	this:	

<LinearGradientBrush StartPoint="0 0" EndPoint="1 0">

<GradientStop Offset="-1" Color="White" />

<GradientStop Offset="0.5" Color="{StaticResource PhoneAccentColor}" />

<GradientStop Offset="2" Color="Black" />

</LinearGradientBrush>

Now	the	gradient	goes	from	White	at	an	offset	of	–1	to	the	accent	color	at	0.5	to	Black	at	2.	

But	you’re	only	seeing	the	section	of	the	gradient	between	0	and	1,	so	the	White	and	Black	

extremes	are	not	here:	

It’s	just	another	little	suggestion	that	XAML	can	be	more	powerful	than	it	might	at	first	seem.	

164	

	

	

	

	

	 	

	

	 	 	

	 	

	 	

	 	

	

Chapter	8	

Elements and Properties
You’ve	already	seen	several	examples	of	TextBlock	and	Image,	which	are	surely	two	of	the	

most	important	elements	supported	by	Silverlight.	This	chapter	explores	text	and	bitmaps	in	

more	depth,	and	also	describes	other	common	elements	and	some	important	properties	you	

can	apply	to	all	these	elements,	including	transforms.	This	lays	the	groundwork	for	the	subject	

of	Panel	elements	that	provide	the	basis	of	Silverlight’s	dynamic	layout	system	(in	the	next	

chapter)	and	then	the	huge	subject	of	controls	(Chapter	10).	

Basic
Shapes

The	System.Windows.Shapes namespace	includes	elements	for	displaying	vector	graphics—the	

use	of	straight	lines	and	curves	for	drawing	and	defining	filled	areas.	Although	the	subject	of	

vector	graphics	awaits	us	in	Chapter	13,	two	of	the	classes	in	this	namespace—Ellipse	and	

Rectangle—are	a	little	different	from	the	others	in	that	you	can	use	them	without	specifying	

any	coordinate	points.	

Go	back	to	the	XamlExperiment	program	from	the	Chapter	7	and	insert	this	Ellipse	element	

into	the	content	grid:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Ellipse Fill="Blue"

 Stroke="Red"

 StrokeThickness="50" />

</Grid>

165	

	

	 	

	

	 	

	 	

	 	 	 	 	

	

	 	 	 	 	 	

	

	 		

	 	 	 	

	 	 	

	 	

	

You’ll	see	a	blue	ellipse	with	a	red	outline	fill	the	Grid:	

Now	try	setting	HorizontalAlignment	and	VerticalAlignment	to	Center.	The	Ellipse	disappears.	

What	happened?	

This	Ellipse	has	no	intrinsic	minimum	size.	When	allowed	to,	it	will	assume	the	size	of	its	

container,	but	if	it’s	forced	to	become	small,	it	will	become	as	small	as	possible,	which	is	

nothing	at	all.	This	is	one	case	where	explicitly	setting	Width	and	Height	properties	of	an	

element	is	appropriate	and	often	necessary.	

The	terms	stroke	and	fill are	common	in	vector	graphics.	The	basis	of	vector	graphics	is	the	

use	of	coordinate	points	to	define	straight	lines	and	curves.	These	are	mathematical	entities	

that	only	become	visible	by	being	stroked with	a	particular	color	and	line	thickness.	The	lines	

and	curves	might	also	defined	enclosed	areas,	in	which	case	this	area	can	be	filled.	Both	the	

Fill	property	and	the	Stroke	property	of	Ellipse	are	of	type	Brush,	so	you	can	set	either	or	both	

to	gradient	brushes.	

It	is	very	common	to	set	the	Width	property	of	an	Ellipse	to	the	Height	to	create	a	circle.	The	

Fill	can	then	be	set	to	a	RadialGradientBrush	that	starts	at	White	in	the	center	and	then	goes	

to	a	gradient	color	at	the	perimeter.	Normally	the	gradient	center	is	the	point	(0.5,	0.5)	

relative	to	the	ball’s	dimension,	but	you	can	offset	that	like	so:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Ellipse Width="300"

 Height="300">

166	

	

	 	

	

	 	 	

	

	

	

	 	

	 	

	 	 	 	

	 	 	 	 	

	 	 	 	

	 	

	

	

	 	

<Ellipse.Fill>

<RadialGradientBrush Center="0.4 0.4"

 GradientOrigin="0.4 0.4">

<GradientStop Offset="0" Color="White" />

<GradientStop Offset="1" Color="Red" />

</RadialGradientBrush>

</Ellipse.Fill>

</Ellipse>

</Grid>

The	offset	white	spot	looks	like	reflection	from	a	light	source,	suggesting	a	three	dimensional	

shape:	

The	Rectangle	has	the	same	properties	as	Ellipse	except	that	Rectangle	also	defines	RadiusX

and	RadiusY	properties	for	rounding	the	corners.		

Transforms

Until	the	advent	of	the	Windows	Presentation	Foundation	and	Silverlight,	transforms	were	

mostly	the	tools	of	the	graphics	mavens.	Mathematically	speaking,	transforms	apply	a	simple	

formula	to	all	the	coordinates	of	a	visual	object	and	cause	that	object	to	be	shifted	to	a	

different	location,	or	change	size,	or	be	rotated.	

In	Silverlight,	you	can	apply	transforms	to	any	object	that	descends	from	UIElement,	and	that	

includes	text,	bitmaps,	movies,	panels,	and	all	controls.	The	property	defined	by	UIElement

that	makes	transforms	possible	is	RenderTransform,	which	you	set	to	an	object	of	type	

Transform.	Transform	is	an	abstract	class,	but	it	is	the	parent	class	to	seven	nonabstract	

classes:	

• TranslateTransform	to	shift	location	

• ScaleTransform	to	increase	or	decrease	size	

• RotateTransform	to	rotate	around	a	point	

• SkewTransform	to	shift	in	one	dimension	based	on	another	dimension	

167	

	

	

	

	 	

	 	 	 	

	 	 	 	 	 	 	

	

	 	 	

	 	 	 	

	 	 	

	

	 	 	

	 	 	 	

	 	

	

	 	 	 	

	 	

	

• MatrixTransform	to	express	transforms	with	a	standard	matrix	

• TransformGroup	to	combine	multiple	transforms	

• CompositeTransform	to	specify	a	series	of	transforms	in	a	fixed	order	

The	whole	subject	of	transforms	can	be	quite	complex,	particularly	when	transforms	are	

combined,	so	I’m	really	only	going	to	show	the	basics	here.	Very	often,	transforms	are	used	in	

combination	with	animations.	Animating	a	transform	is	the	most	efficient	way	that	an	

animation	can	be	applied	to	a	visual	object.	

Suppose	you	have	a	TextBlock	and	you	want	to	make	it	twice	as	big.	That’s	easy:	Just	double	

the	FontSize.	Now	suppose	you	want	to	make	the	text	twice	as	wide	but	three	times	taller.	The	

FontSize won’t	help	you	there.	You	need	to	break	out	the	RenderTransform	property	as	a	

property	element	and	set	a	ScaleTransform	to	it:	

<TextBlock … >

<TextBlock.RenderTransform>

<ScaleTransform ScaleX="2" ScaleY="3" />

</TextBlock.RenderTransform>

</TextBlock>

Most	commonly,	you’ll	set	the	RenderTransform	property	of	an	object	of	type	

TranslateTransform,	ScaleTransform,	or	RotateTransform.	If	you	know	what	you’re	doing,	you	

can	combine	multiple	transforms	in	a	TransformGroup.	In	two	dimensions,	transforms	are	

expressed	as	3×3	matrices,	and	combining	transforms	is	equivalent	to	matrix	multiplication.	It	

is	well	known	that	matrix	multiplication	is	not	commutative,	so	the	order	that	transforms	are	

multiplied	makes	a	difference	in	the	overall	effect.	

Although	TransformGroup	is	normally	an	advanced	option,	I	have	nevertheless	used	

TransformGroup	in	a	little	project	named	TransformExperiment	that	allows	you	to	play	with	

the	four	standard	of	transforms.	It	begins	with	all	the	properties	set	to	their	default	values;	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<TextBlock Text="Transform Experiment"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

<TextBlock.RenderTransform>

<TransformGroup>

<ScaleTransform ScaleX="1" ScaleY="1"

 CenterX="0" CenterY="0" />

<SkewTransform AngleX="0" AngleY="0"

 CenterX="0" CenterY="0" />

<RotateTransform Angle="0"

 CenterX="0" CenterY="0" />

<TranslateTransform X="0" Y="0" />

</TransformGroup>

168	

	

	 	 	

	 	

	 	 	 	 	

	 	

	 	

	

	

	

	 	 	

	

	

	 	 	

	 	 	 	 	

</TextBlock.RenderTransform>

</TextBlock>

</Grid>

You	can	experiment	with	this	program	right	in	Visual	Studio.	At	first	you’ll	want	to	try	out	

each	type	of	transform	independently	of	the	others.	Although	it’s	at	the	bottom	of	the	group,	

try	TranslateTransform	first.	By	setting	the	X	property	you	can	shift	the	text	right	or	(with	

negative	values)	to	the	left.	The	Y property	makes	the	text	go	down	or	up.	Set	Y	equal	to	–400	

or	so	and	the	text	goes	up	into	the	title	area!	

TranslateTransform	is	useful	for	making	drop	shadows.	and	effects	where	the	text	seems	

embossed	or	engraved.	Simply	put	two	TextBlock	elements	in	the	same	location	with	the	same	

text,	and	all	the	same	text	properties,	but	different	Foreground	properties.	Without	any	

transforms,	the	second	TextBlock	sits	on	top	of	the	first	TextBlock.	On	one	or	the	other,	apply	a	

small	ScaleTransform	and	the	result	is	magic.	The	EmbossedText	project	demonstrates	this	

technique.	Here	are	two	TextBlock	elements	in	the	same	Grid:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<TextBlock Text="EMBOSS"

 Foreground="{StaticResource PhoneForegroundBrush}"

 FontSize="96"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

<TextBlock Text="EMBOSS"

 Foreground="{StaticResource PhoneBackgroundBrush}"

 FontSize="96"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

<TextBlock.RenderTransform>

<TranslateTransform X="2" Y="2" />

</TextBlock.RenderTransform>

</TextBlock>

</Grid>

Notice	I’ve	used	theme	colors	for	the	two	Foreground	properties.	With	the	default	dark	theme,	

the	TextBlock	underneath	is	white,	and	the	one	on	top	is	black	like	the	background	but	shifted	

a	little	to	let	the	white	one	peak	through	a	bit:	

169	

	

	

	 	 	

	 	

	 	

	 	

	

	

	

	 	 	 	

	

	

	

	 	 	

	 	 	

	

	

	

	 	 	 	

	 	 	

	

	 	 	

	 	 	 	

	 	 	 	

Generally	this	technique	is	applied	to	black	text	on	a	white	background,	but	it	looks	pretty	

good	with	this	color	scheme	as	well.	

Back	in	the	TransformExperiment	project,	set	the	TranslateTransform	properties	back	to	the	

default	values	of	0,	and	experiment	a	bit	with	the	ScaleX	and	ScaleY	properties	of	the	

ScaleTransform.	The	default	values	are	both	1.	Larger	values	make	the	text	larger	in	the	

horizontal	and	vertical	directions;	values	smaller	than	1	shrink	the	text.	You	can	even	use	

negative	values	to	flip	the	text	around	its	horizontal	or	vertical	axes.	

All	scaling	is	relative	to	the	upperleft	corner	of	the	text.	In	other	words,	as	the	text	gets	larger	

or	smaller,	the	upperleft	corner	of	the	text	remains	in	place.	This	might	be	a	little	hard	to	see	

because	the	upperleft	corner	that	remains	in	place	is	actually	a	little	above	the	horizontal	

stroke	of	the	first	‘T’	in	the	text	string,	in	the	area	reserved	for	diacritics	such	as	accent	marks	

and	heavymetal	umlauts.	

Suppose	you	want	to	scale	the	text	relative	to	another	point,	perhaps	the	textt’s	center.	That’s	

the	purpose	of	the	CenterX	and	CenterY	properties	of	the	ScaleTransform.	For	scaling	around	

the	center	of	the	text,	you	can	estimate	the	size	of	the	text	(or	obtain	it	in	code	using	the	

ActualWidth	and	ActualHeight	properties	of	the	TextBlock),	divide	the	values	by	2	and	set	

CenterX	and	CenterY	to	the	results.	For	the	text	string	in	TransformExperiment,	try	96	and	13,	

respectively.	Now	the	scaling	is	relative	to	the	center.	

But	there’s	a	much	easier	way:	TextBlock itself	has	a	RenderTansformOrigin	property	that	it	

inherits	from	UIElement.	This	property	is	a	point	in	relative coordinates where	(0,	0)	is	the	

upperleft	corner,	(1,	1)	is	the	lowerright	corner,	and	(0.5,	0.5)	is	the	center.	Set	CenterX	and	

CenterY	in	the	ScaleTransform	back	to	0,	and	set	RenderTransformOrigin	in	the	TextBlock	like	

so:	

RenderTransformOrigin="0.5 0.5"

Leave	RenderTransformOrigin	at	this	value	when	you	set	the	ScaleX	and	ScaleY	properties	of	

ScaleTransform back	to	the	default	values	of	1,	and	play	around	with	RotateTransform.	As	with	

scaling,	rotation	is	always	relative	to	a	point.	You	can	use	CenterX	and	CenterY	to	set	that	

point	in	absolute	coordinates	relative	to	the	object	being	rotated,	or	you	can	use	

170	

	

	 	 	 	 	

	 	

	

	

	 	 	

	

	 	 	 	 	

	 	 	

	 	 	

	

	

	

	 	 	 	

	 	

	

	

RenderTransformOrigin	to	use	relative	coordinates.	The	Angle property	is	in	degrees,	and	

positive	angles	rotate	clockwise.	Here’s	rotation	of	45	degrees	around	the	center.	

The	SkewTransform	is	hard	to	describe	but	easy	to	demonstrate.	Here’s	the	result	when	

AngleX is	set	to	30	degrees:	

The	X coordinates	are	shifted	to	the	right	based	on	values	of	Y	so	as	Y becomes	larger	(at	the	

bottom	of	the	text)	values	of	X	also	increase.	Use	a	negative	angle	to	simulate	oblique	(italic

like)	text.	Setting	AngleY causes	vertical	shifting	based	on	increasing	X	coordinates.	Here’s	

AngleY	set	to	30	degrees:	

All	the	transforms	that	derive	from	Transform	are	categorized	as	affine	(“noninfinite”)	

transforms.	A	rectangle	will	never	be	transformed	into	anything	other	than	a	parallelogram.	

It’s	easy	to	convince	yourself	that	the	order	of	the	transforms	makes	a	difference.	For	example,	

in	TransformExperiment	on	the	ScaleTransform	set	ScaleX	and	ScaleY	to	4,	and	on	the	

TranslateTransform	set	X	and	Y	to	100.	The	text	is	being	scaled	by	a	factor	of	4	and	then	

translated	100	pixels.	Now	cut	and	paste	the	markup	to	move	the	TranslateTransform	above	

171	

	

	 	

	

	

	 	 	

	 	 	

	 	 	 	 	

	 	 	 	

	 	 	 	

	

	

	 	 	 	

	 	 	

	

the	ScaleTransform.	Now	the	text	is	first	translated	by	100	pixels	and	then	scaled,	but	the	

scaling	applies	to	the	original	translation	factors	as	well,	so	the	text	is	effectively	translated	by	

400	pixels.	

It	is	sometimes	tempting	to	put	a	Transform	in	a	Style,	like	so:	

<Setter Property="RenderTransform">

<Setter.Value>

<TranslateTransform />

</Setter.Value>

</Setter>

You	can	then	manipulate	that	transform	from	code,	perhaps.	But	watch	out:	resources	are	

shared.	There	will	be	only	one	instance	of	the	TranslateTransform	that	is	shared	among	all	

elements	that	use	the	Style.	Hence,	changing	the	transform	for	one	element	will	also	affect	

the	others!	If	that’s	what	you	want,	sharing	the	transform	through	the	Style	is	ideal.	

If	you	have	a	need	to	combine	transforms	in	the	original	order	that	I	had	them	in	

TransformExperiment—the	order	scale,	skew,	rotate,	translate—you	can	use	

CompositeTransform	to	set	them	all	in	one	convenient	class.	

Let’s	make	a	clock.	It	won’t	be	a	digital	clock,	but	it	won’t	be	entirely	an	analog	clock	either.	

That’s	why	I	call	it	HybridClock.	The	hour,	minute,	and	second	hands	are	actually	TextBlock

objects	that	are	rotated	around	the	center	of	the	content	grid.	Here’s	the	XAML:	

Silverlight Project: File: (excerpt)

<Grid Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0"

SizeChanged="OnContentPanelSizeChanged">

<TextBlock Name="referenceText"

 Text="THE SECONDS ARE 99"

 Foreground="Transparent" />

<TextBlock Name="hourHand">

<TextBlock.RenderTransform>

<CompositeTransform />

</TextBlock.RenderTransform>

</TextBlock>

<TextBlock Name="minuteHand">

<TextBlock.RenderTransform>

<CompositeTransform />

</TextBlock.RenderTransform>

</TextBlock>

<TextBlock Name="secondHand">

<TextBlock.RenderTransform>

<CompositeTransform />

</TextBlock.RenderTransform>

172	

	

	 	 	

	 	

	 	

	 	

	 	 	 	

	 	 	

	 	

</TextBlock>

</Grid>

Notice	the	SizeChanged	handler	on	the	Grid.	The	codebehind	file	will	use	this	to	make	

calculation	adjustments	based	on	the	size	of	the	Grid,	which	will	depend	on	the	orientation.	

Of	the	four	TextBlock	elements	in	the	same	Grid,	the	first	is	transparent	and	used	solely	by	the	

code	part	of	the	program	for	measurement.	The	other	three	TextBlock elements	are	colored	

through	property	inheritance,	and	have	default	CompositeTransform	objects	attached	to	their	

RenderTransform	properties.	The	codebehind	file	defines	a	few	fields	that	will	be	used	

throughout	the	program,	and	the	constructor	sets	up	a	DispatcherTimer,	for	which	you’ll	need	

a	using	directive	for	System.Windows.Threading:	

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage

{

Point gridCenter;

Size textSize;

 double scale;

 public MainPage()

 {

InitializeComponent();

DispatcherTimer tmr = new DispatcherTimer();

tmr.Interval = TimeSpan.FromSeconds(1);

tmr.Tick += OnTimerTick;

tmr.Start();

 }

 void OnContentPanelSizeChanged(object sender, SizeChangedEventArgs args)

 {

gridCenter = new Point(args.NewSize.Width / 2,

 args.NewSize.Height / 2);

textSize = new Size(referenceText.ActualWidth,

referenceText.ActualHeight);

scale = Math.Min(gridCenter.X, gridCenter.Y) / textSize.Width;

UpdateClock();

 }

 void OnTimerTick(object sender, EventArgs e)

{

UpdateClock();

 }

 void UpdateClock()

 {

173	

	

	 	

	 	 	 	 	

	

	

	 	

	

	

	 	 	 	

	 	 	

	 	 	

	 	 	

	

	 	

	 	 	 	 	 	

	 	 	

	 	

	 	

	 	 	 	 	

DateTime dt = DateTime.Now;

double angle = 6 * dt.Second;

SetupHand(secondHand, "THE SECONDS ARE " + dt.Second, angle);

angle = 6 * dt.Minute + angle / 60;

SetupHand(minuteHand, "THE MINUTE IS " + dt.Minute, angle);

angle = 30 * (dt.Hour % 12) + angle / 12;

SetupHand(hourHand, "THE HOUR IS " + (((dt.Hour + 11) % 12) + 1), angle);

 }

 void SetupHand(TextBlock txtblk, string text, double angle)

 {

txtblk.Text = text;

CompositeTransform xform = txtblk.RenderTransform as CompositeTransform;

xform.CenterX = textSize.Height / 2;

xform.CenterY = textSize.Height / 2;

xform.ScaleX = scale;

xform.ScaleY = scale;

xform.Rotation = angle - 90;

xform.TranslateX = gridCenter.X - textSize.Height / 2;

xform.TranslateY = gridCenter.Y - textSize.Height / 2;

 }

}

HybridClock	uses	the	SizeChanged	handler	to	determine	the	center	of	the	ContentPanel,	and	

the	size	of	the	TextBlock	named	referenceText.	(The	latter	item	won’t	change	for	the	duration	

of	the	program.)	From	these	two	items	the	program	can	calculate	a	scaling	factor	that	will	

expand	the	referenceText	so	it	is	exactly	as	wide	as	half	the	smallest	dimension	of	the	Grid,	

and	the	other	TextBlock	elements	proportionally.	

The	timer	callback	obtains	the	current	time	and	calculates	the	angles	for	the	second,	minute,	

and	hour	hands	relative	to	their	highnoon	positions.	Each	hand	gets	a	call	to	SetupHand	to	

do	all	the	remaining	work.	

The	CompositeTransform	must	perform	several	chores.	The	translation	part	must	move	the	

TextBlock	elements	so	the	beginning	of	the	text	is	positioned	in	the	center	of	the	Grid.	But	I	

don’t	want	the	upperleft	corner	of	the	text	to	be	positioned	in	the	center.	I	want	a	point	that	

is	offset	by	that	corner	by	half	the	height	of	the	text.	That	explains	the	TranslateX	and	

TranslateY properties.	Recall	that	in	the	CompositeTransform	the	translation	is	applied	last;	

that’s	why	I	put	these	properties	at	the	bottom	of	the	method,	even	though	the	order	that	

these	properties	are	set	is	irrelevant.		

Both	ScaleX	and	ScaleY are	set	to	the	scaling	factor	calculated	earlier.	The	angle	parameter	

passed	to	the	method	is	relative	to	the	highnoon	position,	but	the	TextBlock	elements	are	

positioned	at	3:00.	That’s	why	the	Rotation	angle	offsets	the	angle	parameter	by	–90	degrees.	

Both	scaling	and	rotation	are	relative	to	CenterX	and	CenterY,	which	is	a	point	at	the	left	end	

of	the	text,	but	offset	from	the	upperleft	corner	by	half	the	text	height.	Here’s	the	clock	in	

action:	

174	

	

	

	 	 	

	 	 	 	

	

	 	 	 	 	 	

	 	 	 	

	 	 	 	 	 	 	 	

	 	

	 	

	 	 	

	 	

	 	 	

	 	

	 	

	

	 	 	 	 	 	

	

	 	

Windows	Phone	also	supports	the	Projection transform	introduced	in	Silverlight	3,	but	it’s	

almost	exclusively	used	in	connection	with	animations,	so	I’ll	hold	off	on	Projection	until	

Chapter	15.	

Animating
at
the
Speed
of
Video

The	use	of	the	DispatcherTimer	with	a	onesecond	interval	makes	sense	for	the	HybridClock	

program	because	the	positions	of	the	clock	hands	need	to	be	updated	only	once	per	second.	

But	switching	to	a	sweep	second	hand	immediately	raises	the	question:	How	often	should	the	

clock	hands	be	updated?	Considering	that	the	second	hand	only	needs	to	move	a	few	pixels	

per	second,	setting	the	timer	for	250	milliseconds	would	probably	be	fine,	and	100	

milliseconds	would	be	more	than	sufficient.	

It’s	helpful	to	keep	in	mind	that	the	video	display	of	Windows	Phone	7	devices	is	refreshed	

about	30	times	per	second,	or	once	every	331/3	milliseconds.	Therefore,	the	use	of	a	timer	

with	a	tick	rate	shorter	than	331/3	milliseconds	makes	no	sense	whatsoever	for	video	

animations.	

A	timer	that	is	synchronous	with	the	video	refresh	rate	is	ideal	for	animations,	and	Silverlight	

provides	one	in	the	very	easytouse	CompositionTarget.Rendering event.	The	event	handler	

looks	something	like	this:	

void OnCompositionTargetRendering(object sender, EventArgs args)

{

TimeSpan renderingTime = (args as RenderingEventArgs).RenderingTime;

 ...

}

Although	the	event	handler	must	be	defined	with	an	EventArgs	argument,	the	argument	is	

actually	a	RenderingEventArgs	object.	If	you	cast	the	argument	to	a	RenderingEventArgs,	you	

can	get	a	TimeSpan	object	that	indicates	the	elapsed	time	since	the	application	began	

running.	

175	

	

	 	

	

	 	 	 	 	 	

	 	 	

	 	 	 	 	

	

	 	 	

	

CompositionTarget	is	a	static	class	with	only	one	public	member,	which	is	the	Rendering	event.	

Install	the	event	handler	like	so:	

CompositionTarget.Rendering += OnCompositionTargetRendering;

Unless	you’re	coding	a	very	animationladen	game,	you	probably	don’t	want	this	event	

handler	installed	for	the	duration	of	your	program,	so	uninstall	it	when	you’re	done:	

CompositionTarget.Rendering -= OnCompositionTargetRendering;

The	RotatingText	project	contains	a	TextBlock in	the	center	of	its	content	grid:	

Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<TextBlock Text="ROTATE!"

 FontSize="96"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 RenderTransformOrigin="0.5 0.5">

<TextBlock.RenderTransform>

<RotateTransform x:Name="rotate" />

</TextBlock.RenderTransform>

</TextBlock>

</Grid>

Notice	the	x:Name	attribute	on	the	RotateTransform.	You	can’t	use	Name	here	because	that’s	

defined	by	FrameworkElement.	The	codebehind	file	starts	a	CompositionTarget.Rendering

event	going	in	its	constructor:	

Project: File: MainPage.xaml.cs (except)

public partial class MainPage : PhoneApplicationPage

{

TimeSpan startTime;

 public MainPage()

 {

InitializeComponent();

CompositionTarget.Rendering += OnCompositionTargetRendering;

 }

 void OnCompositionTargetRendering(object sender, EventArgs args)

{

TimeSpan renderingTime = (args as RenderingEventArgs).RenderingTime;

if (startTime.Ticks == 0)

{

 startTime = renderingTime;

}

176	

	

	 	

	

	

	 	 	 	

	 	 	

	 	 	

	 	

	 	 	 	

	 	

	 	

else

{

TimeSpan elapsedTime = renderingTime - startTime;

 rotate.Angle = 180 * elapsedTime.TotalSeconds % 360;

}

 }

}

The	event	handler	uses	the	renderingTime to	pace	the	animation	so	there’s	one	revolution	

every	two	seconds.	

For	simple	repetitive	animations	like	this,	the	use	of	Silverlight’s	builtin	animation	facility	

(which	I’ll	discuss	in	Chapter	15)	is	greatly	preferred	over	CompositionTarget.Rendering.	

Handling
Manipulation
Events

Transforms	are	also	a	good	way	to	handle	manipulation	events.	Here’s	a	ball	sitting	in	the	

middle	of	the	content	grid:	

Silverlight Project: File:

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Ellipse Width="200"

 Height="200"

 RenderTransformOrigin="0.5 0.5"

 ManipulationDelta="OnEllipseManipulationDelta">

<Ellipse.Fill>

<RadialGradientBrush Center="0.4 0.4"

 GradientOrigin="0.4 0.4">

<GradientStop Offset="0" Color="White" />

<GradientStop Offset="1" Color="{StaticResource PhoneAccentColor}"

/>

</RadialGradientBrush>

</Ellipse.Fill>

<Ellipse.RenderTransform>

<CompositeTransform />

</Ellipse.RenderTransform>

</Ellipse>

</Grid>

Notice	the	CompositeTransform.	It	has	no	name	so	the	code	will	have	to	reference	it	through	

the	Ellipse element.	(This	is	a	good	strategy	to	use	if	you’re	handling	more	than	one	element	

in	a	single	event	handler.)	

The	codebehind	file	just	handles	the	ManipulationDelta	event	from	the	Ellipse:	

177	

	

	 	 	 	

	 	

	 	

	 	

	 	 	 	

	

	 	

	 	

	

	 	 	 	 	

	 	 	 	

	 	 	

	

	 	 	

	

	 	 	 	

	 	 	 	

	 	 	 	 	 	 	

	 	

	

void OnEllipseManipulationDelta(object sender, ManipulationDeltaEventArgs args)

{

Ellipse ellipse = sender as Ellipse;

CompositeTransform xform = ellipse.RenderTransform as CompositeTransform;

if (args.DeltaManipulation.Scale.X > 0 || args.DeltaManipulation.Scale.Y > 0)

 {

double maxScale = Math.Max(args.DeltaManipulation.Scale.X,

 args.DeltaManipulation.Scale.Y);

xform.ScaleX *= maxScale;

xform.ScaleY *= maxScale;

 }

 xform.TranslateX += args.DeltaManipulation.Translation.X;

 xform.TranslateY += args.DeltaManipulation.Translation.Y;

 args.Handled = true;

}

For	handling	anything	other	than	taps,	the	ManipulationDelta	event	is	crucial.	This	is	the	event	

that	consolidates	one	or	more	fingers	on	an	element	into	translation	and	scaling	information.	

The	ManipulationDeltaEventArgs has	two	properties	named	CumulativeManipulation	and	

DeltaManipulation,	both	of	type	ManipulationDelta,	which	has	two	properties	named	

Translation	and	Scale.	

Using	DeltaManipulation is	often	easier	than	CumulativeManipulation.	If	only	one	finger	is	

manipulating	the	element,	then	only	the	Translation factors	are	valid,	and	these	can	just	be	

added	to	the	TranslateX	and	TranslateY	properties	of	the	CompositeTransform.	If	two	fingers	

are	touching	the	screen,	then	the	Scale	values	are	nonzero,	although	they	could	be	negative	

and	they’re	often	unequal.	To	keep	the	circle	a	circle,	I	use	the	maximum	and	multiply	by	the	

existing	scaling	factors	of	the	transform.	This	enables	“pinch”	and	“stretch”	manipulations.	

The	XAML	file	sets	the	transform	center	to	the	center	of	the	ellipse;	in	theory	it	should	be	

based	on	the	position	and	movement	of	the	two	fingers,	but	this	is	a	rather	more	difficult	

thing	to	determine.	

The
Border
Element

The	TextBlock	doesn’t	include	any	kind	of	border	that	you	can	draw	around	the	text.	

Fortunately	Silverlight	has	a	Border	element	that	you	can	use	to	enclose	a	TextBlock	or	any	

other	type	of	element.	The	Border has	a	property	named	Child	of	type	UIElement,	which	

means	you	can	only	put	one	element	in	a	Border;	however,	the	element	you	put	in	the	Border

can	be	a	panel,	and	you	can	then	add	multiple	elements	to	that	panel.	

If	you	load	the	XamlExperiment	program	from	the	last	chapter	into	Visual	Studio,	you	can	put	

a	TextBlock	in	a	Border	like	so:	

178	

	

	 	 	

	 	

	 	 	

	

	

	

	 	

	 	 	 	

	 	 	 	 	 	 	

	 	 	 	

	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Border Background="Navy"

 BorderBrush="Blue"

 BorderThickness="16"

 CornerRadius="25">

<Border.Child>

<TextBlock Text="Hello, Windows Phone 7!" />

</Border.Child>

</Border>

</Grid>

The	Child	property	is	the	ContentProperty	attribute	of	Border	so	the	Border.Child tags	are	not	

required.	Without	setting	any	HorizontalAlignment	and	VerticalAlignment	properties,	the	

Border	element	occupies	the	entire	area	of	the	Grid,	and	the	TextBlock	occupies	the	entire	

area	of	the	Border,	even	though	the	text	itself	sits	at	the	upperleft	corner.	You	can	center	the	

TextBlock	within	the	Border:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Border Background="Navy"

 BorderBrush="Blue"

 BorderThickness="16"

 CornerRadius="25">

<TextBlock Text="Hello, Windows Phone 7!"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Border>

</Grid>

Or,	you	can	center	the	Border	within	the	Grid:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Border Background="Navy"

 BorderBrush="Blue"

 BorderThickness="16"

 CornerRadius="25"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

<TextBlock Text="Hello, Windows Phone 7!" />

</Border>

</Grid>

At	this	point,	the	Border	contracts	in	size	to	become	only	large	enough	to	fit	the	TextBlock.	

You	can	also	set	the	HorizontalAlignment	and	VerticalAlignment properties	of	the	TextBlock

but	they	would	now	have	no	effect.	You	can	give	the	TextBlock	a	little	breathing	room	inside	

the	border	by	either	setting	the	Margin	or	Padding	property	of	the	TextBlock,	or	the	Padding

property	of	the	Border:	

179	

	

	

	 	 	 	

	

	 	 	 	 	

	

	 	 	 	

	

	 	 	

	

	

	 	

And	now	we	have	an	attractive	Border	surrounding	the	TextBlock.	The	BorderThickness

property	is	of	type	Thickness,	the	same	structure	used	for	Margin	or	Padding,	so	you	can	

potentially	have	four	different	thicknesses	for	the	four	sides.	The	CornerRadius	property	is	of	

type	CornerRadius,	a	structure	that	also	lets	you	specify	four	different	values	for	the	four	

corners.	The	Background	and	BorderBrush	properties	are	of	type	Brush,	so	you	can	use	

gradient	brushes.	

If	you	want	a	Border	with	a	“normal”	thickness,	you	can	use	one	of	the	predefined	resources:	

<Border BorderThickness="{StaticResource PhoneBorderThickness}"

This	is	3	pixels	in	width.	The	PhoneStrokeThickness	resource	also	provides	that	same	value.	

What	happens	if	you	set	a	RenderTransform	on	the	TextBlock?	Try	this:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Border Background="Navy"

 BorderBrush="Blue"

 BorderThickness="16"

 CornerRadius="25"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 Padding="20">

<TextBlock Text="Hello, Windows Phone 7!"

 RenderTransformOrigin="0.5 0.5">

<TextBlock.RenderTransform>

<RotateTransform Angle="45" />

</TextBlock.RenderTransform>

</TextBlock>

</Border>

</Grid>

Here’s	what	you	get:	

180	

	

	

	 	 	 	 	

	 	

	 	 	 	 	 	

	 	

	 	 	

	

	

The	RenderTransform	property	is	called	a	render	transform	for	a	reason:	It	only	affects	

rendering.	It	does	not	affect	how	the	element	is	perceived	in	the	layout	system.	(The	Windows	

Presentation	Foundation	has	a	second	property	named	LayoutTransform	that	does	affect	

layout.	If	you	were	coding	in	WPF	and	set	the	LayoutTransform	in	this	case,	the	Border	would	

expand	to	fit	the	rotated	text,	although	it	wouldn’t	be	rotated	itself.	But	Silverlight	does	not	

yet	have	a	LayoutTransform	and,	yes,	it	is	sometimes	sorely	missed.)	

Your	spirits	might	perk	up,	however,	when	you	try	moving	the	RenderTransform	(and	

RenderTransformOrigin)	from	the	TextBlock	to	the	Border,	like	this:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Border Background="Navy"

 BorderBrush="Blue"

 BorderThickness="16"

 CornerRadius="25"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 Padding="20"

 RenderTransformOrigin="0.5 0.5">

<Border.RenderTransform>

<RotateTransform Angle="45" />

</Border.RenderTransform>

<TextBlock Text="Hello, Windows Phone 7!" />

</Border>

</Grid>

Transforms	affect	not	only	the	element	to	which	they	are	applied,	but	all	child	elements	as	

this	screen	shot	makes	clear:	

181	

	

	

	

	

	 	 	 	

	 	 	 	

	

	 	 	

	 	 	 	 	

	

	

	 	 	

	

	 	 	 	

	

	 	 	

	 	

This	means	that	you	can	apply	transforms	to	whole	sections	of	the	visual	tree,	and	within	that	

transformed	visual	tree	you	can	have	additional	compounding	transforms.	

TextBlock
Properties
and
Inlines

Although	I’ve	been	talking	about	the	TextBlock	since	the	early	pages	of	this	book,	it’s	time	to	

look	at	it	in	just	a	little	bit	more	detail.	The	TextBlock element	has	five	fontrelated	properties:	

FontFamily,	FontSize,	FontStretch,	FontStyle,	and	FontWeight.	

As	you	saw	earlier,	you	can	set	FontStyle	to	either	Normal	or	Italic.	In	theory,	you	can	set	

FontStretch	to	values	such	as	Condensed	and	Expanded but	I’ve	never	seen	these	work	in	

Silverlight.	Generally	you’ll	set	FontWeight	to	Normal	or	Bold,	although	there	are	other	

options	like	Black,	SemiBold,	and	Light.	

TextBlock	also	has	a	TextDecorations	property.	Although	this	property	seems	to	be	very	

generalized,	in	Silverlight	there	is	only	one	option:	

TextDecorations="Underline"

The	TextBlock	property	I’ve	used	most,	of	course,	is	Text	itself.	The	string	you	set	to	the	Text

property	can	include	embedded	Unicode	characters	in	the	standard	XML	format,	for	example:	

Text="π is approximately 3.14159"

If	the	Text property	is	set	to	a	very	long	string,	you	might	not	be	able	to	see	all	of	it.	You	can	

insert	the	codes	for	carriage	return	or	line	feed	characters	(	or	
)	or	you	can	

set	

TextWrapping="Wrap"

and	TextAlignment	to	Left,	Right,	or	Center	(but	not	Justify).	You	can	also	set	the	text	as	a	

content	of	the	TextBlock	element:	

<TextBlock>

 This is some text.

</TextBlock>

182	

	

	 	 	

	

	 	 	

	

	 	

	 	 	 	

	 	 	

	 	 	

	

	

	 	

	 	 	

	

	 	 	

	

	 	

However,	you	might	be	surprised	to	learn	that	the	ContentProperty	attribute	of	TextBlock	is	

not	the	Text	property	but	an	entirely	different	property	named	Inlines.	This	Inlines	property	is	

of	type	InlineCollection—a	collection	of	objects	of	type	Inline,	namely	LineBreak	and	Run.	

These	make	TextBlock	much	more	versatile.	The	use	of	LineBreak	is	simple:	

<TextBlock>

 This is some text<LineBreak />This is some more text.

</TextBlock>

Run	is	interesting	because	it	too	has	FontFamily,	FontSize,	FontStretch,	FontStyle,	FontWeight,	

Foreground,	and	TextDecorations	properties,	so	you	can	make	your	text	very	fancy:	

<TextBlock FontSize="36"

 TextWrapping="Wrap">

 This is

 some <Run FontWeight="Bold">bold</Run> text and

 some <Run FontStyle="Italic">italic</Run> text and

 some <Run Foreground="Red">red</Run> text and

 some <Run TextDecorations="Underline">underlined</Run> text

 and some <Run FontWeight="Bold"

 FontStyle="Italic"

 Foreground="Cyan"

 FontSize="72"

 TextDecorations="Underline">big</Run> text.

</TextBlock>

In	the	Visual	Studio	design	view,	you	might	see	the	text	within	the	Run	tags	not	properly	

separated	from	the	text	outside	the	Run	tags.	This	is	an	error.	When	you	actually	run	the	

program	in	the	emulator,	it	looks	fine:	

These	are	vectorbased	TrueType	fonts,	and	the	actual	vectors	are	scaled	to	the	desired	font	

size	before	the	font	characters	are	rasterized,	so	regardless	how	big	the	characters	get,	they	

still	seem	smooth.	

Although	you	might	think	of	a	TextBlock	as	sufficient	for	a	paragraph	of	text,	it	doesn’t	

provide	all	the	features	that	a	proper	Paragraph	class	provides,	such	as	firstline	text	indenting	

or	a	hanging	first	line	where	the	rest	of	the	paragraph	is	indented.	I	don’t	know	of	a	way	to	

183	

	

	

	

	 	 	 	

	 	 	 	 	

	

	 	 	

	 	 	 	

	

accomplish	the	second	feat,	but	the	first	one	is	actually	fairly	easy,	as	I’ll	demonstrate	in	the	

next	chapter.	

The	use	of	the	Inlines property	allows	us	to	write	a	program	that	explores	the	FontFamily

property.	In	XAML	you	can	set	FontFamily to	a	string.	(In	code	you	need	to	create	an	instance	

of	the	FontFamily	class.)	The	default	is	called	“Portable	User	Interface”.	On	the	phone	

emulator,	this	default	font	maps	seems	to	map	to	Segoe	WP—a	Windows	Phone	variant	of	

the	Segoe	font	that	is	a	frequently	found	in	Microsoft	products	and	printed	material,	

including	this	very	book.	

The	FontFamilies	program	lists	all	the	FontFamily	values	that	Visual	Studio’s	Intellisense	tells	us	

are	valid:	

Silverlight Project: File:

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<TextBlock FontSize="24">

<Run FontFamily="Arial">Arial</Run><LineBreak />

<Run FontFamily="Arial Black">Arial Black</Run><LineBreak />

<Run FontFamily="Calibri">Calibri</Run><LineBreak />

<Run FontFamily="Comic Sans MS">Comic Sans MS</Run><LineBreak />

<Run FontFamily="Courier New">Courier New</Run><LineBreak />

<Run FontFamily="Georgia">Georgia</Run><LineBreak />

<Run FontFamily="Lucida Sans Unicode">Lucida Sans Unicode</Run><LineBreak />

<Run FontFamily="Portable User Interface">Portable User

Interface</Run><LineBreak />

<Run FontFamily="Segoe WP">Segoe WP</Run><LineBreak />

<Run FontFamily="Segoe WP Black">Segoe WP Black</Run><LineBreak />

<Run FontFamily="Segoe WP Bold">Segoe WP Bold</Run><LineBreak />

<Run FontFamily="Segoe WP Light">Segoe WP Light</Run><LineBreak />

<Run FontFamily="Segoe WP Semibold">Segoe WP Semibold</Run><LineBreak />

<Run FontFamily="Segoe WP SemiLight">Segoe WP SemiLight</Run><LineBreak />

<Run FontFamily="Tahoma">Tahoma</Run><LineBreak />

<Run FontFamily="Times New Roman">Times New Roman</Run><LineBreak />

<Run FontFamily="Trebuchet MS">Trebuchet MS</Run><LineBreak />

<Run FontFamily="Verdana">Verdana</Run><LineBreak />

<Run FontFamily="Webdings">Webdings</Run> (Webdings)

</TextBlock>

</Grid>

184	

	

	

	 	

	 	 	

	

	

	

	 	 	 	

	 	 	

	 	 	

	 	 	

Here’s	the	result:	

If	you	misspell	a	name	that	you	assign	to	FontFamily,	nothing	bad	will	happen;	you’ll	just	get	

the	default.	

The	predefined	resources	include	four	keys	that	return	objects	of	type	FontFamily:	

PhoneFontFamilyNormal,	PhoneFontFamilyLight,	PhoneFontFamilySemiLight,	and	

PhoneFontFamilySemiBold.	These	return	the	corresponding	Segoe	WP	fonts.	

More
on
Images

As	you	saw	in	Chapter	4,	a	Silverlight	program	can	display	bitmaps	in	the	JPEG	and	PNG	

formats	with	the	Image	element.	Let’s	explore	the	Image	element	a	little	more.	

The	ImageExperiment	project	contains	a	folder	named	Images	containing	a	file	named	

BuzzAldrinOnTheMoon.png,	which	is	the	famous	photograph	taken	with	a	Hasselblad	camera	

by	Neil	Armstrong	on	July	21st,	1969.	The	photo	is	288	pixels	square.	

The	file	is	referenced	in	the	MainPage.xaml	file	like	this:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0"

 Background="{StaticResource PhoneAccentBrush}">

185	

	

	 	 	 	

	

	

	 	 	

	

	 	 	

	 	 	

	 	 	

	 	

	 	

	 	 	 	

	 	 	 	 	

	

<Image Source="Images/BuzzAldrinOnTheMoon.png" />

</Grid>

I’ve	also	give	the	content	grid	a	Background	brush	of	the	accent	color	just	to	make	the	photo	

stand	out	a	little	better.	Here’s	how	it	appears	in	landscape	mode:	

By	default,	the	bitmap	expands	to	the	size	of	its	container	(the	content	grid	in	this	case)	while	

maintaining	the	correct	aspect	ratio.	Depending	on	the	dimensions	and	aspect	ratio	of	the	

container,	the	image	is	centered	either	horizontally	or	vertically.	You	can	move	it	to	one	side	

or	the	other	with	the	HorizontalAlignment	and	VerticalAlignment	properties.	

The	stretching	behavior	is	governed	by	a	property	defined	by	the	Image	element	named	

Stretch,	which	is	set	to	a	member	of	the	Stretch enumeration.	The	default	value	is	Uniform,	

which	you	can	set	explicitly	like	this:	

<Image Source="Images/BuzzAldrinOnTheMoon.png"

 Stretch="Uniform" />

The	term	“uniform”	here	means	equally	in	both	directions	so	the	image	is	not	distorted.	

You	can	also	set	Stretch	to	Fill	to	make	the	image	fill	its	container	by	stretching	unequally.	

A	compromise	is	UniformToFill:	

186	

	

	

	 	

	 	 	 	

	 	 	

	

	 	 	

	

	

	

	 	 	

	

	 	 	

Now	the	Image	both	fills	the	container	and	stretches	uniformly	to	preserve	the	aspect	ratio.	

How	can	both	goals	be	accomplished?	Well,	in	general	the	only	way	that	can	happen	is	by	

cropping	the	image.	You	can	govern	which	edge	gets	cropped	with	the	HorizontalAlignment

and	VerticalAlignment	properties.	What	setting	you	use	really	depends	on	the	particular	

image.		

The	fourth	option	is	None	for	no	stretching.	Now	the	image	is	displayed	in	its	native	size	of	

288	pixels	square:	

If	you	want	to	display	the	image	in	a	particular	size	at	the	correct	aspect	ratio,	you	can	set	

either	an	explicit	Width	or	Height	property.	If	you	want	to	stretch	nonuniformly	to	a	

particular	dimension,	specify	both	Width	and	Height	and	set	Stretch	to	Fill.	

You	can	set	transforms	on	the	Image	element	with	the	same	ease	that	you	set	them	on	

TextBlock	elements:	

<Image Source="Images/BuzzAldrinOnTheMoon.png"

 RenderTransformOrigin="0.5 0.5">

<Image.RenderTransform>

<RotateTransform Angle="30" />

</Image.RenderTransform>

</Image>

187	

	

	

	

	

	

	 	 	

	 	 	 	

	 	

	 	 	 	

	 	 	 	 	

	 	

	

	 	

	

	

	 	 	 	

Here	it	is:	

Playing
Movies

Almost	as	easy	as	displaying	bitmaps	is	playing	a	movie.	However,	due	to	their	size,	video	files	

are	almost	never	included	in	an	executable	and	almost	always	are	played	from	a	web	

connection.	You	can	play	a	movie	from	my	Web	site	in	ImageExperiment	by	replacing	the	

Image	element	with	a	MediaElement:	

<Grid x:Name="ContentGrid" Grid.Row="1" Margin="12,0,12,0"

 Background="{StaticResource PhoneAccentBrush}">
<MediaElement Source=http://www.charlespetzold.com/Media/Walrus.wmv />

</Grid>

The	default	value	of	the	AutoPlay property	defined	by	MediaElement	is	true,	so	the	movie	

begins	playing	as	soon	as	a	sufficient	amount	has	been	buffered.	

In	Chapter	10	I’ll	show	you	how	to	use	MediaPlayer	with	buttons	that	allow	controlling	it	like	

a	DVD	player.	

Modes
of
Opacity

UIElement	defines	an	Opacity	property	that	you	can	set	to	a	value	between	0	and	1	to	make	

an	element	(and	its	children)	more	or	less	transparent.	But	a	somewhat	more	interesting	

property	is	OpacityMask,	which	can	“fade	out”	part	of	an	element.	You	set	the	OpacityMask	to	

an	object	of	type	Brush;	most	often	you’ll	use	one	of	the	two	GradientBrush	derivatives.	The	

actual	color	of	the	brush	is	ignored.	Only	the	alpha	channel	is	used	to	govern	the	opacity	of	

the	element.	

For	example,	you	can	apply	a	RadialGradientBrush	to	the	OpacityMask	property	of	an	Image

element:	

188	

	

	 	 	 	 	

	 	 	 	

	 	 	 	

	

	

	

	

	

	 	

<Image Source="Images/BuzzAldrinOnTheMoon.png">

<Image.OpacityMask>

<RadialGradientBrush>

<GradientStop Offset="0" Color="White" />

<GradientStop Offset="0.8" Color="White" />

<GradientStop Offset="1" Color="Transparent" />

</RadialGradientBrush>

</Image.OpacityMask>

</Image>

Notice	that	the	RadialGradientBrush	is	opaque	in	the	center,	and	continues	to	be	opaque	until	

a	radius	of	0.8,	at	which	point	the	gradient	goes	to	fully	transparent	at	the	edge	of	the	circle.	

Here’s	the	result,	a	very	nice	effect	that	looks	much	fancier	than	the	few	lines	of	XAML	would	

seem	to	imply:	

Here’s	a	popular	technique	that	uses	two	identical	elements	but	one	of	them	gets	both	a	

ScaleTransform	to	flip	it	upside	down,	and	an	OpacityMask	to	make	it	fade	out:	

<Image Source="Images/BuzzAldrinOnTheMoon.png"

 Stretch="None"

 VerticalAlignment="Top" />

<Image Source="Images/BuzzAldrinOnTheMoon.png"

 Stretch="None"

 VerticalAlignment="Top"

 RenderTransformOrigin="0.5 1">

<Image.RenderTransform>

<ScaleTransform ScaleY="-1" />

</Image.RenderTransform>

<Image.OpacityMask>

<LinearGradientBrush StartPoint="0 0" EndPoint="0 1">

 <GradientStop Offset="0" Color="#00000000" />

<GradientStop Offset="1" Color="#40000000" />

</LinearGradientBrush>

</Image.OpacityMask>

</Image>

The	two	Image	elements	are	the	same	size	and	aligned	at	the	top	and	center.	Normally	the	

second	one	would	be	positioned	on	top	of	the	other.	But	the	second	one	has	a	

RenderTransform	set	to	a	ScaleTransform	that	flips	the	image	around	the	horizontal	axis.	The	

189	

	

	 	

	

	

	 	

	 	 		

	 	 	

	

	 	 	 	 	 	

	 	

	 	 	 	

	 	

	

	

	 	 	

	 	 	 	

	 	 	

	 	 	 	 	

RenderTransformOrigin	is	set	at	(0.5,	1),	which	is	the	bottom	of	the	element.	This	causes	the	

scaling	to	flip	the	image	around	its	bottom	edge.	Then	a	LinearGradientBrush is	applied	to	the	

OpacityMask property	to	make	the	reflected	image	fade	out:	

Notice	that	the	GradientStop	values	apply	to	the	unreflected	image,	so	that	full	transparency	

(the	#00000000	value)	seems	to	be	at	the	top	of	the	picture	and	then	is	reflected	to	the	

bottom	of	the	composite	display.	

It	is	often	little	touches	like	these	that	make	a	program’s	visuals	pop	out	just	a	little	more	and	

endear	themselves	to	the	user.But	indiscriminate	use	of	OpacityMask—particularly	in	

combination	with	complex	animations—is	discouraged	because	it	sometimes	tends	to	cripple	

performance.	The	general	rule	is:	Only	use	OpacityMask	if	the	effect	is	really,	really	cool.	

Non-Tiled
Tile
Brushes

You’ve	seen	examples	of	SolidColorBrush,	LinearGradientBrush,	and	RadialGradientBrush.	This	

class	hierarchy	is	complete	from	Brush	on	down:	

Object

DependencyObject	(abstract)		

Brush	(abstract)	

SolidColorBrush	(sealed)	

GradientBrush	(abstract)	

LinearGradientBrush	(sealed)	

190	

	

	 	 	 	 	

	 	 	

	 	 	 	 	

	 	 	 	 	

	 	 	 	

	 	 	

	 	 	 	

	 	

	

	 	 	 	 	

	

	 	

	

RadialGradientBrush	(sealed)	

TileBrush	(abstract)	

ImageBrush	(sealed)	

VideoBrush	(sealed)	

ImplicitInputBrush	(sealed)	

However,	the	only	other	brush	supported	under	Windows	Phone	7	is	ImageBrush,	and	

although	it	derives	from	TileBrush,	you	can’t	create	a	tiled	pattern	with	it.	(You	can	in	the	

Windows	Presentation	Foundation,	and	perhaps	someday	in	Silverlight.)	Basically,	ImageBrush

lets	you	set	any	property	of	type	Brush	to	a	bitmap.	Here’s	ImageExperiment	again	but	with	

the	Image element	replaced	with	an	ImageBrush	set	to	the	Background property	of	the	

content	grid:	

<Grid x:Name="ContentGrid" Grid.Row="1" Margin="12,0,12,0">

<Grid.Background>

<ImageBrush ImageSource="Images/BuzzAldrinOnTheMoon.png" />

</Grid.Background>

</Grid>

Like	Image,	TileBrush	defines	a	Stretch	property,	but	the	default	value	is	Fill,	so	the	image	fills	

the	area	without	regard	to	aspect	ratio.	

191	

	

	 	

	 	

	 	

	 	 	

	 	

	 	

	 	

	 	 	 	 	 	

	 	 	

	 	

	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	

	 	

	

	

	

	 	

	 	 	 	

	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	

Chapter	9	

The Intricacies of Layout
One	of	the	most	important	classes	in	all	of	Silverlight	is	Panel—the	class	that	plays	a	starring	

role	in	the	Silverlight	layout	system.	You	might	expect	such	a	crucial	class	to	define	many	

properties	and	events,	but	Panel	defines	only	three	properties	on	its	own:	

• Background	of	type	Brush

• Children	of	type	UIElementCollection

• IsItemsHost	of	type	bool

The	first	one	is	simple,	and	the	third	one	is	getonly	and	involves	its	role	in	ListBox	and	related	

classes.	

The	big	one	is	the	Children property.	In	the	previous	chapter	you	saw	that	the	Border	class	

defines	a	property	named	Child	of	type	UIElement.	This	Children property	defined	by	the	

Panel	is	of	type	UIElementCollection.	Huge	difference!	

The	Border	doesn’t	have	a	whole	lot	of	decisionmaking	regarding	its	single	child.	The	child	

element	is	inside	the	Border and	that’s	about	it.	But	a	panel	can	host	multiple	children,	and	it	

can	do	this	in	a	variety	of	ways.	Perhaps	the	panel	aligns	the	children	in	a	stack,	or	a	grid,	or	

perhaps	it	docks	the	children	on	its	edges,	or	puts	them	in	a	circle,	or	displays	them	like	a	

fanned	deck	of	cards,	or	arranges	them	in	a	carousel.	

For	this	reason,	the	Panel	class	itself	is	abstract.	This	class	hierarchy	is	complete	from	Panel

onwards:	

Object

DependencyObject	(abstract)	

UIElement	(abstract)	

FrameworkElement	(abstract)	

Panel	(abstract)	

Canvas

InkPresenter	(sealed)	

Grid

StackPanel

VirtualizingPanel	(abstract)	

VirtualizingStackPanel

 PanoramaPanel

192	

	

	 	 	 	 	

	 	 	 	 	 	 	

	 	

	

	 	

	 	

	 	 	

	 		

	 	

	 	

	 	

	

	 	

	 	 	 	

	 	

	

	 	 	

	 	

	 	 	

	

MapLayerBase	(abstract)	

MapLayer	(sealed)	

The	three	standard	types	of	panels	provided	by	Silverlight	for	Windows	Phone	are	StackPanel

(probably	the	simplest	kind	of	panel),	Grid	(which	is	the	first	choice	for	most	routine	layout),	

and	Canvas,	which	should	be	ignored	for	most	routine	layout	jobs,	but	has	some	special	

characteristics	that	make	it	handy	sometimes.	

The	Silverlight	for	Windows	Phone	Toolkit	includes	a	WrapPanel,	which	is	rather	similar	to	the	

right	side	of	Windows	Explorer.	

I’ll	show	you	a	sample	program	using	InkPresenter	in	the	next	chapter.	The	VirtualizingPanel

option	is	discussed	in	Chapter	17	in	connection	with	items	controls,	and	the	others	(as	their	

names	suggest)	are	for	specialized	purposes	in	connection	with	the	Panorama	and	Map

controls.	

You’ve	already	seen	the	Grid	and	StackPanel	in	the	standard	MainPage.xaml,	and	you’ve	

probably	deduced	that	panels	can	be	nested.	Panels	are	the	primary	architectural	elements	of	

the	Silverlight	page.	

You	can	also	write	your	own	panels.	I’ll	show	you	the	basics	in	this	chapter,	and	then	more	

sophisticated	panels	in	the	chapters	ahead.	

The
Single-Cell
Grid
A	Grid	is	generally	arranged	in	rows	and	columns,	but	you’ve	seen	in	previous	chapters	that	

you	can	put	multiple	children	in	a	singlecell	Grid.	Here’s	a	simple	example	for	reference	

purposes:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<TextBlock Text="TextBlock aligned at right bottom"

HorizontalAlignment="Right"

VerticalAlignment="Bottom" />

<Image Source="Images/BuzzAldrinOnTheMoon.png" />

<Ellipse Stroke="{StaticResource PhoneAccentBrush}"

StrokeThickness="24" />

<TextBlock Text="TextBlock aligned at left top"

HorizontalAlignment="Left"

VerticalAlignment="Top" />

</Grid>

193	

	

	 	

	

	 	 	

	 	 	 	

	

	 	

	 	 	

	 	 	 	

	 	 	

	

All	four	elements	are	given	the	entire	content	area	in	which	to	reside:	

With	regard	to	size,	the	elements	here	are	all	a	little	different.	The	sizes	of	the	two	TextBlock

elements	are	governed	by	the	text	being	displayed	and	the	size	of	the	font.	The	Image

element	displays	the	bitmap	in	the	maximum	size	allowed	by	the	dimensions	of	the	Grid	but	

maintaining	the	proper	aspect	rate.	The	Ellipse	just	sprawls	out	as	much	as	it	can.	

The	elements	overlap	in	the	order	in	which	they	appear	in	the	markup,	which	is	the	order	that	

they	are	added	to	the	Children	collection	of	the	Grid.	I’ve	set	the	SupportedOrientations

property	on	the	Page	to	PortraitOrLandscape	so	you	can	turn	the	phone	sideways	and	the	

elements	shift	around:	

194	

	

	 	

	 	 	

	

	

The
StackPanel
Stack

Here	are	the	same	four	elements	in	a	StackPanel,	which	is	nested	in	the	content	grid:	

Silverlight Project: StackPanelWithFourElements File: MainPage.xaml (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<StackPanel Name="stackPanel"

 Orientation="Vertical">

<TextBlock Text="TextBlock aligned at right bottom"

 HorizontalAlignment="Right"

 VerticalAlignment="Bottom" />

<Image Source="Images/BuzzAldrinOnTheMoon.png" />

<Ellipse Stroke="{StaticResource PhoneAccentBrush}"

 StrokeThickness="12" />

<TextBlock Text="TextBlock aligned at left top"

 HorizontalAlignment="Left"

 VerticalAlignment="Top" />

</StackPanel>

</Grid>

By	default,	the	StackPanel	arranges	its	children	in	a	stack	from	top	to	bottom.	The	children	do	

not	overlap:	

195	

	

	 	

	 	 	 	

	 	

	 	

	

	 	 	 	 	 	

	 	 	

	

	

	 	 	 	 	

	 	 	 	

	 	

	 	

	 	

	

	 	 	

	 	 	 	

	

	 	 	 	 	

	 	

	 	

	

	 	

The	text	displayed	by	the	two	TextBlock	elements	now	seems	a	little	peculiar:	The	first	

TextBlock is	at	the	top	of	the	display	because	that’s	the	first	one	in	the	Children	collection.	The	

HorizontalAlignment property	moves	it	over	to	the	right,	but	the	VerticalAlignment	property	

(which	indicates	Bottom)	is	obviously	being	ignored,	and	similarly	for	the	other	TextBlock.	The	

width	of	the	Image	element	occupies	the	full	width	of	the	StackPanel.	It	still	has	the	correct	

aspect	ratio,	and	now	only	requires	enough	vertical	space	to	accommodate	its	height.	

Both	the	TextBlock	and	Image	elements	only	occupy	the	minimum	vertical	space	that	they	

require,	and	the	Ellipse…	well,	the	Ellipse has	totally	disappeared.	You	might	find	that	

shocking,	but	reasonable.	The	Ellipse	doesn’t	really	require	any	vertical	space	at	all,	and	that’s	

exactly	what	it’s	received.	(If	you	set	the	Height	property	of	Ellipse	to	a	positive	number,	you’ll	

bring	it	back	into	view.)	

Changing	the	orientation	of	the	phone	provides	the	Image	with	a	greater	width	that	it	

matches	with	a	height	that	preserves	the	aspect	ratio	of	the	bitmap,	but	in	doing	so	pushes	

most	of	the	bitmap	off	the	screen,	together	with	the	second	TextBlock:	

As	you	know,	the	ability	of	the	page	to	respond	to	portrait	and	landscape	orientation	changes	

is	governed	by	the	SupportedOrientations	property	of	the	PhoneApplicationPage	class.	The	

property	is	set	to	a	member	of	the	SupportedPageOrientation	enumeration.	

PhoneApplicationPage	defines	another	property	named	Orientation	which	is	set	to	a	member	

of	the	PageOrientation	enumeration	to	indicate	whether	the	orientation	of	the	phone	is	

currently	portrait	or	landscape.	

The	StackPanel	has	its	own	Orientation	property,	but	it	has	nothing	to	do	with	page	

orientation.	The	Orientation	property	of	StackPanel	is	set	to	a	member	of	the	Orientation

enumeration,	either	Horizontal	or	Vertical.	The	default	is	Vertical,	but	the	

StackPanelWithFourElements	program	toggles	the	StackPanel	orientation	when	you	tap	the	

screen.	Here’s	the	code	to	do	it:	

196	

	

	

	 	 	

	 	

	

	

	 	 	 	 	

	 	 	 	 	

	 	

Silverlight Project: StackPanelWithFourElements File: MainPage.xaml.cs (excerpt)

protected override void OnManipulationStarted(ManipulationStartedEventArgs args)

{

 stackPanel.Orientation =

stackPanel.Orientation == System.Windows.Controls.Orientation.Vertical ?

 System.Windows.Controls.Orientation.Horizontal :

 System.Windows.Controls.Orientation.Vertical;

 args.Complete();

 args.Handled = true;

base.OnManipulationStarted(args);

}

The	Orientation	enumeration	has	to	be	fully	qualified	or	the	compiler	thinks	you’re	referring	

to	the	Orientation property	defined	by	PhoneApplicationPage.	

One	tap	and	the	elements	are	arranged	from	left	to	right:	

The	HorizontalAlignment of	the	first	TextBlock is	now	ignored,	and	the	VerticalAlignment	puts	

it	down	at	the	bottom.	The	Image	gets	such	a	big	height	that	most	of	it	is	off	screen.	We	can	

get	a	little	better	view	(including	the	second	TextBlock)	by	turning	the	phone	sideways:	

197	

	

	

	 	 	 	

	

	 	

	 	 	

	 	

	

	 	 	

	

	 	

The	StackPanel	occupies	the	full	interior	of	the	content	grid,	even	if	that	that’s	more	than	

what	its	children	require.	You	can	easily	verify	this	by	setting	a	Background	on	the	StackPanel.	

The	StackPanel	fills	its	parent	container	because	the	default	values	of	the	HorizontalAlignment

and	VerticalAlignment	properties	are	the	default	values	of	Stretch.	

	You	can	set	other	HorizontalAlignment	or	VerticalAlignment	properties	on	the	StackPanel	to	

force	it	to	use	only	as	much	space	as	necessary,	and	position	it	within	the	content	grid.	Here’s	

a	Background	of	Pink	and	a	VerticalAlignment	property	of	Center:	

In	this	particular	program,	the	HorizontalAlignment	property	of	the	StackPanel	has	no	effect.	

198	

	

	 	 	

	

	 	 	 	

	 	

	 	

Text
Concatenation
with
StackPanel
A	StackPanel with	a	horizontal	orientation	can	concatenate	text.	This	is	demonstrated	in	the	

TextConcatenation	project:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<StackPanel Orientation="Horizontal"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 Background="{StaticResource PhoneAccentBrush}">

<TextBlock Text="Two " />

<TextBlock Text="plus " />

<TextBlock Text="two " />

<TextBlock Text="equals " />

<TextBlock Text="four!" />

</StackPanel>

</Grid>

Here	it	is:	

It	might	seem	rather	silly	to	concatenate	text	in	this	way,	but	it’s	actually	a	very	useful	

technique.	Sometimes	a	program	has	some	fixed	text	defined	in	XAML,	mixed	with	some	

variable	text	from	code	or	a	data	binding.	The	StackPanel	does	a	nice	job	of	piecing	it	

199	

	

	 	

	 	

	

	 	 	 	 	 	 	

	 	 	

	 	 	 	

	 	 	

	 	

	 	 	 	

together	without	any	extraneous	spacing.	(In	some	cases	you	can	alternatively	use	a	TextBlock

with	its	Inlines property	set	to	multiple	Run	objects,	but	you’ll	see	in	Chapter	12	that	Run	can’t	

be	used	with	data	bindings.)	

Suppose	you	wanted	the	background	color	of	the	concatenated	text	to	extend	a	little	further	

beyond	the	boundaries	of	the	text.	You	can’t	do	it	with	a	Margin	property	on	the	StackPanel

because	that’s	space	outside	the	element.	StackPanel doesn’t	have	a	Padding	property	(alas),	

so	you’d	need	to	set	Margin	properties	or	Padding	properties	on	all	the	individual	TextBlock

elements,	and	that	doesn’t	sound	like	fun.	

An	easier	solution	is	to	put	the	StackPanel	in	a	Border element,	and	move	all	the	alignment	

and	Background	settings	to	that	Border:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Border Background="{StaticResource PhoneAccentBrush}"

 Padding="12"

 CornerRadius="24"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

<StackPanel Orientation="Horizontal">

<TextBlock Text="Two " />

<TextBlock Text="plus " />

<TextBlock Text="two " />

<TextBlock Text="equals " />

<TextBlock Text="four!" />

</StackPanel>

</Border>

</Grid>

200	

	

	 	

	

	 	 	

	 	

Now	you	get	a	nice	comfortable	background	with	rounded	corners:	

Nested
Panels

It’s	possible	to	nest	one	StackPanel in	another,	which	makes	most	sense	if	they’re	of	different	

orientations.	Here’s	a	program	with	two	verticals	in	one	horizontal:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<StackPanel Orientation="Horizontal"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

<StackPanel>

<TextBlock Text="Panel" FontWeight="Bold"

 TextDecorations="Underline" />

<TextBlock Text="StackPanel" />

<TextBlock Text="Canvas" />

<TextBlock Text="Grid" />

</StackPanel>

<StackPanel Margin="12 0 0 0">

<TextBlock Text="Properties" FontWeight="Bold"

 TextDecorations="Underline" />

<TextBlock Text="Orientation" />

<TextBlock Text="Left, Top, ZIndex" />

<TextBlock Text="RowDefinitions, ColumnDefinitions, etc" />

201	

	

	

	 	

	 	

	

	

	 	 	

	

	 	 	 	

	 	 	 	 	

	 	

	 	 	

</StackPanel>

</StackPanel>

</Grid>

The	single	Margin	setting	serves	to	separate	the	two	columns	just	a	bit:	

Notice	that	each	vertical	StackPanel is	as	wide	as	its	widest	child,	and	as	tall	as	the	sum	of	the	

heights	of	its	children.	The	horizontal	StackPanel	is	aligned	in	the	center	of	the	display	and	is	

as	wide	as	the	sum	of	its	two	children.	

This	is	not	the	best	way	to	make	a	table!	It	only	seems	to	work	reasonably	well	because	the	

TextBlock	elements	are	all	of	equal	height.	If	they	weren’t,	then	the	rows	would	not	line	up	as	

well	as	they	do.	

Visibility
and
Layout

The	UIElement	class	defines	a	property	named	Visibility	that’s	handy	for	temporariliy	hiding	

elements	that	you	don’t	want	to	be	visible	all	the	time.	The	Visibility property	is	not	a	Boolean,	

however.	It’s	of	type	Visibility,	an	enumeration	with	two	members,	Visible	and	Collapsed.	

In	the	previous	program,	set	the	Visibility property	on	one	of	the	elements:	

<TextBlock Text="Left, Top, ZIndex" Visibility="Collapsed" />

202	

	

	 	 	 	 	

	 	 	 	

	

	

	 	 	 	 	

	

The	value	of	Collapsed	causes	the	element	to	have	a	zero	size,	and	it	effectively	no	longer	

participates	in	layout.	In	some	cases	that’s	exactly	what	you	want,	but	in	this	particular	case	it	

results	in	a	table	with	rows	that	no	longer	line	up	correctly:	

If	you	want	to	hide	an	element	but	you	still	want	it	to	have	a	nonzero	size	in	the	layout,	don’t	

use	the	Visibility	property.	Use	Opacity	instead:	

<TextBlock Text="Left, Top, ZIndex" Opacity="0" />

203	

	

	

	

	 	 	

	 	 	 	 	

	 	

	 	 	 	

	

	 	 	

	

	 	

	 	 	

	 	

	 	 	 	 	

	 	

Now	the	TextBlock	has	the	correct	size	but	is	otherwise	invisible:	

That’s	almost correct.	One	possible	problem	is	that	the	TextBlock	will	still	respond	to	touch	

input.	If	you	want	to	completely	hide	it	from	both	sight	and	touch,	use:	

<TextBlock Text="Left, Top, ZIndex"

 Opacity="0"

 IsHitTestVisible="False" />

Opacity	is	not	nearly	as	efficient	as	Visibility	when	used	for	layout	purposes,	so	try	to	avoid	it	if	

you’re	doing	something	that	requires	frequent	layout	cycles.	(And	if	you’re	wondering	why	

Visibility	is	not	a	Boolean,	it’s	because	of	the	Windows	Presentation	Foundation.	In	WPF,	the	

Visibility	enumeration	has	a	third	member	named	Invisible,	which	hides	the	element	visually	

but	retains	its	size	for	layout	purposes.)	

The	Visibility	and	Opacity	properties	apply	to	an	element	and	the	element’s	children,	so	if	you	

set	these	properties	on	a	panel,	they	apply	to	the	panel’s	children	as	well.	

If	you	set	a	RenderTransform	property	on	a	panel,	the	panel’s	children	will	also	be	affected	by	

the	transform.	However,	if	you	set	a	RenderTransform	on	a	child	of	a	panel,	then	the	parent	

panel	will	ignore	any	effects	the	RenderTransform	has	when	laying	out	its	children.	

204	

	

	 	 	 	 	 	

	 	

	

	 	 	 	 	 	

	 	 	 	 	 	

	

	 	 	 	

	 	 	 	 	

	

	 	

	

	 	

	 	

	 	 	

	 	 	 	

	 	 	 	

	 	

	 	

	 	 	 	

	 	 	 	 	 	

	 	 	

	

Two
ScrollViewer
Applications

If	the	StackPanel	has	more	elements	than	can	be	displayed	on	the	screen	(or	in	whatever	

container	the	StackPanel happens	to	find	itself),	the	elements	towards	the	bottom	(or	right)	

won’t	be	displayed.		

If	you	fear	that	the	phone’s	screen	is	not	large	enough	to	fit	all	the	children	of	your	

StackPanel,	you	can	put	the	StackPanel	in	a	ScrollViewer,	a	control	that	determines	how	large	

its	content	needs	to	be,	and	provides	a	scrollbar	or	two.	

Actually,	on	Windows	Phone	7,	the	scrollbars	are	more	virtual	than	real.	You	don’t	actually	

scroll	the	ScrollViewer	with	the	scrollbars.	You	use	your	fingers	instead.	Still,	it’s	convenient	to	

refer	to	scrollbars,	so	I	will	continue	to	do	so.	

By	default,	the	vertical	scrollbar	is	visible	and	the	horizontal	scrollbar	is	hidden,	but	you	can	

change	that	with	the	VerticalScrollBarVisibility	and	HorizontalScrollBarVisibility	properties.	The	

options	are	members	of	the	ScrollBarVisibility	enumeration:	Visible,	Hidden,	Auto	(visible	only	

if	needed),	and	Disabled	(visible	but	not	responsive).	

The	next	program	is	an	ebook	reader.	Well,	not	exactly	an	ebook	reader.	It’s	more	like	an	

eshort	reader,	and	I	guess	it’s	not	very	versatile:	It	displays	a	little	humor	piece	written	by	Mark	

Twain	in	1880	and	believed	to	be	the	first	description	of	the	experience	of	listening	to	a	

person	talk	on	the	telephone	without	hearing	the	other	side	of	the	conversation.	(The	woman	

talking	on	the	telephone	is	Mark	Twain’s	wife,	Olivia.)	

I	enhanced	the	customary	application	title	a	little	bit	to	put	it	in	a	different	color	and	make	it	

two	lines:	

Silverlight Project: File: (excerpt)

<StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="24,24,0,12">

<TextBlock x:Name="ApplicationTitle"

 Style="{StaticResource PhoneTextNormalStyle}"

 TextAlignment="Center"

 Foreground="{StaticResource PhoneAccentBrush}">

"A Telephonic Conversation"<LineBreak />by Mark Twain

</TextBlock>

</StackPanel>

The	content	grid	includes	its	own	Resources	collection	with	a	Style	defined.	The	Grid	contains	

a	ScrollViewer,	which	contains	a	StackPanel,	which	contains	all	the	TextBlock	elements	of	the	

story,	one	for	each	paragraph.	Notice	the	strict	division	of	labor:	The	TextBlock	elements	

display	the	text;	the	StackPanel	provides	the	stacking;	the	ScrollViewer provides	the	scrolling:	

205	

	

	 	 	 	 	

	 	 	 	

	 	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Grid.Resources>

<Style x:Key="paragraphStyle"

 TargetType="TextBlock">

<Setter Property="TextWrapping" Value="Wrap" />

<Setter Property="Margin" Value="5" />

<Setter Property="FontSize" Value="{StaticResource PhoneFontSizeSmall}"

/>

</Style>

</Grid.Resources>

<ScrollViewer Padding="5">

<StackPanel>

<TextBlock Style="{StaticResource paragraphStyle}">

  I consider that a conversation by telephone — when you are

 simply sitting by and not taking any part in that conversation —

 is one of the solemnest curiosities of this modern life.

 Yesterday I was writing a deep article on a sublime philosophical

 subject while such a conversation was going on in the

 room. I notice that one can always write best when somebody

 is talking through a telephone close by. Well, the thing began

 in this way. A member of our household came in and asked

 me to have our house put into communication with Mr. Bagley’s,

 down town. I have observed, in many cities, that the sex

 always shrink from calling up the central office themselves. I

 don’t know why, but they do. So I touched the bell, and this

 talk ensued: —

</TextBlock>

<TextBlock Style="{StaticResource paragraphStyle}">

  <Run FontStyle="Italic">Central Office.</Run>

 [Gruffly.] Hello!

</TextBlock>

<TextBlock Style="{StaticResource paragraphStyle}">

  <Run FontStyle="Italic">I.</Run> Is it the Central Office?

</TextBlock>

…

<TextBlock Style="{StaticResource paragraphStyle}"

 TextAlignment="Right">

 — <Run FontStyle="Italic">Atlantic Monthly</Run>, June 1880

</TextBlock>

</StackPanel>

</ScrollViewer>

</Grid>

This	is	not	the	whole	file,	of	course.	The	bulk	of	the	story	has	been	replaced	by	an	ellipsis	(…).	

ScrollViewer	is	given	a	Padding	value	of	5	pixels	so	the	StackPanel doesn’t	go	quite	to	the	

edges;	in	addition,	each	TextBlock	gets	a	Margin	property	of	5	pixels	through	the	Style.	The	

206	

	

	 	

	 	 	 	

	 	 	 	 	 	

	

		

	 	

	 	

	 	 	 	

		

	 	

result	of	padding	and	margin	contributes	to	a	composite	space	on	both	the	left	and	right	

sides	of	10	pixels,	and	10	pixels	also	separate	each	TextBlock,	making	them	look	more	like	

distinct	paragraphs	and	aiding	readability	

I	also	put	a	Unicode	character	 	at	the	beginning	of	each	paragraph.	This	is	the	

Unicode	emspace	and	effectively	indents	the	first	line	by	about	a	character	width.	

By	default,	ScrollViewer	provides	vertical	scrolling.	The	control	responds	to	touch,	so	you	can	

easily	scroll	through	and	read	the	whole	story.	

The	PublicClasses	program	coming	up	next	also	has	a	ScrollViewer	containing	a	vertical	

StackPanel,	but	it	fills	up	that	StackPanel	entirely	in	code.	Using	reflection,	the	codebehind	

file	obtains	all	the	public	classes	exposed	by	the	System.Windows,	Microsoft.Phone,	

Microsoft.Phone.Controls,	and	Microsoft.Phone.Controls.Maps	assemblies,	and	lists	them	in	a	

class	hierarchy.	

In	preparation	for	this	job,	the	XAML	file	contains	an	empty	StackPanel	identified	by	name:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<ScrollViewer HorizontalScrollBarVisibility="Auto">

<StackPanel Name="stackPanel" />

</ScrollViewer>

</Grid>

207	

	

	 	

	 	 	

	 	

	 	 	 	

	 	 	 	

	

	 	 	 	

	 	

	 	 	 	

	 	 	

By	default,	the	VerticalScrollBarVisibility	is	Visible,	but	I’ve	given	the	

HorizontalScrollBarVisibility	property	a	value	of	Auto.	If	any	line	of	text	in	the	StackPanel	is	too	

long	to	be	displayed	on	the	screen,	horizontal	scrolling	will	be	allowed	to	bring	it	into	view.	

This	horizontal	scrolling	represents	a	significant	difference	between	this	program	and	the	

previous	one.	You	don’t	want	horizontal	scrolling	when	text	is	wrapped	into	paragraphs	as	it	

is	in	the	TelephonicConversation	project.	But	in	this	program,	nonwrapped	lines	are	

displayed	that	might	be	wider	than	the	width	of	the	display,	so	horizontal	scrollbar	is	

desirable.	

The	codebehind	file	makes	use	of	a	separate	little	class	named	ClassAndChildren	to	store	the	

treestructured	classes:		

Silverlight Project: PublicClasses File: ClassAndChildren.cs

using System;

using System.Collections.Generic;

namespace PublicClasses

{

class ClassAndChildren

 {

public ClassAndChildren(Type parent)

{

 Type = parent;

 SubClasses = new List<ClassAndChildren>();

}

public Type Type { set; get; }

public List<ClassAndChildren> SubClasses { set; get; }

 }

}

The	program	creates	a	ClassAndChildren object	for	each	class	that	is	displayed	in	the	tree,	and	

each	ClassAndChildren object	contains	a	List	object	with	all	the	classes	that	derive	from	that	

class.	

Here’s	the	complete	code	portion	of	the	MainPage	class.	It	needs	a	using	directive	for	

System.Reflection.	

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage

{

Brush accentBrush;

 public MainPage()

 {

208	

	

InitializeComponent();

accentBrush = this.Resources["PhoneAccentBrush"] as Brush;

// Get all assemblies

List<Assembly> assemblies = new List<Assembly>();

assemblies.Add(Assembly.Load("System.Windows"));

assemblies.Add(Assembly.Load("Microsoft.Phone"));

assemblies.Add(Assembly.Load("Microsoft.Phone.Controls"));

assemblies.Add(Assembly.Load("Microsoft.Phone.Controls.Maps"));

// Set root object (use DependencyObject for shorter list)

Type typeRoot = typeof(object);

// Assemble total list of public classes

List<Type> classes = new List<Type>();

classes.Add(typeRoot);

foreach (Assembly assembly in assemblies)

 foreach (Type type in assembly.GetTypes())

 if (type.IsPublic && type.IsSubclassOf(typeRoot))

 classes.Add(type);

// Sort those classes

classes.Sort(TypeCompare);

// Now put all those sorted classes into a tree structure

ClassAndChildren rootClass = new ClassAndChildren(typeRoot);

AddToTree(rootClass, classes);

// Display the tree

Display(rootClass, 0);

 }

 int TypeCompare(Type t1, Type t2)

{

return String.Compare(t1.Name, t2.Name);

 }

// Recursive method

 void AddToTree(ClassAndChildren parentClass, List<Type> classes)

 {

foreach (Type type in classes)

{

 if (type.BaseType == parentClass.Type)

 {

ClassAndChildren subClass = new ClassAndChildren(type);

 parentClass.SubClasses.Add(subClass);

 AddToTree(subClass, classes);

 }

}

 }

// Recursive method

 void Display(ClassAndChildren parentClass, int indent)

 {

209	

	

	 	

	 	 	

	

	 	 	 	 	

	 	

	 	 	

string str1 = String.Format("{0}{1}{2}{3}",

new string(' ', indent * 4),

parentClass.Type.Name,

parentClass.Type.IsAbstract ? " (abstract)" :

"",

parentClass.Type.IsSealed ? " (sealed)" : "");

string str2 = " " + parentClass.Type.Namespace;

TextBlock txtblk = new TextBlock();

txtblk.Inlines.Add(str1);

txtblk.Inlines.Add(new Run

{

 Text = str2,

 Foreground = accentBrush

});

stackPanel.Children.Add(txtblk);

foreach (ClassAndChildren child in parentClass.SubClasses)

 Display(child, indent + 1);

 }

}

The	constructor	starts	out	storing	all	the	public	classes	from	the	major	Silverlight	assemblies	in	

a	big	collection.	These	are	then	sorted	by	name,	and	apportioned	into	ClassAndChildren

objects	in	a	recursive	method.	A	second	recursive	method	adds	TextBlock elements	to	the	

StackPanel.	Notice	that	each	TextBlock	element	has	an	Inlines collection	with	two	Run	objects.	

An	earlier	version	of	the	program	wasn’t	very	easy	to	read,	so	I	decided	the	namespace	name	

should	be	in	a	different	color,	and	for	convenience	I	used	the	accent	color	chosen	by	the	user.	

210	

	

	 	

	

	 	

	 	 	 	

	

	 	 	

	 	 	

	 	

	 	 	 	

	 	 	 	

	

	 	

	 	 	

	 	

	

	

Here’s	the	portion	of	the	class	hierarchy	showing	Panel	and	its	derivatives:	

The
Mechanism
of
Layout

I	want	you	to	perform	a	little	experiment.	Go	into	the	XAML	file	of	the	

TelephonicConversation	project	and	insert	the	following	setting	into	the	ScrollViewer	tag:	

HorizontalScrollBarVisibility="Visible"

Almost	immediately	you’ll	see	a	startling	change.	All	the	TextBlock	elements	become	long	

single	lines	of	text	with	no	wrapping.	What	happened?	How	does	setting	a	property	on	the	

ScrollViewer	have	such	a	profound	effect	on	the	individual	TextBlock	elements?	

In	a	sense,	this	behavior	shouldn’t	be	surprising:	If	the	ScrollViewer has	a	horizontal	scrollbar,	

it	must	exist	for	some	purpose,	and	it	has	no	purpose	if	the	words	of	each	TextBlock	wrap	into	

paragraphs.	If	the	horizontal	scrollbar	is	to	have	some	function,	then	the	paragraphs	should	

consist	of	single	lines.	

But	it	would	be	nice	to	have	a	better	grasp	on	this	actual	mechanism,	and	not	only	to	

understand	this	particular	peculiarity.	Getting	a	good	feel	for	the	layout	system	is	one	of	the	

most	important	Silverlight	programming	skills	you	can	acquire.	The	layout	system	is	very	

powerful,	but	for	the	uninitiated,	it	can	also	seem	quite	strange.	

Layout	in	Silverlight	is	a	twopass	process	starting	at	the	top	of	the	visual	tree	and	working	

down	through	all	the	elements’	children.	In	a	Silverlight	phone	application,	it	begins	with	the	

211	

	

	 	 	

	 	 	 	

	 	

	

	

	

	

	 	 	

	

	

	 	

	 	 	

	

	 	 	 	 		

	

	 	 	

	 	

	 	 	

	

	 	

	 	 	

	 	

	 	 	 	

	 	 	 	

	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	

	

	 	 	 	

	 	 	

	 	 	 	 	

	

PhoneApplicationFrame,	then	the	PhoneApplicationPage,	then	most	likely	a	Grid	and	then	

(usually)	a	StackPanel	and	a	second	Grid.	In	Telephonic	Conversation,	the	process	continues	

into	the	ScrollViewer,	which	probably	contains	its	own	Border,	and	then	eventually	the	

StackPanel,	and	finally	the	TextBlock	elements.	These	TextBlock	elements	have	no	children	so	

that’s	the	end	of	the	line.	

During	the	first	pass,	every	element	in	the	tree	is	responsible	for	querying	its	children	to	

obtain	their	desired	size.	In	the	second	pass,	elements	are	responsible	for	arranging	their	

children	relative	to	their	surface.	The	arrangement	can	be	trivial	or	complex.	For	example,	a	

Border	has	only	one	child	and	need	only	take	account	of	its	own	BorderThickness	to	

determine	where	to	position	that	child	relative	to	itself.	But	Panel	derivatives	must	arrange	

their	children	in	unique	ways.	

When	a	parent	queries	the	size	of	its	children,	it	effectively	says	“Here’s	an	available	size	for	

you.	How	big	do	you	want	to	be?”	and	each	child	calculates	its	desired	size.	All	sizes	are	in	the	

form	of	a	Size	structure	with	Width	and	Height	properties.	If	that	child	itself	has	children,	then	

the	child	must	determine	its	own	size	by	querying	its	children’s	sizes,	until	the	process	gets	

down	to	elements	like	TextBlock that	have	no	children.	

Elements	determine	their	own	size	in	various	ways	depending	on	the	nature	of	the	element.	A	

TextBlock,	for	example,	might	be	displaying	a	long	piece	of	text	and	might	have	its	

TextWrapping	property	set	to	Wrap.	In	that	case,	the	TextBlock	looks	at	the	Width	property	of	

the	available	size	and	determines	where	lines	should	break.	It	then	knows	how	many	lines	it	

needs	to	display	and	how	much	vertical	space	is	required	for	all	those	lines.	This	is	how	the	

TextBlock	calculates	its	desired	size.	

But	there’s	also	an	odd	complication:	A	parent	presents	its	children	with	an	available	size	

using	the	Size	structure,	which	has	two	properties	named	Width	and	Height	of	type	double.	

Sometimes	the	parent	could	set	the	Width	or	Height	(or	both)	to	that	special	floatingpoint	

value	Double.PositiveInfinity.	The	parent	is	basically	saying:	“Child,	I	am	offering	you	an	infinite	

width	[or	an	infinite	height,	or	both]	to	play	around	in.	How	much	of	that	do	you	need?”	

The	child	cannot	respond	“I	want	it	all!”	as	children	sometimes	tend	to	do.	That’s	not	allowed.	

The	child	must	claim	a	desired	size	that	is	finite	and	nonnegative.	

This	is	how	the	StackPanel	queries	the	size	of	its	children.	A	vertical	StackPanel offers	to	each	

of	its	child	an	available	size	with	a	width	that	is	equal	to	its	own	width,	but	a	height	of	infinity.	

But	there’s	a	paradox	here:	Some	elements,	such	as	the	TextBlock	and	Image,	have	some	kind	

of	intrinsic	size,	which	is	the	size	of	the	formatted	text	or	the	size	of	the	unscaled	bitmap.	

Others,	like	the	Ellipse,	do	not	have	an	intrinsic	size.	When	an	Ellipse	is	given	a	specific	size,	it	

will	display	itself	at	that	size.	But	when	the	Ellipse	is	offered	an	infinite	size,	it	has	no	choice	

but	to	shrink	itself	into	nothingness.	

212	

	

	

	

	 	 	 	

	 	 	 	

	 	 	 	

	 	

	 	 	

	

	 	 	 	 	

	

	 	

	 	

	

	 	 	 	 	

	 	 	 	 	

	

	 	 	

	

	 	 	

	 	 	

	 	

	

	 	

	

	 	

	 	

	 	 	

	

	 	

	 	 	

	 	 	 	 	

	 	

To	understand	the	precise	mechanism	at	work	here,	it	will	be	extremely	useful	to	actually	

create	some	simple	panels.	

Inside
the
Panel

Panels	are	written	entirely	in	code.	There	is	no	XAML	involved.	When	you	write	a	Panel

derivative,	you’ll	probably	be	defining	a	couple	properties	to	make	the	panel	more	flexible.	

Because	these	properties	are	almost	always	dependency	properties,	I’ll	wait	until	Chapter	11	

to	show	you	how	to	write	panels	with	their	own	properties.	

Apart	from	defining	those	custom	properties,	a	panel	always	overrides	two	methods:	

MeasureOverride	and	ArrangeOverride,	which	correspond	to	the	two	passes	of	layout.	The	first	

pass	is	for	each	parent	to	determine	the	size	of	its	children;	the	second	pass	is	for	the	parent	

to	arrange	its	children	relative	to	itself.	

For	both	these	jobs,	the	panel	accesses	the	Children	property	that	your	panel	inherits	from	

Panel.	(The	Children	property	is	of	type	UIElementCollection,	but	you	can’t	instantiate	a	

UIElementCollection	yourself,	and	the	object	performs	some	special	jobs	under	the	covers	that	

you	don’t	know	about,	so	you	really	can’t	create	your	own	Panellike	class	without	deriving	

from	Panel.	If	you	need	an	element	that	can	host	multiple	children	in	a	flexible	manner,	derive	

from	Panel.)	

The	big	mystery	regarding	panels	is:	Who	would	ever	make	up	names	like	MeasureOverride

and	ArrangeOverride	for	protected	virtual	methods?	Why	is	the	C#	keyword	override	in	the	

method	name?	

I	don’t	know.	The	names	originated	in	the	Windows	Presentation	Foundation	and	involve	the	

difference	between	the	UIElement	class	and	the	FrameworkElement	class.	UIElement

implements	a	comparatively	simple	layout	system,	and	to	support	that	layout	system,	it	has	

two	methods	named	Measure	and	Arrange.	These	methods	are	still	vitally	important	in	layout	

(as	you’ll	see)	but	FrameworkElement needed	to	add	some	more	complicated	concepts	to	

layout,	namely	HorizontalAlignment,	VerticalAlignment,	and	Margin.	These	concepts	make	the	

layout	system	rather	messier,	so	FrameworkElement	added	two	new	methods	called	

MeasureOverride	and	ArrangeOverride	to	supersede	the	Measure	and	Arrange	methods	in	

UIElement.	

MeasureOverride	and	ArrangeOverride	are	protected	virtual	methods.	Measure	and	Arrange

are	public	sealed	methods.	Your	panel	overrides	MeasureOverride	and	ArrangeOverride.	In	

MeasureOverride,	the	panel	calls	Measure	on	all	its	children;	within	ArrangeOverride	the	panel	

calls	Arrange on	all	its	children.	These	Measure	and	Arrange	methods	in	each	child	then	

internally	call	the	MeasureOverride	and	ArrangeOverride	methods	in	the	child,	which	

continues	the	process	down	the	tree.	

213	

	

	 	

	

	

	

	

	

	

	

	 	

	

	 	

	 	 	 	

	

	 	

	 	 	 	 	 	

	

	

	

A	panel	does	not	need	to	worry	about	the	following	properties	that	might	be	set	on	itself	or	

its	children:	

• HorizontalAlignment	and	VerticalAlignment

• Margin

• Visibility

• Opacity	(does	not	affect	layout	at	all)	

• RenderTransform	(does	not	affect	layout	at	all)	

• Height,	MinHeight,	and	MaxHeight

• Width,	MinWidth,	and	MaxWidth

These	properties	are	all	handled	automatically	in	various	ways.		

A
Single-Cell
Grid
Clone

Perhaps	the	simplest	panel	of	all	is	the	Grid	that	contains	no	rows	or	columns,	commonly	

referred	to	as	a	“singlecell	Grid.”	I’ve	been	using	the	Grid	named	ContentPanel	as	a	singlecell	

Grid;	as	you’ve	seen,	the	Grid	can	host	multiple	children,	but	they	overlap	within	the	same	

area.	

Let’s	duplicate	the	functionality	of	a	singlecell	Grid	with	a	class	named	SingleCellGrid.	

In	a	new	project	named	SingleCellGridDemo,	I	rightclicked	the	project	name,	selected	Add	

and	New	Item	from	the	menu,	and	picked	Class	from	the	dialog	box,	naming	it	

SingleCellGrid.cs.	In	the	file,	I	made	sure	the	class	was	public	and	derived	from	Panel.	

Silverlight Project: File: (excerpt)

namespace SingleCellGridDemo

{

public class SingleCellGrid : Panel

 {

…

 }

}

Like	all	panels,	this	class	overrides	the	two	methods	MeasureOverride	and	ArrangeOverride.	

Here’s	the	first:	

214	

	

	 	 	 	 	

	 	 	 	 	

	

	

	 	

	

	 	 	

	 	 	

	 	 	

	 	

	 	 	

	 	

	 	 	 	

	 	 	

	 	

	 	 	 	

	 	 	

	 	 	 	 	 	

	 	

	 	

	

Silverlight Project: File: (excerpt)

protected override Size MeasureOverride(Size availableSize)

{

Size compositeSize = new Size();

foreach (UIElement child in Children)

 {

child.Measure(availableSize);

compositeSize.Width = Math.Max(compositeSize.Width,

child.DesiredSize.Width);

compositeSize.Height = Math.Max(compositeSize.Height,

child.DesiredSize.Height);

 }

return compositeSize;

}

The	argument	to	MeasureOverride	is	called	availableSize	of	type	Size,	a	structure	that	has	two	

properties	named	Width	and	Height	of	type	double.	This	is	the	size	that	the	panel	is	getting	

from	its	parent.	One	or	both	of	these	dimensions	might	be	infinite.	

The	MeasureOverride	method	has	two	fundamental	jobs:	

The	first	job	is	to	call	Measure	on	all	its	children.	This	is	essential;	otherwise,	the	children	will	

have	no	size	and	will	not	appear	on	the	screen.	MeasureOverride	almost	always	performs	this	

job	by	enumerating	through	the	Children	collection	with	a	foreach	loop.	

The	second	job	of	the	MeasureOverride	method	is	to	return	a	size	that	the	panel	wants	to	be.	

In	this	MeasureOverride	method,	that	size	is	the	variable	called	compositeSize.	This	size	must	

have	finite	nonnegative	dimensions.	The	MeasureOverride	method	cannot	simply	return	the	

availableSize	argument	under	the	assumption	that	it	wants	all	the	space	it’s	being	offered	

because	the	availableSize	argument	might	have	infinite	dimensions.	

By	the	time	the	MeasureOverride	method	is	called,	this	availableSize	argument	has	been	

adjusted	in	some	ways.	If	the	panel	has	a	Margin	set	on	it,	this	availableSize	excludes	that	

Margin.	If	any	of	the	Width,	MinWidth,	MaxWidth,	Height,	MinHeight,	or	MaxHeight	properties	

are	set	on	the	panel,	then	the	availableSize	is	constrained	by	those	values.	

The	two	jobs	of	MeasureOverride	are	usually	performed	in	concert:	When	the	panel	calls	

Measure on	each	of	its	children,	it	offers	to	each	child	an	available	size.	This	size	might	have	

infinite	dimensions.	The	Size argument	passed	to	the	Measure	method	depends	on	the	

paradigm	of	the	particular	panel.	In	this	particular	case,	the	SingleCellGrid	offers	to	each	of	its	

children	its	own	availableSize:	

child.Measure(availableSize);

215	

	

	 	 	

	 	

	 	

	

	

	 	 	 	

	 	 	 	 	

	

	 	 	

	

	 	

	 	

	 	

	 	 	

	 	 	

	 	

	 	

	 	 	 	 	 	

	

	

	 	 	

The	panel	is	allowing	each	child	to	exist	in	the	same	area	as	itself.	It’s	no	problem	if	this	

availableSize	argument	has	infinite	dimensions.	

When	Measure	returns,	the	child’s	DesiredSize	property	has	been	set	and	has	a	valid	value.	

This	is	how	the	parent	determines	the	size	the	child	wants	to	be.	This	DesiredSize	property	was	

calculated	by	the	child’s	Measure	method	after	calling	its	own	MeasureOverride	method,	

which	possibly	interrogated	its	own	children’s	sizes.	The	MeasureOverride	method	doesn’t	

need	to	bother	itself	with	Margin settings,	or	explicit	Width	or	Height	settings.	The	Measure

method	does	that,	and	adjusts	DesiredSize	appropriately.	If	the	child	has	a	Margin	setting,	for	

example,	the	DesiredSize includes	that	additional	amount.	

Some	examples:	The	MeasureOverride	method	of	a	TextBlock	returns	the	size	of	the	text	

displayed	in	a	particular	font.	The	MeasureOverride	method	of	an	Image	element	returns	the	

native	pixel	dimensions	of	the	bitmap.	The	MeasureOverride	method	of	an	Ellipse	returns	a	

size	of	zero.	

The	DesiredSize	property	is	always	finite.	The	MeasureOverride	method	in	SingleCellGrid	uses	

each	child’s	DesiredSize property	to	determine	a	maximum	size	that	it	stores	in	the	local	

variable	compositeSize:

compositeSize.Width = Math.Max(compositeSize.Width, child.DesiredSize.Width);

compositeSize.Height = Math.Max(compositeSize.Height, child.DesiredSize.Height);

This	size	reflects	the	largest	width	of	all	the	children	and	the	largest	height.	

The	other	method	required	in	a	Panel	derivative	is	ArrangeOverride.	Here’s	the	one	in	the	

SingleCellGrid	class:	

Silverlight Project: File: (excerpt)

protected override Size ArrangeOverride(Size finalSize)

{

foreach (UIElement child in Children)

 {

child.Arrange(new Rect(new Point(), finalSize));

 }

return base.ArrangeOverride(finalSize);

}

The	ArrangeOverride	method	receives	an	argument	called	finalSize.	This	is	the	area	that	the	

panel	has	been	given	by	its	parent.	It	always	has	finite	dimensions.	

The	job	of	the	ArrangeOverride	method	is	to	arrange	its	children	on	its	surface.	This	is	

accomplished	by	enumerating	through	all	its	children	and	calling	Arrange	on	them.	The	

Arrange	method	requires	an	argument	of	type	Rect—a	rectangle	defined	by	a	Point	indicating	

216	

	

	 	 	

	 	 	

	 	 	 	

	 	 	 	

	 	

	 	 	 	 	

	 	 	

	 	

	 	

	

	 	 	 	 	

	 	 	

	

	 	 	

	 	

	

	

an	upperleft	corner	and	a	Size	indicating	a	width	and	height.	This	is	normally	the	only	

appearance	of	a	Rect	in	the	layout	process.	The	Rect	specifies	both	the	location	of	the	child	

relative	to	the	upperleft	corner	of	the	parent,	and	the	size	of	the	child.	

In	this	particular	case,	all	children	are	positioned	at	the	upperleft	corner	of	the	panel	and	

given	a	size	of	finalSize,	the	same	size	as	the	panel	itself	

You	might	think	that	the	size	passed	to	Arrange	should	be	the	DesiredSize of	the	child,	but	

that’s	not	correct	(at	least	for	this	particular	panel).	Very	often	this	finalSize	will	be	larger	than	

the	DesiredSize	of	the	child.	(In	an	extreme	case,	consider	an	Ellipse	with	a	DesiredSize	of	

zero.)	This	is	how	adjustments	are	made	in	the	child’s	Arrange	method	for	

HorizontalAlignment	and	VerticalAlignment.	In	SingleCellGrid,	the	child’s	Arrange	method	is	

called	with	a	size	of	finalSize:	

child.Arrange(new Rect(new Point(), finalSize));

The	Arrange method	compares	that	size	with	the	child’s	own	DesiredSize,	and	then	calls	the	

child’s	ArrangeOverride	method	with	an	altered	size	and	position	based	on	the	

HorizontalAlignment	and	VerticalAlignment	settings.	That’s	how	the	Ellipse	gets	a	nonzero	

size	when	its	DesiredSize	is	zero.	

The	ArrangeOverride	method	almost	always	returns	the	finalSize	argument,	which	is	the	value	

returned	from	the	method	in	the	base	Panel	class.	

Now	to	test	it	out.	The	MainPage.xaml	file	in	the	SingleCellGridDemo	project	needs	to	

reference	this	custom	class.	In	the	root	element,	an	XML	namespace	declaration	associates	the	

name	“local”	with	the	.NET	namespace	used	by	the	project:	

xmlns:local="clr-namespace:SingleCellGridDemo"

The	MainPage.xaml	file	nests	the	SingleCellGrid	in	the	content	grid,	and	then	fills	it	with	the	

same	four	elements	from	the	first	two	programs	in	this	chapter:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<local:SingleCellGrid>

<TextBlock Text="TextBlock aligned at right bottom"

 HorizontalAlignment="Right"

 VerticalAlignment="Bottom" />

<Image Source="Images/BuzzAldrinOnTheMoon.png" />

<Ellipse Stroke="{StaticResource PhoneAccentBrush}"

 StrokeThickness="24" />

<TextBlock Text="TextBlock aligned at left top"

 HorizontalAlignment="Left"

217	

	

	 	

	

	 	

	

	

	 	

	 	 	 	 	 	 	

	 	

	 	 	

	 	 	 	 	

	

	

	 	

	 	 	

	 	 	 	

	

	

	 	 	 	 	 	

 VerticalAlignment="Top" />

</local:SingleCellGrid>

</Grid>

You’ll	discover	that	this	program	displays	the	elements	the	same	way	as	the	earlier	

GridWithFourElements	program.	

A
Custom
Vertical
StackPanel
The	next	Panel	derivative	I’ll	show	you	is	the	StackPanel,	and	you’ll	see	how	it	differs	from	the	

singlecell	Grid.	To	keep	the	code	simple,	and	to	avoid	defining	properties,	I’m	going	to	call	

this	custom	class	VerticalStackPanel.	Here’s	the	MeasureOverride	method:	

Silverlight Project: VerticalStackPanelDemo File: VerticalStackPanel.cs (exerpt)

protected override Size MeasureOverride(Size availableSize)

{

Size compositeSize = new Size();

foreach (UIElement child in Children)

 {

child.Measure(new Size(availableSize.Width, Double.PositiveInfinity));

compositeSize.Width = Math.Max(compositeSize.Width,

child.DesiredSize.Width);

compositeSize.Height += child.DesiredSize.Height;

}

return compositeSize;

}

As	usual,	the	MeasureOverride	method	loops	through	all	its	children	and	calls	Measure	on	

each	of	them.	But	notice	that	the	Size offered	to	each	child	here	consists	of	the	width	of	the	

VerticalStackPanel	itself	and	a	height	of	infinity.	

The	children	are	essentially	being	asked	how	tall	they	need	to	be.	For	TextBlock,	this	is	easy:	

It’s	the	height	of	the	text.	The	Ellipse is	easy	as	well:	It’s	zero.	The	Image	element,	however,	

calculates	a	height	based	on	maintaining	the	correct	aspect	ratio	with	the	specified	width,	

which	might	be	a	different	size	than	in	the	singlecell	Grid.	

As	in	the	SingleCellGrid	version	of	MeasureOverride,	the	Width	property	of	the	local	

compositeSize variable	is	based	on	the	maximum	child	width.	But	in	this	panel	the	Height

property	of	compositeSize is	accumulated.	The	VerticalStackPanel needs	to	be	as	tall	as	the	

sum	of	the	heights	of	all	its	children.	

If	VerticalStackPanel	is	itself	in	a	StackPanel	with	a	Horizontal	orientation,	then	the	Width

property	of	availableSize	will	be	infinite,	and	Measure	will	be	called	on	each	child	with	a	size	

218

	

	 	 	 	 	 	 	

	 	 	 	 	

	

	 	 	 	 	

	 	

	 	 	 	

	 	 	 	 	

	 	 	

	 	

	 	 	 	

	 	

	 	

	 	 	

	

	 	

	 	

that	is	infinite	in	both	directions.	This	is	fine,	and	it’s	not	something	that	needs	to	be	handled	

as	a	special	case.	

In	SingleCellGrid,	the	ArrangeOverride method	positioned	each	of	its	children	in	the	same	

location.	The	VerticalStackPanel	needs	to	stack	its	children.	For	that	reason,	it	defines	local	

variables	named	x	and	y:	

Silverlight Project: VerticalStackPanelDemo File: VerticalStackPanel.cs (exerpt)

protected override Size ArrangeOverride(Size finalSize)

{

double x = 0, y = 0;

foreach (UIElement child in Children)

 {

child.Arrange(new Rect(x, y, finalSize.Width, child.DesiredSize.Height));

y += child.DesiredSize.Height;

 }

return base.ArrangeOverride(finalSize);

}

The	x	variable	remains	0	throughout	but	the	y variable	is	incremented	based	on	the	Height

property	of	each	child’s	DesiredSize.	The	Arrange	measure	is	called	with	x	and	y	indicating	the	

location	of	the	child	relative	to	the	panel’s	upperleft	corner.	The	Width	property	of	this	Rect

is	the	Width	property	of	finalSize,	but	the	Height	property	is	the	Height of	the	child’s	

DesiredSize.	This	is	how	much	vertical	space	was	previously	allocated	for	each	child	in	the	

MeasureOverride	method.	Giving	the	child	its	own	desired	height	in	the	Arrange	method	

essentially	voids	any	VerticalAlignment	property	set	on	the	child—an	effect	we	discovered	

empirically	in	earlier	explorations	of	the	vertical	StackPanel.	

In	general,	for	either	the	horizontal	or	vertical	dimension	or	both,	if	you	offer	a	child	an	

infinite	dimension	in	MeasureOverride,	you’ll	be	sizing	that	dimension	of	the	child	based	on	

DesiredSize	in	ArrangeOverride.	

The	MainPage.xaml	file	in	the	VerticalStackPanelDemo	project	is	the	same	as	the	one	I	

showed	at	the	outset	of	this	chapter	but	using	VerticalStackPanel:	

Silverlight Project: File: (exerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<local:VerticalStackPanel>

<TextBlock Text="TextBlock aligned at right bottom"

 HorizontalAlignment="Right"

 VerticalAlignment="Bottom" />

<Image Source="Images/BuzzAldrinOnTheMoon.png" />

219	

	

	

	 	 	 	

	 	 	

	 	 	

	 	 	

	 	 	 	

	 	 	 	

	

	 	 	 	 	

	 	 	

	 	 	

	 	 	 	

	 	 	

	

	 	

	

	 	

	 	 	 	

	 	

	 	 	

	 	 	

	 	

<Ellipse Stroke="{StaticResource PhoneAccentBrush}"

 StrokeThickness="24" />

<TextBlock Text="TextBlock aligned at left top"

 HorizontalAlignment="Left"

 VerticalAlignment="Top" />

</local:VerticalStackPanel>

</Grid>

The	display	is	the	same	as	the	earlier	program.	

When	this	VerticalStackPanel	is	inside	the	content	grid,	its	MeasureOverride	method	gets	the	

same	dimensions	as	the	content	grid	itself	(less	any	Margin	that	might	be	set	on	the	

VerticalStackPanel).	This	is	a	finite	dimension	that	you	actually	saw	in	the	SilverlightWhatSize	

program	in	Chapter	2.	

But	put	the	VerticalStackPanel	(or	a	vertical	StackPanel)	in	a	ScrollViewer	and	something	quite	

different	happens.	By	default,	the	ScrollViewer	displays	a	vertical	scrollbar,	so	the	ScrollViewer

(or	rather,	one	of	its	children)	calls	Measure	on	the	StackPanel	with	a	finite	width	but	an	

infinite	height.	The	DesiredHeight	of	the	vertical	StackPanel	then	gives	ScrollViewer	the	

information	it	needs	for	the	vertical	scrollbar	parameters.	

When	you	set	the	HorizontalScrollBarVisibility	property	of	ScrollViewer	to	Visible	or	Auto,	the	

ScrollViewer	calls	Measure	on	the	StackPanel	with	an	infinite	width	to	determine	the	desired	

width	of	the	panel.	The	ScrollViewer uses	this	information	to	set	its	horizontal	scrollbar	

parameters.	The	StackPanel then	passes	this	infinite	width	to	the	MeasureOverride	calls	to	its	

own	children.	This	has	the	potential	of	affecting	children	of	the	StackPanel	in	perhaps	

unanticipated	ways.	

For	example,	when	a	TextBlock	has	its	TextWrapping	property	set	to	Wrap,	it	uses	the	

availableSize.Width	value	in	its	own	MeasureOverride	call	to	determine	how	many	lines	will	

result	from	text	wrapping.	But	if	availableSize.Width	is	infinite—as	it	will	be	if	the	TextBlock	is	

somewhere	inside	a	ScrollViewer that	has	an	enabled	horizontal	scrollbar—then	TextBlock	has	

no	choice	but	to	return	a	size	with	the	text	not	wrapped	at	all.	

This	is	why,	in	the	TelephonicConversation	program,	it’s	not	a	good	idea	to	enable	the	

horizontal	scrollbar	on	the	ScrollViewer.	

The
Retro
Canvas
The	Canvas is	certainly	the	most	oldfashioned	sort	of	panel.	To	position	elements	within	the	

Canvas you	supply	horizontal	and	vertical	coordinates	relative	to	the	topleft	corner.	

The	Canvas	has	two	unusual	characteristics:	

220	

	

	 	

	 	 	 	 	 	

	 	 	

	 	

	

	

	

	

	

	 	 	

	 	 	

	 	

	 	

	 	 	 	 	

	 	 	

	 	 	

• In	its	MeasureOverride	method,	Canvas	always	calls	Measure	on	its	children	with	a	size	

consisting	of	both	an	infinite	width	and	an	infinite	height.	(Accordingly,	in	

ArrangeOverride,	Canvas	sizes	each	child	based	on	the	child’s	DesiredSize.)	

• From	its	MeasureOverride	method,	Canvas	returns	a	size	consisting	of	a	zero	width	and	a	

zero	height.	

The	first	item	means	that	children	of	a	Canvas	are	always	displayed	in	their	smallest	possible	

sizes,	which	is	nothing	at	all	for	an	Ellipse	and	Rectangle,	and	the	native	pixel	size	of	a	bitmap	

for	an	Image.	Any	HorizontalAlignment	of	VerticalAlignment	properties	set	on	children	of	a	

Canvas	have	no	effect.	

The	second	item	implies	that	Canvas has	no	footprint	of	its	own	in	the	Silverlight	layout	

system.	(You	can	override	that	with	explicit	Width	or	Height settings	on	the	Canvas.)	This	is	

actually	very	useful	in	some	circumstances	where	you	want	an	element	to	exist	somewhere	

“outside”	of	the	layout	system	and	not	affect	the	positioning	of	other	elements.	

Here’s	a	program	that	uses	a	Canvas	to	display	seven	Ellipse	elements	in	a	type	of	overlapping	

chain	in	the	shape	of	a	catenary.	A	Style	object	(defined	in	the	Resources	collection	of	the	

Canvas itself)	gives	each	Ellipse	a	finite	Width	and	Height;	otherwise	they	would	not	show	up	

at	all.	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1">

<Canvas>

<Canvas.Resources>

<Style x:Key="ellipseStyle"

 TargetType="Ellipse">

<Setter Property="Width" Value="100" />

<Setter Property="Height" Value="100" />

<Setter Property="Stroke" Value="{StaticResource PhoneAccentBrush}"

/>

<Setter Property="StrokeThickness" Value="10" />

</Style>

</Canvas.Resources>

<Ellipse Style="{StaticResource ellipseStyle}"

 Canvas.Left="0" Canvas.Top="0" />

<Ellipse Style="{StaticResource ellipseStyle}"

 Canvas.Left="52" Canvas.Top="53" />

<Ellipse Style="{StaticResource ellipseStyle}"

 Canvas.Left="116" Canvas.Top="92" />

<Ellipse Style="{StaticResource ellipseStyle}"

 Canvas.Left="190" Canvas.Top="107" />

221	

	

	

	

	

	 	 	 	 	

	 	

	 	

	

	 	

	

	 	 	

<Ellipse Style="{StaticResource ellipseStyle}"

 Canvas.Left="263" Canvas.Top="92" />

<Ellipse Style="{StaticResource ellipseStyle}"

 Canvas.Left="326" Canvas.Top="53" />

<Ellipse Style="{StaticResource ellipseStyle}"

 Canvas.Left="380" Canvas.Top="0" />

</Canvas>

</Grid>

Notice	I’ve	removed	the	Margin	on	the	content	panel	so	the	math	comes	out	to	480.	Here’s	

what	it	look	like:	

The	Canvas is	ideal	for	the	arbitrary	positioning	of	elements,	which	of	course	is	much	more	

associated	with	vector	graphics	programming	than	with	control	layout.	

But	get	a	load	of	that	oddlooking	syntax,	rather	different	from	anything	in	XAML	I’ve	yet	

described:	

<Ellipse Style="{StaticResource ellipseStyle}"

 Canvas.Left="190" Canvas.Top="107" />

Those	Left	and	Top	properties	position	the	upperright	corner	of	the	element	relative	to	the	

upperright	corner	of	the	Canvas.	The	properties	appear	to	be	defined	by	the	Canvas	class,	

and	yet	they	are	set	on	the	Ellipse	element!	When	I	first	saw	this	syntax	many	years	ago,	I	was	

222	

	

	 	

	 	 	

	

	

	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	

	 	 	

	 	 	

	 	 	 	

	 	

	

	 	

	

	 	

	

	

baffled.	Why	does	the	Canvas	class	need	to	define	Left	and	Top	properties?	Shouldn’t	

FrameworkElement	define	these	properties?		

Of	course,	in	graphical	programming	environments	of	days	gone	by,	everybody	has	Left	and	

Top	properties	because	that’s	how	the	system	works.	

But	it	doesn’t	quite	make	sense	for	Silverlight.	Canvas	needs	for	its	children	to	have	Left	and	

Top properties	set,	but	other	panels	do	not.	In	fact,	other	panels—including	custom	panels	

that	you	have	yet	to	write	or	even	conceive—might	need	quite	different	properties	set	on	

their	children.	

For	this	reason,	Silverlight	supports	the	concept	of	attached properties.	The	Left	and	Top

properties	are	indeed	defined	by	the	Canvas	class	(and	you’ll	see	exactly	how	in	Chapter	11)	

but	you	set	these	properties	on	the	children	on	the	Canvas.	(You	can	set	them	on	elements	

that	are	not	actually	children	of	a	Canvas,	but	they	will	be	ignored.)	

It’s	instructive	to	look	at	a	program	that	sets	these	attached	properties	in	code.	The	

EllipseMesh	program	creates	a	bunch	of	overlapping	ellipses	in	the	content	grid.	The	XAML	

file	has	an	empty	Canvas	with	a	SizeChanged	event	handler	assigned:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Canvas Name="canvas"

 SizeChanged="OnCanvasSizeChanged" />

</Grid>

Although	Canvas	has	no	footprint	in	the	layout	system,	it	still	has	a	size	and	a	SizeChanged

event.	With	every	SizeChanged	call,	the	event	handler	empties	out	the	Canvas	(just	for	

convenience)	and	fills	it	up	again	with	new	Ellipse	objects:	

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage

{

 public MainPage()

 {

InitializeComponent();

 }

 void OnCanvasSizeChanged(object sender, SizeChangedEventArgs args)

 {

canvas.Children.Clear();

for (double y = 0; y < args.NewSize.Height; y += 75)

 for (double x = 0; x < args.NewSize.Width; x += 75)

 {

223	

	

	

	

	

	 	 	 	

	 	

Ellipse ellipse = new Ellipse

 {

 Width = 100,

 Height = 100,

 Stroke = this.Resources["PhoneAccentBrush"] as Brush,

 StrokeThickness = 10

 };

Canvas.SetLeft(ellipse, x);

Canvas.SetTop(ellipse, y);

 canvas.Children.Add(ellipse);

 }

 }

}

Here’s	what	it	looks	like:	

These	two	statements	set	the	Left	and	Top	attached	properties:	

Canvas.SetLeft(ellipse, x);

Canvas.SetTop(ellipse, y);

These	are	two	static	methods	defined	by	the	Canvas	class.	You	can	call	these	methods	either	

before	or	after	you	add	the	child	to	the	Children	collection	of	the	Canvas.	Because	these	

methods	are	static,	you	can	even	call	them	when	a	Canvas object	does	not	yet	exist.	

224	

	

	 	 	 	

	

	

	 	

	

	 	 	 	

	 	 	

	 	 	

	 	 	 	

	 	

	

	 	

	

	 	 	 	 	 	 	

	 	 	 	 	

	

	 	

	 	 	 	

	 	 	 	

	 	 	

	 	 	 	 	 	 	

	 	

	 	

Even	more	revealing	is	knowing	how	these	two	static	methods	are	defined	in	the	Canvas	class.	

Right	in	the	EllipseMesh	program	you	can	replace	the	two	static	method	calls	with	the	

following	statements:	

ellipse.SetValue(Canvas.LeftProperty, x);

ellipse.SetValue(Canvas.TopProperty, y);

These	equivalent	calls	make	it	clear	that	something	is	actually	being	set	on	the	Ellipse	objects.	

The	SetValue	method	is	defined	by	DependencyObject—a	very	basic	class	in	the	Silverlight	

class	hierarchy—and	LeftProperty	and	RightProperty	are	(despite	their	names)	actually	static	

fields	of	type	DependencyProperty	defined	by	Canvas.	

My	guess	is	that	SetValue	accesses	an	internal	dictionary	created	and	maintained	by	

DependencyObject	where	the	first	argument	to	SetValue is	the	dictionary	key	and	the	second	

is	the	value.	When	Canvas is	laying	out	its	children	in	its	ArrangeOverride	method,	it	can	

access	these	values	for	a	particular	child	element	using	either:	

double x = GetLeft(child);

double y = GetTop(child);

or	the	equivalent:	

double x = (double)child.GetValue(LeftProperty);

double y = (double)child.GetValue(TopProperty);

The	GetValue method	accesses	the	internal	dictionary	in	the	child	and	returns	an	object	of	

type	object	that	needs	to	be	cast	here	to	a	double.	

I’ll	show	you	a	Canvas	clone	in	Chapter	11	and	you’ll	see	how	to	define	your	own	attached	

properties.		

Watch	out:	I	described	how	to	replace	the	Canvas.SetLeft	and	Canvas.SetTop	calls	in	

EllipseMesh	with	equivalent	calls	to	SetValue.	But	this	call:	

Canvas.SetLeft(ellipse, 57);

is	not equivalent	to	this	call:	

ellipse.SetValue(Canvas.LeftProperty, 57);

The	second	argument	of	Canvas.SetLeft	is	defined	to	be	of	type	double	but	the	second	

argument	of	the	generalpurpose	SetValue	method	is	defined	to	be	of	type	object.	When	the	

C#	compiler	parses	that	SetValue	call	it	will	assume	the	number	is	an	int.	Only	at	runtime	will	

the	error	be	caught.	You	can	avoid	the	problem	by	making	it	explicitly	a	double:	

ellipse.SetValue(Canvas.LeftProperty, 57.0);

Although	we	speak	of	the	Left	and	Top	attached	properties	of	Canvas,	nothing	defined	by	

Canvas	is	actually	named	Left	or	Top!	Canvas	defines	static	fields	named	LeftProperty	and	

225	

	

	

	 	

	 	 	 	

	 	 	

	 	 	 	 	

	 	

	 	 	

	

	 	 	 	 	

	

	 	

	 	 	 	 	

	 	 	 	

	 	 	 	

	 	

	 	 	

		

	 	 	 	

	 	 	 	 	

	 	 	 	

	 	

	 	

	

	

	 	

TopProperty,	and	static	methods	named	SetLeft,	SetTop,	GetLeft	and	GetTop,	but	nothing	

named	Left	or	Top.	The	XAML	syntax	shown	here	

<Ellipse Style="{StaticResource ellipseStyle}"

 Canvas.Left="190" Canvas.Top="107" />

is	actually	rendered	by	making	calls	to	Canvas.SetLeft	and	Canvas.SetTop.	

You’ll	see	other	attached	properties	around.	The	standard	MainPage.xaml	file	has	an	attached	

property	set	on	its	root	element:	

shell:SystemTray.IsVisible="True"

In	fact,	the	entire	SystemTray	class	exists	for	the	sole	purpose	of	defining	this	attached	

property	so	you	can	set	it	on	the	PhoneApplicationPage	derivative.	It’s	probably	the	

PageApplicationFrame that	hunts	for	this	property	on	each	page	to	determine	whether	the	

system	tray	should	be	visible.	

Canvas
and
ZIndex
The	Canvas has	a	third	attached	property	named	ZIndex	that	you	can	use	to	override	the	

default	layering	of	elements.		

As	you’ve	seen,	elements	in	a	panel	are	layered	by	the	order	in	which	they	appear	in	the	

Children	collection.	The	earlier	elements	in	the	collection	are	covered	by	the	later	elements.		

You	can	alter	this	behavior	by	setting	the	Canvas.ZIndex attached	property	on	one	or	more	

children.	The	name	refers	to	the	imaginary	Z	axis	that	extends	out	from	the	screen.	Elements	

with	higher	Z	indices	appear	on	top	of	(and	might	even	completely	obscure)	siblings	with	

lower	Z	indices.	If	two	siblings	have	the	same	Canvas.ZIndex attached	property—and	by	

default	no	element	has	a	Canvas.ZIndex	value	and	hence	is	assumed	to	have	a	value	of	zero—	

then	the	ordering	in	the	Children	collection	is	used	instead.	

Although	this	Canvas.ZIndex attached	property	is	defined	by	the	Canvas class,	it	actually	

works	with	any	type	of	panel.	If	you’re	writing	a	custom	panel	class,	handling	Z	indices	is	not	

something	you	have	to	worry	about.	It’s	taken	care	of	automatically	by	the	layout	system.	

The
Canvas
and
Touch

In	Chapter	8	I	showed	you	how	to	move	elements	around	the	screen	in	response	to	touch	by	

altering	transform	objects	set	to	the	RenderTransform property.	You	can	also	move	elements	

around	a	Canvas	by	setting	the	Left	and	Top attached	properties	in	code.	

Here’s	a	simple	program	called	TouchCanvas.	A	Canvas	hosts	three	Ellipse	elements	colored	

red,	green,	and	blue:	

226	

	

	

	 	 	

	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Canvas Name="canvas">

<Ellipse Canvas.Left="50"

 Canvas.Top="50"

 Width="100"

 Height="100"

 Fill="Red" />

<Ellipse Canvas.Left="150"

 Canvas.Top="150"

 Width="100"

 Height="100"

 Fill="Green" />

<Ellipse Canvas.Left="250"

 Canvas.Top="250"

 Width="100"

 Height="100"

 Fill="Blue" />

</Canvas>

</Grid>

The	code	file	overrides	the	OnManipulationStarted	and	OnManipulationDelta	methods	in	

MainPage.	Setting	the	ManipulationContainer	property	to	the	Canvas	in	the	first	override	isn’t	

strictly	required.	

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage

{

 public MainPage()

 {

InitializeComponent();

 }

 protected override void OnManipulationStarted(ManipulationStartedEventArgs args)

 {

args.ManipulationContainer = canvas;

base.OnManipulationStarted(args);

 }

 protected override void OnManipulationDelta(ManipulationDeltaEventArgs args)

 {

UIElement element = args.OriginalSource as UIElement;

Point translation = args.DeltaManipulation.Translation;

Canvas.SetLeft(element, Canvas.GetLeft(element) + translation.X);

Canvas.SetTop(element, Canvas.GetTop(element) + translation.Y);

args.Handled = true;

227	

	

	 	

	 	

	 	 	 	 	

	 	 	 	 	

	

	 	

	 	 	 	 	

	 	 	 	 	 	 	 	

	

	 	 	

	 	 	

	 	

	 	 	 	

	 	 	 	 	 	

	 	 	 	

	 	 	 	

	 	 	

	

	

	 	

	 	 	

	 	 	

	

	

	

	 	

	 	 	 	

	 	

		

base.OnManipulationDelta(args);

 }

}

The	OnManipulationDelta	override	moves	one	of	the	ellipses	by	obtaining	its	Left	and	Top

settings,	adding	the	delta	translation	factors,	and	then	setting	them	back,	all	in	fairly	short	and	

clean	statements.	

The
Mighty
Grid
The	Grid	should	be	your	default	choice	of	panel.	It	is	both	flexible	and	powerful,	both	simple	

and	versatile.	I’m	only	going	to	show	you	one	sample	program	using	the	Grid	in	this	chapter,	

but	that’s	only	because	the	rest	of	the	book	has	plenty	more.	

The	Grid	is	somewhat	reminiscent	of	an	HTML	table,	but	with	several	differences:	Unlike	the	

HTML	table,	the	Grid doesn’t	do	formatting.	It’s	strictly	for	layout.	There’s	no	concept	of	

headers,	for	example,	or	builtin	cell	dividers.	Also,	unlike	the	HTML	table,	the	use	of	the	Grid

is	actually	encouraged.	

A	Grid	has	a	certain	number	of	rows	and	columns;	rows	can	be	different	heights;	columns	can	

be	different	widths.	A	child	of	the	Grid normally	occupies	a	particular	row	and	column	but	it	

can	also	span	multiple	rows	and	multiple	columns.	This	sounds	versatile	(and	it	is),	but	it	

comes	with	something	of	a	price.	Although	you	can	arbitrarily	add	children	to	a	StackPanel	or	

a	Canvas,	with	a	Grid	you	really	need	to	know	how	many	rows	and	columns	you	need	to	

accommodate	all	the	children.	You	can	add	rows	and	columns	from	code	at	runtime,	but	if	

you’re	defining	the	Grid	entirely	in	XAML	you	need	to	know	beforehand.	

Nesting	Grid	panels	is	common,	but	don’t	get	carried	away,	particularly	if	something	is	going	

on	in	your	program	that	frequently	generates	layout	cycles.	Overly	complex	nesting	can	bog	

down	layout.	

The	Grid	defines	two	properties	named	RowDefinitions	and	ColumnDefinitions.	These	are,	

respectively,	collections	of	RowDefinition	and	ColumnDefinition	objects.	These	objects	define	

the	height	of	each	row	and	the	width	of	each	column,	and	you	have	three	choices:	

• the	word	“Auto”	

• a	fixed	amount	in	pixels	

• an	asterisk,	or	a	number	followed	by	an	asterisk	(called	“star”)	

The	first	and	the	last	are	most	common.	The	first	indicates	that	the	cell	is	sized	to	fit	the	

element	in	the	cell.	(The	Grid	interrogates	the	size	of	that	element	in	its	MeasureOverride

method	using	infinite	dimensions.)	Rows	and	columns	marked	with	asterisks	are	used	to	

divide	remaining	space	proportionally.	

228	

	

	 	 	 	

	 	 	

	 	

	 	 	

	

	

	 	 	

	 	 	 	 	 	

	 	

	 	

As	you’ve	seen,	it’s	common	that	StackPanel	elements	contain	more	children	than	can	be	

displayed	on	the	screen;	the	Grid	is	usually	defined	so	that	doesn’t	happen.	

You	indicate	the	particular	row	and	column	of	an	element	with	the	attached	properties	

Grid.Row	and	Grid.Column.	Row	and	column	numbers	begin	with	zero	at	the	upperleft.	You	

can	specify	that	a	particular	element	occupies	additional	rows	or	additional	columns	with	

attached	properties	Grid.RowSpan	and	Grid.ColumnSpan.	

Here’s	an	example:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Grid.RowDefinitions>

<RowDefinition Height="Auto" />

<RowDefinition Height="*" />

<RowDefinition Height="Auto" />

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>

<ColumnDefinition Width="2*" />

<ColumnDefinition Width="*" />

</Grid.ColumnDefinitions>

<TextBlock Grid.Row="0"

 Grid.Column="0"

 Grid.ColumnSpan="2"

Text="Heading at top of Grid"

 HorizontalAlignment="Center" />

<Image Grid.Row="1"

 Grid.Column="0"

 Source="Images/BuzzAldrinOnTheMoon.png" />

<Ellipse Grid.Row="1"

 Grid.Column="1"

 Stroke="{StaticResource PhoneAccentBrush}"

 StrokeThickness="6" />

<TextBlock Grid.Row="2"

 Grid.Column="0"

 Grid.ColumnSpan="2"

Text="Footer at bottom of Grid"

 HorizontalAlignment="Center" />

</Grid>

I	just	added	the	row	and	column	definitions	to	the	existing	content	grid.	Each	element	in	the	

Grid	has	explicit	Grid.Row	and	Grid.Column	settings,	but	you	can	omit	them	for	values	of	zero.	

Both	the	TextBlock	at	the	top	and	TextBlock	at	the	bottom	span	the	two	columns	to	be	

centered	in	the	whole	grid.	

229	

	

	 	

	 	 	 	 	 	

	

	

	

	 	

	 	 	 	

	 	

	

The	two	columns	were	apportioned	so	the	first	column	is	twice	as	wide	as	the	second.	The	

width	of	that	first	column	determines	the	size	of	the	Image,	which	is	then	centered	vertically	

in	the	cell:	

The	rows	and	columns	change	size	when	the	phone	is	tilted,	but	the	overall	layout	remains	

the	same:	

Try	setting	HorizontalAlignment	and	VerticalAlignment	properties	on	this	Grid.	You’ll	discover	

that	the	size	of	the	grid	is	constrained	by	the	native	pixel	dimensions	of	the	bitmap.	

The	Grid	named	ContentPanel	itself	has	a	setting	of	the	Grid.Row	attached	property,	but	this	

refers	to	the	second	row	of	its	parent	Grid—the	one	named	LayoutRoot.	The	first	row	of	that	

Grid	is	occupied	by	the	StackPanel	with	the	two	titles.	

230	

	

	 	 	

	 	 	

And	now,	finally,	we	have	reached	the	point	in	the	accumulation	of	knowledge	of	Silverlight	

and	XAML	where	nothing	in	MainPage.xaml	should	be	a	mystery.	

231		

	

	 	 	

	

	 	 	

	 	 	 	

	

	

	 	 	

	

	 	

	 	

	

	 	

	

	

	

	 	 	 	 	

	 	 	 	

	 	 	

	

	

	 	 	

	

	 	 	 	

	 	

	 	

	 	 	 	 	 	 	

	 	

	 	 	

	 	 	 	

Chapter	10	

The App Bar and Controls
You	won’t	be	surprised	to	learn	that	Silverlight	for	Windows	Phone	supports	several	standard	

controls,	including	a	ScrollBar	and	Slider for	selecting	from	a	continuous	range	of	values,	a	

TextBox	for	entering	and	editing	text,	and	the	common	array	of	buttons,	including	CheckBox

(for	on/off	options),	RadioButton	(for	a	group	of	mutuallyexclusive	options),	and	the	basic	

Button	for	initiating	commands.	

At	this	point,	you’re	probably	more	than	ready	to	dive	into	Silverlight	controls,	particularly	

since	a	couple	of	the	programs	in	this	chapter	are	actually	useful	and	might	even	be	classified	

as	“real”	Windows	Phone	7	applications.	

But	before	I	discuss	the	standard	controls,	I	want	to	explore	an	alternative	to	these	controls.	

When	programming	for	Windows	Phone	7,	basic	program	commands	and	options	might	best	

be	implemented	in	a	mechanism	developed	specifically	for	the	phone	and	which	is	intended	

to	provide	a	consistent	user	experience	for	phone	users.	

This	is	known	as	the	ApplicationBar	and	commonly	referred	to	as	the	app bar.	

ApplicationBar
Icons

The	ApplicationBar	serves	the	same	role	as	a	menu	or	toolbar	that	you	might	find	in	a	

conventional	Windows	program.	It	also	shares	some	visual	and	functional	similarities	with	

those	older	structures.	If	you	only	need	a	couple	buttons	in	your	program	for	some	common	

commands,	and	perhaps	a	little	menu,	the	ApplicationBar	is	what	you	should	use.	There	is	no	

conventional	menu	or	toolbar	defined	in	Silverlight	at	all	(although	you	can	certainly	make	

one	yourself).	

The	ApplicationBar	and	related	classes	(ApplicationBarIconButton	and	

ApplicationBarMenuItem)	are	defined	in	the	Microsoft.Phone.Shell namespace.	These	classes	

derive	from	Object	and	exist	entirely	apart	from	the	whole	DependencyObject,	UIElement,	and	

FrameworkElement	class	hierarchy	of	conventional	Silverlight	programming.	Strictly	speaking,	

the	ApplicationBar	is	not part	of	the	visual	tree	of	your	page.	

An	ApplicationBar	object	is	always	set	to	the	ApplicationBar property	of	a	

PhoneApplicationPage.	When	the	phone	is	held	upright,	the	ApplicationBar	always	appears	at	

the	bottom	of	the	page,	and	stays	in	the	same	location	when	the	phone	is	turned	sideways	or	

upside	down.	The	ApplicationBar	is	not	at	all	customizable.	

An	ApplicationBar	can	contain	up	to	four	buttons.	These	are	sometimes	referred	to	as	icons

and	they	always	display	images.	These	images	are	generally	PNG	files;	the	bitmaps	themselves	

should	be	48	pixels	square	and	mostly	transparent.	The	actual	image	should	be	white	and	

232	

	

	

	 	 	

	 	

	 	 	

	 	 	

	 	

	 	

	 	 	

	 	 	

	 	 	 	

	 	 	 	 	 	

	 	 	

	 	

	

	

	

	

	 	

	

	 	

	 	 	

	 	 	

	 	 	

	

	

occupy	a	26pixels	square	area	in	the	middle	of	the	bitmap.	A	collection	of	suitable	bitmaps	

can	be	downloaded	from	

http://www.microsoft.com/downloads/details.aspx?FamilyID=369b20f79d304cff8a1b

f80901b2da93.	You	should	study	these	images	before	designing	your	own.	

I’ll	assume	you’ve	downloaded	the	bitmaps.	They	are	stored	in	two	folders	named	light	(black	

images	on	white	backgrounds)	and	dark	(white	images	on	transparent	background).	Although	

the	bitmaps	in	the	light	folder	are	easier	to	see	in	Windows	Explorer,	in	your	programs	you	

should	always	use	the	corresponding	files	from	the	dark	folder.	

The	MoviePlayer	project	contains	a	MediaElement	to	play	a	movie,	and	the	ApplicationBar

contains	icons	for	Play,	Pause,	rewind	to	the	beginning,	and	go	to	the	end.	

When	creating	a	project	in	Visual	Studio	that	uses	the	ApplicationBar,	you’ll	want	a	folder	in	

the	project	for	the	icons.	Right	click	the	project	name	and	choose	Add	and	New	Folder.	(Or	

pick	Add	New	Folder	from	the	Project	menu.)	Name	the	folder	Images	or	something	like	that.	

Right	click	that	folder	name,	choose	Add	and	Existing	Item,	and	navigate	to	the	dark	folder	of	

the	bitmaps	you’ve	downloaded.	For	MoviePlayer	I	selected:	

• appbar.transport.ff.rest.png	

• appbar.transport.pause.rest.png	

• appbar.transport.play.rest.png	

• appbar.transport.rew.rest.png	

These	are	the	four	standard	images	associated	with	a	videotape	“transport”	device	metaphor.	

This	is	crucial:	Click	each	of	these	files	as	listed	under	the	Images	directory	to	display	its	

Properties	page.	(You	might	have	to	rightclick	the	file	and	select	Properties.)	Set	the	Build	

Action	field	to	Content.	The	ApplicationBar	is	not	smart	enough	to	find	the	images	if	the	Build	

Action	is	Resource.	

The	ApplicationBar	is	not	part	of	standard	Silverlight,	so	an	XML	namespace	declaration	needs	

to	associate	the	XML	“shell”	namespace	with	the	.NET	namespace	Microsoft.Phone.Shell.	The	

standard	MainPage.xaml	file	provides	this	for	you	already:	

xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone"

MainPage.xaml	will	also	have	a	sample	ApplicationBar	at	the	bottom	of	the	file.	You	can	

uncomment	and	alter	that	one,	or	add	your	own	right	before	the	

phone:PhoneApplicationPage	end	tag:	

<phone:PhoneApplicationPage.ApplicationBar>

<shell:ApplicationBar>

<shell:ApplicationBarIconButton

 IconUri="Images/appbar.transport.rew.rest.png"

233	

	

	 	 	 	

	 	

	 	

	

	

	

	 	 	

	

 Text="rewind" />

<shell:ApplicationBarIconButton

 IconUri="Images/appbar.transport.play.rest.png"

 Text="play" />

<shell:ApplicationBarIconButton

 IconUri="Images/appbar.transport.pause.rest.png"

 Text="pause" />

<shell:ApplicationBarIconButton

IconUri="Images/appbar.transport.ff.rest.png"

Text="to end" />

</shell:ApplicationBar>

</phone:PhoneApplicationPage.ApplicationBar>

ApplicationBar	has	a	property	named	Buttons which	is	the	content	property	for	the	class.	The	

Buttons	collection	can	contain	no	more	than	four	ApplicationBarIconButton	objects.	The	

IconUri	and	Text	fields	are	required!	The	text	description	should	be	short;	it	is	converted	to	

lowercase	for	display	purposes.	

Build	and	deploy	the	program	as	it	exists	at	this	point.	Here’s	what	it	looks	like.	(I’ve	also	

removed	the	page	title.)	

As	you	press	each	icon,	it	flashes	and	wiggles	a	bit	for	feedback.	If	you	press	the	ellipsis,	the	

buttons	rise	up	to	display	the	explanatory	Text	property:	

234

	

	

	 	 	 	

	 	 	

	

	

	 	 	

	 	 	

	 	 	 	 	

	 	

	 	 	 	

When	you	turn	the	phone	sideways,	the	ApplicationBar	stays	in	the	same	place	relative	to	the	

phone,	but	if	you’ve	set	the	SupportedOrientations	property	to	PortraitOrLandscape,	the	

images	themselves	turn	sideways:	

Watch	out	for	this	feature:	Don’t	use	icons	that	will	cause	user	disorientation	when	the	phone	

is	oriented	sideways.	If	you	have	one	icon	with	a	horizontal	bar,	and	another	with	a	vertical	

bar,	you’re	going	to	confuse	your	users	and,	quite	possibly,	yourself.	

If	you’d	like	to	define	an	ApplicationBar	in	XAML	but	you	don’t	want	it	to	be	initially	

displayed,	you	can	set	the	IsVisible	property	to	false:	

<shell:ApplicationBar IsVisible="False">

235	

	

	 	 	 	 	

	

	 	 	

	 	 	

	 	 	 	 	

		

	 	 	 	

	 	 	 	

	

	 	 	 	 	

	 	

	

	 	 	

	

	 	 	 	

	 	

	 	 	 	 	 	 	

	 	

	 	 	 	

	 	

	

You	can	later	set	that	property	to	true in	code.	But	don’t	bother	setting	the	x:Name	attribute	

on	the	ApplicationBar	to	access	it	from	code.	Inexplicably,	you	can’t	reference	an	

ApplicationBar	object	in	code	by	name.	Instead,	get	at	it	through	the	ApplicationBar	property	

of	MainPage:	

this.ApplicationBar.IsVisible = true;

ApplicationBar	also	defines	ForegroundColor	and	BackgroundColor	properties	that	you	should	

probably	ignore.	By	default	the	ApplicationBar colors	will	be	properly	swapped	if	you	change	

the	color	theme	of	the	phone.	

ApplicationBar	also	defines	an	Opacity	property,	whose	familiar	name	disguises	an	

unconventional	effect.	The	Opacity property	involves	the	background	of	the	ApplicationBar

rather	than	the	foreground;	it	never	affects	the	icon	images	themselves.	

The	Opacity	property	is	1	by	default,	which	means	that	the	background	of	the	ApplicationBar

is	opaque.	The	background	is	colored	using	the	resource	referenced	as	PhoneChromeBrush—	

a	very	darkish	gray	for	the	dark	theme,	and	a	very	lightish	gray	for	the	light	theme.	

With	an	Opacity	property	of	1,	the	ApplicationBar	takes	space	away	from	the	rest	of	the	

content	of	the	page.	For	any	other	Opacity	values,	other	content	on	the	page	shares	the	space	

with	the	ApplicationBar. The	ApplicationBar	is	always	on	top,	and	when	Opacity	goes	down	to	

0,	the	ApplicationBar	has	an	entirely	transparent	background	and	the	icons	are	displayed	on	

top	of	whatever	happens	to	be	in	that	area	of	the	content	grid.	Documentation	recommends	

you	stick	to	Opacity	values	of	1,	0.5,	or	0.	

If	a	particular	icon	is	not	valid	at	a	particular	time,	you	can	set	the	IsEnabled	property	of	

ApplicationBarIconButton	to	false.	For	example,	the	Play	and	Pause	buttons	shouldn’t	both	be	

enabled	at	the	same	time.	Here’s	how	to	disable	the	Pause	button	at	startup:	

<shell:ApplicationBarIconButton

IconUri="Images/appbar.transport.pause.rest.png"

Text="Pause"

IsEnabled="False" />

236	

	

	

	

	

	 	

	 	 	 	

	 	 	 	 	

	 	 	

	 	 	

	 	 	 	 	 	

	

Now	it	looks	like	this:	

You’ll	probably	want	to	enable	that	button	in	code	later	on,	but	once	again,	you	can’t	use	

x:Name.	Because	this	is	the	third	button	(and	hence	has	an	index	in	the	Buttons	collection	of	

2)	you	can	set	the	IsEnabled property	in	code	like	this:	

(this.ApplicationBar.Buttons[2] as ApplicationBarIconButton).IsEnabled = true;

You’ll	probably	be	disabling	the	Play	button	at	the	same	time:	

(this.ApplicationBar.Buttons[1] as ApplicationBarIconButton).IsEnabled = false;

Actually,	if	the	movie	is	accessed	over	the	Internet,	you’ll	probably	want	to	disable	all	the	

buttons	until	you’ve	actually	opened	the	media	and	know	you’re	going	to	be	able	to	play	the	

movie!	

The	program	also	needs	to	know	when	a	user	has	clicked	an	enabled	button.	Set	the	Click

event	to	a	handler:	

<shell:ApplicationBarIconButton

 IconUri="Images/appbar.transport.play.rest.png"

 Text="Play"

 Click="OnAppBarPlayClick" />

In	the	codebehind	file,	the	handler	is	based	on	the	EventHandler	delegate:	

void OnAppbarPlayClick(object sender, EventArgs args)

{

237	

	

	 	 	 	

	

	

	 	

 …

}

The	final	MoviePlayer	project	has	an	ApplicationBar	defined	like	this:	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.ApplicationBar>

<shell:ApplicationBar x:Name="appbar">

<shell:ApplicationBarIconButton

 x:Name="appbarRewindButton"

 IconUri="Images/appbar.transport.rew.rest.png"

 Text="rewind"

 IsEnabled="False"

 Click="OnAppbarRewindClick" />

<shell:ApplicationBarIconButton

 x:Name="appbarPlayButton"

 IconUri="Images/appbar.transport.play.rest.png"

 Text="play"

 IsEnabled="False"

 Click="OnAppbarPlayClick" />

<shell:ApplicationBarIconButton

 x:Name="appbarPauseButton"

 IconUri="Images/appbar.transport.pause.rest.png"

 Text="pause"

 IsEnabled="False"

 Click="OnAppbarPauseClick" />

<shell:ApplicationBarIconButton

 x:Name="appbarEndButton"

 IconUri="Images/appbar.transport.ff.rest.png"

 Text="to end"

 IsEnabled="False"

 Click="OnAppbarEndClick" />

</shell:ApplicationBar>

</phone:PhoneApplicationPage.ApplicationBar>

Yes,	I	have	assigned	x:Name attributes	to	all	the	buttons,	but	you’ll	see	shortly	that	I’ve	also	

reassigned	them	in	code.	

The	content	grid	contains	the	MediaElement	to	play	the	movie	and	two	TextBlock	elements	

for	some	status	and	error	messages:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<MediaElement Name="mediaElement"

 Source="http://www.charlespetzold.com/Media/Walrus.wmv"

 AutoPlay="False"

238

	

	 	 	 	

	

	 	

	

	 	 	 	

 MediaOpened="OnMediaElementMediaOpened"

 MediaFailed="OnMediaElementMediaFailed"

 CurrentStateChanged="OnMediaElementCurrentStateChanged" />

<TextBlock Name="statusText"

 HorizontalAlignment="Left"

 VerticalAlignment="Bottom" />

<TextBlock Name="errorText"

 HorizontalAlignment="Right"

 VerticalAlignment="Bottom"

 TextWrapping="Wrap" />

</Grid>

Notice	that	the	AutoPlay	property	on	the	MediaElement is	set	to	false	so	the	movie	doesn’t	

start	playing	when	it’s	loaded.	That’s	all	handled	in	the	codebehind	file.	

The	constructor	of	the	MainPage	assigns	x:Name	attributes	to	the	appropriate	

ApplicationBarIconButton	so	they	can	be	conveniently	referenced	in	the	rest	of	the	class:	

Silverlight Project: File: (excerpt)

public MainPage()

{

 InitializeComponent();

// Re-assign names already in the XAML file

 appbarRewindButton = this.ApplicationBar.Buttons[0] as ApplicationBarIconButton;

 appbarPlayButton = this.ApplicationBar.Buttons[1] as ApplicationBarIconButton;

 appbarPauseButton = this.ApplicationBar.Buttons[2] as ApplicationBarIconButton;

 appbarEndButton = this.ApplicationBar.Buttons[3] as ApplicationBarIconButton;

}

The	four	handlers	for	the	ApplicationBar buttons	have	just	one	line	of	code	each:	

Silverlight Project: File: (excerpt)

void OnAppbarRewindClick(object sender, EventArgs args)

{

 mediaElement.Position = TimeSpan.Zero;

}

void OnAppbarPlayClick(object sender, EventArgs args)

{

 mediaElement.Play();

}

void OnAppbarPauseClick(object sender, EventArgs args)

{

 mediaElement.Pause();

239

	

	

	 	

	 	 	

	 	

	 	 	 	

	 	 	 	 	

	

	 	 	 	 	 	

}

void OnAppbarEndClick(object sender, EventArgs args)

{

 mediaElement.Position = mediaElement.NaturalDuration.TimeSpan;

}

The	messy	part	of	a	movieplaying	program	involves	the	enabling	and	disabling	of	the	

buttons.	Because	the	primary	purpose	of	this	program	is	to	demonstrate	the	use	of	the	

ApplicationBar,	I’ve	taken	a	very	simple	approach	here:	The	Rewind	and	End	buttons	are	

enabled	when	the	media	is	opened,	and	the	Play	and	Pause	buttons	are	enabled	based	on	the	

CurrentState	property	of	the	MediaElement:	

Silverlight Project: File: (excerpt)

void OnMediaElementMediaFailed(object sender, ExceptionRoutedEventArgs args)

{

 errorText.Text = args.ErrorException.Message;

}

void OnMediaElementMediaOpened(object sender, RoutedEventArgs args)

{

 appbarRewindButton.IsEnabled = true;

 appbarEndButton.IsEnabled = true;

}

void OnMediaElementCurrentStateChanged(object sender, RoutedEventArgs args)

{

 statusText.Text = mediaElement.CurrentState.ToString();

if (mediaElement.CurrentState == MediaElementState.Stopped ||

mediaElement.CurrentState == MediaElementState.Paused)

 {

appbarPlayButton.IsEnabled = true;

appbarPauseButton.IsEnabled = false;

}

else if (mediaElement.CurrentState == MediaElementState.Playing)

 {

appbarPlayButton.IsEnabled = false;

appbarPauseButton.IsEnabled = true;

}

}

Jot
and
Application
Settings

The	Jot	program	I’ll	be	discussing	next	is	one	of	three	programs	in	this	chapter	that	you	might	

find	useful	on	the	phone	in	daily	life.	The	idea	for	it	arose	out	of	the	QuickNotes	program	

described	later	in	this	chapter.	QuickNotes	is	basically	a	big	TextBox	control	but	it	retains	the	

contents	of	this	TextBox	in	isolated	storage.	Every	time	you	open	the	program,	you	get	the	

240	

	

	 	 	 	

	

	 	 	 	

	 	 	

	 	 	 	

	 	

	 	 	

	 	

	 	 	 	 	 	

	

	 	 	 	

	 	 	

	 	 	 	 	

	 	

	

	 	 	 	

	 	

	 	

	

	 	 	

	 	 	

	 	 	

	 	 	

	 	

	 	

	 	

	 	 	

	 	 	

	

	 	 	 	 	

	

	

same	text	you	left	in	there	the	last	time	you	used	the	program.	You	can	add	text	and	delete	

text.	It’s	good	for	taking	quick	notes	(as	the	program	name	suggests)	because	you	don’t	have	

to	load	or	save	any	files.	That’s	all	done	automatically.	

But	I’ll	discuss	QuickNotes	in	more	detail	at	the	end	of	this	chapter.	For	now,	the	Jot	program	

is	similar	and	rather	easier	to	use	because	it	doesn’t	require	a	virtual	or	actual	keyboard.	You	

just	use	your	finger	for	writing	or	drawing.		

As	you’ll	see,	QuickNotes	makes	do	with	just	one	text	document	because	you	can	easily	scroll	

through	and	insert	text	wherever	you	want.	But	Jot	is	more	canvasoriented,	and	the	fixed	size	

of	this	canvas	seemed	to	imply	that	the	program	should	support	multiple	pages	for	multiple	

canvases.	

Jot	displays	finger	input	using	a	class	named	InkPresenter,	which	originated	with	tablet	

interfaces.	InkPresenter derives	from	the	Canvas panel,	which	means	you	could	use	the	

Children	property	of	InkPresenter to	design	a	background	image	(a	yellow	legal	pad,	for	

example).	Or	you	can	ignore	the	Canvas	part	of	InkPresenter.	

InkPresenter	exists	primarily	for	displaying	“ink,”	which	is	represented	as	multiple	series	of	

connected	short	lines—polylines in	graphics	speak	but	called	strokes	in	this	context.	

A	particular	point	on	the	display	surface	is	a	StylusPoint,	a	structure	defined	in	the	

System.Windows.Input	namespace	with	X	and	Y	properties	as	well	as	a	PressureFactor	for	

devices	that	support	pressure.	(Windows	Phone	7	does	not	support	touch	pressure.)	

When	you	draw	on	a	screen	with	a	finger	(on	touch	screens)	or	stylus	(on	tablets),	you	might	

create	a	bunch	of	crazy	curves,	but	regardless	how	complex	the	curves	are,	they	are	always	

represented	by	a	collection	of	StylusPoint objects	that	together	mimic	the	complex	curve.	This	

collection	of	StylusPoint objects	representing	a	continuous	line	is	encapsulated	in	a	Stroke,	a	

class	defined	in	the	System.Windows.Ink	namespace.	The	Stroke	object	encapsulates	not	only	

the	points	of	this	line,	but	also	its	color	and	width	with	these	two	properties:	

• StylusPoints	of	type	StylusPointCollection

• DrawingAttributes	of	type	DrawingAttributes

A	Stroke is	a	continuous	line	created	when	the	user	touches	the	screen,	moves	the	finger,	and	

lifts.	Touching	the	screen	again	begins	another	Stroke.	Multiple	Stroke	objects	are	stored	in	a	

StrokeCollection.	And	that’s	what	the	InkPresenter	stores:	InkPresenter	defines	a	Strokes

property	of	type	StrokeCollection	and	renders	those	strokes,	each	of	which	forms	a	continuous	

line.	

My	Jot	program	supports	multiple	pages,	so	it	will	need	yet	another	collection	to	store	a	

StrokeCollection for	each	page.	

241	

	

	 	 	 	

	 	

	 	 	 	 	

	 	 	

	 	 	

	 	

	

	

	 	

	 	 	

	 	 	 	

	

	 	 	 	 	 	

	 	

	

	 	 	 	

	

	

	

	 	

	 	

	

You	need	to	know	all	this	up	front	because	I’m	going	to	begin	my	discussion	of	the	Jot	

program	with	the	application	settings.	The	whole	idea	of	the	program	is	that	it	always	brings	

you	back	to	where	you	last	left	off.	Jot	doesn’t	need	any	transient	data	for	tombstoning	

because	it	treats	tombstoning	the	same	way	as	normal	program	launching	and	closing.	Jot	

needs	to	use	isolated	storage	to	save	the	same	data	when	it’s	deactivated	(tombstoned)	as	

when	it’s	closed,	and	it	needs	to	load	this	data	when	it’s	both	launched	and	activated	(that	is,	

revived	after	tombstoning).	

The	application	settings	for	Jot	are	encapsulated	in	a	class	specifically	for	that	purpose	called	

JotAppSettings.	An	instance	of	JotAppSettings	is	serialized	and	saved	in	isolated	storage.	The	

class	also	contains	methods	to	save	and	load	the	settings.	The	project	needs	a	reference	to	the	

System.Xml.Serialization	library,	and	JotAppSettings	needs	several	nonstandard	using

directives	for	System.Collection.Generic,	System.IO,	System.IO.IsolatedStorage,	and	

System.Xml.Serialization.	

Here	are	the	public	properties	of	JotAppSettings	that	constitute	application	settings:	

Silverlight Project: File: (excerpt)

public List<StrokeCollection> StrokeCollections { get; set; }

public int PageNumber { set; get; }

public Color Foreground { set; get; }

public Color Background { set; get; }

public int StrokeWidth { set; get; }

There	is	one	StrokeCollection	for	each	page	that	Jot	displays;	hence	the	program	needs	to	

save	a	collection	of	StrokeCollection	objects.	The	program	initially	displays	a	particular	page	

indicated	by	PageNumber.	

The	first	time	Jot	is	run,	it	picks	up	the	Foreground	and	Background colors	from	the	system	

theme.	However,	the	program	implements	an	option	to	swap	those	colors	for	drawing	

purposes,	under	the	assumption	that	you	might	prefer	a	whiteonblack	theme	for	most	of	

the	phone,	but	blackonwhite	drawing	for	Jot.	For	that	reason,	it	saves	and	loads	explicit	

colors.	The	StokeWidth property	starts	out	as	3	(the	default	with	InkPresenter)	but	can	be	set	

by	the	user	to	1	or	5	instead.	

I	tried	using	the	IsolatedStorageSettings class	to	save	these	items,	but	I	couldn’t	get	it	to	work,	

so	I	switched	to	the	regular	isolated	storage	facility.	Here’s	the	Save	method:	

Silverlight Project: File: (excerpt)

public void Save()

{

IsolatedStorageFile iso = IsolatedStorageFile.GetUserStoreForApplication();

IsolatedStorageFileStream stream = iso.CreateFile("settings.xml");

242	

	

	 	

	 	 	

	

	

	

	 	

StreamWriter writer = new StreamWriter(stream);

XmlSerializer ser = new XmlSerializer(typeof(JotAppSettings));

 ser.Serialize(writer, this);

 writer.Close();

 iso.Dispose();

}

The	Save method	creates	(or	recreates)	a	file	in	the	program’s	isolated	storage	named	

settings.xml,	obtains	a	StreamWriter associated	with	that	file,	and	then	uses	the	XmlSerializer

class	to	serialize	this	particular	instance	of	the	JotAppSettings	class.	

The	Load	method	is	static	because	it	must	create	an	instance	of	JotAppSettings	by	

deserializing	the	file	in	isolated	storage.	If	that	file	doesn’t	exist—which	means	the	program	is	

being	run	for	the	first	time—then	it	simply	creates	a	new	instance.	

Silverlight Project: File: (excerpt)

public static JotAppSettings Load()

{

JotAppSettings settings;

IsolatedStorageFile iso = IsolatedStorageFile.GetUserStoreForApplication();

 if (iso.FileExists("settings.xml"))

 {

IsolatedStorageFileStream stream = iso.OpenFile("settings.xml",

FileMode.Open);

StreamReader reader = new StreamReader(stream);

XmlSerializer ser = new XmlSerializer(typeof(JotAppSettings));

settings = ser.Deserialize(reader) as JotAppSettings;

reader.Close();

 }

 else

 {

// Create and initialize new JotAppSettings object

settings = new JotAppSettings();

settings.StrokeCollections = new List<StrokeCollection>();

settings.StrokeCollections.Add(new StrokeCollection());

 }

 iso.Dispose();

 return settings;

}

The	constructor	of	the	class	sets	some	(but	not	all)	of	the	properties	to	default	values:	

243	

	

	

	 	 	 	

	 	

	 	

	 	

	

	

	

	 	

	 	

	

	

	 	 	 	

	 	

	 	

	

Silverlight Project: File: (excerpt)

public JotAppSettings()

{

this.PageNumber = 0;

this.Foreground = (Color)Application.Current.Resources["PhoneForegroundColor"];

this.Background = (Color)Application.Current.Resources["PhoneBackgroundColor"];

this.StrokeWidth = 3;

}

This	constructor	is	called	both	when	the	Load	method	explicitly	creates	a	new	instance	when	

the	program	is	run	for	the	first	time,	and	when	the	file	in	isolated	storage	is	deserialized.	In	

the	latter	case,	the	default	values	in	the	constructor	are	all	replaced.	However,	it’s	a	good	idea	

to	keep	these	settings	in	the	constructor	in	case	you	later	add	a	new	application	setting	to	the	

program.	That	setting	will	not	be	in	the	existing	file	in	isolated	storage,	but	will	be	set	to	a	

default	value	in	this	constructor.	

Originally	I	also	put	the	initialization	of	the	StrokeCollection	collection	in	the	constructor:	

settings.StrokeCollections = new List<StrokeCollection>();

settings.StrokeCollections.Add(new StrokeCollection());

However,	I	discovered	that	the	Deserialize	method	of	XmlSerializer would	then	avoid	creating	

a	new	List	object	and	simply	add	to	the	one	created	in	the	constructor,	leaving	me	with	one	

new	empty	StrokeCollection	in	the	List	every	time	I	ran	the	program!	That’s	why	I	moved	this	

code	to	the	Load	method.	

The	Save	and	Load	methods	of	JotAppSettings are	called	only	from	App.xaml.cs	while	handling	

the	four	PhoneApplicationService	events	that	I	discussed	in	Chapter	6.	These	events	signal	

when	the	program	is	being	launched,	deactivated,	activated,	and	closed.	App.xaml.cs	also	

exposes	the	application	settings	as	a	public	property:	

Silverlight Project: File: (excerpt)

public partial class App : Application

{

// Application Settings

 public JotAppSettings AppSettings { set; get; }

 …

 private void Application_Launching(object sender, LaunchingEventArgs e)

 {

AppSettings = JotAppSettings.Load();

 }

244	

	

	

	

	 	

	

	 	

	

	

	 	

	

 private void Application_Activated(object sender, ActivatedEventArgs e)

 {

 AppSettings = JotAppSettings.Load();

}

 private void Application_Deactivated(object sender, DeactivatedEventArgs e)

{

AppSettings.Save();

 }

 private void Application_Closing(object sender, ClosingEventArgs e)

 {

AppSettings.Save();

 }

}

Within	MainPage,	all	references	to	the	properties	that	comprise	application	settings	are	

through	that	AppSettings	property	of	the	App	class.	

Jot
and
Touch

The	content	area	of	Jot	is	tiny	but	significant:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<InkPresenter Name="inkPresenter" />

</Grid>

As	the	name	suggests,	the	InkPresenter	renders	virtual	ink	that	comes	from	stylus	or	touch	

input.	The	InkPresenter doesn’t	collect	that	ink	on	its	own.	That’s	your	responsibility.	(And	

Silverlight	has	no	builtin	handwriting	recognition,	although	there’s	nothing	to	prevent	you	

from	adding	your	own.)	

The	codebehind	file	requires	a	using	directive	for	the	System.Windows.Ink	namespace	and	

defines	just	two	private	fields:	

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage

{

JotAppSettings appSettings = (Application.Current as App).AppSettings;

Dictionary<int, Stroke> activeStrokes = new Dictionary<int, Stroke>();

 public MainPage()

 {

InitializeComponent();

245

	

	 	 	 	

	 	 	

	 	 	 	 	

	 	

	

	 	 	

	 	 	 	 	

	 	 	 	 	

	 	

	 	 	

	

	

inkPresenter.Strokes =

appSettings.StrokeCollections[appSettings.PageNumber];

inkPresenter.Background = new SolidColorBrush(appSettings.Background);

…

TitleAndAppbarUpdate();

Touch.FrameReported += OnTouchFrameReported;

 }

 …

}

The	first	field	provides	convenient	access	to	the	application	settings	exposed	by	the	App	class.	

The	second	is	for	maintaining	multitouch	data.	The	constructor	initializes	both	the	Strokes

and	Background	property	of	the	InkPresenter from	application	data,	and	concludes	by	setting	

a	handler	for	the	lowlevel	Touch.FrameReported	event.	(I’ll	discuss	the	TitleAndAppbarUpdate

method	a	little	later.)	

I	chose	to	use	lowlevel	touch	input	because	the	program	isn’t	manipulating	anything.	It’s	

only	interested	in	getting	points	corresponding	to	finger	movement.	With	

Touch.FrameReported,	the	program	can	get	input	from	multiple	fingers	at	once,	but	of	course,	

it’s	a	little	tricky	in	actual	practice.	

You’ll	recall	that	with	Touch.FrameReported	event,	each	finger	is	identified	with	an	integer	ID	

from	the	moment	it	touches	the	screen	to	the	time	it	lifts	off.	In	this	program,	the	activity	of	

that	finger	generates	a	new	Stroke	for	the	Strokes	property	of	InkPresenter.	Keeping	a	finger’s	

ID	associated	with	its	Stroke is	the	purpose	of	that	Dictionary	named	activeStrokes:	

Dictionary<int, Stroke> activeStrokes = new Dictionary<int, Stroke>();

Here’s	the	OnTouchFrameReported	handler:	

Silverlight Project: File: (excerpt)

void OnTouchFrameReported(object sender, TouchFrameEventArgs args)

{

TouchPoint primaryTouchPoint = args.GetPrimaryTouchPoint(null);

if (primaryTouchPoint != null && primaryTouchPoint.Action == TouchAction.Down)

args.SuspendMousePromotionUntilTouchUp();

TouchPointCollection touchPoints = args.GetTouchPoints(inkPresenter);

foreach (TouchPoint touchPoint in touchPoints)

 {

Point pt = touchPoint.Position;

int id = touchPoint.TouchDevice.Id;

switch (touchPoint.Action)

246	

	

	

	 	 	 	

	 	

	

	 	 	

	 	

	 	

	 	

	 	 	 	 	 	

{

case TouchAction.Down:

Stroke stroke = new Stroke();

 stroke.DrawingAttributes.Color = appSettings.Foreground;

 stroke.DrawingAttributes.Height = appSettings.StrokeWidth;

 stroke.DrawingAttributes.Width = appSettings.StrokeWidth;

 stroke.StylusPoints.Add(new StylusPoint(pt.X, pt.Y));

 inkPresenter.Strokes.Add(stroke);

 activeStrokes.Add(id, stroke);

break;

case TouchAction.Move:

 activeStrokes[id].StylusPoints.Add(new StylusPoint(pt.X, pt.Y));

break;

case TouchAction.Up:

 activeStrokes[id].StylusPoints.Add(new StylusPoint(pt.X, pt.Y));

 activeStrokes.Remove(id);

 TitleAndAppbarUpdate();

break;

}

 }

}

When	the	finger	first	touches	the	screen	(signaled	by	an	Action	property	of	

TouchAction.Down),	the	method	creates	a	new	Stroke	object.	This	is	added	to	the	Strokes

collection	of	the	InkPresenter,	and	it	is	rerendered	by	InkPresenter with	each	new	point	

added	to	it.	That	Stroke	object	is	also	stored	in	the	activeStrokes	dictionary	along	with	the	ID.	

That	allows	the	Stroke to	be	built	up	with	each	TouchAction.Move	event.	The	entry	is	removed	

from	the	dictionary	when	the	finger	leaves	the	screen.	

Jot
and
the
ApplicationBar
The	ApplicatonBar	in	Jot	defines	four	buttons:	for	adding	a	new	page,	going	to	the	previous	

page,	going	to	the	next	page,	and	deleting	the	current	page.	(If	the	current	page	is	the	only	

page,	then	only	the	strokes	are	deleted	from	the	page.)	Each	button	has	its	own	Click	handler:	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.ApplicationBar>

<shell:ApplicationBar IsVisible="True" IsMenuEnabled="True">

<shell:ApplicationBarIconButton x:Name="appbarAddButton"

 IconUri="/Images/appbar.add.rest.png"

 Text="add page"

 Click="OnAppbarAddClick" />

<shell:ApplicationBarIconButton x:Name="appbarLastButton"

247	

	

	 	 	

	 	 	 	

	 	 	

	 	 	 	 	

	 	 	 	

	

 IconUri="/Images/appbar.back.rest.png"

 Text="last page"

 Click="OnAppbarLastClick" />

<shell:ApplicationBarIconButton x:Name="appbarNextButton"

 IconUri="/Images/appbar.next.rest.png"

 Text="next page"

 Click="OnAppbarNextClick" />

<shell:ApplicationBarIconButton x:Name="appbarDeleteButton"

 IconUri="/Images/appbar.delete.rest.png"

 Text="delete page"

 Click="OnAppbarDeleteClick" />

<shell:ApplicationBar.MenuItems>

<shell:ApplicationBarMenuItem Text="swap colors"

 Click="OnAppbarSwapColorsClick" />

<shell:ApplicationBarMenuItem Text="light stroke width"

 Click="OnAppbarSetStrokeWidthClick" />

<shell:ApplicationBarMenuItem Text="medium stroke width"

 Click="OnAppbarSetStrokeWidthClick" />

<shell:ApplicationBarMenuItem Text="heavy stroke width"

 Click="OnAppbarSetStrokeWidthClick" />

</shell:ApplicationBar.MenuItems>

</shell:ApplicationBar>

</phone:PhoneApplicationPage.ApplicationBar>

A	menu	is	also	included	with	a	collection	of	ApplicationBarMenuItem	objects	in	the	

MenuItems property	element.	The	menu	items	are	displayed	when	you	press	the	ellipsis	on	

the	ApplicationBar.	They	consist	solely	of	short	text	strings	in	lowercase.	(You	should	keep	

menu	items	to	five	or	fewer,	and	keep	the	text	to	a	maximum	of	20	characters	or	so.)	The	first	

menu	item	(to	swap	the	colors)	has	its	own	Click	handler;	the	other	three	share	a	Click

handler.	

Here	are	the	Click	handlers	for	the	four	buttons:	

Silverlight Project: File: (excerpt)

void OnAppbarAddClick(object sender, EventArgs args)

{

StrokeCollection strokes = new StrokeCollection();

 appSettings.PageNumber += 1;

 appSettings.StrokeCollections.Insert(appSettings.PageNumber, strokes);

 inkPresenter.Strokes = strokes;

 TitleAndAppbarUpdate();

}

void OnAppbarLastClick(object sender, EventArgs args)

{

248

	

	 	 	 	

	 	

	 	 	

	 	 	

	

 appSettings.PageNumber -= 1;

 inkPresenter.Strokes = appSettings.StrokeCollections[appSettings.PageNumber];

 TitleAndAppbarUpdate();

}

void OnAppbarNextClick(object sender, EventArgs args)

{

 appSettings.PageNumber += 1;

 inkPresenter.Strokes = appSettings.StrokeCollections[appSettings.PageNumber];

 TitleAndAppbarUpdate();

}

void OnAppbarDeleteClick(object sender, EventArgs args)

{

MessageBoxResult result = MessageBox.Show("Delete this page?", "Jot",

MessageBoxButton.OKCancel);

if (result == MessageBoxResult.OK)

 {

if (appSettings.StrokeCollections.Count == 1)

{

 appSettings.StrokeCollections[0].Clear();

}

else

{

 appSettings.StrokeCollections.RemoveAt(appSettings.PageNumber);

if (appSettings.PageNumber == appSettings.StrokeCollections.Count)

 appSettings.PageNumber -= 1;

 inkPresenter.Strokes =

appSettings.StrokeCollections[appSettings.PageNumber];

}

TitleAndAppbarUpdate();

 }

}

The	only	one	just	a	little	complex	is	the	deletion	of	a	page,	but	notice	that	it	begins	by	asking	

for	a	confirmation	from	the	user	with	a	call	to	MessageBox.Show!	A	message	box	seems	very	

archaic	in	this	context,	but	the	most	important	characteristic	of	MessageBox.Show	on	the	

phone	is	that	it	works	with	a	minimum	of	hassle.	If	you	just	need	to	inform	the	user	of	

something	with	an	OK	button,	or	if	you	need	to	ask	a	question	with	OK	and	Cancel,	nothing	

beats	it.	

249

	

	 	 	

	 	 	

	

	 	 	

	

The	message	box	is	displayed	at	the	top	of	the	screen	and	disables	the	rest	of	the	application	

until	you	make	it	go	away:	

I’ll	show	you	a	more	sophisticated	dialog	later	in	this	chapter	and	others	in	Chapter	14.	

The	four	menu	items	are	handled	here:	

Silverlight Project: File: (excerpt)

void OnAppbarSwapColorsClick(object sender, EventArgs args)

{

Color foreground = appSettings.Background;

 appSettings.Background = appSettings.Foreground;

 appSettings.Foreground = foreground;

 inkPresenter.Background = new SolidColorBrush(appSettings.Background);

foreach (StrokeCollection strokeCollection in appSettings.StrokeCollections)

foreach (Stroke stroke in strokeCollection)

 stroke.DrawingAttributes.Color = appSettings.Foreground;

}

void OnAppbarSetStrokeWidthClick(object sender, EventArgs args)

{

ApplicationBarMenuItem item = sender as ApplicationBarMenuItem;

if (item.Text.StartsWith("light"))

appSettings.StrokeWidth = 1;

250	

	

	 	 	 	

	 	 	

	 	

	 	 	

	 	 	 	

	

	

	 	

	 	 	

	 	 	 	 	

	 	 	 	 	

	 	

	 	 	

else if (item.Text.StartsWith("medium"))

appSettings.StrokeWidth = 3;

else if (item.Text.StartsWith("heavy"))

appSettings.StrokeWidth = 5;

}

When	swapping	colors,	the	new	colors	must	be	saved	in	application	settings,	but	the	existing	

colors	of	all	the	Stroke	objects	on	every	page	must	also	be	changed.	Fortunately,	it’s	just	a	

couple	nested	foreach	loops.	

The	OnAppbarSetStrokeWidthClick method	accommodates	three	related	menu	items.	Notice	

that	the	sender	object	is	the	particular	ApplicationBarMenuItem	that’s	been	clicked.	The	logic	

here	is	simple,	but	it	depends	on	the	Text	properties	of	the	three	items.	You	might	prefer	

using	a	technique	that	is	independent	of	that	text,	such	as	three	separate	handlers.	

You’ve	already	seen	several	references	to	TitleAndAppbarUpdate,	the	final	method	in	the	

MainPage codebehind	file.	Here	it	is:	

Silverlight Project: File: (excerpt)

void TitleAndAppbarUpdate()

{

 pageInfoTitle.Text = String.Format(" - PAGE {0} OF {1}",

appSettings.PageNumber + 1,

appSettings.StrokeCollections.Count);

 appbarLastButton.IsEnabled = appSettings.PageNumber > 0;

 appbarNextButton.IsEnabled =

 appSettings.PageNumber < appSettings.StrokeCollections.Count - 1;

 appbarDeleteButton.IsEnabled = (appSettings.StrokeCollections.Count > 1) ||

 (appSettings.StrokeCollections[0].Count > 0);

}

The	last	three	statements	disable	various	buttons	on	the	ApplicationBar	if	they	aren’t	valid.	

(The	handlers	for	the	buttons	rely	on	the	fact	that	they	won’t	be	called	if	the	option	is	invalid.)	

These	statements	are	able	to	reference	the	names	assigned	to	the	three	buttons	in	the	XAML	

file	because	I	reassigned	those	names	in	the	MainPage	constructor:	

Silverlight Project: File: (excerpt)

public MainPage()

{

 InitializeComponent();

 …

 appbarLastButton = this.ApplicationBar.Buttons[1] as ApplicationBarIconButton;

 appbarNextButton = this.ApplicationBar.Buttons[2] as ApplicationBarIconButton;

251	

	

	 	

	 	

	 	

	 	

	 	

	

	

	 	 	 	 	

	

	 	 	

 appbarDeleteButton = this.ApplicationBar.Buttons[3] as ApplicationBarIconButton;

…

}

The	first	statement	in	TitleAndAppbarUpdate	references	a	TextBlock	that	I	added	to	the	

application	title	in	the	XAML	file:	

Silverlight Project: File: (excerpt)

<StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="24,24,0,12"

 Orientation="Horizontal">

<TextBlock x:Name="ApplicationTitle" Text="JOT"

 Style="{StaticResource PhoneTextNormalStyle}"

 Margin="12 0 0 0" />

<TextBlock Name="pageInfoTitle"

 Style="{StaticResource PhoneTextNormalStyle}"

 Margin="0" />

</StackPanel>

Jot	is	one	program	that	is	not	enabled	for	landscape	mode.	Once	you’ve	jotted	something	on	

an	InkPresenter	of	a	particular	size	and	aspect	ratio,	you	don’t	want	it	flipped	around	so	that	

some	of	what	you’ve	done	is	now	offscreen.	But	Jot	is	also	a	program	you	can	use	sideways	

without	the	program	itself	being	aware	of	the	orientation	change:	

Elements
and
Controls

ApplicationBar exists	entirely	outside	of	the	normal	Silverlight	class	hierarchy	in	a	very	lonely	

corner	of	Silverlight	for	Windows	Phone.	The	remainder	of	this	chapter	returns	to	a	more	

familiar	realm	of	classes.		

Most	of	the	visual	objects	that	I’ve	discussed	so	far	in	this	book	are	often	referred	to	as	

elements,	primarily	because	they	derive	from	FrameworkElement	in	this	class	hierarchy:	

252

	

	

	

	 	

	 	 	 	

	 	 	

	

	

	

	 	

	 	 	 	

	 	 	 	

	 	 	

	 	

	 	 	 	

	 	 	 	 	

	 	

	 	

	 	

	 	 	

	 	

	 	

	 	 	 	

	

	

	 	 	

	 	

	 	 	 	 	 	

	 	 	 	 	

	

	 	 	

	 	

	 	

Object

DependencyObject	(abstract)	

UIElement	(abstract)	

FrameworkElement	(abstract)	

These	derivatives	of	FrameworkElement	include	TextBlock,	Image,	Border,	MediaElement,	

Shape	(which	is	the	parent	class	to	Rectangle	and	Ellipse),	and	Panel,	which	is	the	parent	class	

to	Grid,	StackPanel,	and	Canvas.	

For	the	remainder	of	this	chapter	I’m	going	to	focus	on	some	classes	that	derive	from	Control:	

Object

DependencyObject	(abstract)	

UIElement	(abstract)	

FrameworkElement	(abstract)	

Control	(abstract)	

Most	Control	derivatives	are	found	in	the	System.Windows.Controls	namespace,	but	others	

hide	out	in	System.Windows.Controls.Primitives.	

To	programmers	with	experience	in	graphical	environments	the	word	control	is	much	more	

familiar	and	element.	And	this	raises	a	question:	If	visual	objects	that	might	normally	be	called	

controls	are	more	properly	referred	to	as	elements in	Silverlight,	then	what’s	the	difference	

between	elements	and	the	visual	objects	that	really	are	Silverlight	controls?	

One	convenient	distinction	is	that	elements	are	usually	relegated	to	presentation	while	

controls	are	for	interaction.	In	Silverlight,	Control	is	the	ancestor	to	classes	such	as	Button,	

Slider,	and	TextBox,	so	this	distinction	certainly	seems	plausible.	You	might	also	notice	that	

Control	implements	an	IsEnabled	property,	as	well	as	three	properties	involved	in	keyboard	

navigation	using	the	tab	key:	IsTabStop,	TabIndex,	and	TabNavigation.	

On	the	other	hand,	userinput	events	for	the	keyboard,	mouse,	stylus,	and	touch	are	actually	

defined	by	UIElement,	so	elements	such	as	TextBlock	and	Image	can	receive	user	input	and—	

with	the	proper	support	from	markup	or	code—respond	to	that	input.	

Perhaps	a	more	significant	difference	is	that	controls	are	built	from	elements.	You	can	think	of	

elements	as	visual primitives.	Controls	are	assemblages	of	these	elements	and	other	controls.	

A	Button,	for	example,	is	not	much	more	than	a	Border with	some	content	inside,	usually	(but	

not	limited	to)	a	TextBlock.	A	Slider	is	not	much	more	than	a	couple	of	Rectangle	elements	

and	some	special	RepeatButton	controls.	

The	visuals	of	a	Control	are	always	defined	by	a	visual	tree	of	FrameworkElement	derivatives.	

This	visual	tree	can	also	contain	objects	that	also	derive	from	Control,	but	these	objects	are	

then	defined	by	a	visual	tree	of	other	FrameworkElement	and	Control	derivatives.	

253	

	

	 	

	 	 	 	

	 	

	

	 	 	

	 	 	 	

	 	 	

	 	

	 	 	 	 	

	 	

	 	 	

	 	 	 	

	

	 	 	 	 	 	

	 	

	 	 	 	

	 	

	 	

	

	 	 	

	 	

	 	 	

	 	

	

	

	 	 	

	 	 	

	 	

	

	 	 	 	

	 	

	

Although	the	visuals	of	a	Control	are	always	a	tree	of	FrameworkElement	derivatives,	this	tree	

is	not	fixed.	You	can	replace	this	tree	to	entirely	redefine	the	visuals	of	the	control.	The	

Control	class	defines	a	property	named	Template	of	type	ControlTemplate,	and	you’ll	see	how	

to	replace	the	template	in	Chapter	16.	

Redefining	the	visuals	of	a	control	with	a	template	is	a	powerful	tool	for	control	

customization.	But	it’s	hard	to	see	how	one	would	redefine	the	visuals	of	a	FrameworkElement

derivative.	Surely	a	TextBlock has	a	different	appearance	depending	on	the	Text,	FontFamily

FontSize	and	Foreground	properties,	but	there’s	no	sensible	way	to	make	a	TextBlock	visually	

different	independent	of	these	properties.	In	contrast,	think	how	the	basic	Button	has	changed	

its	visual	appearance	in	many	different	versions	of	Windows	over	the	years.	

You	can’t	derive	from	FrameworkElement in	Silverlight.	(Well,	you	actually	can,	but	you	can’t	

do	anything	useful	in	the	derived	class.)	And	except	for	Panel,	most	FrameworkElement

derivatives	are	sealed.	Shape isn’t	sealed,	but	you	can’t	derive	from	it,	and	all	the	derived	

classes	of	Shape	are	sealed.	

But	you	can	derive	from	Control and	you	can	derive	from	many	Control	derivatives.	One	

Control	derivative	named	UserControl	exists	solely	for	the	purpose	of	creating	custom	classes.	

So	not	only	can	you	customize	the	visuals	of	an	existing	control	using	templates,	you	can	

create	your	own	controls.	But	no	matter	how	you	do	it,	the	visuals	of	the	control	will	always	

be	defined	as	a	tree	of	elements	and	other	controls.	

If	you	look	at	the	documentation	for	Control,	you’ll	see	that	the	class	adds	a	number	of	

convenient	properties	to	FrameworkElement.	These	include	several	textrelated	properties	

usually	associated	with	TextBlock:	FontSize,	FontFamily,	FontStyle,	FontWeight,	and	FontStretch.	

Control	also	adds	a	few	properties	found	in	the	Border	class:	BorderBrush,	BorderThickness,	

Background,	and	Padding,	and	two	other	properties	associated	with	control	content:	

HorizontalContentAlignment	and	VerticalContentAlignment. The	Control	class	itself	doesn’t	use	

these	properties.	The	properties	are	defined	solely	for	the	convenience	of	classes	that	descend	

from	Control.	

Similarly,	Control	defines	a	bunch	of	protected	virtual	methods	corresponding	to	user	input	

events	defined	by	UIElement.	For	Windows	Phone	7	programmers,	certainly	the	most	

important	of	these	methods	are	those	for	multitouch:	OnManipulationStarted,	

OnManipulationDelta,	and	OnManipulationCompleted.	

RangeBase
and
Slider
You’ve	probably	already	grasped	that	scrollbars	and	sliders	are	not	required	as	much	on	

multitouch	screens	as	they	are	in	mousebased	environments.	The	ScrollViewer	in	the	last	

chapter	responds	directly	to	touch	rather	than	any	manipulation	of	its	scrollbars,	which	barely	

even	exist	except	as	concepts.	

254	

	

	

	 	

	 	 	

	 	 	

	 	 	

	

	 	 	 	

	 	

	 	 	 	

	

	

	 	 	

	

	

Still,	scrollbars	and	sliders	are	sometimes	useful	for	jobs	that	allow	the	user	to	select	from	a	

continuous	range	of	values.	These	controls	are	found	in	this	little	corner	of	the	class	hierarchy:	

Control	(abstract)	

RangeBase	(abstract)		

ProgressBar

ScrollBar	(sealed)		

Slider

The	RangeBase	class	defines	Minimum,	Maximum,	SmallChange,	and	LargeChange	properties	

to	define	the	parameters	of	scrolling,	plus	a	Value property	for	the	user’s	selection	and	a	

ValueChanged	event	that	signals	when	Value	has	changed.	(Notice	that	ProgressBar	also	

derives	from	RangeBase,	but	the	Value property	is	always	controlled	programmatically	rather	

than	being	set	by	the	user.)	

I’m	going	to	focus	on	the	Slider	here	because	the	version	in	Windows	Phone	7	seems	a	little	

more	tailored	to	the	phone	than	the	ScrollBar.	The	goal	is	to	use	three	Slider	controls	to	

create	a	program	called	ColorScroll	that	looks	like	this:	

255	

	

	 	 	 	 	 	

	

	

	 	

	 	 	 	

	 	 	

	 	

	 	 	

	 	 	 	

	

	 	 	

	 	 	 	 	 	

	 	 	

		

You	scroll	the	red,	green,	and	blue	Slider controls	to	define	a	composite	color.	To	make	it	

more	interesting,	when	the	phone	is	turned	sideways,	I	want	the	visuals	to	reorient	

themselves	slightly	so	it	looks	like	this:	

The	easiest	way	to	architect	such	a	display	is	with	nested	grids.	One	grid	has	three	rows	and	

three	columns	containing	the	three	Slider	controls	and	six	TextBlock	elements.	That	Grid	is	in	

another	Grid	with	just	two	cells.	The	other	cell	holds	a	Rectangle	element	whose	Fill	property	

is	set	to	a	SolidColorBrush based	on	the	color	selected	from	the	sliders.	

That	larger	Grid	with	the	two	cells	is	the	familiar	Grid	named	ContentPanel.	Whether	those	

two	cells	are	two	rows	or	two	columns	is	determined	by	the	codebehind	file	based	on	the	

current	Orientation	property.	

The	XAML	file	contains	a	Resources	collection	with	Style	definitions	for	both	TextBlock	and	

Slider:	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.Resources>

<Style x:Key="textStyle" TargetType="TextBlock">

<Setter Property="HorizontalAlignment" Value="Center" />

</Style>

<Style x:Key="sliderStyle" TargetType="Slider">

<Setter Property="Minimum" Value="0" />

<Setter Property="Maximum" Value="255" />

<Setter Property="Orientation" Value="Vertical" />

</Style>

</phone:PhoneApplicationPage.Resources>

A	Style with	just	one	Setter	seems	a	bit	ostentatious,	but	it’s	nice	to	have	if	you	ever	want	to	

add	another	Setter	for	the	Margin	or	FontSize.	The	default	range	of	a	Slider	is	0	to	10;	I’ve	

changed	that	to	make	the	range	appropriate	for	a	onebyte	value.	

256	

	

	 	

	 	 	

	 	 	

	

	

	

ScrollBar	and	Slider	have	their	own	Orientation	properties,	entirely	unrelated	to	the	

Orientation	property	of	PhoneApplicationPage	but	somewhat	related	to	the	Orientation

property	of	StackPanel	because	they	both	share	the	same	Orientation	enumeration	with	

values	of	Horizontal	and	Vertical.	

The	default	Orientation	of	a	Slider	is	Horizontal.	(For	a	ScrollBar	it’s	Vertical,	a	difference	I’ve	

never	quite	understood.)		

By	default,	the	top	of	a	vertical	Slider	is	associated	with	the	Maximum	value.	That’s	OK	for	this	

program	but	you	can	change	it	by	setting	the	IsDirectionReversed	property	to	true.	

Here’s	the	whole	content	panel:	

Silverlight Project: File: (excerpt)

<Grid x:Name="<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Grid.RowDefinitions>

<RowDefinition Height="*" />

<RowDefinition Height="*" />

</Grid.RowDefinitions>

<Rectangle Name="rect"

 Grid.Row="0"

 Grid.Column="0" />

<Grid Name="controlGrid"

 Grid.Row="1"

 Grid.Column="0">

<Grid.RowDefinitions>

<RowDefinition Height="Auto" />

<RowDefinition Height="*" />

<RowDefinition Height="Auto" />

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>

<ColumnDefinition Width="*" />

<ColumnDefinition Width="*" />

<ColumnDefinition Width="*" />

</Grid.ColumnDefinitions>

<!-- Red column -->

<TextBlock Grid.Column="0"

 Grid.Row="0"

 Text="Red"

 Foreground="Red"

 Style="{StaticResource textStyle}" />

<Slider Name="redSlider"

 Grid.Column="0"

 Grid.Row="1"

 Foreground="Red"

 Style="{StaticResource sliderStyle}"

257	

	

 ValueChanged="OnSliderValueChanged" />

<TextBlock Name="redText"

 Grid.Column="0"

 Grid.Row="2"

 Text="0"

 Foreground="Red"

 Style="{StaticResource textStyle}" />

<!-- Green column -->

<TextBlock Grid.Column="1"

 Grid.Row="0"

 Text="Green"

 Foreground="Green"

 Style="{StaticResource textStyle}" />

<Slider Name="greenSlider"

 Grid.Column="1"

 Grid.Row="1"

 Foreground="Green"

 Style="{StaticResource sliderStyle}"

 ValueChanged="OnSliderValueChanged" />

<TextBlock Name="greenText"

 Grid.Column="1"

 Grid.Row="2"

 Text="0"

 Foreground="Green"

 Style="{StaticResource textStyle}" />

<!-- Blue column -->

<TextBlock Grid.Column="2"

 Grid.Row="0"

 Text="Blue"

 Foreground="Blue"

 Style="{StaticResource textStyle}" />

<Slider Name="blueSlider"

 Grid.Column="2"

 Grid.Row="1"

 Foreground="Blue"

 Style="{StaticResource sliderStyle}"

 ValueChanged="OnSliderValueChanged" />

<TextBlock Name="blueText"

 Grid.Column="2"

 Grid.Row="2"

 Text="0"

 Foreground="Blue"

 Style="{StaticResource textStyle}" />

</Grid>

</Grid>

258

	

	 	 	

	 	 	 	

	

	 	 	 	

	

	 	 	

	 	 	

	 	 	 	

	 	 	

	 	

	 	 	 	

	 		

	

	 	 	

	 	 	 	 	

	 	 	

	 	

All	the	Slider	controls	have	their	ValueChanged	events	set	to	the	same	handler.	This	handler	

really	takes	an	easy	way	out	by	not	bothering	to	determine	which	Slider	actually	raised	the	

event:	

Silverlight Project: File: (excerpt)

void OnSliderValueChanged(object sender, RoutedPropertyChangedEventArgs<double>

args)

{

Color clr = Color.FromArgb(255, (byte)redSlider.Value,

(byte)greenSlider.Value,

(byte)blueSlider.Value);

 rect.Fill = new SolidColorBrush(clr);

 redText.Text = clr.R.ToString("X2");

 greenText.Text = clr.G.ToString("X2");

 blueText.Text = clr.B.ToString("X2");

}

You	may	have	noticed	that	the	XAML	file	doesn’t	initialize	the	Value	property	of	any	Slider.	

Here’s	why:	

As	the	page	is	being	constructed,	various	elements	and	controls	are	created,	event	handlers	

are	linked	to	events,	and	properties	are	set.	When	a	new	Value property	is	set	to	a	Slider	in	the	

construction	of	this	page,	the	Slider	fires	the	ValueChanged	event.	It	is	extremely	likely	that	

the	OnSliderValueChanged	method	in	MainPage	will	be	called	before	the	page	has	been	

entirely	constructed.	But	OnSliderValueChanged	references	other	elements	in	the	visual	tree.	If	

those	element	do	not	yet	exist,	a	runtime	exception	will	result.	

Want	to	see	it	happen?	Try	setting	

<Setter Property="Value" Value="128" />

in	the	Style	definition	for	the	Slider.	

Causing	an	event	to	be	fired	while	the	visual	tree	is	being	constructed	is	a	common	pitfall.	

You	can	either	bulletproof	your	event	handlers	by	checking	for	null elements	and	controls,	or	

you	can	do	what	I	do	in	ColorScroll:	Properties	that	trigger	events	in	the	page	are	safely	set	in	

the	class’s	constructor	after	the	call	to	InitializeComponent	when	the	visual	tree	has	been	

entirely	built:	

Silverlight Project: File: (excerpt)

public MainPage()

{

 InitializeComponent();

259	

	

	 	 	

	 	

	 	 	

	 	 	

	 	

	

 redSlider.Value = 128;

 greenSlider.Value = 128;

 blueSlider.Value = 128;

}

To	handle	orientation	changes	in	the	phone,	MainPage	overrides	its	OnOrientationChanged

method.	The	event	arguments	include	a	property	named	Orientation	of	type	PageOrientation.	

It	helps	to	know	that	the	PageOrientation	enumeration	values	are	bit	flags	with	the	following	

values:	

None	 00000000	

Portrait	 00000001	

Landscape	 00000010	

PortraitUp	 00000101	

PortraitDown	 00001001	

LandscapeLeft	 00010010	

LandscapeRight	 00100010	

You	can	check	for	portrait	or	landscape	by	performing	a	bitwise	OR	operation	between	the	

Orientation	property	and	the	Portrait	or	Landscape	members,	and	then	checking	for	a	non

zero	result.	It	makes	the	code	just	a	little	simpler:	

Silverlight Project: File: (excerpt)

protected override void OnOrientationChanged(OrientationChangedEventArgs args)

{

 ContentPanel.RowDefinitions.Clear();

 ContentPanel.ColumnDefinitions.Clear();

// Landscape

if ((args.Orientation & PageOrientation.Landscape) != 0)

 {

ColumnDefinition coldef = new ColumnDefinition();

coldef.Width = new GridLength(1, GridUnitType.Star);

ContentPanel.ColumnDefinitions.Add(coldef);

coldef = new ColumnDefinition();

coldef.Width = new GridLength(1, GridUnitType.Star);

ContentPanel.ColumnDefinitions.Add(coldef);

Grid.SetRow(controlGrid, 0);

Grid.SetColumn(controlGrid, 1);

 }

// Portrait

else

 {

RowDefinition rowdef = new RowDefinition();

rowdef.Height = new GridLength(1, GridUnitType.Star);

260

	

	 	 	

	

	 	

	 	 	 	 	 	 	

	 	

	

	 	

	 	

	 	 	 	 	

	 	 	 		

	 	 	 	

	 	

ContentPanel.RowDefinitions.Add(rowdef);

rowdef = new RowDefinition();

rowdef.Height = new GridLength(1, GridUnitType.Star);

ContentPanel.RowDefinitions.Add(rowdef);

Grid.SetRow(controlGrid, 1);

Grid.SetColumn(controlGrid, 0);

 }

base.OnOrientationChanged(args);

}

The	ContentPanel	object	needs	to	be	switched	between	two	rows	for	portrait	mode	and	two	

columns	for	landscape	mode,	so	it	creates	the	GridDefinition	and	ColumnDefinition	objects	for	

the	new	orientation.	(Alternatively,	it	could	create	these	collections	ahead	of	time	and	just	

switch	back	and	forth.	Or	it	could	create	a	2cell	by	2cell	Grid	in	the	XAML	file	and	set	the	

unused	row	or	column	to	a	zero	height	or	width.)	

The	Rectangle element	is	always	in	the	cell	with	Grid.Row	and	Grid.Column	settings	of	zero.	

But	the	Grid	named	controlGrid must	have	its	Grid.Row	and	Grid.Column	attached	properties	

set	using	the	syntax	I	discussed	in	the	previous	chapter.	

In	the	next	chapter,	I’ll	show	you	how	to	derive	from	UserControl	to	modularize	this	program	

and	turn	it	into	a	control.	

The
Basic
Button
The	standard	Silverlight	Button	is	much	more	flexible	than	the	ApplicationBar	buttons,	as	well	

as	being	easier	to	use.	You	can	put	a	Button	in	the	content	Grid	as	simply	as	this:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Button Content="Click me!" />

</Grid>

261	

	

	

	

	 	 	

	 	 	 	

	 	

	

	

By	default,	the	Button	fills	the	Grid:	

It	has	a	simple	white	border	and	displays	the	text	string	assigned	to	its	Content	property.	If	

you	put	the	Button	in	a	horizontal	StackPanel,	it	will	be	only	as	wide	as	it	needs	to	be	to	fit	the	

content;	the	opposite	effect	happens	when	you	switch	the	StackPanel	orientation	to	Vertical.	

Or	you	can	set	the	HorizontalAlignment	and	VerticalAlignment	properties	to	anything	other	

than	Stretch:	

262	

	

	

	

	 	 	

	 	

	

Obviously	the	basic	Button has	been	redesigned	a	bit	for	the	phone.	It	has	a	little	more	space	

around	its	border	to	provide	a	larger	touch	target.	

The	border	in	the	Button	is	an	actual	Border and	the	content	of	the	Button	(in	this	example)	is	

an	actual	TextBlock.	Earlier	I	mentioned	that	the	Control	class	defines	a	bunch	of	properties	

normally	associated	with	the	Border	and	the	TextBlock.	You	can	set	some	of	those	properties	

like	so:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Button Content="Click me!"

 FontSize="48"

 FontStyle="Italic"

 Foreground="Red"

 Background="Blue"

 BorderThickness="10"

 BorderBrush="Yellow"

 Padding="20"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Grid>

263	

	

	 	

	

	

	

	

As	you	might	hope	(or	perhaps	fear),	these	property	settings	are	reflected	in	the	button’s	

appearance:	

The	Control class	also	defines	HorizontalContentAlignment	and	VerticalContentAlignment	and	

Padding	properties	that	you	can	set	like	so:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Button Content="Click me!"

 Padding="50 100"

 HorizontalContentAlignment="Right"

 VerticalContentAlignment="Bottom" />

</Grid>

264	

	

	 	

	

	

	 	 	 	

	

	 	 	 	

	 	 	

	 	 	

	 	

	 	

	 	 	

	 	

Now	the	content	is	positioned	at	the	lowerright	corner	but	50	pixels	from	the	right	and	100	

pixels	from	the	bottom:	

The	Control class	defines	an	IsEnabled	property;	when	set	to	false,	the	Button	is	grayed	and	

does	not	respond	to	touch.	

Almost	always	you’ll	want	to	set	a	handler	for	the	Click	property	of	the	Button	to	know	when	

it’s	been	pressed.	The	Click	event	is	generated	only	when	the	user	presses	the	Button	and	then	

releases	the	finger	without	moving	away.	Setting	the	ClickMode	property	to	Press	causes	the	

Button	to	fire	the	Click	event	when	the	finger	first	meets	the	screen.	

The
Concept
of
Content
Button	derives	from	Control but	it	also	derives	from	ContentControl,	which	is	the	class	that	

provides	the	button’s	Content	property.	You	can	pull	out	the	Content	property	as	a	property	

element:	

<Button>

<Button.Content>

</Button.Content>

</Button>

But	oddly	enough	you	can’t	put	text	in	there:	

265	

	

	 	 	

	 	 	 	

	

	 	 	 	

	 	 	 	

	 	

	 	

	 	 	

	

	

<!-- Doesn't work! -->

<Button>

<Button.Content>

Click this button!

</Button.Content>

</Button>

There’s	nothing	ostensibly	wrong	with	that	syntax	but	Silverlight	doesn’t	allow	it.	If	you	really	

want	to	do	something	like	this	you’ll	need	an	XML	namespace	declaration	for	the	System

namespace:	

xmlns:system="clr-namespace:System;assembly=mscorlib"

You	can	then	put	the	string	between	tags	that	explicitly	tell	the	XAML	parser	than	the	string	is	

truly	a	String:	

<Button>

<Button.Content>

<system:String>Click this button</system:String>

</Button.Content>

</Button>

As	with	any	ContentControl	derivative,	you	can	omit	the	explicit	propertyelement	tags	for	the	

Content	property:	

<Button>

<system:String>Click this button</system:String>

</Button>

The	Content	property	is	of	type	object,	and	you	really	can	set	the	Content	property	to	pretty	

much	anything:	

<Button>

<system:Double>1E5</system:Double>

</Button>

You’ll	realize	it’s	being	interpreted	as	a	number	when	it	displays	inside	the	Button	as	10000.	

Or	try	this:	

<Button>

<system:DateTime>October 1, 2010, 9:30 PM</system:DateTime>

</Button>

That	will	display	as	10/1/2010	9:30:00	PM.	The	text	is	parsed	by	the	Parse	method	of	Double

or	DateTime	to	be	inserted	into	the	Button,	and	then	the	object’s	ToString	method	is	used	to	

get	a	text	rendition	of	that	Double	or	DateTime	object.	

You	can	put	a	Color	in	the	Button:	

<Button>

<Color>Cyan</Color>

</Button>

266	

	

	 	

	

	

	 	 	 	

	 	 	 	

	

	 	 	 	

	 	 	 	

	

	 	

	 	 	 	

	

	 	

But	what	you’ll	see	in	the	button	is	the	textual	hexadecimal	representation	of	that	color:	

“#FF00FFFF.”	You	can	also	try	a	SolidColorBrush	in	the	Button:	

<Button>

<SolidColorBrush Color="Cyan" />

</Button>

But	that’s	even	worse.	Now	you’ll	get	the	text	“System.Windows.Media.SolidColorBrush”.	

SolidColorBrush	doesn’t	define	a	ToString so	the	fully	qualified	class	name	is	displayed	instead.	

A	brush	is	fine	for	the	Foreground,	Background,	or	BorderBrush	properties	of	Button	but	

usually	not	Content.	

Yet,	there	is	a	reason	why	the	Content	property	is	of	type	object	and	you’ll	discover	in	Chapter	

16	how	you	can	create	a	DataTemplate to	display	objects	such	as	SolidColorBrush	in	more	

interesting	ways.	But	for	now,	if	you	want	the	Button	to	display	something	other	than	just	

plain	text,	you’ll	need	to	set	the	Content	property	to	anything	that	derives	from	

FrameworkElement.	For	example,	you	can	set	the	Content	property	to	an	explicit	TextBlock	if	

you’d	like	to	do	a	little	internal	formatting:	

<Button>

<TextBlock>

Click <Run FontStyle="Italic">this</Run> button!

</TextBlock>

</Button>

Or	you	can	put	an	Image element	in	there:	

<Button HorizontalAlignment="Center"

 VerticalAlignment="Center">

<Image Source="Images/BuzzAldrinOnTheMoon.png"

 Stretch="None" />

</Button>

267	

	

	 	

	

	 	 	

	 	 	 	

	 	

Here’s	what	you	get:	

The	Content	property	is	of	type	object,	so	you	can’t	set	the	Content	property	to	multiple	

objects,	but	you	can	set	the	Content	property	to	a	Panel of	some	sort:	

<Button HorizontalAlignment="Center"

VerticalAlignment="Center">

<StackPanel>

<Image Source="Images/BuzzAldrinOnTheMoon.png"

Stretch="None" />

<TextBlock Text="Click this button!"

 TextAlignment="Center" />

</StackPanel>

</Button>

And	that’s	how	you	get	a	picture	and	some	text	in	the	same	button:	

268	

	

	

	 	 	

	

	 	 	 	

	 	

	 	

	

	 	 	 	

	

	 	 	

	 	 	

	 	

	 	 	

	 	 	 	

	 	

	 	 	

	 	 	 	

And	yes,	you	can	put	a	Button	inside	another	Button	or	a	Slider	in	a	Button	if	you	think	your	

users	are	ready	for	it.	

You’ve	seen	ContentControl	derivatives	before	Button:	The	ScrollViewer	that	you	met	in	the	

last	chapter	is	derived	from	ContentControl.	The	Content	property	of	a	ScrollViewer	is	very	

often	set	to	a	StackPanel	but	you	can	also	set	Content	to	an	Image	element	with	a	larger	

bitmap	The	PhoneApplicationFrame	also	derives	from	ContentControl	by	way	of	Frame,	but	it’s	

generally	used	a	little	differently	from	most	ContentControl	derivatives	because	it	needs	to	

manage	page	navigation.	

ContentControl	is	not	the	only	class	that	defines	a	property	named	Content.	UserControl—the	

class	from	which	PhoneApplicationPage	derives	by	way	of	Page—also	defines	a	Content

property.	It’s	natural	to	assume	that	ContentControl	and	UserControl	are	related	in	some	way,	

but	it’s	actually	a	sibling	relationship	as	this	partial	class	hierarchy	shows:	

Control	(abstract)	

ContentControl

Frame

PhoneApplicationFrame

UserControl

Page

PhoneApplicationPage

269	

	

	 	 	 	 	

	 	 	 	 	

	 	 	

	

	 	 	 	

	 	 	 	

	 	 	 	

	

	 	

	 	 	

	 	

The	Content	property	defined	by	ContentControl	is	of	type	object;	the	Content	property	

defined	by	UserControl is	of	type	UIElement and	hence	is	just	a	bit	less	versatile.	

It	is	very	common	to	derive	from	UserControl	(as	the	name	might	suggest)	and	I’ll	show	you	

how	to	do	it	in	the	next	chapter.	

Theme
Styles
and
Precedence

Here’s	an	interesting	little	experiment.	Put	a	simple	TextBlock	in	the	content	grid	with	a	very	

large	FontSize	set:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<TextBlock Text="Hello!"

 FontSize="96"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Grid>

As	you	know,	you	can	move	that	FontSize	setting	from	the	TextBlock	to	the	

PhoneApplicationPage	tag	(replacing	the	existing	FontSize	setting)	and	you’ll	get	the	same	

effect:	

<phone:PhoneApplicationPage …

FontSize="96"

… >

…

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<TextBlock Text="Hello!"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Grid>

…

</phone:PhoneApplicationPage>

That’s	property	inheritance	at	work.	Now	put	the	TextBlock	in	a	Button.	You	can	make	the	text	

very	large	by	setting	the	FontSize	on	the	TextBlock:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Button HorizontalAlignment="Center"

 VerticalAlignment="Center">

<TextBlock Text="Hello!"

 FontSize="96" />

</Button>

</Grid>

Or,	you	can	achieve	the	same	effect	by	setting	the	FontSize	on	the	Button	itself:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Button HorizontalAlignment="Center"

 VerticalAlignment="Center"

 FontSize="96">

<TextBlock Text="Hello!" />

270	

	

	 	

	

	 	

	 	

	 	 	

	 	

	 	 	

	 	 	 	

	 	 	

	 	 	 	 	

	

	 	

	

	

	 	 	

	

	 	

	 	

	 	 	 	

</Button>

</Grid>

But	what	doesn’t	work	is	setting	the	FontSize	on	the	PhoneApplicationPage.	It	seems	as	if	

property	inheritance	should	cause	the	value	to	trickle	down	to	the	TextBlock:	

<phone:PhoneApplicationPage …

 FontSize="96"

… >

…

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Button HorizontalAlignment="Center"

 VerticalAlignment="Center">

<TextBlock Text="Hello!" />

</Button>

</Grid>

…

</phone:PhoneApplicationPage>

But	it	doesn’t	work.	Something	is	blocking	the	TextBlock	from	inheriting	that	FontSize	value.	

Button	is	defined	in	the	System.Windows	library,	and	that	library	also	contains	a	default	style	

and	template	for	the	Button.	This	is	known	as	a	theme style,	and	for	the	Button	it	includes	a	

style	setting	for	the	FontSize property.	In	regular	Silverlight,	that’s	not	the	case,	but	the	

developers	of	Windows	Phone	7	apparently	decided	that	text	in	a	Button	needed	to	be	a	little	

larger	by	default	to	provide	a	more	substantial	touch	target.	So	they	gave	this	default	theme	

style	a	FontSize	property,	and	that	setting	has	precedence	over	property	inheritance.	

You	might	recall	the	table	of	property	precedence	in	Chapter	7.	That	table	can	now	be	

enpanded:	

Local
Settings	have	precedence	over	

 Style
Settings,	which	have	precedence	over	the

 Theme
Style,	which	has	precedence	over	

Property
Inheritance,	which	has	precedence	over

 Default
Values

The
Button
Hierarchy

This	class	hierarchy	is	complete	beginning	with	the	ButtonBase	class:	

Control	(abstract)		

ContentControl

ButtonBase	(abstract)		

Button

271	

	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	 	

	 	 	 	 	

	 	

	

HyperlinkButton

RepeatButton	(sealed)	

ToggleButton

CheckBox

RadioButton

It’s	actually	ButtonBase	that	defines	the	Click event	and	the	ClickMode	property.	

The	ButtonCornucopia	project	creates	instances	of	all	these	buttons	with	nearly	as	few	

superfluous	properties	as	possible:	

Silverlight Project: ButtonCornucopia File: MainPage.xaml

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<StackPanel>

<Button Content="Button" HorizontalAlignment="Center" />

<HyperlinkButton Content="HyperlinkButton" HorizontalAlignment="Center" />

<RepeatButton Content="RepeatButton" HorizontalAlignment="Center" />

<ToggleButton Content="ToggleButton" HorizontalAlignment="Center" />

<CheckBox Content="CheckBox" HorizontalAlignment="Center" />

<Border BorderBrush="White"

 BorderThickness="1"

 HorizontalAlignment="Center">

<StackPanel>

<RadioButton Content="RadioButton1" />

<RadioButton Content="RadioButton2" />

<RadioButton Content="RadioButton3" />

</StackPanel>

</Border>

</StackPanel>

</Grid>

272	

	

	

	

	 	

	 	 	 	 	

	 	 	 	

	

	 	

	 	 	

	 	

	 	 	

	 	

	 	

	 	

	 	

	

	

	 	 	

	 	

	 	 	

	

The	buttons	may	seem	a	bit	large	with	too	much	space	around	them,	but	keep	in	mind	that	

they	need	to	provide	adequate	touch	targets:	

The	HyperlinkButton is	used	in	connection	with	Silverlight	page	navigation,	and	includes	a	

NavigateUri	property	for	that	purpose.	RepeatButton	generates	multiple	Click	events	when	the	

button	is	held	down;	its	primary	purpose	is	in	the	ScrollBar	and	Slider,	and	it’s	rarely	used	

elsewhere.	

There	is	no	functional	difference	between	the	ToggleButton	and	CheckBox.	The	difference	is	

only	visual,	and	that’s	something	that	can	be	changed	with	a	template	(as	I’ll	demonstrate	in	

Chapter	16).	The	Silverlight	for	Windows	Phone	Toolkit	adds	a	ToggleButton	derivative	named	

ToggleSwitchButton	that	you’ve	probably	seen	in	the	Settings	section	of	a	Windows	Phone.	

When	checked,	the	RadioButton	causes	all	its	siblings	to	become	unchecked.	There	is	no	

special	container	for	the	RadioButton.	Just	put	two	or	more	in	a	panel	(almost	always	a	

StackPanel)	and	they	will	turn	off	by	themselves.	RadioButton	defines	a	GroupName	property	

that	allows	you	to	differentiate	multiple	groups	of	mutually	exclusive	buttons	that	might	be	

children	of	the	same	panel.	

Normally	the	ToggleButton	and	CheckBox	are	physical	manifestations	of	a	Boolean.	They	turn	

on	and	off	with	successive	clicks.	But	ToggleButton	defines	an	IsThreeState	property	that	

optionally	provides	a	third	“indeterminate”	state.	Generally	this	is	used	only	in	connection	

with	the	CheckBox;	the	ToggleButton	doesn’t	even	have	a	unique	visual	appearance	for	the	

indeterminate	state.	

273	

	

	 	 	

	 	

	 	 	 	

	

	 	 	

	 	

	 	 	

	 	 	

	 	 	 	

	 	 	

	

	 	 	

	 	

	 	 	 	

	

	 	

	

Consequently,	the	IsChecked	property	defined	by	ToggleButton	is	not	of	type	bool.	It’s	of	type	

Nullable<bool>	(also	written	as	bool?)	with	three	possible	values:	true,	false,	and	null.	If	you	

need	to	set	the	IsChecked	property	to	a	null value	in	XAML	you	can	use	a	special	markup	

extension:	

IsChecked="{x:Null}"

For	conventional	twostate	toggling	purposes,	IsChecked usually	needs	to	be	cast	to	bool.	

ToggleButton	defines	three	events:	Checked	is	fired	when	the	button	becomes	checked,	

Unchecked	when	it	becomes	unchecked,	and	Indeterminate	when	it’s	going	into	the	third	

state.	In	most	cases,	a	program	using	a	ToggleButton	or	CheckBox	needs	to	handle	both	the	

Checked	and	Unchecked events,	but	you	can	use	the	same	handler	for	both	events.	

Toggling
a
Stopwatch
One	handy	application	on	a	phone	is	a	stopwatch—an	ideal	use	for	a	ToggleButton	as	well	as	

the	Stopwatch class	defined	in	the	System.Diagnostics	namespace.	

I	deliberately	spelled	the	name	of	the	StopWatch	project	in	camel	case	to	avoid	confusion	

with	the	.NET	Stopwatch	class.	To	make	the	program	a	little	more	interesting,	I	decided	that	

the	elapsed	time	should	be	displayable	in	three	different	formats,	corresponding	to	the	

members	of	this	enumeration:	

Silverlight Project: StopWatch File: ElapsedTimeFormat.cs

namespace StopWatch

{

public enum ElapsedTimeFormat

 {

HourMinuteSecond,

Seconds,

Milliseconds

 }

}

This	elapsed	time	format	is	an	application	setting	in	StopWatch,	so	it	is	exposed	as	a	public	

property	in	the	App	class.	As	usual	with	application	settings,	it	is	saved	to	isolated	storage	

when	the	program	is	deactivated	or	closed,	and	retrieved	when	the	program	is	launched	or	

activated:	

Silverlight Project: File: (excerpt)

public partial class App : Application

{

// Application Setting

274	

	

	 	 	

	

	 	 	 	 	 	 	

	

	

 public ElapsedTimeFormat ElapsedTimeFormat { set; get; }

 …

 private void Application_Launching(object sender, LaunchingEventArgs e)

 {

LoadSettings();

 }

 private void Application_Activated(object sender, ActivatedEventArgs e)

 {

LoadSettings();

 }

 private void Application_Deactivated(object sender, DeactivatedEventArgs e)

{

SaveSettings();

 }

 private void Application_Closing(object sender, ClosingEventArgs e)

 {

SaveSettings();

 }

 void LoadSettings()

 {

IsolatedStorageSettings settings =

IsolatedStorageSettings.ApplicationSettings;

if (settings.Contains("elapsedTimeFormat"))

 ElapsedTimeFormat = (ElapsedTimeFormat)settings["elapsedTimeFormat"];

else

 ElapsedTimeFormat = ElapsedTimeFormat.HourMinuteSecond;

 }

 void SaveSettings()

 {

IsolatedStorageSettings settings =

IsolatedStorageSettings.ApplicationSettings;

settings["elapsedTimeFormat"] = ElapsedTimeFormat;

settings.Save();

 }

}

The	content	area	in	the	XAML	file	is	a	bit	more	extensive	than	you	might	expect	because	it	

includes	a	type	of	“dialog	box”	that’s	used	by	the	user	to	select	the	elapsed	time	format.	So	as	

not	to	overwhelm	you,	only	the	portion	of	the	content	area	devoted	to	the	operation	of	the	

stopwatch	is	shown	here.	It	consists	of	just	a	ToggleButton	to	turn	the	stopwatch	on	and	off,	

and	a	TextBlock	to	display	the	elapsed	time.	

275

	

	 	 	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<!-- Stopwatch display -->

<Grid VerticalAlignment="Center"

 Margin="25 0">

<Grid.RowDefinitions>

<RowDefinition Height="Auto" />

<RowDefinition Height="Auto" />

</Grid.RowDefinitions>

<TextBlock Name="elapsedText"

 Text="0"

 Grid.Row="0"

 FontFamily="Arial"

 FontSize="{StaticResource PhoneFontSizeExtraLarge}"

 TextAlignment="Center"

 Margin="0 0 0 50"/>

<ToggleButton Name="startStopToggle"

 Content="Start"

 Grid.Row="1"

 Checked="OnToggleButtonChecked"

 Unchecked="OnToggleButtonChecked" />

</Grid>

<!-- Rectangle to simulate disabling -->

…

<!-- "Dialog Box" to select TimeSpan formatting -->

 …

</Grid>

The	codebehind	file	defines	just	three	fields;	using	directives	are	required	for	

System.Diagnostics	and	System.Globaliztion.	

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage

{

Stopwatch stopwatch = new Stopwatch();

TimeSpan suspensionAdjustment = new TimeSpan();

 string decimalSeparator = NumberFormatInfo.CurrentInfo.NumberDecimalSeparator;

 public MainPage()

 {

InitializeComponent();

DisplayTime();

 }

 …

 void DisplayTime()

 {

276	

	

	 	 	 	 	

	

	 	 	 		

	 	

	 	

	 	 	

	 	

	 	 	

	 	 	 	

	 	 	

	 	 	

	 	 	

	 	 	

TimeSpan elapsedTime = stopwatch.Elapsed + suspensionAdjustment;

string str = null;

switch ((Application.Current as App).ElapsedTimeFormat)

{

 case ElapsedTimeFormat.HourMinuteSecond:

 str = String.Format("{0:D2} {1:D2} {2:D2}{3}{4:D2}",

elapsedTime.Hours, elapsedTime.Minutes,

elapsedTime.Seconds, decimalSeparator,

elapsedTime.Milliseconds / 10);

 break;

 case ElapsedTimeFormat.Seconds:

 str = String.Format("{0:F2} sec", elapsedTime.TotalSeconds);

 break;

 case ElapsedTimeFormat.Milliseconds:

 str = String.Format("{0:F0} msec", elapsedTime.TotalMilliseconds);

 break;

}

elapsedText.Text = str;

 }

 …

}

The	most	important	field	is	an	instance	of	the	Stopwatch.	Programmers	customarily	use	this	

class	to	determine	how	long	a	program	spends	in	a	particular	method.	It’s	not	often	used	as	

an	actual	stopwatch!	

You’ll	see	shortly	how	the	suspensionAdjustment	field	is	used	in	connection	with	tombstoning.	

The	.NET	Stopwatch	object	provides	an	elapsed	time	in	the	form	of	a	TimeSpan	object.	I	

couldn’t	quite	persuade	the	TimeSpan	object	to	display	the	elapsed	time	in	precisely	the	

format	I	wanted,	so	I	ended	up	doing	my	own	formatting.	The	decimalSeparator	field	

represents	a	tiny	nod	to	internationalization.	

The	DisplayTime	method	is	devoted	to	setting	the	Text	property	of	the	TextBlock.	It	accesses	

the	Elapsed	property	of	the	Stopwatch	and	adds	the	suspensionAdjustment.	This	is	formatted	

in	one	of	three	ways	depending	on	the	ElapsedTimeFormat	property	of	the	App	class.	

When	pressed,	the	ToggleButton	fires	Checked	and	Unchecked	events,	which	are	both	handled	

by	the	OnToggleButtonChecked	method.	This	method	uses	the	IsChecked	property	of	the	

ToggleButton	to	start	or	stop	the	Stopwatch object	and	also	to	change	the	text	displayed	by	

the	button.	To	keep	the	display	promptly	updated,	a	CompositionTarget.Rendering	event	

simply	calls	DisplayTime:	

277	

	

	

	

	

Silverlight Project: File: (excerpt)

void OnToggleButtonChecked(object sender, RoutedEventArgs e)

{

if ((bool)startStopToggle.IsChecked)

 {

stopwatch.Start();

startStopToggle.Content = "Stop";

CompositionTarget.Rendering += OnCompositionTargetRendering;

 }

else

 {

stopwatch.Stop();

startStopToggle.Content = "Start";

CompositionTarget.Rendering -= OnCompositionTargetRendering;

 }

}

void OnCompositionTargetRendering(object sender, EventArgs args)

{

 DisplayTime();

}

Here	it	is	in	action:	

278	

	

	

	

	 	 	

	 	

	 	 	

	

	 	 	 	 	 	

As	you	can	see,	the	program	also	contains	an	ApplicationBar.	The	two	buttons	are	labeled	

“format”	and	“reset.”	Here’s	the	definition	of	the	ApplicationBar	in	the	XAML	file:	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.ApplicationBar>

<shell:ApplicationBar>

<shell:ApplicationBarIconButton

IconUri="/Images/appbar.feature.settings.rest.png"

 Text="format"

 Click="OnAppbarFormatClick" />

<shell:ApplicationBarIconButton IconUri="/Images/appbar.refresh.rest.png"

 Text="reset"

 Click="OnAppbarResetClick" />

</shell:ApplicationBar>

</phone:PhoneApplicationPage.ApplicationBar>

The	simpler	of	the	two	Click	methods	is	the	one	for	resetting	the	stopwatch.	Resetting	the	

.NET	Stopwatch	object	also	causes	it	to	stop,	so	the	ToggleButton is	explicitly	unchecked	and	

suspensionAdjustment	is	set	to	zero:	

Silverlight Project: File: (excerpt)

void OnAppbarResetClick(object sender, EventArgs args)

{

 stopwatch.Reset();

 startStopToggle.IsChecked = false;

 suspensionAdjustment = new TimeSpan();

 DisplayTime();

}

Selecting	the	elapsed	time	format	is	a	little	more	complex.	I	chose	to	handle	this	not	with	

menu	items	on	the	ApplicationBar	but	with	something	resembling	a	little	dialog	box.	This	

dialog	box	is	defined	right	in	the	XAML	file	in	the	same	Grid	cell	as	the	main	display:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<!-- Stopwatch display -->

 …

<!-- Rectangle to simulate disabling -->

<Rectangle Name="disableRect"

 Fill="#80000000"

 Visibility="Collapsed" />

279	

	

	 	

	 	

	

	 	 	 	

<!-- "Dialog Box" to select TimeSpan formatting -->

<Border Name="formatDialog"

 Background="{StaticResource PhoneChromeBrush}"

 BorderBrush="{StaticResource PhoneForegroundBrush}"

 BorderThickness="3"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 Visibility="Collapsed">

<Grid>

<Grid.RowDefinitions>

<RowDefinition Height="Auto" />

<RowDefinition Height="Auto" />

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>

<ColumnDefinition Width="*" />

<ColumnDefinition Width="*" />

</Grid.ColumnDefinitions>

<StackPanel Name="radioButtonPanel"

 Grid.Row="0"

 Grid.Column="0"

 Grid.ColumnSpan="2"

 HorizontalAlignment="Center">

<RadioButton Content="Hour/Minute/Seconds"

 Tag="HourMinuteSecond" />

<RadioButton Content="Seconds"

 Tag="Seconds" />

<RadioButton Content="Milliseconds"

 Tag="Milliseconds" />

</StackPanel>

<Button Grid.Row="1" Grid.Column="0"

 Content="ok"

 Click="OnOkButtonClick" />

<Button Grid.Row="1" Grid.Column="1"

 Content="cancel"

 Click="OnCancelButtonClick" />

</Grid>

</Border>

</Grid>

Notice	that	both	the	Rectangle	and	the	Border	have	Visibility	settings	of	Collapsed	so	they	are	

normally	absent	from	the	display.	The	Rectangle	covers	the	entire	content	area	and	is	used	

solely	to	“gray	out”	the	background.	The	Border	is	structured	much	like	a	traditional	dialog	

box,	with	three	RadioButton	controls	and	two	Button controls	labeled	“ok”	and	“cancel.”	

280	

	

	 	 	 	 	

	 	 	

	

	 	

	 	

	 	

	

	

	 	 	

	

	

Notice	that	the	RadioButton controls	do	not	have	handlers	set	for	their	Checked	events,	but	

they	do	have	text	strings	set	to	their	Tag	properties.	The	Tag	property	is	defined	by	

FrameworkElement	and	is	available	to	attach	arbitrary	data	on	elements	and	controls.	It’s	no	

coincidence	that	the	text	strings	I’ve	set	to	these	Tag	properties	are	exactly	the	members	of	

the	ElapsedTimeFormat	enumeration.	

When	the	user	presses	the	ApplicationBar	button	labeled	“format,”	the	OnAppbarFormatClick

method	takes	over,	making	the	disableRect	and	formatDialog	elements	visible:	

Silverlight Project: File: (excerpt)

void OnAppbarFormatClick(object sender, EventArgs args)

{

 disableRect.Visibility = Visibility.Visible;

 formatDialog.Visibility = Visibility.Visible;

// Initialize radio buttons

ElapsedTimeFormat currentFormat = (Application.Current as

App).ElapsedTimeFormat;

foreach (UIElement child in radioButtonPanel.Children)

 {

RadioButton radio = child as RadioButton;

ElapsedTimeFormat radioFormat =

 (ElapsedTimeFormat)Enum.Parse(typeof(ElapsedTimeFormat),

radio.Tag as string, true);

radio.IsChecked = currentFormat == radioFormat;

 }

}

The	logic	sets	the	IsChecked	property	of	a	particular	RadioButton	if	its	Tag	property	(when	

converted	into	an	ElapsedTimeFormat	enumeration	member)	equals	the	ElapsedTimeFormat

stored	as	an	application	setting.	(Easier	logic	would	have	been	possible	if	the	Tag	properties	

were	simply	set	to	0,	1,	and	2	for	the	integer	values	of	the	enumeration	members.)	

281	

	

	 	

	

	 	 	 	 	

	

Here’s	the	displayed	dialog	box:	

No	event	handlers	are	attached	to	the	RadioButton controls.	After	the	dialog	is	display,	the	

next	event	the	program	will	receive	signals	whether	the	user	has	press	the	“ok”	or	“cancel”	

button:	

Silverlight Project: File: (excerpt)

void OnOkButtonClick(object sender, RoutedEventArgs args)

{

foreach (UIElement child in radioButtonPanel.Children)

 {

RadioButton radio = child as RadioButton;

if ((bool)radio.IsChecked)

 (Application.Current as App).ElapsedTimeFormat =

(ElapsedTimeFormat)Enum.Parse(typeof(ElapsedTimeFormat),

 radio.Tag as string, true);

 }

 OnCancelButtonClick(sender, args);

}

void OnCancelButtonClick(object sender, RoutedEventArgs args)

{

 disableRect.Visibility = Visibility.Collapsed;

 formatDialog.Visibility = Visibility.Collapsed;

 DisplayTime();

}

282	

	

	 	 	

	 	

	 	 	

	 	

	 	 	 	 	 	

	 	

	

	 	

	 	 	

	 	 	

	

The	routine	for	the	“ok”	button	checks	which	RadioButton	is	now	clicked	and	then	sets	the	

application	setting	with	that	value.	It	also	calls	the	“cancel”	handler,	which	“dismisses”	the	

“dialog	box”	by	setting	the	Visibility	properties	of	disableRect	and	formatDialog	back	to	

Collapsed.	

A	program	such	as	this	presents	a	bit	of	a	challenge	with	respect	to	tombstoning.	I	decided	to	

ignore	issues	involving	the	dialog	box.	If	someone	navigates	away	from	the	program	with	the	

dialog	box	displayed,	it’s	no	big	deal	if	it’s	no	longer	there	when	the	user	returns.	

But	ideally,	you	want	an	active	stopwatch	to	continue	running	if	the	user	navigates	to	another	

application.	Of	course,	it	can’t	really	keep	running	because	in	reality	the	program	is	

terminated.	

What	the	program	can do,	however,	is	save	the	current	elapsed	time	and	the	clock	time	as	it	is	

being	tombstoned.	When	the	program	returns,	it	can	use	that	information	to	adjust	the	time	

shown	on	the	stopwatch.	This	occurs	in	the	OnNavigatedFrom	and	OnNavigatedTo	methods:	

Silverlight Project: File: (excerpt)

protected override void OnNavigatedFrom(NavigationEventArgs args)

{

PhoneApplicationService service = PhoneApplicationService.Current;

 service.State["stopWatchRunning"] = (bool)startStopToggle.IsChecked;

 service.State["suspensionAdjustment"] = suspensionAdjustment +

stopwatch.Elapsed;

 service.State["tombstoneBeginTime"] = DateTime.Now;

base.OnNavigatedFrom(args);

}

protected override void OnNavigatedTo(NavigationEventArgs args)

{

PhoneApplicationService service = PhoneApplicationService.Current;

if (service.State.ContainsKey("stopWatchRunning"))

{

suspensionAdjustment = (TimeSpan)service.State["suspensionAdjustment"];

if ((bool)service.State["stopWatchRunning"])

{

 suspensionAdjustment += DateTime.Now –

(DateTime)service.State["tombstoneBeginTime"];

 startStopToggle.IsChecked = true;

}

else

{

 DisplayTime();

}

 }

283	

	

	

	

	 	 	

	 	 	

	 	

	 	

	 	 	

	 	 	 	

	 	 	

	 	 	 	 	 	

	 	

	 	 	

	 	

	 	

	 	 	 	

	 	

base.OnNavigatedTo(args);

}

Whenever	the	program	starts	up	again,	the	.NET	Stopwatch	object	always	begins	at	an	

elapsed	time	of	zero.	That	Stopwatch	object	can’t	be	adjusted	directly.	Instead,	the	

suspensionAdjustment field	represents	the	time	that	elapsed	when	the	program	was	

tombstoned	plus	the	elapsed	time	of	the	Stopwatch	when	tombstoning	began.	A	user	could	

navigate	away	several	times	while	the	stopwatch	is	running,	so	this	field	could	be	the	

accumulation	of	several	periods	of	tombstoning.	

For	OnNavigatedTo,	the	simplest	case	is	when	the	stopwatch	is	not	actively	running.	All	that’s	

necessary	is	to	set	the	suspensionAdjustment	from	the	saved	value.	But	if	the	stopwatch	has	

conceptually	been	running	all	this	time,	then	the	suspensionAdjustment must	be	increased	by	

the	period	of	time	that	elapsed	based	on	the	value	returned	by	DateTime.Now.	

In	actual	use,	the	StopWatch	program	will	appear	to	be	running	and	keeping	track	of	elapsed	

time	even	when	it’s	not,	and	it’s	that	illusion	that	make	the	program	much	more	useful	than	it	

would	be	otherwise.	

Buttons
and
Styles

The	Style	property	is	defined	by	FrameworkElement so	of	course	it’s	inherited	by	Control	and	

ButtonBase	and	Button.	Here’s	a	program	that	defines	a	Style	for	Button	in	the	Resources

section	of	the	page:	

Project: File: (excerpt)

<phone:PhoneApplicationPage.Resources>

<Style x:Key="btnStyle" TargetType="Button">

<Setter Property="Foreground" Value="SkyBlue" />

<Setter Property="FontSize" Value="36" />

<Setter Property="HorizontalAlignment" Value="Center" />

<Setter Property="Margin" Value="12" />

</Style>

</phone:PhoneApplicationPage.Resources>

As	usual,	the	Style	has	an	x:Key	attribute	and	a	TargetType.	Three	Button	controls	are	arranged	

in	a	StackPanel.	Each	has	a	reference	to	the	Style	resource:	

Project: File: (excerpt)

<Grid x:Name=" ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<StackPanel>

<Button Content="Button No. 1"

 Style="{StaticResource btnStyle}" />

284	

	

	

	

	 	

	 	 	 	

	 	 	 	 	

	 	

<Button Content="Button No. 2"

 Style="{StaticResource btnStyle}" />

<Button Content="Button No. 3"

 Style="{StaticResource btnStyle}" />

</StackPanel>

</Grid>

Here’s	what	it	looks	like:	

Now	change	one	of	those	three	Button objects	to	a	ToggleButton:	

<ToggleButton Content="Button No. 2"

 Style="{StaticResource btnStyle}" />

This	causes	a	runtime	error	because	you’re	attempting	to	set	a	ToggleButton	from	a	Style

whose	TargetType	is	Button.	

But	if	you	look	at	the	class	hierarchy,	you’ll	see	that	both	Button	and	ToggleButton	derive	from	

ButtonBase.	Try	setting	that	as	the	TargetType	in	the	Style:	

<Style x:Key="btnStyle" TargetType="ButtonBase">

<Setter Property="Foreground" Value="SkyBlue" />

<Setter Property="FontSize" Value="36" />

<Setter Property="HorizontalAlignment" Value="Center" />

<Setter Property="Margin" Value="12" />

</Style>

285	

	

	 	 	

	 	 	 	

	 	 	

	 	 	 	

	 	 	

	 	 	 	

	 	 	 	

	

	

	

	

	 	 	 	 	

	 	

	

	

Now	it	works	again.	You	can	even	change	the	TargetType	to	Control,	but	that’s	about	as	far	

back	as	you	can	go	with	the	particular	example.	If	you	change	the	TargetType	to	

FrameworkElement	you’ll	get	a	runtime	error	because	FrameworkElement	doesn’t	have	

Foreground	or	FontSize	properties.		

As	a	general	rule,	it	makes	sense	to	set	TargetType	to	be	the	most	general	class	that	has	all	the	

properties	you’re	defining	in	the	Style.	You	can	inherit	from	styles	based	on	derived	classes.	

For	example,	you	can	begin	with	a	Style	with	a	TargetType	of	ButtonBase	and	then	have	two	

derived	styles	for	a	TargetType	of	Button	and	a	TargetType	of	ToggleButton.	

TextBox
and
Keyboard
Input

The	two	types	of	textentry	controls	available	in	Silverlight	for	Windows	Phone	are	TextBox,	

which	allows	typing	and	editing	singleline	or	multiline	plain	unformatted	text,	and	

PasswordBox,	which	briefly	displays	each	letter	you	type	but	then	replaces	it	with	another	

character,	by	default	an	asterisk.	

These	are	the	only	two	ways	your	program	can	get	input	from	the	hardware	keyboard	of	the	

phone	(if	it	exists)	or	invoke	the	Software	Input	Panel	(SIP),	the	virtual	onscreen	keyboard.	

Let’s	just	jump	right	into	a	program.	The	OneTimeText	program	is	designed	to	let	you	send	an	

SMS	(Short	Message	Service)	text	message	to	a	particular	phone	number.	The	program	

requires	you	to	type	in	that	phone	number	but	doesn’t	save	it	anywhere.	That’s	why	I	called	

the	program	“one	time”	text.	

Here’s	the	content	area:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Grid Margin="24">

<Grid.RowDefinitions>

<RowDefinition Height="Auto" />

<RowDefinition Height="Auto" />

<RowDefinition Height="Auto" />

<RowDefinition Height="*" />

<RowDefinition Height="Auto" />

</Grid.RowDefinitions>

<TextBlock Grid.Row="0"

 Text="phone number"

 Style="{StaticResource PhoneTextSmallStyle}" />

<TextBox Name="toTextBox"

 Grid.Row="1"

 InputScope="TelephoneNumber"

 TextChanged="OnTextBoxTextChanged" />

286	

	

	

	 	 	 	

	

	 	 	 	

	 	 	 	 	

	

	 	

	 	

<TextBlock Grid.Row="2"

 Text="text message"

 HorizontalAlignment="Left"

 Style="{StaticResource PhoneTextSmallStyle}" />

<TextBlock Name="charCountText"

 Grid.Row="2"

 HorizontalAlignment="Right"

 Style="{StaticResource PhoneTextSmallStyle}" />

<TextBox Name="bodyTextBox"

 Grid.Row="3"

 MaxLength="160"

 TextWrapping="Wrap"

 VerticalScrollBarVisibility="Auto"

 TextChanged="OnTextBoxTextChanged" />

<Button Name="sendButton"

 Grid.Row="4"

 Content="send"

 IsEnabled="False"

 HorizontalAlignment="Center"

 Click="OnSendButtonClick" />

</Grid>

</Grid>

The	first	TextBox	control	is	for	the	phone	number	so	it	only	needs	a	single	line.	The	second	

TextBox	is	for	the	body	of	the	message.	It	takes	up	the	remainder	of	the	Grid	not	used	by	any	

of	the	other	siblings;	the	TextWrapping	property	set	to	Wrap	turns	on	the	multiline	feature,	

which	is	generally	used	in	conjunction	with	vertical	scrolling.	

The	Button labeled	“send”	is	initially	disabled	because	nothing	is	typed	into	either	TextBox	yet.	

That’s	one	reason	why	the	TextChanged	event	is	set	on	both.	

The	first	TextBox	has	its	InputScope	property	set	to	TelephoneNumber.	When	you	press	on	that	

TextBox,	a	numeric	keypad	pops	up:	

287	

	

	

	

	

	

The	second	doesn’t	have	its	InputScope	property	set	so	a	standard	generalpurpose	keyboard	

comes	up:	

288		

	

	 	 	

	 	

	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	

	

	 	 	

	

	 	 	 	 	

	 	 	 	 	

	

	 	 	

The	MaxLength	property	is	set	on	this	second	TextBox	so	you	can’t	enter	more	than	160	

characters—the	maximum	for	SMS.	

The	various	names	you	can	use	with	InputScope	are	documented	in	the	InputScopeNameValue

enumeration	defined	in	the	System.Windows.Input	namespace.	If	you	prefer	to	invoke	

Intellisense	in	Visual	Studio	for	helping	you	out,	you	need	to	break	out	the	InputScope	as	a	

property	element	and	set	it	like	this:	

<TextBox Name="toTextBox"

 Grid.Row="1"

 TextChanged="OnTextBoxTextChanged">

<TextBox.InputScope>

<InputScope>

<InputScopeName NameValue="TelephoneNumber" />

</InputScope>

</TextBox.InputScope>

</TextBox>

Once	you	type	the	equal	sign	after	NameValue,	you’ll	get	a	list	of	the	possible	choices.	

The	XAML	doesn’t	show	the	most	important	property	of	the	TextBox,	which	is	the	property	

named	Text	of	type	string.	At	any	time,	you	can	programmatically	access	the	Text	property	to	

see	what’s	in	there,	or	you	can	set	the	Text	property	to	initialize	the	contents.	It’s	also	possible	

to	insert	something	into	the	existing	contents	of	the	TextBox,	or	delete	something:	Get	the	

current	Text	property,	use	normal	methods	of	the	String class	to	create	a	new	string	

containing	the	new	text,	and	then	set	that	string	back	to	the	Text	property.	

Here’s	a	good	chunk	of	the	MainPage	codebehind	file:	

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage

{

PhoneApplicationService appService = PhoneApplicationService.Current;

SmsComposeTask smsTask;

 public MainPage()

 {

InitializeComponent();

smsTask = new SmsComposeTask();

 }

 void OnTextBoxTextChanged(object sender, TextChangedEventArgs args)

{

if (sender == bodyTextBox)

 charCountText.Text = String.Format("{0} chars",

bodyTextBox.Text.Length);

sendButton.IsEnabled = toTextBox.Text.Length > 0 && bodyTextBox.Text.Length

289	

	

	

	 	 	 	

	 	 	

	

	 	

	 	 	

	

	 	 	

	 	

	 	

> 0;

 }

 void OnSendButtonClick(object sender, RoutedEventArgs e)

 {

smsTask.To = toTextBox.Text;

smsTask.Body = bodyTextBox.Text;

smsTask.Show();

 }

 …

}

The	single	TextChanged	handler	can	differentiate	between	the	two	TextBox	controls	by	

comparing	the	sender	argument	with	the	names	defined	in	the	XAML	file.	For	the	second	

TextBox,	a	display	is	updated	showing	how	many	characters	are	typed.	The	“send”	Button

remains	disabled	if	either	TextBox	is	empty	of	text.	

When	that	Button	is	pressed,	the	program	invokes	SmsComposeTask,	which	is	the	standard	

texting	program	on	the	phone.	At	this	point,	the	user	has	a	somewhat	friendlier	interface	to	

send	this	text,	to	edit	it,	or	to	send	other	texts.		

At	some	point	the	user	might	return	to	the	OneTimeText	program.	The	SmsComposeTask

object	doesn’t	return	anything	to	the	program	that	invoked	it—it’s	a	launcher	rather	than	a	

chooser—but	it	would	still	be	nice	for	the	user	to	see	the	text	previously	entered.	For	this	

reason,	the	program	overrides	the	OnNavigationFrom	and	OnNavigationTo	methods	to	save	

and	restore	that	program	state:	

Silverlight Project: File: (excerpt)

protected override void OnNavigatedFrom(NavigationEventArgs args)

{

 appService.State["toText"] = toTextBox.Text;

 appService.State["bodyText"] = bodyTextBox.Text;

base.OnNavigatedFrom(args);

}

protected override void OnNavigatedTo(NavigationEventArgs args)

{

object text;

if (appService.State.TryGetValue("toText", out text))

toTextBox.Text = text as string;

if (appService.State.TryGetValue("bodyText", out text))

bodyTextBox.Text = text as string;

base.OnNavigatedTo(args);

}

290	

	

	 	 	 	

	 	 	

	 	 	 	

	 	

	 	

	 	 	

	

The	last	sample	program	in	this	chapter	is	called	QuickNotes.	It	is	intended	to	provide	a	quick	

way	to	type	some	notes	and	be	assured	that	they’ll	be	retained	without	any	explicit	saving	or	

loading.	It’s	basically	a	Windows	Phone	7	version	of	Notepad	but	only	capable	of	working	

with	a	single	file.	

The	program	also	allows	changing	the	font	size,	so	the	QuickNotesSettings class	for	the	

program’s	application	settings	has	two	public	properties	named	Text	and	FontSize,	plus	

methods	to	save	and	load	those	properties	in	isolated	storage:	

Silverlight Project: QuickNotes File: QuickNotesSettings.cs

public class QuickNotesSettings

{

 public QuickNotesSettings()

 {

this.Text = "";

this.FontSize =

(double)Application.Current.Resources["PhoneFontSizeMediumLarge"];

 }

 public string Text { set; get; }

 public double FontSize { set; get; }

 public static QuickNotesSettings Load()

{

IsolatedStorageSettings isoSettings =

IsolatedStorageSettings.ApplicationSettings;

QuickNotesSettings settings;

if (!isoSettings.TryGetValue<QuickNotesSettings>("settings", out settings))

 settings = new QuickNotesSettings();

return settings;

 }

 public void Save()

 {

IsolatedStorageSettings isoSettings =

IsolatedStorageSettings.ApplicationSettings;

isoSettings["settings"] = this;

 }

}

As	with	the	Jot	program,	these	setting	are	saved,	loaded,	and	exposed	in	the	App	class:	

Silverlight Project: File:

public partial class App : Application

{

// Application settings

291	

	

	 	 	 	

	 	

	

	 	

	 	 	

	 	

	

 public QuickNotesSettings AppSettings { set; get; }

 …

 private void Application_Launching(object sender, LaunchingEventArgs e)

 {

AppSettings = QuickNotesSettings.Load();

 }

 private void Application_Activated(object sender, ActivatedEventArgs e)

 {

AppSettings = QuickNotesSettings.Load();

 }

 private void Application_Deactivated(object sender, DeactivatedEventArgs e)

{

AppSettings.Save();

 }

 private void Application_Closing(object sender, ClosingEventArgs e)

 {

AppSettings.Save();

 }

 …

}

The	XAML	file	creates	a	multiline	TextBox	the	size	of	the	content	area.	Besides	setting	

TextWrapping for	multiline	editing,	the	markup	also	sets	AcceptsReturn	to	true	so	that	the	

Enter	key	will	go	to	a	new	line,	which	I	thought	was	appropriate	for	this	program.	(In	the	

context	of	a	dialog	box,	you	usually	want	the	Enter	key	to	instead	invoke	the	OK	button,	even	

if	a	TextBox is	currently	getting	input	from	the	user.)		

Silverlight Project: File:

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<TextBox Name="txtbox"

 TextWrapping="Wrap"

 AcceptsReturn="True"

 VerticalScrollBarVisibility="Auto"

 TextChanged="OnTextBoxTextChanged" />

</Grid>

The	XAML	file	also	contains	an	ApplicationBar	with	two	buttons	I	designed	myself	for	

increasing	and	decreasing	the	size	of	the	font:	

Silverlight Project: File:

<phone:PhoneApplicationPage.ApplicationBar>

<shell:ApplicationBar>

292

	

	

	 	

	 	 	

	

<shell:ApplicationBarIconButton IconUri="/Images/littleletter.icon.png"

 Text="smaller font"

 Click="OnAppBarSmallerFontClick" />

<shell:ApplicationBarIconButton IconUri="/Images/bigletter.icon.png"

 Text="larger font"

 Click="OnAppBarLargerFontClick" />

</shell:ApplicationBar>

</phone:PhoneApplicationPage.ApplicationBar>

With	all	this	preparation,	the	actual	code	file	for	MainPage	is	rather	short	and	straightforward:	

Silverlight Project: File:

public partial class MainPage : PhoneApplicationPage

{

QuickNotesSettings appSettings = (Application.Current as App).AppSettings;

 public MainPage()

 {

InitializeComponent();

txtbox.Text = appSettings.Text;

txtbox.FontSize = appSettings.FontSize;

 }

 void OnTextBoxTextChanged(object sender, TextChangedEventArgs args)

{

appSettings.Text = txtbox.Text;

 }

 void OnAppBarSmallerFontClick(object sender, EventArgs args)

 {

txtbox.FontSize = Math.Max(12, txtbox.FontSize - 1);

appSettings.FontSize = txtbox.FontSize;

 }

 void OnAppBarLargerFontClick(object sender, EventArgs args)

 {

txtbox.FontSize = Math.Min(48, txtbox.FontSize + 2);

appSettings.FontSize = txtbox.FontSize;

 }

}

Whenever	the	text	in	the	TextBox	changes,	the	OnTextBoxChanged	method	saves	the	new	

version	in	application	settings.	The	two	methods	to	increase	and	decrease	the	font	size	

similarly	save	the	new	setting	but	also	use	it	to	set	the	FontSize	property	of	the	TextBox.	Here’s	

the	program	in	action:	

293	

	

	

	 	

	

	 	

	

	 	

	 	 	

	 	

	 	

	

	 	 	

	 	 	 	 	

	

	 	 	

	 	 	

	

	 	

	 	 	 	

	

What	the	program	does	not	do	is	save	the	text	insertion	point	(visually	indicated	by	the	

TextBox	caret),	so	whenever	the	program	starts	up,	you	need	to	tap	on	the	screen	to	indicate	

where	you	want	to	continue	typing.	It’s	possible	that	you	left	off	at	the	end	of	the	file,	but	

QuickNotes	will	always	bring	you	back	to	the	top.	

I	toyed	around	with	fixing	this	problem.	The	insertion	point	is	available	as	the	SelectionStart,	

property,	and	as	the	name	suggests,	it’s	used	in	conjunction	with	text	selection.	There’s	also	a	

SelectionLength	property,	which	has	a	value	of	0	if	no	text	is	selected.	(You	can	also	access	or	

set	the	selected	text	using	the	SelectedText	property.)	

TextBox	also	has	a	SelectionChanged	event,	so	it’s	certainly	possible	for	QuickNotes	to	save	the	

new	value	of	SelectionStart	in	application	settings	every	time	it	changes.	Then	it	would	be	a	

simple	matter	to	set	the	SelectionStart	property	along	with	Text	and	FontSize	in	the	

constructor	of	MainPage.	

But	that	doesn’t	quite	work.	When	you	launch	QuickNotes	or	return	to	it	after	navigating	

away,	the	TextBox	doesn’t	have	input	focus.	You	need	to	tap	on	the	screen	to	give	the	TextBox

focus	and	start	typing	something	in.	But	by	tapping	on	the	screen,	you’re	also	setting	a	new	

insertion	point!	

The	solution	to	that	little	problem	is	to	give	input	focus	to	the	TextBox	programmatically.	It	

doesn’t	work	in	the	constructor	to	MainPage,	but	if	you	install	a	handler	for	the	Loaded	event,	

you	can	do	it	there:	

txtbox.Focus();

294	

	

	 	

	

	 	

But	doing	that	creates	quite	a	dramatic	entrance	to	the	program!	As	soon	as	the	program	

starts	up,	the	virtual	keyboard	pops	up!	I	struggled	with	the	propriety	of	doing	that,	and	at	

last	I	decided	it	was	just	too	intrusive.	

But	who	knows?	Maybe	I’ll	put	that	feature	back	in	at	a	later	time.	That’s	why	they	call	it	

software.	

295	

	

	 	 	 	 	

	 	 	 		

	 	 	

	 	 	 	 	

	 	 	 	

	 	

	 	 		

	 	

	 	 	 	

	 	

	 	 	

	 	

	 	

	

	 	 	 	 	 	

	

	 	 	

	

	

Chapter	11	

Dependency Properties
This	chapter	is	about	creating	custom	control	classes	in	Silverlight,	optionally	making	them	

available	in	dynamic	link	libraries,	and	referencing	them	in	code	and	markup.	

Deriving	one	class	from	another	is	such	a	basic	aspect	of	objectoriented	programming	that	

devoting	a	whole	chapter	to	the	topic	hardly	seems	necessary.	And	in	one	sense,	you	don’t	

need	to	do	anything	special	to	derive	a	custom	class	from	an	existing	Silverlight	class.	You	can	

reference	that	class	in	XAML	just	by	providing	an	XML	namespace	declaration	to	associate	an	

XML	prefix	with	your	.NET	namespace.	I	demonstrated	as	much	in	Chapter	9	in	the	two	

projects	that	showed	how	to	create	custom	panels.	

On	the	other	hand,	if	you’re	creating	a	custom	control	class,	and	that	class	defines	new	

properties,	and	if	you	want	those	properties	to	be	set	through	styles,	or	you	want	those	

properties	to	be	set	through	data	bindings,	or	you	want	those	properties	to	be	the	target	of	

animations,	then	you	need	to	do	something	very	special	with	those	properties.	

You	need	to	make	them	dependency properties,	

The
Problem
Illustrated

To	illustrate	the	difference	that	dependency	properties	make,	let’s	first	look	at	a	custom	

control	class	perhaps	coded	by	a	naïve	programmer	

Suppose	you	want	to	use	a	bunch	of	buttons	whose	foregrounds	are	colored	with	various	

linear	gradient	brushes,	and	you	figure	it	would	be	convenient	for	you	to	specify	the	two	

colors	as	properties	of	the	buttons,	perhaps	properties	named	Color1	and	Color2.	So	you	

open	a	project	named	NaiveGradientButtonDemo	and	add	a	new	class	named	

NaiveGradientButton.	Here’s	that	class:	

Silverlight Project: NaiveGradientButtonDemo File: NaiveGradientButton.cs (excerpt)

public class NaiveGradientButton : Button

{

GradientStop gradientStop1, gradientStop2;

 public NaiveGradientButton()

 {

LinearGradientBrush brush = new LinearGradientBrush();

brush.StartPoint = new Point(0, 0);

brush.EndPoint = new Point(1, 0);

296	

	

	 	

	 	

	 	 	

	

	 	 	 	

	 	 	 	

	 	 	 	 	

	 	

	 	

	 	

	 	 	 	 	

	 	

gradientStop1 = new GradientStop();

gradientStop1.Offset = 0;

brush.GradientStops.Add(gradientStop1);

gradientStop2 = new GradientStop();

gradientStop2.Offset = 1;

brush.GradientStops.Add(gradientStop2);

Foreground = brush;

 }

 public Color Color1

 {

set { gradientStop1.Color = value; }

get { return (Color)gradientStop1.Color; }

 }

 public Color Color2

 {

set { gradientStop2.Color = value; }

get { return (Color)gradientStop2.Color; }

 }

}

As	expected,	NaiveGradientButton	derives	from	Button	and	has	two	new	properties	of	type	

Color	named	Color1	and	Color2.	The	constructor	creates	a	LinearGradientBrush,	sets	the	

StartPoint	and	EndPoint	properties,	creates	two	GradientStop	objects	that	are	stored	as	fields,	

adds	those	to	the	LinearGradientBrush,	and	then	sets	the	brush	to	the	button’s	Foreground

property.	

This	class	will	not	prevent	the	Foreground	property	of	the	GradientBrush from	being	reset	in	

code	or	XAML	after	the	object	has	been	created,	but	because	the	code	that	sets	the	

Foreground	here	is	considered	to	be	a	local	setting,	it	will	prevent	inheritance	of	the	

Foreground	property,	and	won’t	be	affected	by	a	Style	that	targets	the	Foreground	property.	

As	you	can	see,	the	set	and	get	accessors	of	the	Color1	and	Color2	properties	are	

implemented	simply	to	access	the	Color	property	in	the	corresponding	GradientStop.	

The	MainPage.xaml	file	in	the	NaiveGradientButtonDemo	project	references	this	class.	The	

root	element	includes	an	XML	namespace	declaration	that	associates	the	namespace	prefix	

“local”	with	the	CLR	namespace	of	NaiveGradientButton:	

xmlns:local="clr-namespace:NaiveGradientButtonDemo"

The	Resources	collection	in	MainPage.xaml	defines	a	Style	for	NaiveGradientButton:	

297	

	

	

	 	 	 	 	

	

	 	

	 	 	 	 	 	

	 	 	 	 	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.Resources>

<Style x:Key="gradientButtonStyle"

 TargetType="local:NaiveGradientButton">

<Setter Property="HorizontalAlignment" Value="Center" />

<!--

<Setter Property="Color1" Value="Cyan" />

<Setter Property="Color2" Value="Pink" />

-->

</Style>

</phone:PhoneApplicationPage.Resources>

Notice	the	style	TargetType	referencing	the	custom	class	by	prefacing	the	class	name	with	the	

XML	namespace.	

You’ll	also	notice	that	I’ve	commented	out	Setter	tags	that	target	the	Color1	and	Color2

properties.	(Perhaps	I’m	not	as	naïve	as	I	sometimes	pretend	to	be.)	

The	content	area	of	the	XAML	file	has	four	instances	of	NaiveGradientButton	with	their	Color1

and	Color2 properties	set	in	a	variety	of	different	ways:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<StackPanel>

<local:NaiveGradientButton Content="Naive Gradient Button #1"

 HorizontalAlignment="Center" />

<local:NaiveGradientButton Content="Naive Gradient Button #2"

 Color1="Blue" Color2="Red"

 HorizontalAlignment="Center" />

<local:NaiveGradientButton Content="Naive Gradient Button #3"

 Color1="{StaticResource PhoneForegroundColor}"

 Color2="{StaticResource PhoneBackgroundColor}"

 HorizontalAlignment="Center" />

<local:NaiveGradientButton Content="Naive Gradient Button #4"

 Style="{StaticResource gradientButtonStyle}" />

</StackPanel>

</Grid>

298	

	

	

	 	 	 	 	

	

	 	 	 	 	

	 	 	 	

	

	 	

	 	

	 	 	 	

	 	 	

	 	 	

	 	 	

	 	 	 	

	 	

	 	 	 	

	

The	first	button	uses	the	default	values	of	Color1	and	Color2;	the	second	uses	explicit	colors;	

the	third	references	theme	colors,	and	the	fourth	references	the	Style	defined	in	the	Resources

collection.	

When	you	run	the	program,	you’ll	discover	that	the	second	and	third	buttons	are	fine,	but	the	

first	and	fourth	seem	to	have	no	content:	

There	are	no	default	values	for	Color1	and	Color2.	If	they’re	not	explicitly	set,	the	colors	in	the	

gradient	will	have	all	the	A,	R,	G,	and	B properties	set	to	0,	a	color	known	as	transparent	black.	

Try	uncommenting	the	two	Setter	tags	in	the	Style.	The	Visual	Studio	error	window	will	tell	

you	“Object	reference	not	set	to	an	instance	of	an	object”	(certainly	one	of	my	favorite	error	

messages)	and	if	you	try	to	run	the	program	under	the	debugger,	a	XamlParseException	will	

be	raised	with	the	message	“Invalid	attribute	value	Color1	for	property	Property.”	That’s	a	

little	better:	It’s	telling	you	that	in	the	Setter	tag,	you	can’t	set	Property	to	Color1.	

What	the	error	message	should	really	say	is:	“Don’t	be	so	naïve.	Use	dependency	properties.”	

The
Dependency
Property
Difference

In	Silverlight,	properties	can	be	set	in	several	ways.	We	have	empirically	discovered	that	a	

strict	precedence	is	established	when	the	same	property	is	set	from	property	inheritance,	or	

from	a	theme,	or	a	style,	or	a	local	setting.	A	little	chart	created	in	Chapter	7	reads:	

299	

	

	 	

	

	

	 	 	

	

	 	

	 		

	 	

	 	 	 	

	 	

	 	 	

	 	 	

	

	 	 	

	 	 	 	 	

	 	 	 	 	

	

	 	

	 	 	 	

	 	 	

	 	 	

	 	 	

	

	 	 	

	 	 	

	 	 	

	

	

	 	 	 	

Local
Settings	have	precedence	over	

 Style
Settings,	which	have	precedence	over	the

 Theme
Style,	which	has	precedence	over	

Property
Inheritance,	which	has	precedence	over	

Default
Values

In	chapters	ahead	you’ll	see	that	properties	can	be	set	from	animations	and	templates,	and	

these	also	fit	into	the	precedence	chart.	

This	strict	precedence	is	required	to	avoid	a	lot	of	fighting	and	squabbles	among	styles	and	

animations	and	everything	else.	It	would	be	chaos	otherwise,	and	that	violates	our	

fundamental	desire	that	code	be	completely	deterministic.	

What	Silverlight	providesis	an	infrastructure	to	manage	all	the	different	ways	properties	can	

be	set	and	to	impose	some	kind	of	order.	Dependency	properties	are	a	major	part	of	this	

infrastructure.	They’re	called	dependency	properties	because	the	properties	depend	on	a	

bunch	of	different	external	forces,	which	are	then	mediated.	

Dependency	properties	are	built	on	top	of	existing	.NET	properties,	and	there’s	some	grunt	

work	involved,	and	some	extra	typing,	but	you’ll	be	coding	dependency	properties	

automatically	before	you	know	it.	

Among	other	things,	dependency	properties	provide	the	propertysetting	precedence.	It	

occurs	way	under	the	covers	and	it’s	not	something	you	can	mess	with.	Dependency	

properties	also	provide	a	very	structured	way	to	give	properties	a	default	value,	and	to	

provide	callback	methods	that	are	invoked	when	the	value	of	the	property	changes.	

Almost	all	the	properties	of	the	Silverlight	classes	encountered	so	far	have	actually	been	

dependency	properties.	It’s	easier	listing	the	exceptions	to	this	rule!	Two	that	come	to	mind	

are	the	Children	property	of	Panel	and	the	Text	property	of	Run.	

Any	class	that	implements	dependency	properties	must	derive	from	DependencyObject,	which	

is	a	very	basic	class	in	the	Silverlight	class	hierarchy.	Many	classes	in	Silverlight	derive	from	

DependencyObject,	including	the	big	one:	UIElement.	That	means	Button	derives	from	

DependencyObject,	which	of	course	means	that	any	class	that	derives	from	Button	can	

implement	dependency	properties.		

A	BetterGradientButton	class	with	dependency	properties	starts	off	normally:	

public class BetterGradientButton : Button

{

}

300	

	

	 	 	

	 	

	 	 	 	 	

	 	

	 	

	 	 	 	 	

	 	 	

	 	 	 	

	 	 	 	 	 	 	

	 	 	

	 	 	 	 	

	 	 	

	 	

	

	 	 	

	

	 	 	 	

	 	 	 	 	 	 	

	 	 	

	 	 	 	

	 	 	

	 	 	

	 	 	 	

	

	 	 	

	 	 	

	 	

As	with	NaiveGradientButton,	BetterGradientButton defines	two	properties	named	Color1	and	

Color2.	A	dependency	property	begins	with	a	public	field	of	type	DependencyProperty	that	

has	the	same	name	as	the	property	but	with	the	word	Property	appended.	So	in	the	

BetterGradientButton	class,	the	first	step	to	defining	a	Color1	property	is	to	define	a	public	

field	of	type	DependencyProperty	named	Color1Property.	

public class BetterGradientButton : Button

{

 public static readonly DependencyProperty Color1Property =

DependencyProperty.Register("Color1",

 typeof(Color),

 typeof(BetterGradientButton),

 new PropertyMetadata(Colors.Black, OnColorChanged));

}

Not	only	is	it	a	field,	but	it’s	a	public static	field,	and	it’s	customarily	defined	as	readonly	as	

well,	which	means	it	can’t	be	changed	after	it’s	defined.	Once	a	DependencyProperty	is	

created	for	a	particular	class,	it	doesn’t	change,	and	it’s	shared	among	all	instances	of	that	

class.	

Generally	you	create	an	object	of	type	DependencyProperty by	calling	the	static	

DependencyProperty.Register	method.	(The	only	exception	is	for	attached	properties.)	The	first	

argument	is	a	text	string	of	the	property	name;	the	second	argument	is	the	type	of	the	

property,	in	this	case	Color;	the	third	argument	is	the	class	defining	the	property,	in	this	case	

BetterGradientButton.	

The	final	argument	is	an	object	of	type	PropertyMetadata,	and	there	are	only	two	possible	

pieces	of	information	you	supply	in	the	PropertyMetadata	constructor.	One	is	the	default	

value	of	the	property—the	value	of	the	property	if	it’s	not	otherwise	assigned.	If	you	don’t	

supply	this	default	value	for	a	reference	type,	it	will	be	assumed	to	be	null.	For	a	value	type,	

it’s	the	type’s	default.	

I’ve	decided	that	the	Color1 property	should	have	a	default	value	of	Colors.Black.	

The	second	part	of	the	PropertyMetadata constructor	is	the	name	of	a	handler	that	is	called	

when	the	property	changes.	This	handler	is	only	called	if	the	property	really	changes.	For	

example,	if	the	property	has	a	default	value	of	Colors.Black,	and	the	property	is	then	set	to	a	

value	of	Colors.Black,	the	property	changed	handler	will	not	be	called.	

I	know	it	seems	weird	for	something	called	a	dependency property with	a	type	of	

DependencyProperty	and	a	name	of	Color1Property	to	be	defined	as	a	field,	but	there	it	is.	

It’s	easy	to	confuse	the	two	classes	DependencyObject	and	DependencyProperty.	Any	class	that	

has	dependency	properties	must	descend	from	DependencyObject,	just	as	normal	classes	

descend	from	Object.	The	class	then	creates	objects	of	type	DependencyProperty just	as	a	

normal	class	might	define	regular	properties.	

301	

	

	

	

	

	 	 	

	 	 	

	

	 	

	

	 	

	

	 	

	 	 	 	 	

	 	 	

	 	 	 	

	 	 	 	

	 	 	 	 	

It’s	not	necessary	to	define	the	entire	DependencyProperty	in	the	static	field.	Some	

programmers	prefer	instead	to	initialize	the	DependencyProperty field	in	the	static	

constructor:	

public class BetterGradientButton : Button

{

 public static readonly DependencyProperty Color1Property;

 static BetterGradientButton()

 {

Color1Property = DependencyProperty.Register("Color1",

 typeof(Color),

 typeof(BetterGradientButton),

 new PropertyMetadata(Colors.Black, OnColorChanged));

 }

}

There’s	really	no	difference	between	these	two	techniques.	

Besides	the	static	field	of	type	DependencyProperty you	need	a	regular	.NET	property	

definition	for	the	Color1	property:	

public class BetterGradientButton : Button

{

 public static readonly DependencyProperty Color1Property =

DependencyProperty.Register("Color1",

 typeof(Color),

 typeof(BetterGradientButton),

 new PropertyMetadata(Colors.Black, OnColorChanged));

 public Color Color1

 {

set { SetValue(Color1Property, value); }

get { return (Color)GetValue(Color1Property); }

 }

}

This	definition	of	the	Color1 property	is	standard.	The	set	accessor	calls	SetValue	referencing	

the	Color1Property	dependency	property,	and	the	get	accessor	calls	GetValue	also	referencing	

Color1Property.	

Where	did	these	two	methods	SetValue	and	GetValue	come	from?	SetValue	and	GetValue	are	

two	public	methods	defined	by	DependencyObject	and	inherited	by	all	derived	classes.	Notice	

that	the	second	argument	to	SetValue is	the	value	to	which	the	property	is	being	set.	The	

return	value	of	GetValue	is	of	type	object	so	it	must	be	explicitly	cast	to	a	Color.	

In	connection	with	dependency	properties,	the	Color1 property	definition	is	said	to	be	the	

definition	of	the	CLR property—the	.NET	Common	Language	Runtime	property—to	

distinguish	it	from	the	DependencyProperty object	defined	as	a	public	static	field.	It	is	

sometimes	said	that	the	CLR	property	named	Color1	is	“backed	by”	the	dependency	property	

named	Color1Property.	That	terminology	is	convenient	when	you	want	to	distinguish	the	

302	

	

	 	 	

	

	 	 	

	 	

	 	 	 	

	 	 	

	

	 	

	 	 	

	

	 	 	

	 	 	

	

	 	 	

	

property	definition	from	the	definition	of	the	public	static	field.	But	just	as	often,	both	

pieces—the	public	static	field	and	the	property	definition—are	collectively	referred	to	as	“the	

dependency	property”	or	(if	you’re	really	cool)	“the	DP.”	

It	is	very	important	that	your	CLR	property	does	nothing	more	than	call	SetValue	and	

GetValue.	This	is	not	the	place	for	any	kind	of	validity	checking	or	propertychanged	

processing.	The	reason	is	that	you	never	really	know	how	a	dependency	property	is	being	set.	

You	might	think	the	property	is	always	set	like	this:	

btn.Color1 = Colors.Red;

However,	the	SetValue	and	GetValue	methods	defined	by	DependencyObject	are	public,	so	

some	code	could	just	as	easily	set	the	property	like	this:	

btn.SetValue(GradientButton2.Color1Property, Colors.Red);

Or,	the	property	could	be	set	in	a	way	that	is	known	only	to	the	Silverlight	internals.	

On	the	other	hand,	don’t	mistakenly	omit	the	CLR	property.	Sometimes	if	you	just	define	the	

DependencyProperty field	and	forget	the	CLR	property,	some	things	will	work	but	others	will	

not.	

Here’s	the	class	with	a	DependencyProperty	and	CLR	property	for	Color2	as	well:	

public class BetterGradientButton : Button

{

 public static readonly DependencyProperty Color1Property =

DependencyProperty.Register("Color1",

 typeof(Color),

 typeof(BetterGradientButton),

 new PropertyMetadata(Colors.Black, OnColorChanged));

 public static readonly DependencyProperty Color2Property =

DependencyProperty.Register("Color2",

 typeof(Color),

 typeof(BetterGradientButton),

 new PropertyMetadata(Colors.White, OnColorChanged));

 public Color Color1

 {

set { SetValue(Color1Property, value); }

get { return (Color)GetValue(Color1Property); }

 }

 public Color Color2

 {

set { SetValue(Color2Property, value); }

get { return (Color)GetValue(Color2Property); }

 }

}

In	the	DependencyProperty	definition	for	Color2,	I	set	the	default	value	to	Colors.White.	

303	

	

	 	 	

	

	 	

	 	 	

	 	

	

	

	 	 	 	 	

	 	

	 	 	

	

	 	

	 	

	

Both	DependencyProperty	fields	refer	to	a	propertychanged	handler	named	

OnColorChanged.	Because	this	method	is	referred	to	in	the	definition	of	a	static	field,	the	

method	itself	must	be	static	and	here’s	what	it	look	like:	

static void OnColorChanged(DependencyObject obj,

DependencyPropertyChangedEventArgs args)

{

…

}

This	is	a	static	method	so	it’s	the	same	method	for	all	instances	of	BetterGradientButton,	and	

that’s	a	little	problem.	Normally	in	a	static	method	you	can’t	access	any	nonstatic	properties	

or	methods,	so	at	first	you	might	assume	that	this	method	can’t	refer	to	anything	involving	a	

particular	instance	of	BetterGradientButton.	

But	notice	that	the	first	argument	to	this	propertychanged	handler	is	of	type	

DependencyObject.	This	argument	is	actually	the	particular	instance	of	BetterGradientButton

whose	property	is	being	changed.	This	means	that	you	can	safely	cast	this	first	argument	to	an	

object	of	type	BetterGradientButton:	

static void OnColorChanged(DependencyObject obj,

DependencyPropertyChangedEventArgs args)

{

BetterGradientButton btn = obj as BetterGradientButton;

…

}

You	can	then	use	that	btn	variable	to	access	all	the	instance	properties	and	instance	methods	

in	the	class.	

The	second	argument	to	the	handler	gives	you	specific	information	on	the	particular	property	

that’s	being	changed,	and	the	old	and	new	values	of	that	property.	

Here’s	the	complete	BetterGradientButton	class:	

SilverlightProject: BetterGradientButtonDemo File: BetterGradientButton.cs (excerpt)

public class BetterGradientButton : Button

{

GradientStop gradientStop1, gradientStop2;

 public static readonly DependencyProperty Color1Property =

DependencyProperty.Register("Color1",

 typeof(Color),

 typeof(BetterGradientButton),

 new PropertyMetadata(Colors.Black, OnColorChanged));

 public static readonly DependencyProperty Color2Property =

DependencyProperty.Register("Color2",

 typeof(Color),

304	

	

	 	

	

	 	

	

 typeof(BetterGradientButton),

 new PropertyMetadata(Colors.White, OnColorChanged));

 public BetterGradientButton()

 {

LinearGradientBrush brush = new LinearGradientBrush();

brush.StartPoint = new Point(0, 0);

brush.EndPoint = new Point(1, 0);

gradientStop1 = new GradientStop();

gradientStop1.Offset = 0;

gradientStop1.Color = Color1;

brush.GradientStops.Add(gradientStop1);

gradientStop2 = new GradientStop();

gradientStop2.Offset = 1;

gradientStop2.Color = Color2;

brush.GradientStops.Add(gradientStop2);

Foreground = brush;

 }

 public Color Color1

 {

set { SetValue(Color1Property, value); }

get { return (Color)GetValue(Color1Property); }

 }

 public Color Color2

 {

set { SetValue(Color2Property, value); }

get { return (Color)GetValue(Color2Property); }

 }

 static void OnColorChanged(DependencyObject obj,

DependencyPropertyChangedEventArgs args)

{

BetterGradientButton btn = obj as BetterGradientButton;

if (args.Property == Color1Property)

 btn.gradientStop1.Color = (Color)args.NewValue;

if (args.Property == Color2Property)

 btn.gradientStop2.Color = (Color)args.NewValue;

 }

}

Like	the	earlier	NaiveGradientButton	class,	the	class	has	two	private	instance	fields	of	type	

gradientStop1	and	gradientStop2.	The	constructor	is	also	quite	similar	to	the	earlier	version,	

but	this	one	has	a	significant	difference:	The	Color	property	of	each	GradientStop	object	is	

initialized	from	the	Color1	and	Color2	properties:	

305

	

	 	 	 	 	

	 	 	

	 	 	

	 	 	 	 	 	

	

	 	

	 	

	 	 	

	 	 	

	 	 	

	

	 	

	 	 	 	

	 	 	

	 	 	

	 	 	

	 	 	

	 	 	

	 	 	

	

gradientStop1.Color = Color1;

gradientStop2.Color = Color2;

Accessing	those	Color1	and	Color2	properties	causes	calls	to	GetValue	with	the	Color1Property

and	Color2Property	arguments.	GetValue	returns	the	default	values	defined	in	the	

DependencyProperty	field:	Colors.Black	and	Colors.White.	That’s	how	the	LinearGradientBrush

is	created	with	the	default	colors.	

There	are	numerous	ways	to	code	the	propertychanged	handler	down	at	the	bottom	of	the	

class.	In	the	BetterGradientButton class,	I’ve	made	use	of	two	properties	in	

DependencyPropertyChangedEventArgs:	The	property	named	Property	of	type	

DependencyProperty	indicates	the	particular	dependency	property	being	changed.	This	is	very	

handy	if	you’re	sharing	a	propertychanged	handler	among	multiple	properties	as	I	am	here.	

DependencyPropertyChangedEventArgs	also	defines	OldValue	and	NewValue	properties.	These	

two	values	will	always	be	different.	The	propertychanged	handler	isn’t	called	unless	the	

property	is	actually	changing.	

By	the	time	the	propertychanged	handler	has	been	called,	the	property	has	already	been	

changed,	so	the	handler	can	be	implemented	by	accessing	those	properties	directly.	Here’s	a	

simple	alternative:	

static void OnColorChanged(DependencyObject obj,

DependencyPropertyChangedEventArgs args)

{

BetterGradientButton btn = obj as BetterGradientButton;

 btn.gradientStop1.Color = btn.Color1;

 btn.gradientStop2.Color = btn.Color2;

}

This	version	doesn’t	check	which	property	is	changing,	so	for	any	particular	call	to	

OnColorChanged,	one	of	those	two	statements	is	superfluous.	You’ll	be	comforted	to	know	

that	GradientStop	derives	from	DependencyObject,	and	the	Color property	is	a	dependency	

property,	so	the	propertychanged	handler	in	GradientStop	doesn’t	get	called	if	one	of	the	

properties	is	not	actually	changing.	

Here’s	something	I	do	quite	often,	and	I’m	a	much	happier	programmer	as	a	result:	

Rather	than	warp	my	brain	by	using	a	reference	to	a	particular	instance	of	a	class	within	a	

static	method,	I	use	the	static	method	for	the	sole	purpose	of	calling	an	instance	method	with	

the	same	name.	Here’s	how	my	technique	would	look	in	BetterGradientBrush:	

static void OnColorChanged(DependencyObject obj,

DependencyPropertyChangedEventArgs args)

{

 (obj as BetterGradientButton).OnColorChanged(args);

}

306	

	

	 	 	

	

	

	 	 	

	 	

	 	

void OnColorChanged(DependencyPropertyChangedEventArgs args)

{

if (args.Property == Color1Property)

gradientStop1.Color = (Color)args.NewValue;

if (args.Property == Color2Property)

gradientStop2.Color = (Color)args.NewValue;

}

This	instance	method	can	do	everything	the	static	method	can	do	but	without	the	hassle	of	

carrying	around	a	reference	to	a	particular	instance	of	the	class.	

Let’s	see	this	new	class	in	action.	It	would	be	a	shame	if	all	this	hard	work	didn’t	improve	

things.	As	in	the	earlier	program,	the	Resources	collection	in	MainPage.xaml	has	a	Style

element	targeting	the	custom	button.	But	now	the	Setter	tags	for	Color1	and	Color2	have	

been	optimistically	uncommented:	

SilverlightProject: File: (excerpt)

<phone:PhoneApplicationPage.Resources>

<Style x:Key="gradientButtonStyle"

 TargetType="local:BetterGradientButton">

<Setter Property="HorizontalAlignment" Value="Center" />

<Setter Property="Color1" Value="Cyan" />

<Setter Property="Color2" Value="Pink" />

</Style>

</phone:PhoneApplicationPage.Resources>

The	content	area	is	basically	the	same:	

SilverlightProject: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<StackPanel>

<local:BetterGradientButton Content="Better Gradient Button #1"

 HorizontalAlignment="Center" />

<local:BetterGradientButton Content="Better Gradient Button #2"

 Color1="Blue" Color2="Red"

 HorizontalAlignment="Center" />

<local:BetterGradientButton Content="Better Gradient Button #3"

 Color1="{StaticResource PhoneForegroundColor}"

 Color2="{StaticResource PhoneBackgroundColor}"

 HorizontalAlignment="Center" />

<local:BetterGradientButton Content="Better Gradient Button #4"

 Style="{StaticResource gradientButtonStyle}" />

307	

	

	

		

	 	 	

	

	 	

	

	 	 	

	 	 	 	

	 	

	 	 	 	

	 	

	 	

</StackPanel>

</Grid>

The	really	great	news	is	in	the	screen	shot:	

The	first	button	shows	the	effect	of	the	defaults,	a	concept	built	into	dependency	properties,	

and	the	last	button	shows	that	the	Style	works.	

A	few	miscellaneous	notes:	

Notice	that	you	don’t	have	direct	access	to	the	actual	values	of	the	dependency	properties.	

They	are	obviously	stored	somewhere	private	that	is	accessible	only	through	SetValue	and	

GetValue.	Presumably	DependencyObject	maintains	a	dictionary	to	store	a	collection	of	

dependency	properties	and	their	values.	It	must	be	a	dictionary	because	it’s	possible	to	use	

SetValue	to	store	certain	types	of	dependency	properties—specifically,	attached	properties—	

in	any	DependencyObject.	

Watch	out	for	the	first	argument	to	the	PropertyMetadata	constructor.	It	is	defined	as	type	

object.	Suppose	you’re	creating	a	DependencyProperty for	a	property	of	type	double	and	you	

want	to	set	a	default	value	of	10:	

public static readonly DependencyProperty MyDoubleProperty =

DependencyProperty.Register("MyDouble",

typeof(double),

typeof(SomeClass),

new PropertyMetadata(10, OnMyDoubleChanged));

308	

	

	 	 	

	 	 	

	 	

	 	 	 	

	 	 	

	

	 	 	

	 	 	 	 	

	 	

	 	 	 	

	 	 	

	 	 	 	 	

	

	 	 	

	 	 	

	 	 	

	

	

	 	 	 	 	 	

	

	

	 	 	 	 	 	

	

	 	 	

	 	 	 	

	 	 	

	 	

The	C#	compiler	will	interpret	that	value	of	10	as	an	int,	and	generate	code	to	pass	an	integer	

value	of	10	to	the	PropertyMetadata	constructor,	which	will	try	to	store	an	integer	value	for	a	

dependency	property	of	type	double.	That’s	a	runtime	error.	Make	the	data	type	explicit:	

public static readonly DependencyProperty MyDoubleProperty =

DependencyProperty.Register("MyDouble",

typeof(double),

typeof(SomeClass),

new PropertyMetadata(10.0, OnMyDoubleChanged));

You	might	have	cause	to	create	a	readonly	dependency	property.	(For	example,	the	

ActualWidth	and	ActualHeight	properties	defined	by	FrameworkElement	have	get	accessors	

only.)	At	first,	it	seems	easy:	

public double MyDouble

{

private set { SetValue(MyDoubleProperty, value); }

get { return (double)GetValue(MyDoubleProperty); }

}

Now	only	the	class	itself	can	set	the	property.	

But	wait!	As	I	mentioned	earlier,	the	SetValue method	is	public,	so	any	class	can	call	SetValue

to	set	the	value	of	this	property.	To	protect	a	readonly	dependency	property	from	

unauthorized	access	you’ll	need	to	raise	an	exception	if	the	property	is	being	set	from	code	

external	to	the	class.	The	easiest	logic	probably	entails	setting	a	private	flag	when	you	set	the	

property	from	within	the	class	and	then	checking	for	that	private	flag	in	the	property

changed	handler.	

You	can	easily	tell	from	the	documentation	if	a	particular	property	of	an	existing	class	is	

backed	by	a	dependency	property.	Just	look	in	the	Fields	section	for	a	static	field	of	type	

DependencyProperty	with	the	same	name	as	the	property	but	with	the	word	Property

attached.	

The	existence	of	the	static	DependencyProperty	field	allows	code	or	markup	to	refer	to	a	

particular	property	defined	by	a	class	independent	of	any	instance	of	that	class,	even	if	an	

instance	of	that	class	has	not	yet	been	created.	Some	methods—for	example,	the	SetBinding

method	defined	by	FrameworkElement—have	arguments	that	allow	you	to	refer	to	a	

particular	property,	and	the	dependency	property	is	ideal	for	this.		

Finally,	don’t	feel	obligated	to	make	every	property	in	your	classes	a	dependency	property.	If	

a	particular	property	will	never	be	the	target	of	a	style,	or	a	data	binding,	or	an	animation,	

there’s	no	problem	if	you	just	make	it	a	regular	property.	

For	example,	if	you	plan	to	use	multiple	RadioButton	controls	to	let	the	user	select	an	object	

of	type	Color,	you	could	derive	from	RadioButton	and	define	a	property	for	associating	a	

Color	object	with	each	RadioButton:	

309	

	

	 	 	

	 	 	 	 	

	

	

	 	 	

	 	

	 	 	

	 	

	 	 	 	 	

	 	 	 	 	

	 	

	 	

	 	

	

	 	

	

	 	 	

	 	 	 	

	

	 	 	 	

	 	 	

	 	 	 	 	

	 	 	

	 	 	

	 	 	

public class ColorRadioButton : RadioButton

{

 public Color ColorTag { set; get; }

}

You	could	then	set	that	property	in	XAML	and	reference	it	later	in	code	for	easily	determining	

what	Color	each	RadioButton	represents.	You	don’t	need	a	dependency	property	for	a	simple	

application	like	this.	

Deriving
from
UserControl
As	you’ve	seen,	it’s	possible	to	derive	from	a	class	that	derives	from	Control	to	add	some	

additional	properties.	It’s	also	possible	to	derive	directly	from	Control	to	create	entirely	new	

controls	(or	to	derive	from	ContentControl	if	the	control	needs	to	have	a	Content	property).	

However,	deriving	from	Control	or	ContentControl	in	a	proper	and	cordial	manner	involves	

creating	a	default	template	in	XAML	that	describes	the	control’s	visual	appearance,	and	

allowing	that	template	to	be	replaced	to	redefine	the	visuals	of	the	control.	

This	is	not	inherently	difficult,	but	often	requires	giving	deep	thought	to	how	the	control	will	

be	customized.	You’ll	see	some	of	the	issues	involved	in	Chapter	16.	

If	you’re	in	the	controlwriting	business,	the	custom	controls	that	you	develop	and	market	

should	derive	from	Control	or	ContentControl	or	ItemsControl	(Chapter	17).	A	replaceable	

template	is	an	essential	feature	for	commercialgrade	controls.	

But	some	custom	controls	don’t	require	additional	visual	customization:	For	controls	specific	

to	a	particular	project,	or	used	only	by	one	programmer	or	a	programming	team	within	a	

company,	or	controls	that	have	an	inherent	visual	appearance,	it’s	usually	not	necessary	to	

allow	the	control’s	template	to	be	replaced.	

For	such	controls,	deriving	from	UserControl	is	often	an	ideal	solution.	(The	User	in	

UserControl	is	you—the	programmer.)	Moreover,	you	already	have	experience	deriving	from	

UserControl!	The	PhoneApplicationPage	class	derives	from	Page,	which	derives	from	

UserControl.	

UserControl	has	a	property	named	Content	of	type	UIElement.	When	deriving	from	

UserControl	you	generally	define	new	properties	in	code	(and	often	methods	and	events	as	

well),	but	you	define	your	visuals	in	XAML	by	assigning	a	visual	tree	to	that	Content	property.	

This	makes	the	Content property	unusable	for	other	purposes.	If	your	UserControl	derivative	

requires	a	Content property,	you	should	define	a	new	property	named	Child	or	something	

similar	to	serve	the	same	purpose.	

Making	liberal	use	of	UserControl	is	an	ideal	way	to	modularize	the	visuals	of	your	program.	

310	

	

	 	 	 	 	

	 	

	 	 	 	 	

	 	 	

	

	 	 	

	 	 	

	

	

		

	 	

	 	 	

	

	 	

	 	

	 	 	 	

	 	 	 	 	

	 	 	 	 	 	

		

	 	 	 	

	 	

	 	 	

	 	 	

	 	 	

	 	

	 	

	 	

	

For	example,	the	ColorScroll	program	in	the	previous	chapter	had	a	lot	of	repetition	in	the	

XAML	file.	The	three	rows	contained	a	Slider	and	two	TextBlock	elements	each.	If	you	wanted	

to	adapt	the	concept	of	ColorScroll to	a	reusable	control,	you	might	begin	by	deriving	a	class	

named	ColorColumn	from	UserControl,	and	then	putting	three	ColorColumn	controls	together	

in	a	UserControl	derivative	named	RgbColorScroller.	

ColorColumn	and	RgbColorScroller	can	both	be	found	in	a	dynamic	link	library	(DLL)	project	

called	Petzold.Phone.Silverlight.	Creating	a	DLL	in	Visual	Studio	for	your	Windows	Phone	

programs	is	easy:	In	the	New	Project	dialog,	select	Silverlight	for	Windows	Phone	at	the	left	

and	Windows	Phone	Class	Library	in	the	middle	area.	(To	facilitate	testing,	you’ll	probably	

want	a	second	application	project	in	the	same	solution	as	the	library;	or	you	might	want	to	

develop	custom	classes	in	an	application	project	and	then	move	them	to	the	library	when	you	

know	they’re	working	right.)	

Within	the	Petzold.Phone.Silverlight	project	(or	any	other	library	project),	you	can	add	a	new	

item	by	rightclicking	the	project	name	in	the	Solution	Explorer	and	selecting	Add	and	New	

Item.	

To	make	a	new	UserControl in	either	an	application	project	or	a	library	project.	From	the	Add	

New	Item	dialog	box,	select	Windows	Phone	User	Control	and	give	it	a	name.You’ll	get	two	

files:	a	XAML	file	and	a	codebehind	file.	

The	XAML	file	is	rather	simpler	than	the	one	created	for	a	PhoneApplicationPage	class.	The	

root	element	is	UserControl.	It	contains	an	x:Class	attribute	indicating	the	derived	class,	and	

the	only	nested	element	is	a	Grid	named	LayoutRoot.	You	don’t	need	to	retain	that	Grid	but	

it’s	usually	convenient.	

The	root	element	contains	attributes	to	set	these	properties:	

FontFamily="{StaticResource PhoneFontFamilyNormal}"

FontSize="{StaticResource PhoneFontSizeNormal}"

Foreground="{StaticResource PhoneForegroundBrush}"

You’ll	almost	certainly	want	to	delete	those	attributes.	These	three	properties	are	inherited	

through	the	visual	tree,	so	the	UserControl	will	normally	get	the	settings	of	these	properties	

from	MainPage.	By	setting	these	properties	here,	you’re	disabling	any	markup	(or	code)	that	

sets	these	properties	on	the	control	that	you’re	creating.	Keep	these	properties	in	the	

UserControl	only	if	your	control	relies	on	them.	

I	also	deleted	the	designerrelated	attributes,	so	here’s	the	complete	ColorColumn.xaml	file.	

Notice	I’ve	also	changed	the	Background	property	on	the	Grid	from	a	StaticResource

referencing	PhoneChromeBrush	to	Transparent:	

311	

	

	

	 	

	 	 	 	 	 	 	

	

	 	

	 	

	 	 	

	 	 	 	

	 	 	 		

	 	

	 	 	

Silverlight Project: Petzold.Phone.Silverlight File: ColorColumn.xaml

<UserControl

x:Class="Petzold.Phone.Silverlight.ColorColumn"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

<Grid x:Name="LayoutRoot" Background="Transparent">

<Grid.RowDefinitions>

<RowDefinition Height="Auto" />

<RowDefinition Height="*" />

<RowDefinition Height="Auto" />

</Grid.RowDefinitions>

<TextBlock Name="colorLabel"

 Grid.Row="0"

 TextAlignment="Center" />

<Slider Name="slider"

 Grid.Row="1"

 Orientation="Vertical"

 Minimum="0"

 Maximum="255"

 ValueChanged="OnSliderValueChanged" />

<TextBlock Name="colorValue"

 Grid.Row="2"

 Text="00"

 TextAlignment="Center" />

</Grid>

</UserControl>

The	Grid	has	three	rows	with	a	TextBlock	at	the	top	with	a	name	of	colorLabel,	a	Slider	with	a	

range	of	0	to	255,	and	another	TextBlock with	a	name	of	colorValue.	The	Slider	has	an	event	

handler	set	on	its	OnSliderValueChanged	event.	

In	the	ColorScroll	program	from	the	previous	chapter,	the	Slider	controls	and	TextBlock

elements	were	all	colored	red,	green,	and	blue	through	the	Foreground	property.	Because	the	

Foreground	property	is	inherited	through	the	visual	tree,	it	should	be	sufficient	to	set	it	once	

on	any	instance	of	ColumnColumn	and	let	it	trickle	down	through	the	tree.	

The	text	displayed	by	the	TextBlock	named	colorLabel	will	indicate	that	color,	but	I	decided	I	

wanted	to	handle	that	text	a	little	differently,	with	a	property	specifically	for	that	purpose.	

This	means	the	ColorColumn	class	defines	two	properties—a	Label	property	for	the	text	above	

the	Slider	as	well	as	the	more	expected	Value	property	corresponding	to	the	Slider	position.	

312	

	

	 	 	 	 	

	 	 	 		

	 	

	 	

	 	 	

	 	

	 	 	 	 	 	

	 	 	 	 	 	

	 	

	 	

	

	 	 	

	 	

	 	 	 	 	

	 	

Like	the	Slider	itself,	the	ColorColumn	class	also	defines	an	event	named	ValueChanged	to	

indicate	when	the	Slider value	has	changed.	

Generally	a	UserControl derivative	will	define	its	own	properties	and	events,	and	very	often	

these	properties	and	events	will	parallel	properties	and	events	of	elements	in	its	visual	tree.	It’s	

typical	for	a	class	like	ColorColumn	to	have	a	Label property	corresponding	to	the	Text

property	of	a	TextBlock,	and	a	Value	property	corresponding	to	the	Value	property	of	the	

Slider,	and	a	ValueChanged event	corresponding	to	the	ValueChanged	event	of	the	Slider.	

Here’s	the	portion	of	the	ColorColumn	codebehind	file	devoted	to	the	Label	property	for	the	

text	above	the	Slider:	

Silverlight Project: Petzold.Phone.Silverlight File: ColorColumn.xaml.cs (excerpt)

public partial class ColorColumn : UserControl

{

…

 public static readonly DependencyProperty LabelProperty =

DependencyProperty.Register("Label",

 typeof(string),

 typeof(ColorColumn),

 new PropertyMetadata(OnLabelChanged));

 …

 public string Label

 {

set { SetValue(LabelProperty, value); }

get { return (string)GetValue(LabelProperty); }

 }

 …

 static void OnLabelChanged(DependencyObject obj,

DependencyPropertyChangedEventArgs args)

{

(obj as ColorColumn).colorLabel.Text = args.NewValue as string;

}

}

The	propertychanged	handler	for	Label	simply	sets	the	value	to	the	Text	property	of	the	

TextBlock	in	the	visual	tree	named	colorLabel.	This	is	one	way	that	a	property	defined	on	the	

custom	control	is	transferred	to	a	property	on	an	element	in	the	visual	tree.	I’ll	demonstrate	a	

simpler	approach	using	data	bindings	in	the	next	chapter.	

The	Value	property	in	ColorColumn	is	a	little	more	complex	because	it	needs	to	fire	a	

ValueChanged	event.	This	Value	property	is	eventually	used	in	the	calculation	of	a	Color,	so	I	

thought	it	should	be	of	type	byte	rather	than	double.	Here’s	the	code	in	the	class	pertaining	to	

the	Value	property	and	ValueChanged	event:	

313	

	

	

	

	

	

	 	

	 	

	 	

	 	

Silverlight Project: Petzold.Phone.Silverlight File: ColorColumn.xaml.cs (excerpt)

public partial class ColorColumn : UserControl

{

 public static readonly DependencyProperty ValueProperty =

DependencyProperty.Register("Value",

 typeof(byte),

 typeof(ColorColumn),

 new PropertyMetadata((byte)0, OnValueChanged));

 …

 public event RoutedPropertyChangedEventHandler<byte> ValueChanged;

 …

 public byte Value

 {

set { SetValue(ValueProperty, value); }

get { return (byte)GetValue(ValueProperty); }

 }

 …

 static void OnValueChanged(DependencyObject obj,

DependencyPropertyChangedEventArgs args)

{

(obj as ColorColumn).OnValueChanged((byte)args.OldValue,

(byte)args.NewValue);

 }

 protected virtual void OnValueChanged(byte oldValue, byte newValue)

{

slider.Value = newValue;

colorValue.Text = newValue.ToString("X2");

if (ValueChanged != null)

 ValueChanged(this,

new RoutedPropertyChangedEventArgs<byte>(oldValue, newValue));

 }

 …

}

To	define	the	ValueChanged	event	I	chose	to	use	the	generic	

RoutedPropertyChangedEventHandler	and	the	corresponding	

RoutedPropertyChangedEventArgs.)	This	is	a	good	choice	for	signaling	when	dependency	

properties	change	because	it	accommodates	old	and	new	values.	

The	static	OnValueChanged method	calls	a	protected	virtual	instance	method	also	named	

OnValueChanged	but	with	arguments	indicating	the	old	and	new	property	values.	(My	design	

was	inspired	by	the	OnValueChanged	method	in	RangeBase.)	This	instance	method	sets	the	

Slider	and	the	TextBlock	indicating	the	current	value	and	fires	the	ValueChanged	event.	

314	

	

	 	 	

	 	

	 	 	

	 	 	

	

	 	

	 	

	 	 	 	 	

	 	 	 	 	

	 	 	

	 	

The	only	code	of	ColorColumn not	yet	discussed	encompass	the	constructor	and	the	handler	

for	the	ValueChanged	event	of	the	Slider.	This	event	handler	simply	casts	the	Value	property	

of	the	Slider	to	a	byte	and	sets	it	to	the	Value	property	of	the	ColorColumn	class.	

Silverlight Project: Petzold.Phone.Silverlight File: ColorColumn.xaml.cs (excerpt)

public partial class ColorColumn : UserControl

{

…

 public ColorColumn()

 {

InitializeComponent();

 }

 …

 void OnSliderValueChanged(object sender,

RoutedPropertyChangedEventArgs<double> args)

 {

Value = (byte)args.NewValue;

 }

}

And	now	you	may	detect	an	infinite	loop:	The	user	manipulates	the	Slider.	The	Slider	fires	a	

ValueChanged	event.	The	OnSliderValueChanged	method	sets	the	Value	property	of	

ColorColumn.	The	static	propertychanged	handler	OnValueChanged	is	called.	The	static	

method	calls	the	instance	OnValueChanged	method,	which	sets	the	Value	property	of	the	

Slider,	which	fires	another	ValueChanged event,	and	so	forth.	

In	reality,	this	doesn’t	happen	because	at	some	point	one	of	these	Value	properties—either	

the	Value	property	of	the	Slider	or	the	Value	property	of	ColorColumn—will	be	set	to	its	

existing	value,	and	no	propertychanged	event	will	be	fired.	The	infinite	loop	grinds	to	a	halt.	

The	RgbColorScoller	class	also	derives	from	UserControl	and	consists	of	three	ColorColumn

controls.	Here’s	the	complete	XAML	file:	

Silverlight Project: Petzold.Phone.Silverlight File: RgbColorScroller.xaml

<UserControl

x:Class="Petzold.Phone.Silverlight.RgbColorScroller"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:petzold="clr-namespace:Petzold.Phone.Silverlight">

<Grid x:Name="LayoutRoot" Background="Transparent">

<Grid.ColumnDefinitions>

<ColumnDefinition Width="*" />

<ColumnDefinition Width="*" />

<ColumnDefinition Width="*" />

</Grid.ColumnDefinitions>

315	

	

	 	 	

	 	 	 	 	

	

	

	 	

<petzold:ColorColumn x:Name="redColumn"

 Grid.Column="0"

 Foreground="Red"

 Label="Red"

 ValueChanged="OnColorColumnValueChanged" />

<petzold:ColorColumn x:Name="greenColumn"

 Grid.Column="1"

 Foreground="Green"

 Label="Green"

 ValueChanged="OnColorColumnValueChanged" />

<petzold:ColorColumn x:Name="blueColumn"

 Grid.Column="2"

 Foreground="Blue"

 Label="Blue"

 ValueChanged="OnColorColumnValueChanged" />

</Grid>

</UserControl>

Each	of	the	three	ColorColumn controls	has	its	Foreground	property	set	to	one	of	the	three	

colors,	and	its	Label	property	to	the	same	value	but	a	string	rather	than	a	Color.	

Notice	each	ColorColumn is	identified	with	x:Name	rather	than	Name.	I	normally	use	Name

but	Name	is	not	allowed	for	referencing	a	class	from	the	same	assembly,	and	both	

ColorColumn	and	RgbColorScroller	are	in	the	Petzold.Phone.Silverlight	assembly.	

The	RgbColorScroller class	defines	one	property	named	Color	(of	type	Color,	of	course)	and	an	

event	named	ColorChanged.	Here’s	the	whole	class	in	one	shot:	

Silverlight Project: Petzold.Phone.Silverlight File: RgbColorScroller.xaml.cs (excerpt)

public partial class RgbColorScroller : UserControl

{

 public static readonly DependencyProperty ColorProperty =

DependencyProperty.Register("Color",

 typeof(Color),

 typeof(RgbColorScroller),

 new PropertyMetadata(Colors.Gray, OnColorChanged));

 public event RoutedPropertyChangedEventHandler<Color> ColorChanged;

 public RgbColorScroller()

{

InitializeComponent();

 }

 public Color Color

 {

set { SetValue(ColorProperty, value); }

316	

	

	 	 	 	

	 	

	

	 	 	 	 	

	 	

	

	

	 	 	 	 	 	 	

	 	 	 	

	

	 	

	

	

get { return (Color)GetValue(ColorProperty); }

 }

 void OnColorColumnValueChanged(object sender,

RoutedPropertyChangedEventArgs<byte> args)

 {

Color = Color.FromArgb(255, redColumn.Value,

greenColumn.Value,

blueColumn.Value);

 }

 static void OnColorChanged(DependencyObject obj,

DependencyPropertyChangedEventArgs args)

{

(obj as RgbColorScroller).OnColorChanged((Color)args.OldValue,

 (Color)args.NewValue);

}

 protected virtual void OnColorChanged(Color oldValue, Color newValue)

 {

redColumn.Value = newValue.R;

greenColumn.Value = newValue.G;

blueColumn.Value = newValue.B;

if (ColorChanged != null)

 ColorChanged(this,

new RoutedPropertyChangedEventArgs<Color>(oldValue, newValue));

 }

}

The	two	OnColorChanged	methods	are	called	when	the	Color	property	changes.	These	are	

responsible	for	breaking	down	the	Color	property	into	bytes,	setting	the	Value	properties	of	

the	individual	ColorColumn	objects,	and	firing	the	ColorChanged	event.	

The	OnColorColumnValueChanged	handler	is	called	when	any	of	the	three	ColorColumn

controls	fires	a	ValueChanged	event.	This	handler	is	responsible	for	assembling	the	individual	

bytes	from	the	three	ColorColumn	controls	into	a	single	Color.	

Again,	it	looks	like	an	infinite	loop	might	result	but	in	reality	it	doesn’t	happen.	

To	use	this	RgbColorScroller	class	from	the	Petzold.Phone.Silverlight	library,	create	a	new	

application	project.	Let’s	call	it	SelectTwoColors.	Rightclick	the	References	header	under	the	

project	name	in	the	Solution	Explorer,	and	select	Add	Reference.	In	the	Add	Reference	dialog	

box,	select	the	Browse	tag.	Navigate	to	the	DLL	file	(in	this	case	Petzold.Phone.Silverlight.dll)	

and	select	it.	

In	the	MainPage.xaml	file	you’ll	need	a	XML	namespace	declaration	for	the	library.	Because	

the	library	is	a	separate	assembly,	this	namespace	declaration	requires	an	assembly	section	to	

refer	to	the	DLL	file:	

317	

	

	 	

	

	 	

	 	

	 	

	

xmlns:petzold="clr-namespace:Petzold.Phone.Silverlight;assembly=Petzold.Phone.Silverlight"

The	SelectTwoColors	XAML	file	has	two	RgbColorScroller	controls,	each	inside	a	Border	with	a	

Rectangle	element	between	them.	Each	RgbColorScroll	has	its	ColorChanged	event	attached	to	

the	same	handler:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Grid.ColumnDefinitions>

<ColumnDefinition Width="*" />

<ColumnDefinition Width="*" />

<ColumnDefinition Width="*" />

</Grid.ColumnDefinitions>

<Border Grid.Column="0"

 BorderBrush="{StaticResource PhoneForegroundBrush}"

 BorderThickness="2"

 Margin="12"

 Padding="12">

<petzold:RgbColorScroller

 Name="colorScroller1"

 ColorChanged="OnColorScrollerColorChanged" />

</Border>

<Rectangle Name="rectangle"

 Grid.Column="1"

 StrokeThickness="24"

 Margin="12" />

<Border Grid.Column="2"

 BorderBrush="{StaticResource PhoneForegroundBrush}"

 BorderThickness="2"

 Margin="12"

 Padding="12">

<petzold:RgbColorScroller

 Name="colorScroller2"

 ColorChanged="OnColorScrollerColorChanged" />

</Border>

</Grid>

The	constructor	of	the	codebehind	file	initializes	the	two	RgbColorScroller	controls	with	two	

colors,	which	causes	the	first	ColorChanged	events	to	fire,	which	are	then	processed	by	the	

event	handler	to	set	colors	on	the	Rectangle:	

318	

	

	

	

	

	 	 	

	

	 	 	 	

	 	 	

	

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage

{

 public MainPage()

 {

InitializeComponent();

colorScroller1.Color = Color.FromArgb(0xFF, 0xC0, 0x80, 0x40);

colorScroller2.Color = Color.FromArgb(0xFF, 0x40, 0x80, 0xC0);

 }

 void OnColorScrollerColorChanged(object sender,

RoutedPropertyChangedEventArgs<Color> args)

{

Brush brush = new SolidColorBrush(args.NewValue);

if (sender == colorScroller1)

 rectangle.Stroke = brush;

else if (sender == colorScroller2)

 rectangle.Fill = brush;

 }

}

And	here	it	is	in	landscape	mode:	

Notice	that	the	labels	have	picked	up	the	Foreground	property	set	to	each	ColorColumn

control	through	property	inheritance,	but	not	the	Slider.	I	suspect	the	Foreground	property	is	

set	in	the	theme	style	for	the	Slider	and	that’s	blocking	property	inheritance.	If	getting	that	

color	was	really	important,	I’d	probably	define	a	new	Color	property	on	ColorColumn	and	use	

that	to	programmatically	set	the	Foreground property	on	the	Slider.	

319	

	

	 	 	

	

	 	 	

	 	 	

	

	 	 	 	

I	deliberately	designed	the	layout	of	SelectTwoColors	so	it	wouldn’t	work	quite	well	in	portrait	

mode:	

As	you	can	see,	the	text	runs	together.	But	all	is	not	lost.	All	that’s	necessary	is	to	set	a	smaller	

FontSize	property	directly	on	the	two	RgbColorScroller	controls:	

FontSize="12"

That	one	property	setting	affects	all	six	TextBlock	elements	in	each	control.	The	text	becomes	

very	small,	of	course,	but	it’s	no	longer	overlapping:	

320	

	

	

	

	 	

	

	 	 	 	 	 	 	 	

	 	 	 	 	

	 	

A
New
Type
of
Toggle

You’ve	probably	noticed	a	new	style	of	toggle	button	in	some	Windows	Phone	7	screens.	

Here	they	are	on	the	page	that	lets	you	set	date	and	time,	blown	up	to	almost	double	size:	

If	you	experiment	with	these	controls	a	bit,	you’ll	find	that	you	can	toggle	the	switch	just	by	

tapping	it,	but	you	can	also	move	the	larger	block	back	and	forth	with	your	finger,	although	it	

will	tend	to	snap	into	position	either	at	the	left	or	right.	

321	

	

	 	 	

	

	

	 	 	

	 	 	

	 	

	 	 	 	

	 	 	

	 	

	 	 	 		

	 	

	 	

I’m	not	going	to	try	to	duplicate	that	more	complex	movement.	My	version	will	respond	only	

to	taps.	For	that	reason	I	call	it	TapSlideToggle.	The	button	is	a	UserControl	derivative	in	the	

Petzold.Phone.Silverlight	library.	(I	should	note	that	something	similar	could	be	implemented	

entirely	in	a	template	applied	to	the	existing	ToggleButton,	and	the	Silverlight	for	Windows	

Phone	Toolkit	implements	this	control	under	the	name	ToggleSwitchButton	.)	Here’s	the	

complete	XAML	file	of	my	version:	

Silverlight Project: Petzold.Phone.Silverlight File: TapSlideToggle.xaml

<UserControl x:Class="Petzold.Phone.Silverlight.TapSlideToggle"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

 mc:Ignorable="d"

d:DesignHeight="36" d:DesignWidth="96">

<Grid x:Name="LayoutRoot"

 Background="Transparent"

 Width="96" Height="36">

<Border BorderBrush="{StaticResource PhoneForegroundBrush}"

 BorderThickness="2"

 Margin="4 2"

 Padding="4">

<Rectangle Name="fillRectangle"

 Fill="{StaticResource PhoneAccentBrush}"

 Visibility="Collapsed" />

</Border>

<Border Name="slideBorder"

 BorderBrush="{StaticResource PhoneBackgroundBrush}"

 BorderThickness="4 0"

 HorizontalAlignment="Left">

<Rectangle Stroke="{StaticResource PhoneForegroundBrush}"

 Fill="White"

 StrokeThickness="2"

 Width="20" />

</Border>

</Grid>

</UserControl>

The	button	is	given	a	specific	size	in	the	Grid.	If	you	want	a	control	to	have	a	specific	size,	

here’s	the	place	to	do	it	rather	than	with	the	Height	and	Width	properties	of	the	control	itself.	

I	also	changed	the	designerrelated	attributes	and	left	them	in	so	I	could	get	a	little	sense	of	

what	the	controls	looks	like	in	the	design	view.	

I	must	confess	that	I’m	not	entirely	happy	with	the	approach	I	took	here:	To	keep	it	simple,	I	

restricted	myself	to	two	Border	elements	each	containing	a	Rectangle,	but	to	mimic	the	gap	

322	

	

	

	 	

	

	

	 	 	 	 	

	 	 	 	

	

between	the	larger	sliding	block	and	the	wide	background,	I	gave	the	second	Border	a	

BorderBrush colored	with	the	background	color.	The	button	will	not	look	right	if	it’s	on	a	

surface	that	is	not	colored	with	the	PhoneBackgroundBrush	resource.	

To	somewhat	mimic	the	normal	ToggleButton	(but	without	the	threestate	option)	the	code

behind	file	defines	an	IsChecked	dependency	property	of	type	bool and	two	events	named	

Checked	and	Unchecked.	One	or	the	other	of	these	events	is	fired	when	the	IsChecked

property	changes	value:	

Silverlight Project: Petzold.Phone.Silverlight File: TapSlideToggle.xaml.cs (excerpt)

public partial class TapSlideToggle : UserControl

{

 public static readonly DependencyProperty IsCheckedProperty =

DependencyProperty.Register("IsChecked",

 typeof(bool),

 typeof(TapSlideToggle),

 new PropertyMetadata(false, OnIsCheckedChanged));

 public event RoutedEventHandler Checked;

 public event RoutedEventHandler Unchecked;

 public TapSlideToggle()

 {

InitializeComponent();

 }

 public bool IsChecked

 {

set { SetValue(IsCheckedProperty, value); }

get { return (bool)GetValue(IsCheckedProperty); }

}

 …

 static void OnIsCheckedChanged(DependencyObject obj,

DependencyPropertyChangedEventArgs args)

 {

(obj as TapSlideToggle).OnIsCheckedChanged(args);

}

 void OnIsCheckedChanged(DependencyPropertyChangedEventArgs args)

{

fillRectangle.Visibility = IsChecked ? Visibility.Visible :

Visibility.Collapsed;

slideBorder.HorizontalAlignment = IsChecked ? HorizontalAlignment.Right :

HorizontalAlignment.Left;

 if (IsChecked && Checked != null)

 Checked(this, new RoutedEventArgs());

323	

	

	 	 	

	 	 	

	 	 	

	

	

	

	 	

	 	 	

	 	

	 	

	 	

if (!IsChecked && Unchecked != null)

 Unchecked(this, new RoutedEventArgs());

}

}

The	static	propertychanged	handler	calls	an	instance	handler	of	the	same	name,	which	alters	

the	visuals	in	the	XAML	just	a	little	bit	and	then	fires	one	of	the	two	events.	The	only	methods	

missing	from	the	code	above	are	the	overrides	of	two	Manipulation	events.	Here	they	are:	

Silverlight Project: Petzold.Phone.Silverlight File: TapSlideToggle.xaml.cs (excerpt)

protected override void OnManipulationStarted(ManipulationStartedEventArgs args)

{

 args.Handled = true;

base.OnManipulationStarted(args);

}

protected override void OnManipulationCompleted(ManipulationCompletedEventArgs args)

{

Point pt = args.ManipulationOrigin;

if (pt.X > 0 && pt.X < this.ActualWidth &&

pt.Y > 0 && pt.Y < this.ActualHeight)

IsChecked ^= true;

 args.Handled = true;

base.OnManipulationCompleted(args);

}

I	decided	to	toggle	the	button	only	if	the	user	presses	the	button	and	then	releases	the	finger	

while	it’s	still	over	the	button,	which	is	the	common	approach.	The	OnManipulationStarted

override	sets	Handled	to	true	to	prevent	the	event	from	travelling	further	up	the	visual	tree	

and	in	effect,	to	signal	that	the	button	is	commandeering	this	particular	manipulation.	The	

OnManipulationCompleted	override	then	checks	if	the	ManipulationOrigin	property	is	within	

the	bounds	of	the	control.	If	so,	IsChecked	is	toggled:	

IsChecked ^= true;

The	TapSlideToggleDemo	program	tests	it	out.	The	content	area	defines	two	instances	of	

TapSlideToggle	and	two	TextBlock	element	to	display	their	current	state:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Grid.RowDefinitions>

<RowDefinition Height="Auto" />

<RowDefinition Height="Auto" />

</Grid.RowDefinitions>

324	

	

	

	 	 	

	 	 	

	

<Grid.ColumnDefinitions>

<ColumnDefinition Width="*" />

<ColumnDefinition Width="*" />

</Grid.ColumnDefinitions>

<TextBlock Name="option1TextBlock"

 Grid.Row="0" Grid.Column="0"

Text="off"

 Margin="48"

 VerticalAlignment="Center" />

<petzold:TapSlideToggle Name="slideToggle1"

 Grid.Row="0" Grid.Column="1"

 Margin="48"

 HorizontalAlignment="Right"

 Checked="OnSlideToggle1Checked"

 Unchecked="OnSlideToggle1Checked" />

<TextBlock Name="option2TextBlock"

 Grid.Row="1" Grid.Column="0"

Text="off"

 Margin="48"

 VerticalAlignment="Center" />

<petzold:TapSlideToggle Name="slideToggle2"

 Grid.Row="1" Grid.Column="1"

 Margin="48"

 HorizontalAlignment="Right"

 Checked="OnSlideToggle2Checked"

 Unchecked="OnSlideToggle2Checked" />

</Grid>

Each	of	the	two	TapSlideToggle	instances	has	both	its	Checked	and	Unchecked events	set	to	

the	same	handler,	but	different	handlers	are	used	for	the	two	instances.	This	allows	each	

handler	to	determine	the	state	of	the	button	by	obtaining	the	IsChecked	property	and	

accessing	the	corresponding	TextBlock:	

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage

{

 public MainPage()

 {

InitializeComponent();

slideToggle2.IsChecked = true;

 }

 void OnSlideToggle1Checked(object sender, RoutedEventArgs args)

 {

TapSlideToggle toggle = sender as TapSlideToggle;

option1TextBlock.Text = toggle.IsChecked ? "on" : "off";

325	

	

	

	 	 	

	 	

	 	 	

	 	 	

	 	

	

	 	 	 	

	 	

 }

 void OnSlideToggle2Checked(object sender, RoutedEventArgs args)

 {

TapSlideToggle toggle = sender as TapSlideToggle;

option2TextBlock.Text = toggle.IsChecked ? "on" : "off";

}

}

And	here’s	the	result:	

This	button	does	not	implement	a	unique	visual	appearance	if	the	button	is	disabled.	When	

IsEnabled	is	set	to	false,	a	control	no	longer	gets	user	input	automatically,	but	visually	

conveying	this	state	is	the	responsibility	of	the	control	itself.	Commonly,	a	semitransparent	

black	Rectangle overlays	the	entire	control	with	a	Visibility	property	set	to	Collapsed.	When	

IsEnabled	is	true,	the	Visibility	property	of	this	Rectangle	is	set	to	Visible,	in	effect,	“graying	

out”	the	visuals	of	the	control.	

Panels
with
Properties

I	demonstrated	how	to	write	a	custom	panel	in	Chapter	9	but	the	panels	were	rather	wimpy	

because	they	had	no	properties.	Most	panels	have	custom	properties	and	some	also	define	

attached	properties.	Let’s	see	how	it	works.	

326

	

	 	

	 	 	 	

	 	 	 	

	 	 	 	 	

	 	

	 	

	 	 	

	 	

	 	 	 	 	

	 	

	 	 	

	 	

	 	 	 	

	 	

	 	 	 	 	

	

The	Windows	Presentation	Foundation	has	a	panel	I	often	find	useful	called	UniformGrid.	As	

the	name	suggests,	the	UniformGrid	divides	its	area	into	cells,	each	of	which	has	the	same	

dimensions.		

By	default,	UniformGrid automatically	determines	a	number	of	rows	and	columns	by	taking	

the	ceiling	of	the	square	root	of	the	number	of	children.	For	example,	if	there	are	20	children,	

UniformGrid	calculates	5	rows	and	columns	(even	though	it	might	make	more	sense	to	have	5	

rows	and	4	columns,	or	4	rows	and	5	columns).	You	can	override	this	calculation	by	explicitly	

setting	the	Rows	or	Columns	property	of	UniformGrid	to	a	nonzero	number.	

Almost	always,	I	find	myself	setting	either	Rows	or	Columns	to	1,	in	effect	making	a	single	

column	or	row	of	equally	sized	cells.	This	is	not	like	a	StackPanel	that	continues	off	the	screen	

if	it	has	too	many	children,	but	more	like	a	singlecolumn	or	singlerow	Grid	where	every	

RowDefinition	or	ColumnDefinition	has	a	GridLength	set	to	Star,	and	hence	allocates	the	same	

space.	

My	version	of	UniformGrid	is	called	UniformStack.	It	doesn’t	have	a	Rows	or	Columns	property	

but	it	does	have	an	Orientation property—the	same	property	defined	by	StackPanel—to	

indicate	whether	the	children	of	the	panel	will	be	arranged	vertically	or	horizontally.	

Here’s	the	portion	of	the	UniformStack	class	that	defines	the	single	dependency	property	and	

the	propertychanged	handler:	

Silverlight Project: Petzold.Phone.Silverlight File: UniformStack.cs (excerpt)

public class UniformStack : Panel

{

 public static readonly DependencyProperty OrientationProperty =

DependencyProperty.Register("Orientation",

 typeof(Orientation),

 typeof(UniformStack),

 new PropertyMetadata(Orientation.Vertical, OnOrientationChanged));

 public Orientation Orientation

 {

set { SetValue(OrientationProperty, value); }

get { return (Orientation)GetValue(OrientationProperty); }

 }

 static void OnOrientationChanged(DependencyObject obj,

DependencyPropertyChangedEventArgs args)

 {

(obj as UniformStack).InvalidateMeasure();

 }

 …

}

327	

	

	 	

	 	 	

	 	 	

	

	 	

	 	

	 	 	 	

	

	 	

	 	 	

	 	 	 	

	 	 	 	 	 	

	 	

	 	 	 	

	

	 	 	 	 	 	

	 	 	 	 	 	

	 	

	 	 	

The	definitions	of	the	dependency	property	and	CLR	property	are	straightforward.	The	

propertychanged	handler	casts	the	first	argument	to	the	class	type,	as	usual,	and	then	simply	

calls	InvalidateMeasure.	This	is	a	method	defined	by	UIElement,	and	it’s	basically	telling	the	

layout	system:	“Whatever	you	think	you	know	about	how	big	I	am,	forget	it.	I’m	a	whole	

different	size.”	This	call	initiates	the	measure	pass	of	layout	from	the	root	of	the	visual	tree	

because	the	size	of	thid	panel	could	affect	parent	classes.	The	measure	pass	is	followed	

automatically	by	an	arrange	pass.	(Layout	passes	are	also	initiated	whenever	the	size	of	the	

panel	changes,	or	when	elements	are	added	to	or	removed	from	the	Children	collection,	or	

when	an	existing	child	changes	size.)	

There	is	also	an	InvalidateArrange	method,	which	initiates	just	the	second	half	of	the	layout	

process,	but	this	is	much	rarer.	Perhaps	if	you	have	a	panel	that	dynamically	moves	its	

elements	around	without	itself	changing	size	you	would	have	occasion	to	call	

InvalidateArrange.	

The	InvalidateMeasure method	eventually	causes	a	call	to	be	made	to	MeasureOverride,	and	

let’s	think	for	a	moment	what	needs	to	be	done.	

Consider	a	UniformStack with	a	horizontal	orientation.	Suppose	the	panel	has	five	children,	

and	the	availableSize	offered	to	the	panel	has	a	Width	of	400	and	a	Height	of	200.	Each	child	

should	be	offered	a	size	with	a	Width	of	80	(1/5th	the	total	available	width)	and	a	Height	of	

200.	That’s	the	panel’s	paradigm.	

But	what	if	the	Width	property	of	availableSize is	infinite?	What	should	happen	in	that	case?	

Well,	it’s	not	entirely	clear.	Certainly	the	panel	has	no	choice	but	to	offer	to	each	child	a	Width

of	infinity.	After	that,	one	reasonable	solution	is	to	return	a	size	from	MeasureOverride	with	a	

Width	that	is	five	times	the	Width	of	the	widest	child.	

That’s	what	I	do	here:	

Silverlight Project: Petzold.Phone.Silverlight File: UniformStack.cs (excerpt)

protected override Size MeasureOverride(Size availableSize)

{

if (Children.Count == 0)

return new Size();

Size availableChildSize = new Size();

Size maxChildSize = new Size();

Size compositeSize = new Size();

// Calculate an available size for each child

if (Orientation == Orientation.Horizontal)

availableChildSize = new Size(availableSize.Width / Children.Count,

 availableSize.Height);

else

328	

	

	 	 	 	 	 	 	

	

	 	 	

	 	 	 	 	 	

	

	 	

	 	 	 	

	 	 	

	 	 	

	 	 	

	 	 	

	 	 	

	

availableChildSize = new Size(availableSize.Width,

 availableSize.Height / Children.Count);

// Enumerate the children, and find the widest width and the highest height

foreach (UIElement child in Children)

 {

child.Measure(availableChildSize);

maxChildSize.Width = Math.Max(maxChildSize.Width, child.DesiredSize.Width);

maxChildSize.Height = Math.Max(maxChildSize.Height,

child.DesiredSize.Height);

 }

// Now determine a composite size that depends on infinite available width or

height

if (Orientation == Orientation.Horizontal)

 {

if (Double.IsPositiveInfinity(availableSize.Width))

 compositeSize = new Size(maxChildSize.Width * Children.Count,

 maxChildSize.Height);

else

 compositeSize = new Size(availableSize.Width, maxChildSize.Height);

 }

else

 {

if (Double.IsPositiveInfinity(availableSize.Height))

 compositeSize = new Size(maxChildSize.Width,

 maxChildSize.Height * Children.Count);

else

 compositeSize = new Size(maxChildSize.Width, availableSize.Height);

 }

return compositeSize;

}

The	method	begins	by	diving	out	if	the	panel	has	no	children;	this	avoids	division	by	zero	

later	on.	

An	availableChildSize	is	calculated	based	on	the	Orientation	property	by	ignoring	the	

presence	of	infinity	in	the	availableSize for	the	panel.	(Infinity	divided	by	the	number	of	

children	will	still	be	infinity,	and	that’s	what’s	required	in	that	case.)	The	enumeration	of	the	

children	calls	Measure on	each	child	with	that	availableChildSize.	The	logic	involving	the	

DesiredSize	of	the	child	also	ignores	infinite	dimensions	but	instead	accumulates	a	

maxChildSize.	This	actually	represents	the	width	of	the	widest	child	and	the	height	of	the	

tallest	child;	it’s	possible	that	no	single	child	has	the	same	dimensions	as	maxChildSize.	

The	final	calculation	of	compositeSize	takes	into	account	both	Orientation	and	the	possibility	

of	an	infinite	dimension.	Notice	that	compositeSize	is	sometimes	based	on	one	of	the	

availableSize	dimensions;	this	is	normally	not	proper	but	the	method	does	it	only	when	it	

knows	that	dimension	is	not	infinite.	

329	

	

	 	 	

	 	

	

	

	

The	ArrangeOverride	method	calls	Arrange	on	each	child	with	the	same	size	(called	

finalChildSize	in	the	method)	but	with	different	x	and	y positions	relative	to	the	panel	

depending	on	orientation:	

Silverlight Project: Petzold.Phone.Silverlight File: UniformStack.cs (excerpt)

protected override Size ArrangeOverride(Size finalSize)

{

if (Children.Count > 0)

 {

Size finalChildSize = new Size();

double x = 0;

double y = 0;

if (Orientation == Orientation.Horizontal)

 finalChildSize = new Size(finalSize.Width / Children.Count,

 finalSize.Height);

else

 finalChildSize = new Size(finalSize.Width,

 finalSize.Height / Children.Count);

foreach (UIElement child in Children)

{

 child.Arrange(new Rect(new Point(x, y), finalChildSize));

if (Orientation == Orientation.Horizontal)

 x += finalChildSize.Width;

else

 y += finalChildSize.Height;

}

 }

return base.ArrangeOverride(finalSize);

}

Let’s	use	the	UniformStack	to	make	a	bar	chart!	

The	QuickBarChart	program	actually	uses	three	UniformStack	panels:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<petzold:UniformStack Orientation="Vertical">

<petzold:UniformStack x:Name="barChartPanel"

 Orientation="Horizontal" />

<petzold:UniformStack Orientation="Horizontal">

<Button Content="Add 10 Items"

 HorizontalAlignment="Center"

330	

	

	

	 	 	 	

	

	 	

	 	

	 	 	 	

	

	 	 	 	

 VerticalAlignment="Center"

 Click="OnButtonClick" />

<TextBlock Name="txtblk"

 Text="0"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</petzold:UniformStack>

</petzold:UniformStack>

</Grid>

The	first	UniformStack	with	a	Vertical orientation	simply	divides	the	content	area	into	two	

equal	areas.	(See	how	much	easier	it	is	to	use	than	a	regular	Grid?)	The	top	half	contains	

another	UniformStack	with	nothing	in	it	(yet).	The	bottom	one	contains	a	UniformStack	with	a	

Horizontal	orientation	for	a	Button	and	a	TextBlock.	

Clicking	the	Button	causes	the	codebehind	file	to	add	10	more	Rectangle	elements	to	the	

UniformStack	named	barChartPanel:	

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage

{

Random rand = new Random();

 public MainPage()

 {

InitializeComponent();

 }

 void OnButtonClick(object sender, RoutedEventArgs args)

 {

for (int i = 0; i < 10; i++)

{

Rectangle rect = new Rectangle();
 rect.Fill = this.Resources["PhoneAccentBrush"] as Brush;

 rect.VerticalAlignment = VerticalAlignment.Bottom;

 rect.Height = barChartPanel.ActualHeight * rand.NextDouble();

 rect.Margin = new Thickness(0, 0, 0.5, 0);

 barChartPanel.Children.Add(rect);

}

txtblk.Text = barChartPanel.Children.Count.ToString();

 }

}

Notice	that	each	Rectangle has	a	little	halfpixel	Margin on	the	right	so	there’s	at	least	some	

spacing	between	the	bars.	Still,	I	think	you’ll	be	surprised	how	many	you	can	put	in	there	

before	the	display	logic	gives	up:	

331

	

	

	 	 	

	 	 	

	

	 	 	 	 	

	 	 	

	 	 	

	 	 	

	 	

Attached
Properties

Attached	properties	are	at	first	very	mysterious.	As	you	know	from	Chapter	9,	here’s	how	you	

might	see	them	in	XAML:	

<Canvas>

…

<Ellipse Style="{StaticResource ellipseStyle}"

 Canvas.Left="116" Canvas.Top="92" />

 …

</Canvas>

That’s	straight	out	of	the	EllipseChain	program.		

Canvas.Left	and	Canvas.Top are	attached	properties.	They	are	properties	defined	by	Canvas

that	you	set	on	children	of	the	Canvas.	

As	I	discussed	in	Chapter	9,	there	is	actually	nothing	in	Canvas	named	Left	or	Top.	When	

setting	these	attached	properties	in	code,	you	use	two	static	methods	defined	by	the	Canvas

class:	

Canvas.SetLeft(ellipse, 116);

Canvas.SetTop(ellipse, 92);

Or	you	can	use	the	SetValue	method	defined	by	DependencyObject	and	inherited	by	the	

Ellipse	class	to	reference	the	static	dependency	properties	defined	by	Canvas:	

ellipse.SetValue(Canvas.LeftProperty, 116.0);

ellipse.SetValue(Canvas.TopProperty, 92.0);

This	is	the	same	SetValue	methods	that	a	class	calls	in	a	CLR	property	to	set	a	dependency	

property.		

332	

	

	 	

	 	

	

	 	 	 	

	

	 	 	

	 	 	

	 	

	

	 	 	

	 	 	

You	now	know	almost	everything	you	need	to	define	your	own	attached	properties.	The	

project	named	CanvasCloneDemo	contains	a	class	named	CanvasClone.	The	class	defines	two	

DependencyProperty	fields	named	LeftProperty	and	TopProperty:	

Project: CanvasCloneDemo File: CanvasClone.cs (excerpt)

public class CanvasClone : Panel

{

 public static readonly DependencyProperty LeftProperty =

DependencyProperty.RegisterAttached("Left",

 typeof(double),

 typeof(CanvasClone),

 new PropertyMetadata(0.0, OnLeftOrTopPropertyChanged));

 public static readonly DependencyProperty TopProperty =

DependencyProperty.RegisterAttached("Top",

 typeof(double),

 typeof(CanvasClone),

 new PropertyMetadata(0.0, OnLeftOrTopPropertyChanged));

 …

}

But	notice	the	difference:	Previously	in	this	chapter,	DependencyProperty	objects	were	created	

with	the	static	DependencyProperty.Register	method.	The	DependencyObject	fields	in	

CanvasClone are	created	with	the	only	other	option,	DependencyProperty.RegisterAttached.	

That	makes	them	attached	properties	and	allows	them	to	be	set	on	classes	that	did	not	define	

them.	

Notice	that	the	first	argument	to	the	PropertyMetadata	constructor	is	explicitly	a	double	so	

there	won’t	be	a	runtime	error	because	the	C#	compiler	assumes	the	value	is	an	int.	

After	defining	the	DependencyProperty	fields,	you	need	static	methods	to	access	the	attached	

properties.	These	method	names	begin	with	Set	and	Get followed	by	the	attached	property	

names,	in	this	case,	Left	and	Top,	

Project: CanvasCloneDemo File: CanvasClone.cs (excerpt)

public static void SetLeft(DependencyObject obj, double value)

{

 obj.SetValue(LeftProperty, value);

}

public static double GetLeft(DependencyObject obj)

{

return (double)obj.GetValue(LeftProperty);

}

public static void SetTop(DependencyObject obj, double value)

333	

	

	

	

	 	

	 	 	 	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	

	 	 	 	

	 	

{

 obj.SetValue(TopProperty, value);

}

public static double GetTop(DependencyObject obj)

{

return (double)obj.GetValue(TopProperty);

}

These	methods	get	called	either	explicitly	from	code	or	implicitly	from	the	XAML	parser.	The	

first	argument	will	be	the	object	on	which	the	attached	property	is	being	set—in	other	words,	

the	first	argument	will	probably	be	a	child	of	CanvasClone.	The	body	of	the	method	uses	that	

argument	to	call	SetValue	and	GetValue on	the	child.	These	are	the	same	methods	defined	by	

DependencyObject	to	set	and	get	dependency	properties.	

When	these	properties	change,	there	will	be	a	call	to	the	propertychanged	handler	defined	

in	the	PropertyMetadata	constructor.	The	signature	of	this	method	is	the	same	as	a	normal	

propertychanged	handler	for	regular	dependency	properties:.	

static void OnLeftOrTopPropertyChanged(DependencyObject obj,

DependencyPropertyChangedEventArgs args)

{

…

}

Once	again,	the	method	is	static.	However,	the	first	argument	is	not	an	object	of	type	

CanvasClone.	It	is	a	child	of	the	CanvasClone.	Or	rather,	it	is	probably	a	child	of	the	

CanvasClone.	It’s	possible	to	call	CanvasClone.SetLeft	for	an	element	that	isn’t	actually	a	child	

of	the	panel,	and	it’s	even	possible	for	CanvasClone.SetLeft	and	the	

OnLeftOrTopPropertyChanged	method	to	be	called	without	any	instance	of	CanvasClone	in	

existence!	

For	this	reason,	the	body	of	the	method	needs	to	use	a	little	bit	of	caution.	It	calls	the	handy	

static	VisualTreeHelper.GetParent	method	to	obtain	the	parent	of	the	DependencyObject

argument	and	cast	it	to	a	CanvasClone:	

Project: CanvasCloneDemo File: CanvasClone.cs (excerpt)

static void OnLeftOrTopPropertyChanged(DependencyObject obj,

DependencyPropertyChangedEventArgs args)

{

CanvasClone parent = VisualTreeHelper.GetParent(obj) as CanvasClone;

if (parent != null)

parent.InvalidateArrange();

}

334	

	

	 	

	

	

	 	 	

	

	 	 	

	 	 	 	

	

	 	 	 	 	

	 	

	

	 	

	 	 	 	 	

	

	 	 	

	

If	the	parent	of	the	object	that	has	called	CanvasClone.SetLeft	or	CanvasClone.SetTop	is	truly	a	

CanvasClone,	then	the	method	calls	InvalidateArrange	on	the	parent,	which	is	the	

CanvasClone.	

In	the	general	case,	when	a	panel	handles	a	change	in	one	of	its	attached	properties,	it	will	

probably	call	InvalidateMeasure on	the	panel	to	initiate	a	complete	recalculation	of	layout.	

However,	as	you	can	see	in	the	following	MeasureOverride	method,	the	total	size	of	

CanvasClone doesn’t	change	with	the	location	of	its	children:	

Project: CanvasCloneDemo File: CanvasClone.cs (excerpt)

protected override Size MeasureOverride(Size availableSize)

{

foreach (UIElement child in Children)

child.Measure(new Size(Double.PositiveInfinity,

Double.PositiveInfinity));

return Size.Empty;

}

It	is	part	of	the	paradigm	of	a	Canvas	that	it	always	returns	zero	from	MeasureOverride

regardless	of	its	children,	so	CanvasClone	does	the	same.	MeasureOverride	still	needs	to	call	

Measure on	all	its	children,	or	the	children	will	have	no	size,	but	it	calls	Measure	with	infinite	

dimensions,	forcing	the	child	to	assume	as	small	a	size	as	possible.	

When	the	panel	calls	InvalidateArrange	on	itself,	layout	jumps	right	into	the	arrange	pass	with	

a	call	to	ArrangeOverride:	This	method	requires	the	panel	to	arrange	the	children	on	its	

surface.	Essentially	it	gives	each	child	a	size	and	a	location.	

Project: CanvasCloneDemo File: CanvasClone.cs (excerpt)

protected override Size ArrangeOverride(Size finalSize)

{

foreach (UIElement child in Children)

child.Arrange(new Rect(

new Point(GetLeft(child), GetTop(child)), child.DesiredSize));

return base.ArrangeOverride(finalSize);

}

ArrangeOverride	calls	its	own	static	GetLeft	and	GetTop	methods	on	each	child	to	determine	

where	the	child	should	be	positioned	relative	to	itself.	The	size	of	each	child	is	simply	the	

DesiredSize	the	child	originally	calculated	in	the	measure	pass.	

The	XAML	file	in	CanvasCloneDemo	is	the	same	as	the	one	in	the	EllipseChain	except	that	

Canvas has	been	replaced	with	CanvasClone:	

335	

	

Project: CanvasCloneDemo File: MainPage.xaml (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1">

<local:CanvasClone>

<local:CanvasClone.Resources>

<Style x:Key="ellipseStyle"

 TargetType="Ellipse">

<Setter Property="Width" Value="100" />

<Setter Property="Height" Value="100" />

<Setter Property="Stroke" Value="{StaticResource PhoneAccentBrush}"

/>

<Setter Property="StrokeThickness" Value="10" />

</Style>

</local:CanvasClone.Resources>

<Ellipse Style="{StaticResource ellipseStyle}"

 local:CanvasClone.Left="0" local:CanvasClone.Top="0" />

<Ellipse Style="{StaticResource ellipseStyle}"

 local:CanvasClone.Left="52" local:CanvasClone.Top="53" />

<Ellipse Style="{StaticResource ellipseStyle}"

 local:CanvasClone.Left="116" local:CanvasClone.Top="92" />

<Ellipse Style="{StaticResource ellipseStyle}"

 local:CanvasClone.Left="190" local:CanvasClone.Top="107" />

<Ellipse Style="{StaticResource ellipseStyle}"

 local:CanvasClone.Left="263" local:CanvasClone.Top="92" />

<Ellipse Style="{StaticResource ellipseStyle}"

 local:CanvasClone.Left="326" local:CanvasClone.Top="53" />

<Ellipse Style="{StaticResource ellipseStyle}"

 local:CanvasClone.Left="380" local:CanvasClone.Top="0" />

</local:CanvasClone>

</Grid>

336	

	

	 	 	

	

With	much	elation,	we	discover	that	the	display	looks	the	same	as	the	earlier	program:	

337		

	

	 	

	

	 	 	 	

	 	

	 	

	

	 	

	 	 	

	 	 	

	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	

	 	

	 	

	 		

	 	 	 	

	 	 	 	 	

	 	 	 	 	 	 	

	 	 	

	 	 	 	

	 	

	 	 	 	

	 	

	 	 	

Chapter	12	

Data Bindings
Suppose	you	want	to	let	the	user	interact	with	a	Slider	but	you	also	want	a	TextBlock	to	

display	its	current	value,	such	as	in	the	ColorScroll	program.	No	big	deal.	Just	install	a	handler	

for	the	ValueChanged	event	of	the	Slider,	and	whenever	the	handler	is	called,	get	the	Value

property	of	the	Slider,	convert	it	to	a	string,	and	set	the	string	to	the	Text	property	of	the	

TextBlock.	

Tasks	such	as	this	are	so	common	that	Silverlight	provides	a	streamlined	mechanism	to	

perform	them.	This	is	called	a	data binding,	or	just	binding.	A	data	binding	is	a	link	between	

two	properties	of	two	objects,	so	that	when	one	property	changes,	the	other	is	updated	with	

that	change.	The	binding	is	optionally	bidirectional,	in	which	case	a	change	in	either	property	

causes	a	change	in	the	other.	

Under	the	covers,	a	data	binding	works	as	you	might	expect:	An	event	handler	is	installed	so	

that	one	property	is	updated	from	another	with	a	possible	data	conversion.	Often	you’ll	

define	this	data	binding	entirely	in	XAML,	which	means	you	don’t	have	to	provide	any	code	at	

all.	Syntactically,	it	appears	as	if	the	transfer	of	data	is	occurring	with	no	moving	parts.	

Data	bindings	are	most	easily	demonstrated	using	two	visual	elements	such	as	a	Slider	and	a	

TextBlock,	and	that’s	where	I’ll	begin.	However,	data	bindings	reveal	much	more	power	when	

providing	links	between	visual	elements	and	underlying	data	sources.	

The	goal	in	this	chapter	is	to	avoid	explicit	event	handlers	in	the	codebehind	files,	and	only	at	

the	end	of	the	chapter	am	I	forced	to	use	a	couple.	Of	course,	some	other	code	is	often	

required	to	support	the	data	bindings	in	XAML,	but	much	of	this	code	can	more	properly	be	

classified	as	business	objects	rather	than	userinterface	elements.	

Source
and
Target

In	a	typical	data	binding,	a	property	of	one	object	is	updated	automatically	from	a	property	of	

another	object.	The	object	providing	the	data—a	Slider,	for	example—is	considered	to	be	the	

source of	the	data	binding;	the	object	receiving	the	data	(such	as	the	TextBlock)	is	the	binding	

target.	

The	source	of	a	data	binding	is	usually	given	a	name:	

<Slider Name="slider" … />

You	can	break	out	the	target	property	as	a	property	element	and	assign	to	it	an	object	of	type	

Binding:	

338	

	

	 	 	 	 	

	 	 	 	 	

	 	 	

	

	 	

	 	 	 	

	 	 	 	 	

	

	 	

	 	 	 	 	 	

	 	

	 	

	

<TextBlock … >

<TextBlock.Text>

<Binding ElementName="slider" Path="Value" />

</TextBlock.Text>

</TextBlock>

Use	the	ElementName	property	to	indicate	the	name	of	the	source	element;	use	the	Path

property	for	the	name	of	the	source	property,	which	is	the	Value	property	of	the	Slider.	This	

type	of	binding	is	sometimes	known	as	an	element-name binding,	because	the	binding	source	

is	a	visual	element	that	is	referenced	by	name.	

To	make	the	syntax	a	little	friendlier,	Silverlight	provides	a	markup	extension	for	Binding

where	the	whole	thing	is	defined	within	a	set	of	curly	braces.	(This	is	one	of	several	markup	

extensions	in	Silverlight	for	Windows	Phone.	You	encountered	StaticResource in	Chapter	7	

and	you’ll	see	TemplateBinding	in	Chapter	16.)	Here’s	the	shorter	syntax:	

<TextBlock … Text="{Binding ElementName=slider, Path=Value}" … />

Notice	that	the	ElementName	and	Path	settings	are	separated	by	a	comma,	and	that	the	slider

and	Value names	are	no	longer	in	quotation	marks.	Quotation	marks	never	appear	within	the	

curly	braces	of	a	markup	extension.	

The	SliderBindings	program	includes	this	binding	and	lets	you	experiment	with	some	

variations.	Everything	is	in	the	XAML	file:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <Grid.RowDefinitions>

<RowDefinition Height="*" />

<RowDefinition Height="*" />

<RowDefinition Height="*" />

 </Grid.RowDefinitions>

 <Slider Name="slider"

 Value="90"

 Grid.Row="0"

 Maximum="180"

 Margin="24" />

 <TextBlock Name="txtblk"

 Text="{Binding ElementName=slider, Path=Value}"

 Grid.Row="1"

 FontSize="48"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

 <Rectangle Grid.Row="2"

 Width="{Binding ElementName=slider, Path=Value}"

 RenderTransformOrigin="0.5 0.5"

 Fill="Blue">

339	

	

	

	 	 	

	 	

	

	 	 	 	

	 	 	

	 	

	 	 	

	

	 	 	 	

	

	 	 	

	 	 	

	 	 	 	 	

	 	 	

	 	 	 	

	 	

	 	 	

	 	 	 	

	

	 	 	 	

<Rectangle.RenderTransform>

 <RotateTransform x:Name="rotate"

 Angle="90" />

</Rectangle.RenderTransform>

 </Rectangle>

</Grid>

The	page	contains	a	Slider	with	a	range	from	0	to	180,	a	TextBlock	with	its	Text	property	

bound	to	the	Value	property	of	the	Slider,	and	a	Rectangle	with	its	Width	property	bound	to	

that	same	Value	property.	The	Rectangle	also	has	a	RotateTransform	that	rotates	the	element	

by	a	constant	90°.	

As	you	manipulate	the	Slider,	the	TextBlock	displays	the	current	value	and	the	Rectangle

height	decreases	and	increases.	(The	Binding	targets	the	Width	property	of	the	Rectangle	but	

the	Rectangle	is	rotated	90°.)

The	order	of	the	properties	in	the	Binding markup	extension	doesn’t	matter.	You	can	put	the	

Path	property	first:	

<TextBlock … Text="{Binding Path=Value, ElementName=slider}"

In	fact,	if	Path appears	first,	you	can	eliminate	the	“Path=”	part	and	just	use	the	property	

name:	

<TextBlock … Text="{Binding Value, ElementName=slider}"

Later	in	this	chapter	and	in	subsequent	chapters,	I	will	use	this	shortened	syntax,	but	for	

elementname	bindings	I	don’t	like	it	because	it	violates	my	sense	of	how	the	binding	works.	

The	Binding	class	first	needs	to	find	an	element	in	the	visual	tree	with	the	name	of	slider,	and	

then	it	needs	to	use	reflection	to	find	the	Value	property	in	that	element.	I	prefer	the	syntax	

where	the	order	of	the	properties	mimics	the	internal	operation	of	the	process:	

<TextBlock … Text="{Binding ElementName=slider, Path=Value}"

Why	is	this	property	of	Binding	called	Path	and	not	Property?	After	all,	Style	has	a	property	

named	Property.	Why	not	Binding?	

The	simple	answer	is	that	the	Path	can	be	a	composite	of	multiple	property	names.	For	

example,	suppose	the	Slider did	not	have	a	name.	You	can	indirectly	refer	to	the	Slider	by	

knowing	that	it	is	the	first	item	in	the	Children collection	of	the	element	named	ContentPanel:	

Text="{Binding ElementName=ContentPanel, Path=Children[0].Value}"

Or,	going	up	higher	in	the	visual	tree,	

Text="{Binding ElementName=LayoutRoot, Path=Children[1].Children[0].Value}"

The	components	of	the	path	must	be	properties	or	indexers	connected	by	periods.	

340	

	

	

	 	 	 	

	 	 	 	 	 	 	

	 	

	 	

	 	 	 	

	

	 	 	

	 	

	 	 	

	

	 	 	 	 	 	 	

	 	 	 	 	

	

	 	 	

	 	 	

	

	

	 	 	

	 	 	 	 	

	

Target
and
Mode

Bindings	have	a	source	and	a	target.	The	binding	target	is	considered	to	be	the	property	on	

which	the	binding	is	set.	This	property	must	always	be	backed	by	a	dependency	property.	

Always,	always,	always.	This	restriction	is	very	obvious	when	you	create	a	binding	in	code.	

To	try	this	out	in	SliderBindings,	delete	the	binding	on	the	Text	property	of	the	TextBlock.	In	

the	MainPage.xaml.cs	file,	you’ll	need	a	using	directive	for	the	System.Windows.Data

namespace	which	contains	the	Binding	class.	In	the	constructor	after	the	InitializeComponent

call,	create	an	object	of	type	Binding	and	set	its	properties:	

Binding binding = new Binding();

binding.ElementName = "slider";

binding.Path = new PropertyPath("Value");

The	ElementName	and	Path properties	reference	the	binding	source.	But	look	at	the	code	to	

target	the	Text	property	of	the	TextBlock:	

txtblk.SetBinding(TextBlock.TextProperty, binding);

The	SetBinding	method	is	defined	by	FrameworkElement,	and	the	first	argument	is	a	

dependency	property.	That’s	the	target	property.	The	target	is	the	element	on	which	you	call	

SetBinding.	You	can	alternatively	set	a	binding	on	a	target	using	the	static	

BindingOperations.SetBinding	method:	

BindingOperations.SetBinding(txtblk, TextBlock.TextProperty, binding);

But	you	still	need	the	dependency	property.	So	this	is	yet	another	reason	why	the	properties	

of	visual	objects	should	be	depending	properties.	Not	only	can	you	style	those	properties,	and	

target	them	with	animations,	but	they	need	to	be	dependency	properties	to	be	targets	of	

data	bindings.	

In	terms	of	dependency	property	precedence,	bindings	are	considered	the	same	as	local	

settings.	

The	BindingOperations.SetBinding	method	implies	that	you	can	set	a	binding	on	any

dependency	property.	With	Silverlight	for	Windows	Phone,	this	is	not	the	case.	A	binding	

target	must	always	be	a	property	of	a	FrameworkElement.	

For	example,	you’ll	notice	that	the	Rectangle element	in	MainPage.xaml	has	a	

RotateTransform	set	to	its	RenderTransform	property.	Try	targeting	the	Angle	property	with	

the	same	binding	that’s	set	on	the	Text property	of	the	TextBlock	and	the	Width	property	of	

the	Rectangle:	

<RotateTransform x:Name="rotate"

 Angle="{Binding ElementName=slider, Path=Value}" />

341	

	

	 	

	 	 	 	 	

	 	

	 	

	

	 	

	 	

	

	 	 	 	 	

	 	 	

	 	 	

	 	 	

	 	 	 	 	

	 	 	

	 	 	 	

	

	 	 	 	 	 	 	

	 	 	

	 	 	 	 	

	 	 	 	

	 	 	

	 	

	

	 	 	

	 	 	

It	looks	fine,	but	it	won’t	work.	You’ll	get	a	XamlParseException	at	runtime.	Angle is	backed	by	

a	dependency	property,	all	right,	but	RotateTransform does	not	derive	from	

FrameworkElement	so	it	can’t	be	a	binding	target.	(A	Binding	set	on	the	Angle	property	of	

RotateTransform	works	under	Silverlight	4,	but	Silverlight	for	Windows	Phone	is	mostly	

Silverlight	3.)	

If	you’re	playing	along,	you’ll	want	to	remove	that	binding	on	the	Angle	property	of	

RotateTransform,	and	any	code	that	might	have	been	added	to	MainPage.xaml.cs.	The	Slider

has	its	Value	property	initialized	to	90:	

<Slider Name="slider"

 Value="90" … />

The	target	of	the	binding	is	the	Text	property	of	the	TextBlock:	

<TextBlock Name="txtblk"

 Text="{Binding ElementName=slider, Path=Value}" … />

Let’s	switch	these	around.	Let’s	initialize	the	Text	property	of	the	TextBlock	to	90:	

<TextBlock Name="txtblk"

 Text="90" … />

And	let’s	make	the	binding	target	the	Value	property	of	the	Slider:	

<Slider Name="slider"

 Value="{Binding ElementName=txtblk, Path=Text}" … />

At	first	this	seems	to	work.	The	Slider	thumb	is	initialized	to	its	center	to	indicate	the	value	of	

90	it	obtained	from	the	TextBlock,	and	the	Rectangle	size	is	still	bound	to	the	Slider.	However,	

when	you	manipulate	the	Slider,	the	Rectangle	changes	height	but	the	TextBlock	doesn’t	

change	at	all.	The	Binding	object	on	the	Slider	is	looking	for	changes	in	the	Text	property	of	

the	TextBlock,	and	that’s	remaining	fixed.	

Now	add	a	Mode setting	to	the	binding	on	the	Slider	to	indicate	a	twoway	binding;	

<Slider Name="slider"

Value="{Binding ElementName=txtblk, Path=Text, Mode=TwoWay}" … />

It	works!	The	binding	target	is	still	considered	to	be	the	Value	property	of	the	Slider.	Any	

changes	to	the	Text	property	of	the	TextBlock	will	be	reflected	in	changes	to	the	Value

property	of	the	Slider,	but	any	changes	to	the	Slider will	now	also	be	reflected	in	the	

TextBlock.	

You	set	the	Mode	property	to	a	member	of	the	BindingMode	enumeration.	The	default	Mode

property	is	BindingMode.OneWay.	Besides	BindingMode.TwoWay,	the	only	other	option	is	

BindingMode.OneTime,	which	only	transfers	data	from	the	source	to	the	target	once.	

Using	this	same	technique,	it’s	possible	to	establish	a	binding	with	the	Angle	property	of	the	

RotateTransform.	Let’s	first	restore	the	TextBlock	to	its	original	binding:	

342	

	

	 	 	

	 	

	

	 	 	 	

	 	

	 	 	

	 	 	

	

	

	 	

	 	

	

	 	

<TextBlock Name="txtblk"

 Text="{Binding ElementName=slider, Path=Value}" … />

Now	put	a	twoway	binding	on	the	Slider	that	references	the	Angle	property	of	the	

RotateTransform:	

<Slider Name="slider"

Value="{Binding ElementName=rotate, Path=Angle, Mode=TwoWay}" … />

And	that	works!	The	Rectangle	element	rotates	as	the	Slider	is	manipulated:	

Binding
Converters

Perhaps	as	you	were	playing	around	with	the	SliderBindings	program	(or	as	you	gaped	in	

amazement	at	that	screenshot),	you	were	started	to	see	that	the	TextBlock	displays	the	Slider

value	sometimes	as	an	integer,	sometimes	with	one	or	two	decimal	points,	but	mostly	in	the	

full	15digit	glory	of	doubleprecision	floating	point.	

Is	there	a	way	to	fix	that?	

Yes	there	is.	One	of	the	properties	of	the	Binding	class	is	Converter,	and	the	purpose	of	this	

property	is	to	reference	a	class	that	converts	data	on	its	way	from	the	source	to	the	target	and	

(if	necessary)	back	the	other	way.	Obviously,	some	implicit	data	conversion	is	being	

performed	regardless	as	numbers	are	converted	to	strings	and	strings	converted	to	numbers.	

But	we	can	provide	a	little	more	explicit	assistance	to	this	conversion.	

343	

	

	 	 	 	

	 	 	

	 	 	 	

	 	 	 	 	 	 	 	

	

	 	

	

	

	 	 	

	 	 	 	

The	Converter property	of	the	Binding class	is	of	type	IValueConverter,	an	interface	that	

requires	only	two	methods	named	Convert	and	ConvertBack.	Convert	handles	the	data	

conversion	from	the	source	to	the	target,	and	ConvertBack	handles	the	conversion	going	in	

the	other	direction	for	a	TwoWay	binding.	

If	you	never	intend	to	use	the	conversion	class	with	twoway	bindings,	you	can	simply	return	

null	from	ConvertBack.	

To	add	a	simple	converter	to	SliderBindings,	add	a	new	class	to	the	project	and	call	it	

TruncationConverter.	Actually	the	class	is	already	in	the	project,	and	here	it	is:	

Silverlight Project: SliderBindings File: TruncationConverter.cs

using System;

using System.Globalization;

using System.Windows.Data;

namespace SliderBindings

{

public class TruncationConverter : IValueConverter

 {

public object Convert(object value, Type targetType,

object parameter, CultureInfo culture)

{

if (value is double)

return Math.Round((double)value);

return value;

}

public object ConvertBack(object value, Type targetType,

object parameter, CultureInfo culture)

{

return value;

}

 }

}

The	value	argument	to	the	Convert	method	is	the	object	passing	from	the	source	to	the	

target.	This	method	just	checks	if	it’s	a	double.	If	so,	it	explicitly	casts	it	to	a	double	for	the	

Math.Round	method.	

You’ll	need	to	reference	this	class	in	MainPage.xaml,	which	means	you’ll	need	an	XML	

namespace	declaration:	

xmlns:local="clr-namespace:SliderBindings"

The	TruncationConverter	class	is	then	made	a	resource:	

344	

	

	

	

	 	

	 	 	

	 	 	 		

	 	 	 	 	

	

	 	

<phone:PhoneApplicationPage.Resources>

<local:TruncationConverter x:Key="truncate" />

 …

</phone:PhoneApplicationPage.Resources>

You’ll	find	these	additions	already	in	the	MainPage.xaml	file	of	the	SliderBindings	project.	

The	Binding	markup	extension	then	references	this	resource:	

<TextBlock Name="txtblk"

 Text="{Binding ElementName=slider,

 Path=Value,

 Converter={StaticResource truncate}}" … />

I’ve	split	the	markup	extension	into	three	lines	so	the	components	are	clearly	visible.	Notice	

that	the	StaticResource	is	another	markup	extension	embedded	in	the	first	markup	extension	

so	the	entire	expression	concludes	with	a	pair	of	curly	braces.	

And	now	the	number	displayed	by	the	TextBlock	is	truncated:	

Be	sure	to	reference	the	converter	as	a	StaticResource.	It	is	often	very	tempting	to	just	set	the	

Converter	property	of	Binding	to	the	key	name:	

<!-- This is wrong! -->

<TextBlock Name="txtblk"

 Text="{Binding ElementName=slider,

 Path=Value,

 Converter=truncate}" … />

345	

	

	 	 	

	

	 	

	 	 	 	

	 	 	 	 	 	 	

	 	

	 	 	

	 	 	 	 	 	

	 	 	 	

	 	

	 	

	

I	still	do	that	myself	very	often,	and	tracking	down	the	problem	can	be	difficult.	

Defining	the	converter	as	a	resource	is	certainly	the	most	common	approach	to	reference	

converters,	but	it’s	not	the	only	way.	If	you	use	the	element	syntax	of	Binding,	you	can	embed	

the	TrunctionConverter	class	directly	into	the	markup:	

<TextBlock … >

<TextBlock.Text>

<Binding ElementName="slider"

 Path="Value">

<Binding.Converter>

<local:TruncationConverter />

</Binding.Converter>

</Binding>

</TextBlock.Text>

</TextBlock>

However,	if	you	have	multiple	references	in	the	XAML	file	to	this	same	converter,	defining	it	as	

a	resource	is	preferable	because	it	allows	the	single	instance	to	be	shared.	

TrucationConverter	is	actually	a	terrible data	converter.	Sure	it	does	what	it’s	supposed	to	do	

but	it	doesn’t	do	it	in	a	very	versatile	manner.	If	you’re	going	to	be	calling	Math.Round	in	a	

converter	class,	wouldn’t	it	be	better	to	have	the	option	of	rounding	to	a	certain	number	of	

decimal	places?	Come	to	think	of	it,	wouldn’t	it	make	more	sense	to	allow	all	different	kinds	

of	formatting—not	just	of	numbers	but	of	other	data	types	as	well?	

That	magic	is	provided	by	a	class	in	the	Petzold.Phone.Silverlight	library	called	

StringFormatConverter:	

Silverlight Project: Petzold.Phone.Silverlight File: StringFormatConverter.cs

using System;

using System.Globalization;

using System.Windows.Data;

namespace Petzold.Phone.Silverlight

{

public class StringFormatConverter : IValueConverter

 {

public object Convert(object value, Type targetType,

object parameter, CultureInfo culture)

{

if (targetType == typeof(string) && parameter is string)

return String.Format(parameter as string, value);

return value;

}

public object ConvertBack(object value, Type targetType,

object parameter, CultureInfo culture)

{

346	

	

	 	 	

	 	 	 	

	

	 	

	 	

	 	

	 	 	

	 	 	

	

	 	

	 	 	 	

	 	 	

	 	

	 	 	

	 	 	 	 	 	

	

	

	

	 	 	

return value;

}

 }

}

Besides	a	Converter	property,	the	Binding class	also	has	a	ConverterParameter	property.	The	

value	of	that	property	enters	the	Convert	call	as	the	parameter	argument.	The	Convert

method	here	assumes	that	parameter	argument	as	a	standard	.NET	formatting	string	that	can	

be	used	in	the	String.Format	call.	

To	use	this	converter	in	the	SliderBindings	program,	you’ll	need	a	reference	to	the	

Petzold.Phone.Silverlight	library.	(That’s	already	been	done.)	Already	added	to	the	file	as	well	

is	an	XML	namespace	declaration:	

xmlns:petzold="clr-namespace:Petzold.Phone.Silverlight;assembly=Petzold.Phone.Silverlight"

Instantiate	the	StringFormatConverter	in	the	Resources	collection	of	the	page:	

<phone:PhoneApplicationPage.Resources>

…

<petzold:StringFormatConverter x:Key="stringFormat" />

</phone:PhoneApplicationPage.Resources>

You	can	now	reference	that	converter	in	the	Binding	markup	expression.	Set	the	

ConverterParameter	to	a	.NET	formatting	string	with	one	placeholder:	

Text="{Binding ElementName=slider,

 Path=Value,

 Converter={StaticResource stringFormat},

 ConverterParameter=…}"

And	as	you	start	to	type	a	.NET	formatting	string,	you	realize	there’s	a	problem.	The	standard	

.NET	formatting	strings	involve	the	use	of	curly	braces,	and	you’re	pretty	sure	that	when	the	

XAML	parser	attempts	to	decode	a	Binding	markup	expression,	it’s	not	going	to	appreciate	

unauthorized	embedded	curly	braces.	

The	simple	solution	is	to	enclose	the	value	of	the	ConverterParameter	in	single	quotes:	

Text="{Binding ElementName=slider,

 Path=Value,

 Converter={StaticResource stringFormat},

 ConverterParameter='{0:F2}'}"

The	XAML	parser	and	visual	designer	in	Visual	Studio	doesn’t	care	for	this	particular	syntax	

either,	but	it’s	not	a	problem	at	runtime.	If	you	want	the	designer	to	accept	this,	insert	a	space	

(or	another	character)	after	the	first	single	quotation	mark.	

Because	you	know	that	the	ConverterParameter	becomes	the	first	argument	to	a	

String.Format call,	you	can	spruce	it	up	a	bit:	

347	

	

	

	 	

	 	 	

	 	 	 	 	 	

	

	 	

	 	

	 	 	 	

	

	 	

Text="{Binding ElementName=slider,

 Path=Value,

 Converter={StaticResource stringFormat},

 ConverterParameter='The slider is {0:F2}'}"

And	here’s	the	result:	

Relative
Source

Silverlight	for	Windows	Phone	supports	three	basic	types	of	bindings	categorized	based	on	

the	source	of	the	data.	So	far	in	this	chapter	you’ve	seen	ElementName bindings	where	the	

binding	references	a	named	element.	Much	of	the	remainder	of	this	chapter	uses	the	property	

Source	rather	than	ElementName	to	reference	a	data	source.	

The	third	type	of	binding	is	called	RelativeSource.	In	the	Windows	Presentation	Foundation,	

RelativeSource	is	much	more	flexible	than	the	version	in	Silverlight,	so	you	may	not	be	very	

impressed	with	this	option.	One	of	the	purposes	of	RelativeSource	is	in	connection	with	

templates,	as	you’ll	see	in	Chapter	16.	The	only	other	option	allows	you	to	define	a	binding	

that	references	a	property	of	the	same	element,	known	as	Self.	The	following	program	shows	

the	syntax:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <StackPanel Orientation="Horizontal"

348	

	

	 	

	 	 	 	

	 	

	 	 	 	 	 	 	

	 	

	 	 	

	

	 	 	 	

	 	

	 	 	 	

	

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

<TextBlock Text="{Binding RelativeSource={RelativeSource Self},

 Path=FontFamily}" />

<TextBlock Text=" - " />

<TextBlock Text="{Binding RelativeSource={RelativeSource Self},

 Path=FontSize}" />

<TextBlock Text=" pixels" />

 </StackPanel>

</Grid>

The	property	RelativeSource	is	set	to	another	markup	extension	containing	RelativeSource	and	

Self.	The	Path then	refers	to	another	property	of	the	same	element.	Thus,	the	TextBlock

elements	display	the	FontFamily	and	FontSize	of	the	TextBlock.	

The
“this”
Source

Perhaps	you	have	an	application	where	you	need	to	display	many	short	text	strings	with	

borders	around	them.	You	decide	you	want	to	derive	from	UserControl	to	create	a	control	

named	BorderedText that	you	can	use	like	so:	

<petzold:BorderedText Text="Ta Da!"

FontFamily="Times New Roman"

FontSize="96"

FontStyle="Italic"

FontWeight="Bold"

TextDecorations="Underline"

 Foreground="Red"

 Background="Lime"

 BorderBrush="Blue"

 BorderThickness="8"

 CornerRadius="36"

 Padding="16 4"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

As	you	can	see	from	the	XML	namespace	prefix,	this	class	is	already	in	the		

Petzold.Phone.Silverlight	library.		

BorderedText	derives	from	UserControl,	and	UserControl	derives	from	Control,	so	we	know	

that	BorderedText	will	already	have	some	of	these	properties	through	class	inheritance.	The	

properties	that	BorderedText	needs	to	define	on	its	own	are	Text,	TextDecorations,	

CornerRadius,	and	perhaps	a	couple	more	to	make	it	more	flexible.	

349

	

	 	 	

	 	 	

	

	 	 	

	 	 	

	 	

	

	

It	seems	likely	that	the	BorderedText.xaml	file	will	have	a	visual	tree	consisting	of	a	TextBlock

in	a	Border.	Various	properties	of	the	TextBlock	and	this	Border must	be	set	from	the	

BorderedText	properties.	

In	the	previous	chapter,	you	saw	one	way	to	do	this:	The	ColorColumn	class	defined	properties	

named	Label	and	Value	and	it	used	propertychanged	handlers	in	code	to	set	the	new	values	

of	these	properties	on	elements	in	the	visual	tree.	A	rather	simpler	way	is	through	data	

bindings.	

The	BorderedText	codebehind	file	simply	defines	all	the	properties	not	available	by	virtue	of	

descending	from	Control:	

Silverlight Project: Petzold.Phone.Silverlight File: BorderedText.xaml.cs

using System;

using System.Windows;

using System.Windows.Controls;

namespace Petzold.Phone.Silverlight

{

public partial class BorderedText : UserControl

 {

public static readonly DependencyProperty TextProperty =

DependencyProperty.Register("Text",

typeof(string),

typeof(BorderedText),

new PropertyMetadata(null));

public static readonly DependencyProperty TextAlignmentProperty =

DependencyProperty.Register("TextAlignment",

typeof(TextAlignment),

typeof(BorderedText),

new PropertyMetadata(TextAlignment.Left));

public static readonly DependencyProperty TextDecorationsProperty =

DependencyProperty.Register("TextDecorations",

typeof(TextDecorationCollection),

typeof(BorderedText),

new PropertyMetadata(null));

public static readonly DependencyProperty TextWrappingProperty =

DependencyProperty.Register("TextWrapping",

typeof(TextWrapping),

typeof(BorderedText),

new PropertyMetadata(TextWrapping.NoWrap));

public static readonly DependencyProperty CornerRadiusProperty =

DependencyProperty.Register("CornerRadius",

typeof(CornerRadius),

typeof(BorderedText),

new PropertyMetadata(new CornerRadius()));

350	

	

	 	 	

	 	

public BorderedText()

{

 InitializeComponent();

}

public string Text

{

set { SetValue(TextProperty, value); }

get { return (string)GetValue(TextProperty); }

}

public TextAlignment TextAlignment

{

set { SetValue(TextAlignmentProperty, value); }

get { return (TextAlignment)GetValue(TextAlignmentProperty); }

}

public TextDecorationCollection TextDecorations

{

set { SetValue(TextDecorationsProperty, value); }

get { return

(TextDecorationCollection)GetValue(TextDecorationsProperty); }

}

public TextWrapping TextWrapping

{

set { SetValue(TextWrappingProperty, value); }

get { return (TextWrapping)GetValue(TextWrappingProperty); }

}

public CornerRadius CornerRadius

{

set { SetValue(CornerRadiusProperty, value); }

get { return (CornerRadius)GetValue(CornerRadiusProperty); }

}

 }

}

It’s	long	but	it’s	simple	because	it’s	only	property	definitions.	There	are	no	propertychanged	

handlers.	Here’s	the	XAML	file	with	the	Border	and	the	TextBlock:	

Silverlight Project: Petzold.Phone.Silverlight File: BorderedText.xaml

<UserControl x:Class="Petzold.Phone.Silverlight.BorderedText"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

 Name="this">

<Border Background="{Binding ElementName=this, Path=Background}"

 BorderBrush="{Binding ElementName=this, Path=BorderBrush}"

351	

	

	

	 	 	

	

	 	

	 	 	

	 	 	

	

	 	 	

	 	 	

	 	

 BorderThickness="{Binding ElementName=this, Path=BorderThickness}"

 CornerRadius="{Binding ElementName=this, Path=CornerRadius}"

 Padding="{Binding ElementName=this, Path=Padding}">

<TextBlock Text="{Binding ElementName=this, Path=Text}"

 TextAlignment="{Binding ElementName=this, Path=TextAlignment}"

 TextDecorations="{Binding ElementName=this,

Path=TextDecorations}"

 TextWrapping="{Binding ElementName=this, Path=TextWrapping}" />

</Border>

</UserControl>

Notice	that	the	root	element	is	given	a	name:	

Name="this"

You	can	give	this	root	element	any	name	you	want,	but	it’s	traditional	to	use	the	C#	keyword	

this,	because	within	the	context	of	the	XAML	file,	this	now	refers	to	the	current	instance	of	the	

BorderedText	class,	so	it’s	a	familiar	concept.	The	presence	of	this	name	means	you	can	

establish	bindings	from	the	properties	of	BorderedText	to	the	properties	of	the	elements	of	

that	make	up	its	visual	tree.	

The	file	doesn’t	require	bindings	for	the	Foreground	property	or	the	various	fontrelated	

properties	because	these	are	inherited	through	the	visual	tree.	The	one	TextBlock	property	I	

was	sad	about	losing	in	this	control	is	Inlines,	but	TextBlock defines	that	property	as	getonly	

so	you	can’t	define	a	binding	on	it.	

The	BorderedTextDemo	program	tests	the	new	control:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<petzold:BorderedText Text="Ta Da!"

 FontFamily="Times New Roman"

 FontSize="96"

 FontStyle="Italic"

 FontWeight="Bold"

 TextDecorations="Underline"

 Foreground="Red"

 Background="Lime"

 BorderBrush="Blue"

 BorderThickness="8"

 CornerRadius="36"

 Padding="16 4"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Grid>

352

	

	

	 	 	

	

	 	 	

	 	 	 	 	 	 	 	

	 	

	 	 	 	

	

	 	

	 	 	

	 	 	 	

	 	 	

	

	 	

	

	 	

	 	 	

	 	 	

	 	

	 		

	

	

	 	

	

	 	

	

	 	 	

	 	

	 	 	 	

Notification
Mechanisms

For	data	bindings	to	work,	the	binding	source	must	implement	some	kind	of	notification

mechanism.	This	notification	mechanism	signals	when	the	property	value	has	changed	so	the	

new	value	can	be	retrieved	from	the	source	and	transferred	to	the	target.	When	you	bind	the	

Value	property	of	a	Slider	to	the	Text	property	of	a	TextBlock,	you’re	dealing	with	two	

dependency	properties.	Although	you	can’t	see	it	in	the	public	programming	interfaces,	

dependency	properties	provide	this	notification	mechanism.	

Connecting	two	visual	elements	with	a	data	binding	is	certainly	convenient,	but	the	most	

powerful	data	bindings	involve	a	target	that	is	a	visual	element	but	a	source	that	is	not,	and	

which	instead	is	probably	something	commonly	referred	to	as	a	business object.	

And	now	a	warning	is	required:	

Sometimes	when	programmers	learn	a	new	and	important	feature	of	an	operating	system—	

such	as	the	dependency	properties	I	discussed	in	the	previous	chapter—they	feel	a	need	to	

use	that	feature	everywhere,	perhaps	just	to	try	it	out	and	give	it	some	exercise.	With	

dependency	properties,	this	is	not	such	a	good	idea.	Certainly	you	should	use	dependency	

properties	when	you’re	deriving	from	classes	that	already	derive	from	DependencyObject,	but	

you	probably	shouldn’t	derive	from	DependencyObject	for	the	sole	purpose	of	using	

dependency	properties.	

In	other	words:	Don’t	start	rewriting	your	business	objects	to	use	dependency	properties!	

Targets	of	data	bindings	must	be	dependency	properties,	but	that	is	not	a	requirement	for	

binding	sources.	Binding	sources	can	be	just	regular	old	properties	on	regular	old	classes.	

However,	if	the	source	is	changing,	and	you	want	the	target	updated	with	the	current	value	of	

the	source,	the	source	must	implement	some	kind	of	notification	mechanism.	

Almost	always,	business	objects	that	serve	as	binding	sources	should	implement	the	

notification	mechanism	known	as	the	INotifyPropertyChanged	interface.	

INotifyPropertyChanged is	defined	in	the	System.ComponentModel	namespace—a	clear	

indication	that	it	transcends	Silverlight	and	plays	a	very	important	role	in	.NET.	This	is	how	

business	objects	provide	notification	that	data	has	changed	in	some	way.	

INotifyPropertyChanged is	also	extremely	simple,	being	defined	like	this:	

public interface INotifyPropertyChanged

{

 event PropertyChangedEventHandler PropertyChanged:

}

A	class	can	implement	INotifyPropertyChanged	simply	by	having	a	public	event	named	

PropertyChanged.	In	theory,	the	class	needn’t	actually	do	anything	with	this	event,	but	proper	

decorum	mandates	that	the	class	fires	this	event	whenever	one	of	its	properties	changes.	

353	

	

	

	

	 	

	 	

	

	

	 	 	

	 	

	 	

	 	

	 	 	 	 	 	

	 	

	

	

	 	

	 	 	 	 	

	

	 	 	 	

	 	 	

	

	

	 	 	

	 	 	

	 	

	 	 	 	

	

	

	

	

	

The	PropertyChangedEventHandler	delegate	is	associated	with	a	PropertyChangedEventArgs

class	that	has	a	single	public	getonly	property	named	PropertyName	of	type	string.	You	pass	

the	name	of	the	property	that’s	changed	to	the	PropertyChangedEventArgs	constructor.	

Sometimes	a	class	that	implements	INotifyPropertyChanged	will	have	a	protected	virtual	

method	named	OnPropertyChanged with	an	argument	of	type	PropertyChangedEventArgs.	

This	isn’t	required	but	it’s	convenient	for	derivative	classes.	I	do	this	in	my	examples	because	

the	method	is	a	convenient	place	to	fire	the	event.	

Because	business	objects	that	implement	INotifyPropertyChanged	do	not	derive	from	

FrameworkElement,	they	do	not	form	part	of	the	visual	tree	in	a	XAML	file;	usually	they’ll	be	

instantiated	as	XAML	resources	or	in	the	codebehind	file.	

A
Simple
Binding
Server

I	sometimes	think	of	business	objects	that	are	intended	to	be	referenced	in	XAML	files	

through	bindings	as	binding servers.	They	expose	public	properties	and	fire	PropertyChanged

events	when	these	properties	change.	

For	example,	suppose	you	want	to	display	the	current	time	in	a	Windows	Phone	7	application,	

and	you	want	to	be	fairly	flexible	about	what	you	display.	Perhaps	sometimes	you	only	want	

to	display	seconds,	and	you	want	to	do	this	entirely	in	XAML.	For	example,	you	might	want	a	

bit	of	XAML	that	says	“The	current	seconds	are	…	“	followed	by	a	number	that	changes	every	

second.	The	technique	I’ll	show	you	here	can	be	extended	to	many	other	types	of	applications	

beyond	clocks,	of	course.	

Although	you’ll	want	to	implement	the	visuals	entirely	in	XAML,	you’re	going	to	need	some	

code—perhaps	a	class	named	simply	Clock	that	has	properties	named	Year,	Month,	Day,	

DayOfWeek,	Hour,	Minute,	and	Second.	We’ll	instantiate	this	Clock	class	in	a	XAML	file	and	

access	the	properties	through	data	bindings.	

As	you	know,	there	already	is	a	structure	in	.NET	that	has	properties	with	the	names	Year,	

Month,	Day,	and	so	forth.	It’s	called	DateTime.	Although	DateTime is	essential	for	writing	the	

Clock	class,	it’s	not	quite	satisfactory	for	our	purposes	because	the	properties	in	DateTime

don’t	dynamically	change.	Each	DateTime	object	represents	a	particular	immutable	date	and	

time.	In	contrast,	the	Clock class	I’ll	show	you	has	properties	that	change	to	reflect	the	current	

moment,	and	it	will	notify	the	external	world	about	these	changes	through	the	

PropertyChanged	event	

This	Clock	class	is	in	the	Petzold.Phone.Silverlight	library.	Here	it	is:	

354	

	

 Silverlight Project: Petzold.Phone.Silverlight File: Clock.cs

using System;

using System.ComponentModel;

using System.Windows.Threading;

namespace Petzold.Phone.Silverlight

{

public class Clock : INotifyPropertyChanged

 {

int hour, min, sec;

DateTime date;

public event PropertyChangedEventHandler PropertyChanged;

public Clock()

{

 OnTimerTick(null, null);

DispatcherTimer tmr = new DispatcherTimer();

 tmr.Interval = TimeSpan.FromSeconds(0.1);

 tmr.Tick += OnTimerTick;

 tmr.Start();

}

public int Hour

{

protected set

 {

if (value != hour)

 {

 hour = value;

 OnPropertyChanged(new PropertyChangedEventArgs("Hour"));

}

 }

get

 {

return hour;

 }

}

public int Minute

{

protected set

 {

if (value != min)

 {

 min = value;

 OnPropertyChanged(new PropertyChangedEventArgs("Minute"));

 }

 }

get

 {

return min;

355	

	

 }

}

public int Second

{

protected set

 {

if (value != sec)

 {

 sec = value;

 OnPropertyChanged(new PropertyChangedEventArgs("Second"));

 }

 }

get

 {

return sec;

 }

}

public DateTime Date

{

protected set

 {

if (value != date)

 {

 date = value;

 OnPropertyChanged(new PropertyChangedEventArgs("Date"));

}

 }

get

 {

return date;

 }

}

protected virtual void OnPropertyChanged(PropertyChangedEventArgs args)

{

if (PropertyChanged != null)

 PropertyChanged(this, args);

}

void OnTimerTick(object sender, EventArgs args)

{

DateTime dt = DateTime.Now;

 Hour = dt.Hour;

 Minute = dt.Minute;

 Second = dt.Second;

 Date = DateTime.Today;

}

 }

}

356

	

	 	

	

	 	 	

	 	 	

	 	 	

	

	 	

	 	 	 	

	 	 	

	

	

	

	 	 	

	 	 	

	

	 	

	 	

	 	

	 	 	 	 	 	

	 	 	

	 	 	 	

The	Clock	class	implements	INotifyPropertyChanged	and	therefore	includes	a	public	event	

named	PropertyChanged.	Near	the	bottom,	a	protected	OnPropertyChanged	method	is	also	

included	and	is	responsible	for	firing	the	actual	event.	The	constructor	of	the	class	installs	a	

handler	for	the	Tick event	of	the	DispatcherTimer	initialized	to	an	interval	of	1/10th	second.	

The	OnTimerTick handler	(at	the	very	bottom	of	the	class)	sets	new	values	of	the	class’s	Hour,	

Minute,	Second,	and	Date properties,	all	of	which	are	structured	very	similarly.	

For	example,	look	at	the	Hour	property:	

public int Hour

{

protected set

 {

if (value != hour)

{

 hour = value;

 OnPropertyChanged(new PropertyChangedEventArgs("Hour"));

}

 }

get

 {

return hour;

}

}

The	set	accessor	is	protected.	The	value	is	only	set	internally	and	we	don’t	want	external	

classes	messing	with	it.	The	set	accessor	checks	if	the	value	being	set	to	the	property	equals	

the	value	stored	as	a	field;	if	not,	it	sets	the	hour	field	to	the	new	value	and	calls	

OnPropertyChanged	to	fire	the	event.	

Some	programmers	don’t	include	the	if	statement	to	check	that	the	property	is	actually	

changing,	with	the	result	that	the	PropertyChanged	event	is	fired	whenever	the	property	is	set,	

even	if	it’s	not	changing.	That’s	not	a	good	idea—particularly	for	a	class	like	this.	We	really	

don’t	want	a	PropertyChanged	event	reporting	that	the	Hour	property	is	changing	every	

1/10th	second	if	it’s	really	changing	only	every	hour.	

To	use	the	Clock	class	in	a	XAML	file,	you’ll	need	a	reference	to	the	Petzold.Phone.Silverlight	

library	and	an	XML	namespace	declaration:	

xmlns:petzold="clr-namespace:Petzold.Phone.Silverlight;assembly=Petzold.Phone.Silverlight"

When	a	binding	source	is	not	derived	from	DependencyObject,	you	don’t	use	ElementName	In	

the	Binding.	Instead,	you	use	Source.	The	bindings	we	want	to	create	set	Source	to	the	Clock

object	in	the	Petzold.Phone.Silverlight	library.	

You	can	insert	a	reference	to	the	Clock	class	directly	in	the	element	form	of	Binding:	

<TextBlock>

<TextBlock.Text>

<Binding Path="Second">

357	

	

	 	 	 	 	 	

	 	

	 	

	 	 	

	

	

<Binding.Source>

<petzold:Clock />

</Binding.Source>

</Binding>

</TextBlock.Text>

</TextBlock>

The	Source	property	of	Binding	is	broken	out	as	a	property	element	and	set	to	an	instance	of	

the	Clock	class.	The	Path	property	indicates	the	Second	property	of	Clock.	

Or,	more	conventionally,	you	define	the	Clock	as	a	XAML	resource:	

<phone:PhoneApplicationPage.Resources>

<petzold:Clock x:Key="clock" />

 …

</phone:PhoneApplicationPage.Resources>

Then	the	Binding	markup	extension	can	reference	that	resource:	

TextBlock Text="{Binding Source={StaticResource clock}, Path=Second}" />

Notice	the	embedded	markup	expression	for	StaticResource.	

This	approach	is	demonstrated	in	the	TimeDisplay	project,	which	uses	a	horizontal	StackPanel

to	concatenate	text:	

Silverlight Project: File:

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<StackPanel Orientation="Horizontal"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

<TextBlock Text="The current seconds are " />

<TextBlock Text="{Binding Source={StaticResource clock},

 Path=Second}" />

</StackPanel>

</Grid>

358	

	

	

	

	 	 	 	

	 	 	 	

	 	 	

	

	 	 	 	

	 	

	 	

	 	 	 	 	 	

	 	 	 	 	 	

	 	 	

And	here	it	is:	

To	reemphasize:	The	binding	target	(the	Text	property	of	the	TextBlock)	must	be	a	

dependency	property.	That	is	required.	To	keep	the	target	updated	with	changing	values	from	

the	binding	source	(the	Second	property	of	Clock),	the	source	should	implement	some	kind	of	

notification	mechanism,	which	it	does.	

Of	course,	I	don’t	need	the	StackPanel	with	the	multiple	TextBlock	elements.	Using	the	

StringFormatConverter	(which	I’ve	included	as	a	resource	in	TimeDisplay	with	a	key	of	

“stringFormat”	so	you	can	experiment	with	it)	I	can	simply	include	the	whole	text	like	so:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<TextBlock HorizontalAlignment="Center"

 VerticalAlignment="Center"

 Text="{Binding Source={StaticResource clock},

 Path=Second,

 Converter={StaticResource stringFormat},

 ConverterParameter='The current seconds are {0}'}" />

</Grid>

Now	the	Binding markup	expression	has	two	embedded	markup	expressions.	

If	you	want	to	display	several	properties	of	the	Clock class,	you’ll	need	to	go	back	to	using	

multiple	TextBlock elements.	For	example,	this	will	format	the	time	with	colons	between	the	

hours,	minutes,	and	seconds	and	leading	zeros	for	the	minutes	and	seconds:	

359	

	

	 	 	

	

		

	 	 	

	 	 	

	

	 	

	 	 	

	

	 	 	 	

	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<StackPanel Orientation="Horizontal"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

<TextBlock Text="{Binding Source={StaticResource clock},

 Path=Hour}" />

<TextBlock Text="{Binding Source={StaticResource clock},

 Path=Minute,

 Converter={StaticResource stringFormat},

 ConverterParameter=':{0:D2}'}" />

<TextBlock Text="{Binding Source={StaticResource clock},

 Path=Second,

 Converter={StaticResource stringFormat},

 ConverterParameter=':{0:D2}'}" />

</StackPanel>

</Grid>

As	you	can	see,	the	three	bindings	all	include	the	same	Source	setting.	Is	there	some	way	that	

allows	us	to	avoid	the	repetition?	Yes	there	is,	and	the	technique	also	illustrates	an	extremely	

important	concept.	

Setting
the
DataContext
FrameworkElement	defines	a	property	named	DataContext	that	you	can	set	to	pretty	much	

any	object	(in	code)	or	generally	a	binding	(in	XAML).	The	DataContext	is	one	of	those	

properties	that	propagates	down	through	the	visual	tree,	at	which	point	it	can	be	combined	

with	more	local	bindings.	At	the	very	least,	the	DataContext	gives	you	a	way	to	simplify	

individual	bindings	by	eliminating	repetition.	In	the	broader	view,	DataContext	is	how	you	

associate	data	with	visual	trees.	

In	this	particular	example,	you	can	set	the	DataContext property	on	any	element	that	is	an	

ancestor	to	the	TextBlock	elements.	Let’s	set	it	on	the	most	immediate	ancestor,	which	is	the	

StackPanel:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<StackPanel DataContext="{Binding Source={StaticResource clock}}"

 Orientation="Horizontal"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

<TextBlock Text="{Binding Path=Hour}" />

<TextBlock Text="{Binding Path=Minute,

 Converter={StaticResource stringFormat},

 ConverterParameter=':{0:D2}'}" />

<TextBlock Text="{Binding Path=Second,

 Converter={StaticResource stringFormat},

 ConverterParameter=':{0:D2}'}" />

</StackPanel>

</Grid>

360	

	

	

	 	 	 	

	 	

	 	

	 	 	 	

	 	 	

	 	

	 	 	

	 	 	 	

Now	the	StackPanel	has	its	DataContext	set	to	a	Binding	element	that	references	just	the	

source	of	the	binding—the	Clock	resource.	All	the	children	of	that	StackPanel	don’t	need	to	

reference	that	Source.	It’s	merged	in	with	the	bindings	on	the	individual	TextBlock	elements.	

You	can	set	the	DataContext	to	a	Binding	object	as	I’ve	done:	

DataContext="{Binding Source={StaticResource clock}}"

Or	in	this	case	you	can	set	the	DataContext	directly	to	the	source:	

DataContext="{StaticResource clock}"

Either	is	acceptable	and	you’ll	see	both	in	my	examples.	

Once	the	Source	property	is	removed	from	the	individual	Binding	extensions,	what	begins	to	

look	more	natural	to	me	is	for	the	“Path=”	part	of	the	individual	bindings	to	be	removed:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<StackPanel DataContext="{Binding Source={StaticResource clock}}"

 Orientation="Horizontal"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

<TextBlock Text="{Binding Hour}" />

<TextBlock Text="{Binding Minute,

 Converter={StaticResource stringFormat},

 ConverterParameter=':{0:D2}'}" />

<TextBlock Text="{Binding Second,

 Converter={StaticResource stringFormat},

 ConverterParameter=':{0:D2}'}" />

</StackPanel>

</Grid>

Remember	that	the	“Path=”	part	of	the	Binding	markup	extension	can	be	removed	only	if	the	

Path	is	the	first	item.	Each	of	the	bindings	now	seems	to	reference	a	particular	property	of	the	

DataContext:	

<TextBlock Text="{Binding Hour}" />

361	

	

	

	 	 	 	

	 	

	 	 	 	

	

	 	 	 	

	 	

Here’s	the	resultant	display:	

The	DataContext	is	extremely	useful	when	a	page	or	a	control	is	devoted	to	displaying	the	

properties	of	a	particular	class.	The	DataContext can	be	set	by	code	to	switch	between	various	

instances	of	that	class.	

Although	certainly	not	as	common,	you	can	also	use	DataContext	with	ElementName

bindings.	Here’s	the	visual	tree	from	the	BorderText.xaml	file	you	saw	earlier:	

<Border Background="{Binding ElementName=this, Path=Background}"

 BorderBrush="{Binding ElementName=this, Path=BorderBrush}"

 BorderThickness="{Binding ElementName=this, Path=BorderThickness}"

 CornerRadius="{Binding ElementName=this, Path=CornerRadius}"

 Padding="{Binding ElementName=this, Path=Padding}">

<TextBlock Text="{Binding ElementName=this, Path=Text}"

 TextAlignment="{Binding ElementName=this, Path=TextAlignment}"

 TextDecorations="{Binding ElementName=this, Path=TextDecorations}"

 TextWrapping="{Binding ElementName=this, Path=TextWrapping}" />

</Border>

You	can	instead	set	the	DataContext	on	the	Border	to	a	Binding	with	the	ElementName,	and	

then	the	remaining	bindings	are	simplified	considerably:	

<Border DataContext="{Binding ElementName=this}"

 Background="{Binding Background}"

 BorderBrush="{Binding BorderBrush}"

 BorderThickness="{Binding BorderThickness}"

362	

	

	 	 	 	

	 	 	

	 	 	 	 	

	 	 	

	 	 	

	 	

	 	

	

	

 CornerRadius="{Binding CornerRadius}"

 Padding="{Binding Padding}">

<TextBlock Text="{Binding Path=Text}"

 TextAlignment="{Binding Path=TextAlignment}"

 TextDecorations="{Binding Path=TextDecorations}"

 TextWrapping="{Binding ElementName=this, Path=TextWrapping}" />

</Border>

Back	to	Clock:	You	may	have	noticed	that	I	got	a	little	lazy	when	coding	the	class	and	didn’t	

define	properties	for	the	various	components	of	the	date,	such	as	Month	and	Year.	Instead,	I	

simply	defined	a	property	named	Date	of	type	DateTime.	The	OnTimerTick handler	assigns	to	

that	property	the	static	property	DateTime.Today,	which	is	a	DateTime	object	with	the	time	

set	to	midnight.	That	means	that	this	Date	property	is	not	firing	off	PropertyChanged	events	

every	tenth	second.	It’s	only	firing	one	at	startup	and	then	at	the	stroke	of	every	midnight.	

You	can	reference	the	individual	properties	of	the	Date	property	like	this:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<StackPanel HorizontalAlignment="Center"

 VerticalAlignment="Center">

<StackPanel Orientation="Horizontal">

<TextBlock Text="It's day number " />

<TextBlock Text="{Binding Source={StaticResource clock},

 Path=Date.Day}" />

<TextBlock Text=" of month " />

<TextBlock Text="{Binding Source={StaticResource clock},

 Path=Date.Month}" />

</StackPanel>

<StackPanel Orientation="Horizontal">

<TextBlock Text=" of the year " />

<TextBlock Text="{Binding Source={StaticResource clock},

 Path=Date.Year}" />

<TextBlock Text=", a " />

<TextBlock Text="{Binding Source={StaticResource clock},

 Path=Date.DayOfWeek}" />

< TextBlock Text="." />

</StackPanel>

</StackPanel>

</Grid>

Or,	you	can	set	a	DataContext	on	the	StackPanel	as	before	and	eliminate	the	“Path=”	part	of	

the	bindings:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<StackPanel DataContext="{StaticResource clock}"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

<StackPanel Orientation="Horizontal">

<TextBlock Text="It's day number " />

<TextBlock Text="{Binding Date.Day}" />

<TextBlock Text=" of month " />

<TextBlock Text="{Binding Date.Month}" />

363

	

	

	

	 	

	 	

	 	 	

	 	 	 	

	

	 	

</StackPanel>

<StackPanel Orientation="Horizontal">

<TextBlock Text=" of the year " />

<TextBlock Text="{Binding Date.Year}" />

<TextBlock Text=", a " />

<TextBlock Text="{Binding Date.DayOfWeek}" />

<TextBlock Text="." />

</StackPanel>

</StackPanel>

</Grid>

Either	version	displays	two	lines	of	text:	

Date	is	a	property	of	Clock	of	type	DateTime,	and	Day,	Month,	Year,	and	DayOfWeek	are	all	

properties	of	DateTime.	There	is	no	formatting	here	beyond	that	provided	by	default	calls	to	

ToString.	The	Day,	Month,	and	Year	properties	are	displayed	as	numbers.	The	DayOfWeek

property	is	of	a	member	of	the	DayOfWeek	enumeration,	so	you’ll	see	actual	text,	such	as	

Wednesday,	but	the	text	won’t	be	localized.	The	DayOfWeek member	names	are	in	English	so	

that’s	what’s	displayed.	

You	can	also	set	a	DataContext	that	references	both	the	Source	and	the	Date property,	so	the	

individual	bindings	just	reference	properties	of	DateTime:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<StackPanel DataContext="{Binding Source={StaticResource clock},

 Path=Date}"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

364	

	

	 	 	

	 	 	

	 	 	 	 	 	

	

	 	 	 	

	 	 	

	 	

	 	 	

	 	 	

	 	

	

	

	 	 	

	 	 	

	 	

	 	 	 	 	 	

	

<StackPanel Orientation="Horizontal">

<TextBlock Text="It's day number " />

<TextBlock Text="{Binding Day}" />

<TextBlock Text=" of month " />

<TextBlock Text="{Binding Month}" />

</StackPanel>

<StackPanel Orientation="Horizontal">

<TextBlock Text=" of the year " />

<TextBlock Text="{Binding Year}" />

<TextBlock Text=", a " />

<TextBlock Text="{Binding DayOfWeek}" />

<TextBlock Text="." />

</StackPanel>

</StackPanel>

</Grid>

Of	course,	there	are	lots	of	formatting	options	for	dates	documented	with	the	

DateTimeFormatInfo	class	in	the	System.Globalization	namespace,	so	you	can	also	make	use	of	

StringFormatConverter.	

Suppose	you	want	to	include	the	name	of	the	current	month	deep	within	a	paragraph	

displayed	using	TextBlock.	To	use	TextBlock	to	display	a	paragraph	of	text,	you’ll	want	to	set	

the	TextWrapping	property	to	Wrap.	But	now	you	can’t	use	StackPanel	to	concatenate	

multiple	TextBlock	elements.	You	need	to	include	all	the	text	in	that	single	TextBlock,	including	

the	name	of	the	month.	How	do	you	do	it?	

You	will	consider	yourself	a	genius	when	you	remember	the	Run	class.	You’ll	recall	from	the	

end	of	Chapter	8	how	the	Run	class	derives	from	Inline	and	allows	you	to	specify	formatting	

for	a	piece	of	text	within	an	entire	TextBlock.	The	Run class	has	a	Text property,	so	it	seems	

like	an	ideal	way	to	embed	the	month	name	(or	some	other	binding)	in	a	longer	paragraph:	

<!-- This will not work! -->

<TextBlock TextWrapping="Wrap">

 This represents some long text that needs to display a month name of

<Run Text="{Binding Source={StaticResource clock},

 Path=Date,

 Converter={StaticResource stringFormat},

 ConverterParameter='{0:MMMM}'}" />

 and then continue with the rest of the paragraph.

</TextBlock>

This	is	exactly	what	you	want,	and	the	only	problem	is	that	it	won’t	work!	It	won’t	work	

because	the	Text	property	of	Run	is	not	backed	by	a	dependency	property,	and	targets	of	

data	bindings	must	always	be	dependency	properties.	

It	seems	unfair	that	Run	has	this	little	problem,	but	frameworks	are	much	like	life,	and	life	is	

not	always	fair.	

Currently,	you	cannot	do	this	little	task	entirely	in	XAML.	You’ll	need	to	give	the	Run	a	name	

and	assign	the	Text	property	from	code.		

365	

	

	 	 	 	

	

	 	

	 	 	 	

	 	

	 	 	

	 	 	 	 	

	

	 	

	 	 	

Simple
Decision
Making

XAML	is	not	a	real	programming	language.	It	doesn’t	include	anything	like	if	statements.	

XAML	isn’t	capable	of	making	decisions.	

But	that	doesn’t	mean	we	can’t	try.	

As	you	may	have	noticed,	the	Clock class	used	the	straight	Hour	property	from	DateTime,	

which	is	a	24hour	clock	value.	You	might	instead	want	a	12hour	clock	and	display	the	text	

“AM”	or	“PM”	to	indicate	the	morning	or	afternoon.	

Normally	you	can	do	that	by	formatting	the	time	(if	the	Clock	class	actually	provided	a	

DateTime object	indicating	the	time)	but	suppose	you	want	to	be	very	flexible	about	how	you	

display	the	AM	and	PM	information—perhaps	you’d	prefer	to	display	the	text	“in	the	

morning”	or	“in	the	afternoon”—and	you	want	to	do	it	in	XAML.	

Here’s	a	new	class	named	TwelveHourClock	that	derives	from	Clock.	

Silverlight Project: Petzold.Phone.Silverlight File: TwelveHourClock.cs

using System;

using System.ComponentModel;

namespace Petzold.Phone.Silverlight

{

public class TwelveHourClock : Clock

 {

int hour12;

bool isam, ispm;

public int Hour12

{

protected set

 {

if (value != hour12)

 {

 hour12 = value;

 OnPropertyChanged(new PropertyChangedEventArgs("Hour12"));

 }

 }

get

 {

return hour12;

 }

}

public bool IsAm

{

protected set

 {

if (value != isam)

366	

	

	 	 	

	 	

	 	 	

	

	 	 	 	 	

	

	

	 	 	 	

	

 {

 isam = value;

 OnPropertyChanged(new PropertyChangedEventArgs("IsAm"));

}

 }

get

 {

return isam;

 }

}

public bool IsPm

{

protected set

 {

if (value != ispm)

 {

 ispm = value;

 OnPropertyChanged(new PropertyChangedEventArgs("IsPm"));

}

 }

get

 {

return ispm;

 }

}

protected override void OnPropertyChanged(PropertyChangedEventArgs args)

{

if (args.PropertyName == "Hour")

{

 Hour12 = (Hour - 1) % 12 + 1;

 IsAm = Hour < 12;

 IsPm = !IsAm;

}

base.OnPropertyChanged(args);

}

 }

}

The	TwelveHourClock class	defines	three	new	properties,	all	triggering	PropertyChanged

events.	These	are	Hour12	and	two	Boolean	properties,	IsAm	and	IsPm.	The	override	of	

OnPropertyChanged checks	if	the	property	being	changed	is	Hour	and,	if	so,	calculates	new	

values	for	these	three	properties,	which	themselves	cause	calls	to	OnPropertyChanged.	

Because	isAm	is	simply	the	logical	negation	of	isPM,	you	may	wonder	why	both	properties	are	

required.	Because	XAML	itself	can’t	perform	a	logical	negation,	having	both	properties	

available	becomes	extremely	convenient.	

Let’s	instantiate	the	TwelveHourClock	class	in	a	Resources collection	and	give	it	a	key	of	

“clock12”:	

367

	

	 	 	

	 	 	 	

	 	 	

	

	

	

	

<phone:PhoneApplicationPage.Resources>

<petzold:TwelveHourClock x:Key="clock12" />

</phone:PhoneApplicationPage.Resources>

If	you’d	like	XAML	to	display	some	text	along	the	lines	of	“It’s	after	9	in	the	morning,”	you	

might	begin	like	this:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<StackPanel DataContext="{StaticResource clock12}"

 Orientation="Horizontal"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

<TextBlock Text="It's after " />

<TextBlock Text="{Binding Hour}" />

<TextBlock Text=" in the morning." />

<TextBlock Text=" in the afternoon." />

</StackPanel>

</Grid>

This	XAML	has	separate	text	strings	for	morning	and	afternoon,	but	at	any	time	only	one	of	

them	should	be	displayed	depending	on	whether	IsAm	or	IsPm is	true.	How	is	such	a	thing	

even	possible?	

Another	converter	is	required,	and	this	is	also	a	converter	that	you’ll	use	quite	often.	It’s	called	

a	BooleanToVisibilityConverter	and	it	assumes	that	the	source	value	is	a	Boolean	and	the	

target	is	a	property	of	type	Visibility:	

Silverlight Project: Petzold.Phone.Silverlight File: BooleanToVisibilityConverter.cs

using System;

using System.Globalization;

using System.Windows;

using System.Windows.Data;

namespace Petzold.Phone.Silverlight

{

public class BooleanToVisibilityConverter : IValueConverter

 {

public object Convert(object value, Type targetType,

object parameter, CultureInfo culture)

{

return (bool)value ? Visibility.Visible : Visibility.Collapsed;

}

public object ConvertBack(object value, Type targetType,

object parameter, CultureInfo culture)

{

return (Visibility)value == Visibility.Visible;

}

 }

}

368	

	

	 	

	 	 	

Add	that	class	to	the	Resources	collection:	

<phone:PhoneApplicationPage.Resources>

<petzold:TwelveHourClock x:Key="clock12" />

<petzold:BooleanToVisibilityConverter x:Key="booleanToVisibility" />

</phone:PhoneApplicationPage.Resources>

Now	bind	the	Visibility	properties	of	the	final	two	TextBlock	elements	to	the	IsAm	and	IsPm

properties	using	the	BooleanToVisibilityConverter.	Here’s	the	markup	from	the	project	

AmOrPm:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<StackPanel DataContext="{StaticResource clock12}"

 Orientation="Horizontal"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

<TextBlock Text="It's after " />

<TextBlock Text="{Binding Hour}" />

<TextBlock Text=" in the morning."

 Visibility="{Binding IsAm,

Converter={StaticResource booleanToVisibility}}"

/>

<TextBlock Text=" in the afternoon."

 Visibility="{Binding IsPm,

Converter={StaticResource

booleanToVisibility}}"/>

</StackPanel>

</Grid>

369	

	

	

	

	 	

And	it	works:	

Converters
with
Properties

It’s	not	unreasonable	to	create	a	databinding	converter	that	is	so	specialized	or	so	weird	that	

it’s	only	good	for	one	particular	application.	For	example,	here’s	a	class	called	

DecimalBitToBrushConverter.	This	converter	includes	two	public	properties	named	

ZeroBitBrush	and	OneBitBrush.	

Silverlight Project: BinaryClock File: DecimalBitToBrushConverter.cs

using System;

using System.Globalization;

using System.Windows.Data;

using System.Windows.Media;

namespace BinaryClock

{

public class DecimalBitToBrushConverter : IValueConverter

 {

public Brush ZeroBitBrush { set; get; }

public Brush OneBitBrush { set; get; }

public object Convert(object value, Type targetType,

object parameter, CultureInfo culture)

{

370	

	

	

	 	 	

	 	 	 	

	 	 	

	 	 	

	

	

	

	 	 	 	

	

	 	 		

	 	 	 	 	

	

	 	

	

int number = (int)value;

int bit = Int32.Parse(parameter as string);

int digit = number / PowerOfTen(bit / 4) % 10;

return ((digit & (1 << (bit % 4))) == 0) ? ZeroBitBrush : OneBitBrush;

}

public object ConvertBack(object value, Type targetType,

object parameter, CultureInfo culture)

{

return null;

}

int PowerOfTen(int exp)

{

int value = 1;

for (int i = 0; i < exp; i++)

 value *= 10;

return value;

}

 }

}

The	Convert	method	expects	a	value	argument	of	type	int,	and	a	valid	parameter	argument.	

When	you	set	the	ConverterParameter	property	in	XAML	to	a	string,	it	will	come	into	the	

Convert	method	as	an	object	of	type	string,	at	which	point	you	must	convert	it	manually	into	

the	desired	type.	(To	override	that	behavior,	you’d	need	to	use	propertyelement	syntax	for	

the	ConverterParameter	and	specify	the	type	using	element	tags.)	This	Convert	method	

expects	this	string	to	represent	another	int,	so	it	passes	the	string	the	Int32.Parse.	

The	value	argument	is	a	number,	for	example	127.	The	parameter	argument,	when	converted	

to	an	int,	is	a	bit	position,	for	example,	6.	The	method	essentially	breaks	the	incoming	number	

into	decimal	digits,	in	this	example	1,	2	and	7,	and	then	finds	the	digit	in	the	specified	bit	

position.	The	7	of	127	corresponds	to	bit	positions	of	0	through	3;	the	2	of	127	is	bit	positions	

4	through	7;	the	1	of	127	is	bit	positions	8	through	11.	

If	the	bit	in	that	bit	position	is	1,	Convert	returns	OneBitBrush;	if	it’s	0,	Convert	returns	

ZeroBitBrush.	

I	use	this	converter	in	a	project	called	BinaryClock.	The	converter	is	referenced	in	a	

UserControl	derivative	called	BinaryNumberRow.	Notice	how	the	two	public	properties	of	

DecimalBitToBrushConverter are	set	right	in	the	Resources	collection,	which	also	includes	a	

Style	for	the	Ellipse.	

371	

	

	

Silverlight Project: BinaryClock File: BinaryNumberRow.xaml

<UserControl

 x:Class="BinaryClock.BinaryNumberRow"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

xmlns:petzold="clr-

namespace:Petzold.Phone.Silverlight;assembly=Petzold.Phone.Silverlight"

xmlns:local="clr-namespace:BinaryClock">

<UserControl.Resources>

<Style x:Key="ellipseStyle" TargetType="Ellipse">

<Setter Property="Width" Value="48" />

<Setter Property="Height" Value="48" />

<Setter Property="Stroke" Value="{StaticResource PhoneForegroundBrush}"

/>

<Setter Property="StrokeThickness" Value="2" />

</Style>

<local:DecimalBitToBrushConverter x:Key="converter"

 ZeroBitBrush="{x:Null}"

 OneBitBrush="Red" />

</UserControl.Resources>

<petzold:UniformStack Orientation="Horizontal">

<Ellipse Style="{StaticResource ellipseStyle}"

 Fill="{Binding Converter={StaticResource converter},

 ConverterParameter=6}" />

<Ellipse Style="{StaticResource ellipseStyle}"

 Fill="{Binding Converter={StaticResource converter},

 ConverterParameter=5}" />

<Ellipse Style="{StaticResource ellipseStyle}"

 Fill="{Binding Converter={StaticResource converter},

 ConverterParameter=4}" />

<Ellipse Style="{StaticResource ellipseStyle}"

 Stroke="{x:Null}" />

<Ellipse Style="{StaticResource ellipseStyle}"

 Fill="{Binding Converter={StaticResource converter},

 ConverterParameter=3}" />

<Ellipse Style="{StaticResource ellipseStyle}"

 Fill="{Binding Converter={StaticResource converter},

 ConverterParameter=2}" />

<Ellipse Style="{StaticResource ellipseStyle}"

 Fill="{Binding Converter={StaticResource converter},

 ConverterParameter=1}" />

372	

	

	 	 	

	 	 	

	

	 	 	 	

	 	 	

	 	 	

	

	 	 	

	 	

	

	 	 	

	

<Ellipse Style="{StaticResource ellipseStyle}"

 Fill="{Binding Converter={StaticResource converter},

 ConverterParameter=0}" />

</petzold:UniformStack>

</UserControl>

The	body	of	the	BinaryNumberRow	visual	tree	is	a	horizontal	UniformStack	containing	seven	

Ellipse	elements.	Each	has	a	Binding	that	assigns	only	the	Converter property	to	the	

DecimalBitToBrushConverter	and	a	ConverterParameter	that	ranges	from	0	for	the	Ellipse	on	

the	right	to	6	for	the	Ellipse on	the	left.	None	of	the	bindings	include	Source	or	Path	settings!	

These	are	obviously	set	elsewhere	in	the	DataContext	for	the	BinaryNumberRow	instance.	

The	MainPage.xaml	file	of	the	BinaryClock	project	instantiates	the	TwelveHourClock	object	in	

its	Resources	section:	

Silverlight Project: File:

<phone:PhoneApplicationPage.Resources>

<petzold:TwelveHourClock x:Key="clock12" />

</phone:PhoneApplicationPage.Resources>

The	content	area	contains	a	vertically	centered	StackPanel	with	three	instances	of	

BinaryNumberRow:	

Silverlight Project: File:

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <StackPanel DataContext="{StaticResource clock12}"

 VerticalAlignment="Center">

<local:BinaryNumberRow DataContext="{Binding Hour12}"

 Margin="0 12" />

<local:BinaryNumberRow DataContext="{Binding Minute}"

 Margin="0 12" />

<local:BinaryNumberRow DataContext="{Binding Second}"

 Margin="0 12" />

 </StackPanel>

</Grid>

Notice	the	DataContext	settings:	The	StackPanel	has	its	DataContext	set	to	the	

TwelveHourClock	itself.	Each	of	the	BinaryNumberRow	controls	has	a	DataContext	set	to	one	

of	the	properties	of	TwelveHourClock.	This	is	why	the	Binding	definitions	in	BinaryNumberRow

only	need	to	contain	a	Converter	and	ConverterParameter.	

373	

	

	 	

	

	

	 	 	 	 	

	 	

	 		

	 	

	 	

	

	 	

The	result,	of	course,	is	a	binary	clock:	

The	time	is,	ummm,	12:58:06.	

You	might	wonder	if	some	of	the	Binding markup	might	be	reduced	even	further.	Considering	

that	all	the	individual	Ellipse elements	have	the	same	Converter setting,	might	that	be	moved	

to	the	first	DataContext	setting	on	the	StackPanel?	No	it	can’t.	The	Converter	and	

ConverterParameter	settings	must	appear	together	in	the	same	Binding	definition.	

Give
and
Take

The	two	binding	services	you’ve	seen	so	far	simply	provide	information.	You	can	also	create	

bindings	in	XAML	that	deliver	data	to	the	binding	service	and	get	back	a	result.	As	a	very	

simple	demonstration,	let’s	look	at	a	binding	service	that	performs	the	momentous	feat	of	

adding	two	numbers	together.	I	call	it	Adder.	

Silverlight Project: Petzold.Phone.Silverlight File: Adder.cs

using System.ComponentModel;

namespace Petzold.Phone.Silverlight

{

public class Adder : INotifyPropertyChanged

 {

public event PropertyChangedEventHandler PropertyChanged;

374	

	

double augend = 0;

double addend = 0;

double sum = 0;

public double Augend

{

set

 {

if (augend != value)

{

 augend = value;

 OnPropertyChanged(new PropertyChangedEventArgs("Augend"));

 CalculateNewSum();

 }

 }

get

 {

return augend;

 }

}

public double Addend

{

set

 {

if (addend != value)

{

 addend = value;

 OnPropertyChanged(new PropertyChangedEventArgs("Addend"));

 CalculateNewSum();

 }

 }

get

 {

return addend;

 }

}

public double Sum

{

protected set

 {

if (sum != value)

{

 sum = value;

 OnPropertyChanged(new PropertyChangedEventArgs("Sum"));

 }

 }

get

 {

return sum;

 }

}

375	

	

	 	 	 	

	 	 	

	 	 	

	 	 	

	 	

	

	 	 	 	 	 	

	

	

void CalculateNewSum()

{

 Sum = Augend + Addend;

}

protected virtual void OnPropertyChanged(PropertyChangedEventArgs args)

{

if (PropertyChanged != null)

 PropertyChanged(this, args);

}

 }

}

When	you	add	two	numbers	together,	they	can	be	called	the	Augend	and	the	Addend,	and	

that’s	what	the	two	properties	are	named.	Both	properties	are	of	type	double	and	both	are	

entirely	public,	and	when	either	is	set	to	a	new	value,	it	fires	a	PropertyChanged	event	and	

also	calls	a	method	named	CalculateNewSum.	

CalculateNewSum	adds	the	Augend	and	Addend	properties	and	sets	the	result	to	the	Sum

property.	Sum	is	a	little	different	because	the	set	accessor	is	protected,	so	nobody	external	to	

this	class	can	mess	with	the	Sum,	and	that	is	how	it	should	be.	

The	SliderSum	project	shows	one	way	to	use	this	binding	service	in	a	program.	The	Resources

collection	references	two	files	from	the	Petzold.Phone.Silverlight	library:	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.Resources>

<petzold:Adder x:Key="adder" />

<petzold:StringFormatConverter x:Key="stringFormat" />

</phone:PhoneApplicationPage.Resources>

In	the	content	area,	two	Slider	elements	are	positioned	at	the	top	and	bottom,	and	a	

TextBlock	occupies	the	larger	interior:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0"

 DataContext="{Binding Source={StaticResource adder}}">

 <Grid.RowDefinitions>

<RowDefinition Height="Auto" />

<RowDefinition Height="*" />

<RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

 <Slider Grid.Row="0"

 Minimum="-100"

376	

	

	

	 	 	 	 	

	 	 	

	

	 	 	

	 	 	 	 	 	

	 	 	 	 	

	

 Maximum="100"

 Margin="24"

 Value="{Binding Augend, Mode=TwoWay}" />

 <Slider Grid.Row="2"

 Minimum="-100"

 Maximum="100"

 Margin="24"

 Value="{Binding Addend, Mode=TwoWay}" />

 <TextBlock Grid.Row="1"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 FontSize="48"

 Text="{Binding Sum,

 Converter={StaticResource stringFormat},

 ConverterParameter=' {0:F2} '}" />

</Grid>

Notice	the	DataContext	on	the	Grid.	Although	the	two	Slider	controls	are	providing	values	for	

the	Augend	and	Addend	properties,	these	Augend	and	Addend	properties	cannot	be	binding	

targets	because	they	are	not	backed	by	dependency	properties.	The	Adder	must	be	the	

binding	source	and	the	Slider	controls	must	be	the	binding	targets,	and	that’s	why	the	two	

bindings	have	a	Mode	of	TwoWay.	The	Slider	bindings	are	set	initially	to	their	center	positions	

from	the	default	values	defined	by	Adder,	but	thereafter,	the	Slider	values	are	transferred	to	

the	Augend	and	Addend	properties.	The	TextBlock	is	bound	to	the	Sum	property	with	some	

string	formatting.	

377

	

	

	

	 	 	 	 	 	

	

	

	 	 	

	 	 	

	

Suppose	you	want	to	display	negative	values	in	red.	(You	are	probably	an	accountant.)	By	this	

time	you	probably	know	that	a	binding	converter	is	involved.	The	converter	can	be	

generalized	somewhat	by	testing	whether	the	value	going	into	the	converter	is	greater	than,	

equal	to,	or	less	than	a	certain	criterion	value.	Each	of	the	three	possibilities	can	result	in	a	

different	brush	being	returned	from	the	converter.	As	in	the	converter	in	the	BinaryClock	

project,	this	information	can	be	provided	through	public	properties	on	the	converter	class,	

like	this:	

Silverlight Project: Petzold.Phone.Silverlight File: ValueToBrushConverter.cs

using System;

using System.Globalization;

using System.Windows.Data;

using System.Windows.Media;

namespace Petzold.Phone.Silverlight

{

public class ValueToBrushConverter : IValueConverter

 {

public double Criterion { set; get; }

public Brush GreaterThanBrush { get; set; }

public Brush EqualToBrush { get; set; }

public Brush LessThanBrush { get; set; }

public object Convert(object value, Type targetType,

object parameter, CultureInfo culture)

{

378	

	

	

	 	 	

	

	 	

	

	 	 	 	 	

	 	

	

	 	

double doubleVal = (value as IConvertible).ToDouble(culture);

return doubleVal >= Criterion ? doubleVal == Criterion ? EqualToBrush :

GreaterThanBrush :

 LessThanBrush;

}

public object ConvertBack(object value, Type targetType,

object parameter, CultureInfo culture)

{

return null;

}

 }

}

Originally	I	wrote	this	converter	to	just	cast	the	value	argument	to	a	double,	but	I	later	found	a	

need	to	use	the	converter	with	other	numeric	data	types,	so	I	went	for	a	more	versatile	

conversion	with	an	IConvertible	method.	

The	SliderSumWithColor	project	adds	this	converter	to	the	evergrowing	Resources	collection:	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.Resources>

<petzold:Adder x:Key="adder" />

<petzold:StringFormatConverter x:Key="stringFormat" />

<petzold:ValueToBrushConverter x:Key="valueToBrush"
Criterion="0"

LessThanBrush="Red"

EqualToBrush="{StaticResource PhoneForegroundBrush}"

GreaterThanBrush="{StaticResource PhoneForegroundBrush}" />

</phone:PhoneApplicationPage.Resources>

The	property	settings	on	the	ValueToBrushConverter indicate	that	values	less	than	zero	will	be	

displayed	in	red;	otherwise	values	are	displayed	in	the	PhoneForegroundBrush	color.	

Everything	else	is	the	same	as	in	the	previous	program	except	that	the	TextBlock	now	has	a	

Binding	set	on	its	Foreground	property	with	the	ValueToBrushConverter:	

Silverlight Project: File: (excerpt)

<Grid … >

 …

 <TextBlock Grid.Row="1"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 FontSize="48"

379	

	

	 	 	

	 	

	

	 	 	

	 	

	

	 	

		

	 	

	 	 	

	

 Text="{Binding Sum,

 Converter={StaticResource stringFormat},

 ConverterParameter=' {0:F2} '}"

 Foreground="{Binding Sum,

 Converter={StaticResource valueToBrush}}" />

</Grid>

It’s	actually	quite	exciting	to	see	the	color	of	the	TextBlock	become	red	knowing	that	there’s	

no	explicit	event	handler	in	the	program	making	this	change:	

TextBox
Binding
Updates

The	Text	property	of	a	TextBox	can	be	a	target	of	a	data	binding,	but	some	potential	problems	

are	introduced.	Once	you	allow	the	user	to	type	anything	into	a	TextBox,	you	need	to	deal	

with	faulty	input.	

Suppose	you	want	to	write	a	program	that	solves	quadratic	equations,	that	is,	solutions	of	the	

equation	

To	make	the	program	most	versatile,	you’d	probably	supply	three	TextBox	controls	to	allow	

the	user	to	type	in	values	of	A,	B,	and	C.	You	could	then	include	a	Button	labeled	“calculate”	

that	obtains	the	two	solutions	from	the	standard	equation:	

380

	

	

	

	

	 	 	 	

	 	

	

	

You’d	then	display	the	solutions	in	a	TextBlock.	

With	what	you	know	about	data	bindings	(and	considering	the	example	of	the	Adder	binding	

server),	a	somewhat	different	approach	comes	to	mind.	This	approach	retains	the	three	

TextBox	controls	and	uses	a	TextBlock	to	display	results.	These	controls	are	all	bound	to	

properties	of	the	binding	server.	

So	where	does	the	Button	go?	Well,	perhaps	the	Button	isn’t	really	needed.	

To	get	started,	here’s	a	class	from	Petzold.Phone.Silverlight	named	QuadraticEquationSolver.	It	

implements	the	INotifyPropertyChanged interface,	has	three	properties	named	A,	B,	and	C,	

and	getonly	properties	named	Solution1	and	Solution2.	Two	additional	readonly	properties	

are	of	type	bool	and	named	HasTwoSolutions	and	HasOneSolution.	

Solution: Petzold.Phone.Silverlight File: QuadaticEquationSolver.cs

using System;

using System.ComponentModel;

namespace Petzold.Phone.Silverlight

{

public class QuadraticEquationSolver : INotifyPropertyChanged

 {

Complex solution1;

Complex solution2;

bool hasTwoSolutions;

double a, b, c;

public event PropertyChangedEventHandler PropertyChanged;

public double A

{

set

 {

if (a != value)

{

 a = value;

 OnPropertyChanged(new PropertyChangedEventArgs("A"));

 CalculateNewSolutions();

 }

 }

get

 {

return a;

 }

}

public double B

381	

	

{

set

 {

if (b != value)

{

 b = value;

 OnPropertyChanged(new PropertyChangedEventArgs("B"));

 CalculateNewSolutions();

 }

 }

get

 {

return b;

 }

}

public double C

{

set

 {

if (c != value)

{

 c = value;

 OnPropertyChanged(new PropertyChangedEventArgs("C"));

 CalculateNewSolutions();

 }

 }

get

 {

return c;

 }

}

public Complex Solution1

{

protected set

 {

if (!solution1.Equals(value))

 {

 solution1 = value;

 OnPropertyChanged(new PropertyChangedEventArgs("Solution1"));

 }

 }

get

 {

return solution1;

 }

}

public Complex Solution2

{

protected set

 {

if (!solution2.Equals(value))

382	

	

 {

 solution2 = value;

 OnPropertyChanged(new PropertyChangedEventArgs("Solution2"));

 }

 }

get

 {

return solution2;

 }

}

public bool HasTwoSolutions

{

protected set

 {

if (hasTwoSolutions != value)

{

 hasTwoSolutions = value;

 OnPropertyChanged(new

PropertyChangedEventArgs("HasTwoSolutions"));

 OnPropertyChanged(new

PropertyChangedEventArgs("HasOneSolution"));

}

 }

get

 {

return hasTwoSolutions;

 }

}

public bool HasOneSolution

{

get

 {

return !hasTwoSolutions;

 }

}

void CalculateNewSolutions()

{

if (A == 0 && B == 0 && C == 0)

 {

 Solution1 = new Complex(0, 0);

 HasTwoSolutions = false;

return;

}

if (A == 0)

{

 Solution1 = new Complex(-C / B, 0);

 HasTwoSolutions = false;

return;

}

383

	

	 	

	 	 	 	 	 	

	 	 	 	

	 	 	

double discriminant = B * B - 4 * A * C;

double denominator = 2 * A;

double real = -B / denominator;

double imaginary =

Math.Sqrt(Math.Abs(discriminant)) / denominator;

if (discriminant == 0)

 {

 Solution1 = new Complex(real, 0);

 HasTwoSolutions = false;

return;

}

 Solution1 = new Complex(real, imaginary);

 Solution2 = new Complex(real, -imaginary);

 HasTwoSolutions = true;

}

protected virtual void OnPropertyChanged(PropertyChangedEventArgs args)

{

if (PropertyChanged != null)

 PropertyChanged(this, args);

}

 }

}

The	Solution1	and	Solution2	properties	are	of	type	Complex,	a	structure	that	is	also	included	in	

the	Petzold.Phone.Silverlight	project	but	which	doesn’t	implement	any	operations.	The	

structure	exists	solely	to	provide	ToString methods.	(Silverlight	4	includes	a	Complex	class	in	its	

System.Numerics namespace	but	this	is	not	available	in	Silverlight	for	Windows	Phone	7.)	

Silverlight Project: Petzold.Phone. File:

using System;

namespace Petzold.Phone.Silverlight

{

public struct Complex : IFormattable

 {

public double Real { get; set; }

public double Imaginary { get; set; }

public Complex(double real, double imaginary) : this()

{

 Real = real;

 Imaginary = imaginary;

}

public override string ToString()

 {

if (Imaginary == 0)

384	

	

	 	 	

	 	 	 	

	 	

	

	 	 	

	 	

	

	 	 	 	 	

	

return Real.ToString();

return String.Format("{0} {1} {2}i",

Real,

Math.Sign(Imaginary) >= 1 ? "+" : "–",

Math.Abs(Imaginary));

 }

public string ToString(string format, IFormatProvider provider)

 {

if (Imaginary == 0)

return Real.ToString(format, provider);

return String.Format(provider,

"{0} {1} {2}i",

 Real.ToString(format, provider),

Math.Sign(Imaginary) >= 1 ? "+" : "–",

Math.Abs(Imaginary).ToString(format, provider));

 }

 }

}

Complex	implements	the	IFormattable interface,	which	means	it	has	an	additional	ToString

method	that	includes	a	formatting	string.	This	is	necessary	if	you’re	going	to	use	numeric	

formatting	specifications	in	String.Format	to	format	these	complex	numbers,	as	

StringFormatConverter	does.	

The	QuadraticEquations1	project	is	a	first	attempt	at	providing	a	user	interface	for	this	class.	

The	Resources	collection	of	MainPage	contains	references	to	the	QuadraticEquationSolver

class	and	two	converters	that	you’ve	seen	before:	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.Resources>

<petzold:QuadraticEquationSolver x:Key="solver" />

<petzold:StringFormatConverter x:Key="stringFormat" />

<petzold:BooleanToVisibilityConverter x:Key="booleanToVisibility" />

</phone:PhoneApplicationPage.Resources>

The	content	area	has	two	nested	StackPanel	elements.	The	horizontal	StackPanel	contains	

three	TextBox	controls	of	fixed	width	with	twoway	bindings	for	typing	in	values	of	A,	B,	and	

C.	Notice	that	the	InputScope	is	set	to	Number	for	a	specifically	numeric	keyboard.	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<StackPanel DataContext="{Binding Source={StaticResource solver}}">

<StackPanel Orientation="Horizontal"

385	

	

	 	 	

	 	

 HorizontalAlignment="Center"

 Margin="12">

<TextBox Text="{Binding A, Mode=TwoWay}"

 InputScope="Number"

 Width="100" />

<TextBlock Text=" x" VerticalAlignment="Center" />

<TextBlock Text="2" VerticalAlignment="Center">

<TextBlock.RenderTransform>

<ScaleTransform ScaleX="0.7" ScaleY="0.7" />

</TextBlock.RenderTransform>

</TextBlock>

<TextBlock Text=" + " VerticalAlignment="Center" />

<TextBox Text="{Binding B, Mode=TwoWay}"

 InputScope="Number"

 Width="100" />

<TextBlock Text=" x + " VerticalAlignment="Center" />

<TextBox Text="{Binding C, Mode=TwoWay}"

 InputScope="Number"

 Width="100" />

<TextBlock Text=" = 0" VerticalAlignment="Center" />

</StackPanel>

<TextBlock Text="{Binding Solution1,

 Converter={StaticResource stringFormat},

 ConverterParameter='x = {0:F3}'}"

 HorizontalAlignment="Center" />

<TextBlock Text="{Binding Solution2,

 Converter={StaticResource stringFormat},

 ConverterParameter='x = {0:F3}'}"

 Visibility="{Binding HasTwoSolutions,

 Converter={StaticResource

booleanToVisibility}}"

 HorizontalAlignment="Center" />

</StackPanel>

</Grid>

The	two	TextBlock	elements	at	the	end	display	the	two	solutions;	the	second	TextBlock	has	its	

Visibility	property	bound	to	the	HasTwoSolutions	property	of	QuadraticEquationSolver	so	it’s	

not	visible	if	the	equation	has	only	one	solution.	

386

	

	

	 	 	

	 	 	

	 	 	

	

	 	

	 	 	 	 	

	 	

	 	 	

	 	 	

	 	 	

	 	 	 	

	 	 	

	 	

	

Probably	the	first	thing	you’ll	notice	is	that	typing	a	number	into	a	TextBox	has	no	effect	on	

the	solutions!	At	first	it	seems	like	the	program	is	not	working	at	all.	Only	when	the	TextBox

you’ve	been	typing	into	loses	input	focus	does	the	value	get	transferred	to	the	A,	B,	or	C

property	of	the	QuadraticEquationSolver	class.	

This	behavior	is	by	design.	In	the	general	case,	controls	could	be	bound	to	business	objects	

over	a	network,	and	you	probably	don’t	want	an	object	bound	to	a	TextBox	being	updated	

with	every	little	keystroke.	Users	make	a	lot	of	mistakes	and	perform	a	lot	of	backspacing	and	

in	some	cases	waiting	until	the	user	has	finished	is	really	the	proper	time	to	“submit”	the	final	

value.	

In	this	particular	program,	that	behavior	is	probably	not	what	you	want.	To	change	it,	you’ll	

want	to	set	the	UpdateSourceTrigger	property	of	the	Binding	in	each	of	the	TextBox	controls	

to	Explicit:	

<TextBox Text="{Binding A, Mode=TwoWay,

 UpdateSourceTrigger=Explicit}"

 InputScope="Number"

 Width="100" />

The	UpdateSourceTrigger property	governs	how	the	source	(in	this	case,	the	A,	B,	or	C

property	in	QuadraticEquationSolver)	is	updated	from	the	target	(the	TextBox)	in	a	twoway	

binding.	The	property	is	set	to	a	member	of	the	UpdateSourceTrigger enumeration.	In	the	

WPF	version	of	UpdateSourceTrigger,	members	named	LostFocus	and	PropertyChanged	are	

available,	but	in	Silverlight	the	only	two	options	are	Default	and	Explicit.	

387	

	

	 	 	

	 	 	 	 	

	 	 	

	 	

	 	 	

	 	 	

	

	 	 	

	

	 	 	

	

	 	 	 	

	 	 	

	 	 	 	

	 	 	 	

	 	

	 		

	

	 	 	

	 	

	 	

	 	 	

	 	 	

	 	 	

Default	means	“the	default	behavior	for	the	target	control”	which	for	a	TextBox	target	means	

that	the	source	is	updated	when	the	TextBox loses	focus.	When	you	specify	Explicit,	you	need	

to	provide	some	code	that	triggers	the	transfer	of	data	from	the	target	to	the	source.	This	

could	be	the	role	of	a	Button	labeled	“calculate.”	

If	you’d	rather	avoid	that	Button,	you	can	trigger	the	transfer	when	the	text	changes	in	the	

TextBox,	so	in	addition	to	setting	the	UpdateSourceTrigger	property	of	Binding,	you	need	to	

provide	a	handler	for	the	TextChanged	event	of	the	TextBox:	

<TextBox Text="{Binding A, Mode=TwoWay,

 UpdateSourceTrigger=Explicit}"

 InputScope="Number"

 Width="100"

 TextChanged="OnTextBoxTextChanged" />

In	the	TextChanged	event	handler,	you	need	to	“manually”	update	the	source	by	calling	the	

UpdateSource	method	defined	by	BindingExpression.	

Earlier	in	this	chapter,	I	showed	you	how	to	call	the	SetBinding	method	defined	by	

FrameworkElement	or	the	static	BindingOperations.SetBinding	method	to	set	a	binding	on	a	

property	in	code.	(The	SetBinding	method	defined	by	FrameworkElement	is	just	a	shortcut	for	

BindingOperations.SetBinding.)	Both	methods	return	an	object	of	type	BindingExpression.	

If	you	haven’t	called	these	methods	in	code,	you’ll	be	pleased	to	learn	that	FrameworkElement

stores	the	BindingExpression object	so	it	can	be	retrieved	with	the	public	GetBindingExpression

method.	This	method	requires	the	particular	property	that	is	the	target	of	the	data	binding,	

which	is	always,	of	course,	a	dependency	property.	

Here’s	the	code	for	updating	the	source	when	the	TextBox	text	changes:	

void OnTextBoxTextChanged(object sender, TextChangedEventArgs args)

{

TextBox txtbox = sender as TextBox;

BindingExpression bindingExpression = txtbox.GetBindingExpression(TextBox.TextProperty);

 bindingExpression.UpdateSource();

}

Another	problem	with	the	TextBox	is	that	the	user	can	enter	a	character	string	that	cannot	be	

resolved	to	a	number.	Although	you	can’t	see	it,	a	converter	is	at	work	converting	the	string

object	from	the	TextBox	to	a	double	to	set	to	the	A,	B,	or	C	property	of	

QuadraticEquationSolver.	This	hidden	converter	probably	uses	the	Double.Parse	or	

Double.TryParse	method.	

If	you’d	like	to	catch	exceptions	raised	by	this	converter,	you	can.	You’ll	probably	want	to	set	

two	more	properties	of	the	Binding	class	to	true,	as	shown	here:	

<TextBox Text="{Binding A, Mode=TwoWay,

UpdateSourceTrigger=Explicit,

 ValidatesOnExceptions=True,

388	

	

	 	 	

	

	

	 	

	

	

	

	 	

 NotifyOnValidationError=True}"

 InputScope="Number"

 Width="100"

 TextChanged="OnTextBoxTextChanged" />

This	causes	a	BindingValidationError	event	to	be	fired.	This	is	a	routed	event,	so	it	can	be	

handled	anywhere	in	the	visual	tree	above	the	TextBox.	Most	conveniently	in	a	small	program,	

a	handler	for	the	event	can	be	set	right	in	the	MainPage	constructor:	

readonly Brush okBrush;

static readonly Brush errorBrush = new SolidColorBrush(Colors.Red);

public MainPage()

{

 InitializeComponent();

 okBrush = new TextBox().Foreground;

 BindingValidationError += OnBindingValidationError;

}

Notice	that	the	normal	Foreground	brush	of	the	TextBox	is	saved	as	a	field.	Here’s	a	simple	

event	handler	that	colors	the	text	in	the	TextBox	red	if	it’s	invalid:	

void OnBindingValidationError(object sender, ValidationErrorEventArgs args)

{

TextBox txtbox = args.OriginalSource as TextBox;

 txtbox.Foreground = errorBrush;

}

Of	course,	as	soon	the	TextBox	text	changes	again,	you’ll	want	to	restore	that	color,	which	you	

can	do	in	the	OnTextBoxTextChanged	method:	

void OnTextBoxTextChanged(object sender, TextChangedEventArgs args)

{

TextBox txtbox = sender as TextBox;

 txtbox.Foreground = okBrush;

 …

}

These	two	techniques—updating	with	each	keystroke	and	giving	a	visual	indication	of	invalid	

input—are	combined	in	the	QuadraticEquations2	project.	Here’s	the	XAML	file:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<StackPanel DataContext="{Binding Source={StaticResource solver}}">

<StackPanel Orientation="Horizontal"

 HorizontalAlignment="Center"

 Margin="12">

<TextBox Text="{Binding A, Mode=TwoWay,

 UpdateSourceTrigger=Explicit,

 ValidatesOnExceptions=True,

 NotifyOnValidationError=True}"

389

	

 InputScope="Number"

 Width="100"

 TextChanged="OnTextBoxTextChanged" />

<TextBlock Text=" x" VerticalAlignment="Center" />

<TextBlock Text="2" VerticalAlignment="Center">

<TextBlock.RenderTransform>

<ScaleTransform ScaleX="0.7" ScaleY="0.7" />

</TextBlock.RenderTransform>

</TextBlock>

<TextBlock Text=" + " VerticalAlignment="Center" />

<TextBox Text="{Binding B, Mode=TwoWay,

 UpdateSourceTrigger=Explicit,

 ValidatesOnExceptions=True,

 NotifyOnValidationError=True}"

 InputScope="Number"

 Width="100"

 TextChanged="OnTextBoxTextChanged" />

<TextBlock Text=" x + " VerticalAlignment="Center" />

<TextBox Text="{Binding C, Mode=TwoWay,

 UpdateSourceTrigger=Explicit,

 ValidatesOnExceptions=True,

 NotifyOnValidationError=True}"

 InputScope="Number"

 Width="100"

 TextChanged="OnTextBoxTextChanged" />

<TextBlock Text=" = 0" VerticalAlignment="Center" />

</StackPanel>

<StackPanel Name="result"

 Orientation="Horizontal"

 HorizontalAlignment="Center">

<TextBlock Text="{Binding Solution1.Real,

 Converter={StaticResource stringFormat},

 ConverterParameter='x = {0:F3} '}" />

<TextBlock Text="+"

 Visibility="{Binding HasOneSolution,

 Converter={StaticResource

booleanToVisibility}}" />

<TextBlock Text="±"

 Visibility="{Binding HasTwoSolutions,

Converter={StaticResource

booleanToVisibility}}" />

<TextBlock Text="{Binding Solution1.Imaginary,

Converter={StaticResource stringFormat},

ConverterParameter=' {0:F3}i'}" />

</StackPanel>

</StackPanel>

</Grid>

390

	

	 	 	 	

	 	

	 		

	

You	might	also	notice	that	I	completely	revamped	the	display	of	the	solutions.	Rather	than	

two	TextBlock	elements	to	display	two	solutions,	I	use	four	TextBlock elements	to	display	a	

single	solution	that	might	contain	a	±	sign	(Unicode	0x00B1).	

The	codebehind	file	implements	the	updating	and	error	handling:	

Silverlight Project: QuadraticEquationSolver2 File: MainPage.xaml.cs

using System;

using System.Windows;

using System.Windows.Controls;

using System.Windows.Data;

using System.Windows.Media;

using Microsoft.Phone.Controls;

namespace QuadraticEquationSolver2

{

public partial class MainPage : PhoneApplicationPage

 {

readonly Brush okBrush;

static readonly Brush errorBrush = new SolidColorBrush(Colors.Red);

public MainPage()

{

 InitializeComponent();

 okBrush = new TextBox().Foreground;

 BindingValidationError += OnBindingValidationError;

}

void OnTextBoxTextChanged(object sender, TextChangedEventArgs args)

{

TextBox txtbox = sender as TextBox;

 txtbox.Foreground = okBrush;

BindingExpression bindingExpression =

txtbox.GetBindingExpression(TextBox.TextProperty);

 bindingExpression.UpdateSource();

}

void OnBindingValidationError(object sender, ValidationErrorEventArgs args)

{

TextBox txtbox = args.OriginalSource as TextBox;

 txtbox.Foreground = errorBrush;

}

 }

}

391	

	

	

	

	

	 	

	 	

	

	 	 	

	 	

	 	

	

	

Here’s	a	TextBox	indicating	that	an	entry	is	incorrect:	

If	you	had	written	a	quadratic	equation	solver	for	Windows	Phone	7	prior	to	this	chapter,	the	

screen	might	looked	pretty	much	the	same,	but	I	suspect	the	program	would	have	been	

structured	quite	differently.	I	know	that’s	the	case	if	you	wrote	such	a	program	for	a	code

only	environment	such	as	Windows	Forms.	

Notice	how	converting	the	program	to	a	mostly	XAML	solution	causes	us	to	rethink	the	whole	

architecture	of	the	program.	It’s	always	an	interesting	process	to	me	how	our	tools	seems	to	

govern	how	we	solve	problems.	But	in	some	ways	this	is	a	good	thing,	and	if	you	find	yourself	

writing	code	specifically	to	use	in	XAML	(such	as	binding	services	and	data	converters),	I	think	

you’re	on	the	right	track.	

392	

	

	 	

	 	 	 	

	 	 	

	

	 	 	 	 	 	

	

	 	 	

	

	 	

	

	

	

	

	 	 	

	 	 	

	 	 	 	 	

	 	

	

	

	 	 	

	 	 	 	

	 	 	 	 	

	 	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	 	

Chapter	13	

Vector Graphics
The	world	of	twodimensional	computer	graphics	is	generally	divided	between	vector	

graphics	and	raster	graphics—a	graphics	of	lines	and	a	graphics	of	pixels—a	graphics	of	draw

programs	and	a	graphics	of	paint	programs—a	graphics	of	cartoons	and	a	graphics	of	

photographs.	

Vector	graphics	is	the	visual	realization	of	analytic	geometry.	Twodimensional	coordinate	

points	in	the	form	(x,	y)	define	straight	lines	and	curves.	In	Silverlight,	these	curves	can	be	arcs	

on	the	circumference	of	an	ellipse	or	Bezier	curves,	either	in	the	customary	cubic	form	or	in	a	

simplified	quadratic	form.	You	can	“stroke”	these	lines	with	a	pen	of	a	desired	brush,	width,	

and	style.	A	series	of	connected	lines	and	curves	can	also	define	an	enclosed	area	that	can	be	

filled	with	a	brush.	

Raster	graphics	(which	I’ll	discuss	in	the	next	chapter)	involves	bitmaps.	In	Silverlight	it	is	very	

easy	to	display	a	PNG	or	JPEG	file	using	an	Image	element	as	I	demonstrated	as	early	as	

Chapter	4.	But	as	I’ll	show	you	in	the	next	chapter,	it’s	also	possible	to	generate	bitmaps	

algorithmically	in	code	using	the	WriteableBitmap	class.	The	worlds	of	raster	graphics	and	

vector	graphics	intersect	when	an	ImageBrush	is	used	to	fill	an	area,	or	when	vector	graphics	

are	used	to	generate	an	image	on	a	WriteableBitmap.	

The
Shapes
Library

A	Silverlight	program	that	needs	to	draw	vector	graphics	uses	classes	defined	in	the	

System.Windows.Shapes	namespace,	commonly	referred	to	as	the	Shapes	library.	This	

namespace	consists	of	an	abstract	class	named	Shape	and	six	sealed	classes	that	derive	from	

Shape:	

Object

DependencyObject	(abstract)		

FrameworkElement	(abstract)		

Shape	(abstract)	

Rectangle	(sealed)	

Ellipse	(sealed)	

Line	(sealed)	

Polyline	(sealed)	

Polygon	(sealed)	

Path	(sealed)	

393	

	

	

	

	 		

	 	 	 	 	

	 	 	 	 	

	

	 	

	 	 	

	

	 	 	 	 	

	 	 	

	 	

	 	

	 	

	 	

	 	

	 	

	

	 	

	 	

	 	 	

	

	 	

	 	 	 	 	

	 	 	 	 	

	

	

	 	 	

	

The	Shape	class	derives	from	FrameworkElement,	which	means	that	these	objects	get	touch	

input,	participate	in	layout,	and	can	have	transforms.	In	Silverlight	there	is	insufficient	

information	to	allow	you	to	derive	a	class	from	Shape	itself.	

You’ve	already	seen	Rectangle	and	Ellipse,	but	these	are	really	two	oddball	classes	in	the	realm	

of	vector	graphics	because	they	don’t	contain	any	coordinate	points.	You	can	just	stick	an	

Ellipse	in	a	UserControl	and	it	fills	the	whole	control.	You	can	size	the	element,	but	positioning	

it	at	an	arbitrary	point	requires	a	Margin	or	Padding	property,	or	a	RenderTransform,	or	

putting	it	on	a	Canvas	and	using	the	Left	and	Top	attached	properties.	

The	other	four	classes	of	Shape	are	different;	these	allow	you	to	position	the	elements	with	

actual	coordinate	points.	Although	I’ll	discuss	the	Path class	last,	it	is	so	versatile	that	it	is	

pretty	much	the	only	class	you	need	for	all	your	vector	graphics	jobs.	If	you	need	to	draw	an	

arc	or	a	Bezier	spline,	you’ll	be	using	the	Path	class.	

Shape	defines	11	settable	properties	that	are	inherited	by	all	its	descendants:	

• Fill	of	type	Brush

• Stroke	of	type	Brush

• StrokeThickness	of	type	double

• StrokeStartLineCap	and	StrokeEndLineCap	of	type	PenLineCap

• StrokeLineJoin	of	type	PenLineJoin

• StrokeMiterLimit	of	type	double

• StrokeDashArray	of	type	DoubleCollection

• StrokeDashCap	of	type	PenLineCap

• StrokeDashOffset	of	type	double

• Stretch	property	of	type	Stretch

You’ve	already	seen	the	first	three	properties	in	connection	with	Rectangle	and	Ellipse.	The	Fill

property	specifies	the	Brush used	to	fill	the	interior	of	the	figure;	the	Stroke	property	is	the	

Brush used	to	color	the	outline	of	the	figure,	and	StrokeThickness	is	the	width	of	that	outline.	

All	the	other	properties	can	be	used	with	Rectangle	and	Ellipse	as	well.	Although	the	two	

enumerations	(PenLineCap	and	PenLineJoin)	allude	to	a	Pen,	there	is	no	Pen	class	in	

Silverlight.	Conceptually,	the	properties	beginning	with	the	word	Stroke	together	comprise	an	

object	traditionally	regarded	as	a	pen.	

394	

	

	 	 	 	

	

	

	

	 	 	 	 	 	

	 	

	 	

	 	 	

	

	 	 	 	 	 	 	

	 	

	 	

	

	

	

Canvas
and
Grid
The	Line class	defines	four	properties	of	type	double	named	X1,	Y1,	X2,	and	Y2.	The	line	is	

drawn	from	the	point	(X1,	Y1)	to	the	point	(X2,	Y2)	relative	to	its	parent:	

<Canvas Background="LightCyan">

 <Line X1="50" Y1="100"

X2="200" Y2="150"

Stroke="Blue" />

</Canvas>

Many	of	the	examples	in	this	program	will	be	shown	as	a	snippet	of	XAML	and	the	

corresponding	image	in	a	480square	pixel	area.	At	the	end	of	the	chapter	I’ll	describe	the	

program	that	created	these	images.	For	the	printed	page	I’ve	made	the	resolution	of	these	

images	about	240	dots	per	inch	so	they	are	approximately	the	same	size	as	what	you	would	

see	on	the	actual	phone.	

The	line	begins	at	the	coordinate	point	(50,	100)	and	ends	at	the	point	(200,	150).	All	

coordinates	are	relative	to	an	upperleft	origin;	increasing	values	of	X	go	from	left	to	right;	

increasing	values	of	Y	go	from	top	to	bottom.	

The	X1,	Y1,	X2,	and	Y2 properties	are	all	backed	by	dependency	properties	so	they	can	be	the	

targets	of	styles,	data	bindings,	and	animations.	

Although	the	Canvas	panel	seems	like	a	natural	for	vector	graphics,	you’ll	get	the	same	image	

if	you	use	a	singlecell	Grid:	

<Grid Background="LightCyan">

<Line X1="50" Y1="100"

X2="200" Y2="150"

Stroke="Blue" />

</Grid>

395	

	

	 	 	

	 	

	 	 	 	 	 	 	 	 	

	 	 	

	

	

	 	 	 	

	

	

	

	 	

	 	

	 	 	

	

	

	 	

	 	 	

	 	

	 	 	

	 	

	

	

Normally	when	you	use	a	Canvas	you	use	the	Canvas.Left	and	Canvas.Top	attached	properties	

to	position	elements	within	the	Canvas.	Those	properties	are	not	required	with	the	Line

because	it	has	its	own	coordinates.	You	could	use	the	attached	properties	with	the	Line	but	

the	values	are	compounded	with	the	coordinates:	

<Canvas Background="LightCyan">

 <Line X1="50" Y1="100"

X2="200" Y2="150"

Canvas.Left="150"

Canvas.Top="100"

Stroke="Blue" />

</Canvas>

Usually	when	you’re	working	with	elements	that	indicate	actual	coordinate	positions,	you’ll	

use	the	Canvas.Left	and	Canvas.Top	attached	properties	only	for	special	purposes,	such	as	

moving	an	object	relative	to	the	Canvas.	

Moreover,	you’ll	recall	that	a	Canvas	always	reports	to	the	layout	system	that	it	has	a	size	of	

zero.	If	you	subject	the	Canvas	to	anything	other	than	Stretch	alignment,	it	will	shrink	into	

nothingness	regardless	of	its	contents.	

For	these	reasons,	I	tend	to	put	my	vector	graphics	in	a	singlecell	Grid rather	than	a	Canvas.	

If	a	Grid	contains	one	or	more	Line elements	(or	any	other	coordinatebased	elements),	it	will	

report	a	size	that	comprises	the	maximum	nonnegative	X	coordinate	and	the	maximum	non

negative	Y	coordinate	of	all	its	children.	This	can	sometimes	seem	a	little	weird.	If	a	Grid

contains	a	Line	from	(200,	300)	to	(210,	310),	the	Line	will	report	an	ActualWidth	of	210	and	

an	ActualHeight	of	310,	and	the	Grid	will	be	210	pixels	wide	and	310	pixels	tall,	even	though	

the	rendered	Line	needs	only	a	tiny	corner	of	that	space.	(Actually,	the	Line	and	the	Grid	will	

be	at	least	an	extra	pixel	larger	to	accommodate	the	StrokeThickness	of	the	rendered	Line.)	

Coordinates	can	be	negative,	but	the	Grid	does	not	take	account	of	negative	coordinates.	A	

negative	coordinate	will	actually	be	displayed	to	the	left	of	or	above	the	Grid.	I	have	spent	

much	time	thinking	about	this	behavior,	and	I	am	convinced	it	is	correct.	

Overlapping
and
ZIndex
Here	are	two	lines:	

396	

	

	

	 	 	

	

	

	 	 	 	

	

	

	 	 	 	 	 	

	

<Grid Background="LightCyan">

<Line X1="100" Y1="300"

X2="200" Y2="50"

Stroke="Blue" />

<Line X1="50" Y1="100"

X2="300" Y2="200"

Stroke="Red" />

</Grid>

The	second	one	overlaps	the	first	one.	You	can	see	that	more	clearly	if	you	go	beyond	the	

default	1pixel	thickness	of	the	line	using	StrokeThickness:	

<Grid Background="LightCyan">

<Line X1="100" Y1="300"

X2="200" Y2="50"

Stroke="Blue"

StrokeThickness="5" />

 <Line X1="50" Y1="100"

X2="300" Y2="200"

Stroke="Red"

StrokeThickness="30" />

</Grid>

If	you	would	prefer	that	the	blue	line	be	on	top	of	the	red	line,	there	are	two	ways	you	can	do	

it.	You	could	simply	swap	the	order	of	the	two	lines	in	the	Grid:	

<Grid Background=”LightCyan”>

<Line X1="50" Y1="100"

X2="300" Y2="200"

Stroke="Red"

StrokeThickness="30" />

 <Line X1="100" Y1="300"

X2="200" Y2="50"

Stroke="Blue"

StrokeThickness="5" />

</Grid>

Or,	you	could	set	the	Canvas.ZIndex	property.	Although	this	property	is	defined	by	Canvas	it	

works	with	any	type	of	panel:	

397	

	

	

	

	

	

	

	 	 	

	 	 	

	 	 	 	 	 	 	

	 	 	

	 	

	 	

<Grid Background="LightCyan">

<Line Canvas.ZIndex="1"

X1="100" Y1="300"

X2="200" Y2="50"

Stroke="Blue"

StrokeThickness="5" />

 <Line Canvas.ZIndex="0"

X1="50" Y1="100"

X2="300" Y2="200"

Stroke="Red"

StrokeThickness="30" />

</Grid>

Polylines
and
Custom
Curves

The	Line	element	looks	simple	but	the	markup	is	a	little	bloated.	You	can	actually	reduce	the	

markup	for	drawing	a	single	line	by	switching	from	the	Line	to	the	Polyline:	

<Grid Background="LightCyan">

<Polyline Points="100 300 200 50"

Stroke="Blue"

StrokeThickness="5" />

 <Polyline Points="50 100 300 200"

Stroke="Red"

StrokeThickness="30" />

</Grid>

The	Points	property	of	the	Polyline	class	is	of	type	PointCollection,	a	collection	of	Point	objects.	

In	XAML	you	indicate	multiple	points	by	just	alternating	the	X	and	Y	coordinates.	You	can	

string	out	the	numbers	with	spaces	between	them	as	I’ve	done,	or	you	can	clarify	the	markup	

a	little	with	commas.	Some	people	prefer	commas	between	the	X	and	Y	coordinates:	

<Polyline Points="100,300 200,50" …

Others	(including	me)	prefer	to	separate	the	individual	points	with	commas:	

<Polyline Points="100 300, 200 50"

The	advantage	of	Polyline	is	that	you	can	have	as	many	points	as	you	want:	

398	

	

	

	

	 	 	

	 	 	

	 	 	

	 	 	 	

	 	

	

	 	 	

	 	 	

	 	

	 	

	 	

	

	 	 	

	 	 	 	 	 	 	

	 	 	 	

	 	 	 	 	 	

	 	 	

	 	 	 	 	 	

	 	

	 	

	 	 	 	 	 	

	 	 	 	

<Grid Background="LightCyan">

<Polyline Points="100 300, 200 50,

350 100, 200 250"

Stroke="Blue"

StrokeThickness="5" />

 <Polyline Points=" 50 100, 300 200,

300 400"

Stroke="Red"

StrokeThickness="30" />

</Grid>

Each	additional	point	increases	the	total	polyline	by	another	line	segment.	

The	Polyline	does	have	one	significant	disadvantage	that	Line	doesn’t	have:	Because	you’re	

now	dealing	with	a	collection	of	Point	objects,	the	individual	points	can’t	be	targets	of	a	style,	

or	a	data	binding,	or	an	animation.	This	is	not	to	say	that	you	can’t	change	the	PointCollection

at	runtime	and	have	that	change	reflected	in	the	rendered	Polyline.	You	surely	can,	as	I’ll	

demonstrate	in	the	GrowingPolygons	program	later	in	this	chapter.	

Although	the	Polyline can	draw	some	simple	connected	lines,	it	tends	to	feel	underutilized	if	

it’s	not	fulfilling	its	true	destiny	of	drawing	complex	curves,	usually	generated	algorithmically	

in	code.	The	Polyline	is	always	a	collection	of	straight	lines,	but	if	you	make	those	lines	short	

enough	and	numerous	enough,	the	result	will	be	indistinguishable	from	a	curve.	

For	example,	let’s	suppose	you	want	to	use	Polyline	to	draw	a	circle.	Commonly,	a	circle	

centered	at	the	point	(0,	0)	with	a	radius	R	is	defined	as	all	points	(x,	y)	that	satisfy	the	

equation:	

This	is	also,	of	course,	the	Pythagorean	Formula.	

But	when	generating	points	to	draw	a	graphical	circle,	this	formula	tends	to	be	a	little	clumsy:	

You	need	to	pick	values	of	x	between	–R	and	R,	and	then	solve	for	y (keeping	in	mind	that	

most	values	of	x	correspond	to	two	values	of	y)	and	even	if	you	do	this	in	a	systematic	

manner,	you’re	going	to	get	a	higher	density	of	points	in	the	region	where	x	is	close	to	0	than	

the	region	where	y	is	close	to	0.	

A	much	better	approach	for	computer	graphics	involves	parametric	equations,	where	both	x

and	y	are	functions	of	a	third	variable,	sometimes	called	t	to	suggest	time.	In	this	case	that	

third	variable	is	simply	an	angle	ranging	from	0	to	360°.	

Suppose	the	circle	is	centered	on	the	point	(0,	0)	and	has	a	radius	of	R.	The	circle	will	be	

enclosed	within	a	box	where	values	of	x	go	from	–R	on	the	left	to	+R	on	the	right.	In	keeping	

399	

	

	 	 	 	

	 	 	

	 	

	 	

	 	 	

	 	 	 	 	

	 	

	

	 	 	 	 	 	

	 	

	 	 	 	

	 	

	

	

	 	 	 	 	

	

	 	

	 	 	 	 	 	

	 	 	 	 	

	 	 	

	 	

	 	

with	the	Silverlight	convention	that	increasing	values	of	y go	down,	values	of	y	range	from	–R

on	the	top	to	+R	on	the	bottom.	

Let’s	begin	with	an	angle	of	0°	at	the	rightmost	edge	of	the	circle,	which	is	the	point	(R,	0),	

and	let’s	go	clockwise	around	the	circle.	As	the	angle	goes	from	0°	to	90°,	x	goes	from	R	to	0,	

and	then	x	goes	to	–R	at	180°	and	then	goes	back	down	to	zero	at	270° and	back	to	R	at	

360°.	This	is	a	familiar	pattern:	

At	the	same	time,	the	values	of	y go	from	0	to	R	to	0	to	–R	and	back	to	0,	or	

Depending	where	the	circle	begins,	and	in	what	direction	you	go,	you	could	have	slightly	

different	formulas	where	the	sine	and	cosine	functions	are	switched,	or	one	or	both	or	

negative.	

If	you	use	different	values	of	R	for	the	two	formulas,	you’ll	draw	an	ellipse.	If	you	want	the	

circle	centered	at	the	point	(Cx,	Cy),	you	can	add	these	values	to	the	previous	results:	

In	a	program,	you	put	those	two	formulas	in	a	for loop	that	increments	an	angle	value	

ranging	from	0	to	360	to	generate	a	collection	of	points.	

How	much	granularity	is	required	to	make	the	resultant	circle	look	smooth?	In	this	particular	

example,	it	depends	on	the	radius.	The	circumference	of	a	circle	is	2ʌR,	so	if	the	radius	is	240	

pixels	(for	example),	the	circumference	is	approximately	1,500	pixels.	Divide	by	360°	and	you	

get	about	4,	which	means	that	if	you	increment	the	angle	in	the	for	loop	by	0.25°,	the	

resultant	points	will	be	about	a	pixel	apart.	(You’ll	see	later	in	this	chapter	that	you	can	get	by	

with	a	lot	fewer	points.)	

Let’s	create	a	new	projecvt.	Bring	up	the	MainPage.cs	file	and	install	a	handler	for	the	Loaded

event	to	allow	accessing	the	dimensions	of	the	ContentPanel grid.	Here	are	calculations	for	

center	and	radius	for	a	circle	to	occupy	the	center	of	a	content	panel	and	reach	to	its	edges:	

Point center = new Point(ContentPanel.ActualWidth / 2,

ContentPanel.ActualHeight / 2 - 1);

double radius = Math.Min(center.X - 1, center.Y - 1);

Notice	the	pixel	subtracted	from	the	calculation	of	the	radius.	This	is	to	prevent	the	circle	

from	being	geometrically	the	same	as	the	content	area	size.	The	stroke	thickness	straddles	the	

geometric	line	so	it	would	otherwise	get	cropped	off	at	the	edges.	

400	

	

	

	 	 	

	 	

	

	

	 	 	 	

	 	 	

	

	 	

	

Now	create	a	Polyline	and	set	the	Stroke	and	StrokeThickness	properties:	

Polyline polyline = new Polyline();

polyline.Stroke = this.Resources["PhoneForegroundBrush"] as Brush;
polyline.StrokeThickness = (double)this.Resources["PhoneStrokeThickness"];

Calculate	the	Point	objects	in	a	for	loop	based	on	the	formulas	I’ve	just	showed	you	and	add	

them	to	the	Points	collection	of	the	polyline:	

for (double angle = 0; angle < 360; angle += 0.25)

{

double radians = Math.PI * angle / 180;

double x = center.X + radius * Math.Cos(radians);

double y = center.Y + radius * Math.Sin(radians);

 polyline.Points.Add(new Point(x, y));

}

Now	add	the	Polyline	to	the	Grid:	

ContentPanel.Children.Add(polyline);

And	here’s	the	result:	

So	big	deal.	We	created	a	circle	a	hard	way	rather	than	an	easy	way.	And	it’s	not	even	a	

complete	circle:	Because	the	angle	in	the	for	loop	didn’t	go	all	the	way	to	360,	there’s	actually	

a	little	gap	at	the	right	side.	

But	instead	of	fixing	that	problem,	let’s	do	something	a	little	different.	Let’s	make	the	angle	

go	all	the	way	to	3600:	

401	

	

	

	

	

	

for (double angle = 0; angle < 3600; angle += 0.25)

Now	the	loop	will	go	around	the	circle	10	times.	Let’s	use	that	angle	and	the	original	radius

value	to	calculate	a	scaledRadius:	

double scaledRadius = radius * angle / 3600;

And	use	that	scaledRadius	value	for	multiplying	by	the	sine	and	cosine	values.	Now	the	result	

is	an	Archimedian	spiral:	

Here’s	the	complete	class:	

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage

{

 public MainPage()

 {

InitializeComponent();

Loaded += OnLoaded;

 }

 void OnLoaded(object sender, RoutedEventArgs args)

{

Point center = new Point(ContentPanel.ActualWidth / 2,

ContentPanel.ActualHeight / 2 - 1);

double radius = Math.Min(center.X - 1, center.Y - 1);

402	

	

	 	

	 	 	 	 	

	

	 	 	

	 	

	 	 	

	 	

	

	

	

	 	 	

	 	 	

	

Polyline polyline = new Polyline();

polyline.Stroke = this.Resources["PhoneForegroundBrush"] as Brush;
polyline.StrokeThickness = (double)this.Resources["PhoneStrokeThickness"];

for (double angle = 0; angle < 3600; angle += 0.25)

{

 double scaledRadius = radius * angle / 3600;

 double radians = Math.PI * angle / 180;

 double x = center.X + scaledRadius * Math.Cos(radians);

 double y = center.Y + scaledRadius * Math.Sin(radians);

 polyline.Points.Add(new Point(x, y));

}

ContentPanel.Children.Add(polyline);

 }

}

It’s	not	necessary	to	create	the	Polyline	object	in	code:	You	could	define	it	in	XAML	and	then	

just	access	it	to	put	the	points	in	the	Points	collection.	In	Chapter	15	I’ll	show	you	how	to	

apply	a	rotation	animation	to	the	spiral	so	that	you	can	hypnotize	yourself.	

Caps,
Joins,
and
Dashes

When	you’re	displaying	thick	lines,	you	might	want	a	little	different	appearance	on	the	ends	

of	the	lines.	These	are	known	as	line	caps—“caps”	like	a	hat.	The	available	caps	are	members	

of	the	PenLineCap	enumeration:	Flat	(the	default),	Square,	Round,	and	Triangle.	Set	the	

StrokeStartLineCap	property	to	one	of	these	values	for	the	cap	at	the	beginning	of	the	line,	

and	set	StrokeEndLineCap for	the	cap	at	the	end.	Here	are	Round	and	Triangle	capping	off	a	

30pixel	line:	

<Grid Background="LightCyan">

<Polyline Points=" 50 100, 300 200,

300 400"

Stroke="HotPink"

StrokeThickness="30"

StrokeStartLineCap="Round"

StrokeEndLineCap="Triangle" />

</Grid>

The	difference	between	Flat	and	Square might	not	be	obvious	at	first.	To	better	clarify	the	

difference,	the	following	markup	displays	a	thinner	line	over	the	thick	line	with	the	same	

coordinates	to	indicate	the	geometric	start	and	end	of	the	line:	

403	

	

	

	

	 	 	

	 	

	

	 	

	 	

	

	

<Grid Background="LightCyan">

<Polyline Points=" 50 100, 300 200,

300 400"

Stroke="HotPink"

StrokeThickness="30"

StrokeStartLineCap="Flat"

StrokeEndLineCap="Square" />

 <Polyline Points=" 50 100, 300 200,

300 400"

Stroke="Black" />

</Grid>

The	Flat cap	(at	the	upper	left)	cuts	off	the	line	at	the	geometric	point.	The	Square	extends	the	

line	for	half	the	line	thickness.	My	favorite	caps	are	the	rounded	ones:	

<Grid Background="LightCyan">

<Polyline Points=" 50 100, 300 200,

300 400"

Stroke="HotPink"

StrokeThickness="30"

StrokeStartLineCap="Round"

StrokeEndLineCap="Round" />

 <Polyline Points=" 50 100, 300 200,

300 400"

Stroke="Black" />

</Grid>

As	you	can	see,	they	also	extend	the	rendered	size	of	the	line	by	half	the	stroke	thickness.	

You	can	also	specify	what	happens	at	the	corners.	Set	the	StrokeLineJoin	property	to	a	

member	of	the	PenLineJoin	enumeration.	Here’s	Round:	

<Grid Background="LightCyan">

<Polyline Points=" 50 100, 300 200,

100 300"

Stroke="HotPink"

StrokeThickness="30"

StrokeStartLineCap="Round"

StrokeEndLineCap="Round"

StrokeLineJoin="Round" />

 <Polyline Points=" 50 100, 300 200,

100 300"

Stroke="Black" />

</Grid>

404	

	

	

	

	

	 	

	 	 	 	 	 	

	 	

	

	 	 	 	 	

	

Or	Bevel:	

<Grid Background="LightCyan">

<Polyline Points=" 50 100, 300 200,

100 300"

Stroke="HotPink"

StrokeThickness="30"

StrokeStartLineCap="Round"

StrokeEndLineCap="Round"

StrokeLineJoin="Bevel" />

 <Polyline Points=" 50 100, 300 200,

100 300"

Stroke="Black" />

</Grid>

Or	Miter,	which	is	the	default:	

<Grid Background="LightCyan">

<Polyline Points=" 50 100, 300 200,

100 300"

Stroke="HotPink"

StrokeThickness="30"

StrokeStartLineCap="Round"

StrokeEndLineCap="Round"

StrokeLineJoin="Miter" />

 <Polyline Points=" 50 100, 300 200,

100 300"

Stroke="Black" />

</Grid>

The	Miter	join	has	a	little	builtin	problem.	If	the	lines	meet	at	a	very	sharp	angle,	the	miter	

can	be	very	long.	For	example,	a	10pixel	wide	line	that	makes	an	angle	of	1°	will	have	a	miter	

point	over	500	pixels	long!	To	avoid	this	type	of	weirdness	a	StrokeMiterLimit	property	kicks	in	

for	extreme	cases:	

<Grid Background="LightCyan">

<Polyline Points="50 230, 240 240,

50 250"

Stroke="HotPink"

StrokeThickness="30"

StrokeStartLineCap="Round"

StrokeEndLineCap="Round"

StrokeLineJoin="Miter" />

 <Polyline Points="50 230, 240 240,

50 250"

Stroke="Black" />

</Grid>

The	default	value	is	10	(relative	to	half	the	StrokeThickness)	but	you	can	make	it	longer	if	you	

want:	

405	

	

	

	 	 	

	

	

	 	 	 	 	

	 	

	

	 	 	

	 	 	 	 	 	

<Grid Background="LightCyan">

<Polyline Points="50 230, 240 240,

50 250"

Stroke="HotPink"

StrokeThickness="30"

StrokeStartLineCap="Round"

StrokeEndLineCap="Round"

StrokeLineJoin="Miter"

StrokeMiterLimit="50" />

 <Polyline Points="50 230, 240 240,

50 250"

Stroke="Black" />

</Grid>

Here	are	two	lines,	one	thick,	one	thin	overlaying	the	thick	line,	with	the	same	geometric	

points,	going	from	the	upperleft	to	the	lowerleft:	

<Grid Background="LightCyan">

<Polyline Points="100 100, 380 100,

380 380, 100 380"

Stroke="HotPink"

StrokeThickness="30"

StrokeStartLineCap="Round"

StrokeEndLineCap="Round"

StrokeLineJoin="Round" />

 <Polyline Points="100 100, 380 100,

380 380, 100 380"

Stroke="Black" />

</Grid>

You	can	make	the	line	dashed	by	setting	the	StrokeDashArray,	which	is	generally	just	two	

numbers,	for	example	1	and	1:	

<Grid Background="LightCyan">

<Polyline Points="100 100, 380 100,

380 380, 100 380"

Stroke="HotPink"

StrokeThickness="30"

StrokeStartLineCap="Round"

StrokeEndLineCap="Round"

StrokeLineJoin="Round"

StrokeDashArray="1 1" />

 <Polyline Points="100 100, 380 100,

380 380, 100 380"

Stroke="Black" />

</Grid>

What	this	means	is	that	a	dash	will	be	drawn	for	oneline	thickness	(30	pixels	in	this	case),	

followed	by	a	oneline	thickness	gap,	and	repeated	until	the	end.	As	you	can	see,	the	caps	are	

406	

	

	 	 	

	 	

	 		

	

	 	 	

	

	

	

	 	

	 	 	 	

	

really	handled	a	little	differently;	they	are	drawn	or	not	drawn	depending	on	whether	they	

occur	when	a	dash	or	a	gap	is	in	progress.	

You	can	make	the	dashes	longer	by	increasing	the	first	number,	

<Grid Background="LightCyan">

<Polyline Points="100 100, 380 100,

380 380, 100 380"

Stroke="HotPink"

StrokeThickness="30"

StrokeStartLineCap="Round"

StrokeEndLineCap="Round"

StrokeLineJoin="Round"

StrokeDashArray="2 1" />

 <Polyline Points="100 100, 380 100,

380 380, 100 380"

Stroke="Black" />

</Grid>

However,	you’ll	probably	also	want	to	give	the	dashes	their	own	caps.	Set	StrokeDashCap	to	a	

member	of	the	PenLineCap	enumeration,	either	Flat	(the	default),	Triangle,	Square,	or	Round,	

which	is	my	preference:	

<Grid Background="LightCyan">

<Polyline Points="100 100, 380 100,

380 380, 100 380"

Stroke="HotPink"

StrokeThickness="30"

StrokeStartLineCap="Round"

StrokeEndLineCap="Round"

StrokeLineJoin="Round"

StrokeDashArray="2 1"

StrokeDashCap="Round" />

 <Polyline Points="100 100, 380 100,

380 380, 100 380"

Stroke="Black" />

</Grid>

A	little	problem	has	arisen.	Each	of	the	dashes	has	acquired	a	rounded	cap,	so	they’ve	each	

increased	in	length	on	both	ends	by	half	the	line	thickness,	and	now	the	dashes	actually	

touch.	You	need	to	fix	that	by	increasing	the	gap:	

407	

	

	

	 	 	 	 	

	 	 	 	 	 	

	 	

	

	

	 	 	 	 	 	

	

<Grid Background="LightCyan">

<Polyline Points="100 100, 380 100,

380 380, 100 380"

Stroke="HotPink"

StrokeThickness="30"

StrokeStartLineCap="Round"

StrokeEndLineCap="Round"

StrokeLineJoin="Round"

StrokeDashArray="2 2"

StrokeDashCap="Round" />

 <Polyline Points="100 100, 380 100,

380 380, 100 380"

Stroke="Black" />

</Grid>

If	you	want	to	draw	a	dotted	line	with	actual	round	dots,	obviously	you	want	to	use	the	Round

dash	cap,	and	you	want	each	dot	to	be	separated	by	its	neighbor	by	the	dot	width.	The	

StrokeDashArray	required	for	this	job	is	somewhat	nonintuitive.	It’s	a	dash	length	of	0	and	a	

gap	length	of	2:	

<Grid Background="LightCyan">

<Polyline Points="100 100, 380 100,

380 380, 100 380"

Stroke="HotPink"

StrokeThickness="30"

StrokeStartLineCap="Round"

StrokeEndLineCap="Round"

StrokeLineJoin="Round"

StrokeDashArray="0 2"

StrokeDashCap="Round" />

 <Polyline Points="100 100, 380 100,

380 380, 100 380"

Stroke="Black" />

</Grid>

You	can	have	more	than	two	numbers.	Here’s	a	dot	and	dash	configuration:	

<Grid Background="LightCyan">

<Polyline Points="100 100, 380 100,

380 380, 100 380"

Stroke="HotPink"

StrokeThickness="30"

StrokeStartLineCap="Round"

StrokeEndLineCap="Round"

StrokeLineJoin="Round"

StrokeDashArray="0 2 2 2"

StrokeDashCap="Round" />

 <Polyline Points="100 100, 380 100,

380 380, 100 380"

Stroke="Black" />

408	

	

	 	 	

	

	 	 	

	 	

	

	

</Grid>

You	don’t	even	need	an	even	number	of	numbers:	

<Grid Background="LightCyan">

<Polyline Points="100 100, 380 100,

380 380, 100 380"

Stroke="HotPink"

StrokeThickness="30"

StrokeStartLineCap="Round"

StrokeEndLineCap="Round"

StrokeLineJoin="Round"

StrokeDashArray="1 2 3"

StrokeDashCap="Round" />

 <Polyline Points="100 100, 380 100,

380 380, 100 380"

Stroke="Black" />

</Grid>

The	other	dashrelated	property	is	StrokeDashOffset,	and	it	is	also	relative	to	the	thickness	of	

the	line.	This	property	lets	you	start	the	dashes	in	the	middle	of	a	dash,	which	makes	the	first	

dash	(at	the	upperleft	corner)	smaller	than	the	rest:	

<Grid Background="LightCyan">

<Polyline Points="100 100, 380 100,

 380 380, 100 380"

Stroke="HotPink"

StrokeThickness="30"

StrokeStartLineCap="Round"

StrokeEndLineCap="Round"

StrokeLineJoin="Round"

StrokeDashArray="2 2"

StrokeDashCap="Round"

StrokeDashOffset="1" />

<Polyline Points="100 100, 380 100,

 380 380, 100 380"

Stroke="Black" />

</Grid>

409	

	

	

	

	 	

	

	 	 	 	 	 	

	 	 	 	

Or	you	can	start	with	a	gap:	

<Grid Background="LightCyan">

<Polyline Points="100 100, 380 100,

380 380, 100 380"

Stroke="HotPink"

StrokeThickness="30"

StrokeStartLineCap="Round"

StrokeEndLineCap="Round"

StrokeLineJoin="Round"

StrokeDashArray="2 2"

StrokeDashCap="Round"

StrokeDashOffset="3" />

 <Polyline Points="100 100, 380 100,

380 380, 100 380"

Stroke="Black" />

</Grid>

You	can	use	a	dotted	line	around	an	ellipse	if	you	want:	

<Grid Background="LightCyan">

<Ellipse Width="400" Height="400"

HorizontalAlignment="Center"

VerticalAlignment="Center"

Stroke="Red"

StrokeThickness="23.22"

StrokeDashArray="0 1.5"

StrokeDashCap="Round" />

</Grid>

It’s	an	unusual	look,	but	you	really	have	to	experiment	or	do	some	calculations	so	you	don’t	

get	half	a	dot	in	there.	

410	

	

	 	 	

	

	

	

	 	 	 	

	 	 	

	

	 	 	 	

Polygon
and
Fill

The	Polyline	that	I’ve	been	using	to	demonstrate	dotted	lines	is	only	three	sides	of	a	square:	

<Grid Background="LightCyan">

<Polyline Points="100 100, 380 100,

380 380, 100 380"

Stroke="Red"

StrokeThickness="20"

StrokeStartLineCap="Round"

StrokeEndLineCap="Round"

StrokeLineJoin="Round"

StrokeDashArray="0 2"

StrokeDashCap="Round" />

</Grid>

But	if	you	set	the	Fill brush,	the	interior	is	filled	as	if	the	polyline	describes	a	closed	area:	

<Grid Background="LightCyan">

<Polyline Points="100 100, 380 100,

380 380, 100 380"

Stroke="Red"

StrokeThickness="20"

Fill="Blue"

StrokeStartLineCap="Round"

StrokeEndLineCap="Round"

StrokeLineJoin="Round"

StrokeDashArray="0 2"

StrokeDashCap="Round" />

</Grid>

If	you	want	the	figure	to	be	really	closed,	you	can	add	another	point	to	the	Points	collection	

that	is	the	same	as	the	first	point,	or	you	can	use	a	Polygon	rather	than	a	Polyline:	

<Grid Background="LightCyan">

<Polygon Points="100 100, 380 100,

 380 380, 100 380"

Stroke="Red"

StrokeThickness="20"

Fill="Blue"

StrokeStartLineCap="Round"

StrokeEndLineCap="Round"

StrokeLineJoin="Round"

StrokeDashArray="0 2"

StrokeDashCap="Round" />

</Grid>

Both	elements	have	the	same	Points	collection,	but	the	Polygon	is	closed	automatically	if	

necessary.	

411	

	

	 	

	 	

	 	 	

	

	

	 	 	 	

	 	

	 	 	

	 	 	 	

	 	 	 	

	

	

	 	

	 	 	

	 	

	 	

	 	

	 	 	

Once	you	start	filling	enclosed	area	with	Polygon,	a	question	comes	up	about	how	the	interior	

should	be	handled	when	boundary	lines	overlap.	The	Polygon	class	defines	a	property	named	

FillRule	that	gives	you	a	choice.	The	classic	example	is	the	fivepointed	star.	Here’s	the	default	

FillRule,	called	EvenOdd:	

<Grid Background="LightCyan">

<Polygon Points="240 48, 352 396,

58 180, 422 180,

 128 396"

Stroke="Red"

 StrokeThickness="10"

Fill="Blue"

FillRule="EvenOdd" />

</Grid>

The	EvenOdd algorithm	determines	if	an	enclosed	area	should	be	filled	or	not	by	conceptually	

taking	a	point	in	that	area,	for	example,	somewhere	in	the	center,	and	drawing	an	imaginary	

line	out	to	infinity.	That	imaginary	line	will	cross	some	boundary	lines.	If	it	crosses	an	odd	

number	of	boundary	lines,	such	as	happens	in	the	five	points,	then	the	area	is	filled.	For	an	

even	number,	like	the	center,	the	area	is	not	filled.	

The	alternative	is	a	FillRule	called	NonZero:	

<Grid Background="LightCyan">

<Polygon Points="240 48, 352 396,

58 180, 422 180,

 128 396"

Stroke="Red"

StrokeThickness="10"

Fill="Blue"

FillRule="NonZero" />

</Grid>

The	NonZero fill	rule	is	a	bit	more	complex	because	it	takes	account	of	the	directions	that	

boundary	lines	are	drawn.	If	the	boundary	lines	drawn	in	one	direction	balance	out	the	

boundary	lines	drawn	in	the	opposite	direction,	then	the	area	is	not	filled.	In	any	interior	area	

of	this	star,	however,	all	the	boundary	lines	go	in	the	same	direction.	

Neither	of	these	two	FillRule options	guarantees	that	all	interior	areas	get	filled.	Here’s	a	

rather	artificial	figure	that	has	an	enclosed	but	unfilled	area	even	with	NonZero:	

412	

	

	

	 	 	 	

	 	 	

	

	

	

<Grid Background="LightCyan">

<Polygon Points=" 80 160, 80 320,

 240 320, 240 80,

 400 80, 400 240,

 160 240, 160 400,

 320 400, 320 160"

Stroke="Red"

 StrokeThickness="10"

Fill="Blue"

FillRule="NonZero" />

</Grid>

The
Stretch
Property

The	only	settable	property	defined	by	Shape	that	I	haven’t	discussed	yet	is	Stretch.	This	is	

similar	to	the	same	property	in	the	Image element;	you	set	it	to	a	member	of	the	Stretch

enumeration,	either	None	(the	default),	Fill,	Uniform,	or	UniformToFill.	Here’s	an	innocent	little	

Polygon:	

<Grid Background="LightCyan">

<Polygon Points="250 200, 250 210,

 230 270, 230 260"

Stroke="Red"

StrokeThickness="4" />

</Grid>

Now	here’s	the	same	Polygon	with	its	Stretch	property	set	to	Fill.	

<Grid Background="LightCyan">

<Polygon Points="250 200, 250 210,

 230 270, 230 260"

Stroke="Red"

StrokeThickness="4"

Stretch="Fill" />

</Grid>

413	

	

	

	 	 	

	 	 	

	 	 	

	

	 	 	

	 	

	

	

	

	 	

	

	 	

	

	 	 	

	 	

	

	 	 	

	

	 	 	 	

	 	

	 	 	 	 	

	

	

Regardless	of	the	coordinates,	it	stretches	to	fill	the	container	with	a	change	in	aspect	ratio	as	

well.	To	retain	the	aspect	ratio,	use	Uniform	or	UniformToFill	just	as	with	the	Image	element.	

You	can	probably	see	why	the	Stretch	property	of	Shape	isn’t	used	very	often	in	connection	

with	vector	graphics,	but	if	you	need	a	particular	vector	image	to	fill	an	area	of	arbitrary	size,	

it’s	a	welcome	option.	

Dynamic
Polygons

As	you’ve	seen,	when	a	property	backed	by	a	dependency	property	is	changed	at	runtime,	the	

element	with	that	property	changes	to	reflect	that	change.	This	is	a	result	of	the	support	for	a	

propertychanged	handler	built	into	dependency	properties.	

Certain	collections	will	also	respond	to	changes.	Collection classes	that	derive	from	

PresentationFrameworkCollection	respond	to	changes	when	an	object	is	added	to	or	removed	

from	a	collection.	A	notification	is	funneled	up	to	the	element	containing	the	collection.	In	

some	cases,	changes	to	dependency	properties	in	the	members	of	the	collection	also	trigger	

notifications.	(Unfortunately,	the	exact	nature	of	this	notification	process	is	hidden	from	the	

application	programmer.)	The	UIElementCollection	that	the	Panel	classes	uses	for	its	Children

property	derives	from	this	class,	as	does	the	PointCollection	in	Polyline	and	Polygon.	

At	runtime,	you	can	dynamically	add	Point	objects	to	the	PointCollection,	or	remove	them	

from	the	PointCollection,	and	a	Polyline	or	Polygon	will	change.	

The	GrowingPolygons	project	has	a	MainPage.xaml	file	that	instantiates	a	Polygon	element	

and	gives	it	a	couple	properties:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Polygon Name="polygon"

 Stroke="{StaticResource PhoneForegroundBrush}"

 StrokeThickness="{StaticResource PhoneStrokeThickness}" />

</Grid>

The	codebehind	file	waits	until	the	Loaded	event	is	fired	before	determining	the	size	of	the	

content	panel	(just	as	in	the	Spiral	program)	and	it	begins	by	obtaining	similar	information.	

But	the	OnLoaded	handler	just	adds	two	points	to	the	Points	collection	of	the	Polygon	to	

define	a	vertical	line;	everything	else	happens	during	Tick	events	of	a	DispatcherTimer	(which	

of	course	requires	a	using	directive	for	System.Windows.Threading):	

414	

	

	 	 	 	 	 	 	

	

	 	 	 	

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage

{

Point center;

 double radius;

 int numSides = 2;

 public MainPage()

 {

InitializeComponent();

Loaded += OnLoaded;

 }

 void OnLoaded(object sender, RoutedEventArgs args)

{

center = new Point(ContentPanel.ActualWidth / 2 - 1,

 ContentPanel.ActualHeight / 2 - 1);

radius = Math.Min(center.X, center.Y);

polygon.Points.Add(new Point(center.X, center.Y - radius));

polygon.Points.Add(new Point(center.X, center.Y + radius));

DispatcherTimer tmr = new DispatcherTimer();

tmr.Interval = TimeSpan.FromSeconds(1);

tmr.Tick += OnTimerTick;

tmr.Start();

 }

 void OnTimerTick(object sender, EventArgs args)

{

numSides += 1;

for (int vertex = 1; vertex < numSides; vertex++)

{

 double radians = vertex * 2 * Math.PI / numSides;

 double x = center.X + radius * Math.Sin(radians);

 double y = center.Y - radius * Math.Cos(radians);

Point point = new Point(x, y);

 if (vertex < numSides - 1)

 polygon.Points[vertex] = point;

 else

 polygon.Points.Add(point);

}

PageTitle.Text = "" + numSides + " sides";

 }

}

Every	second,	the	program	replaces	all	but	one	of	the	Point	objects	in	the	Points	collection	of	

the	Polygon.	The	first	Point	in	the	collection—which	is	the	Point	at	the	top	center	of	the	

content	area—is	the	only	one	that	remains	the	same.	In	addition,	the	Tick	handler	adds	a	new	

415	

	

	

	

	 	 	 	

	

	 	

	 	 	 	

	 	 	

	 	 	 	 	

	 	 	 	 	

	 	

	 	 	

	 	

Point	object	at	the	end	of	the	collection.	The	result	is	a	polygon	that	gains	one	new	side	every	

second:	

You	can	see	for	yourself	how	many	points	are	needed	before	this	polygon	visually	turns	into	a	

circle!	

Notice	that	the	program	entirely	replaces	the	Point object	in	the	collection	rather	than	

attempting	to	modify	the	X	and	Y	properties	of	the	existing	object	in	the	collection.	Point	is	a	

structure,	and	it	implements	no	notification	mechanism.	There	is	no	way	for	the	

PointCollection	to	know	if	a	property	of	a	particular	Point in	the	collection	has	been	changed.	

Only	when	the	entire	Point object	is	replaced	does	the	PointCollection	know	about	it.	

If	you’re	doing	something	like	this	is	in	a	real	application,	you	might	want	to	detach	the	

PointCollection	from	the	Polygon	when	you’re	making	a	lot	of	changes	to	it.	This	prevents	a	

long	series	of	notifications	firing	that	inform	the	Polygon	that	the	PointCollection	has	changed.	

The	code	would	look	something	like	this:	

PointCollection points = polygon.Points;

polygon.Points = null;

// ... make changes to points collection

polygon.Points = points;

416	

	

	 	

	

	

	 	 	

	 	

	 	 	

	 	 	 	

	 	 	 	

	 	 	

	 	

	

	 	

	 	

	 	 	 	 	

	 	 	

	

	

	 	

	 	 	

	 	 	 	

	 	 	

	 	 	 	

	 	 	 	

	 	

	 	 	

	 	 	 	 	

	 	

	 	 	

	 	

	 	 	

The	PointCollection	is	detached	by	saving	a	reference	to	it	and	setting	the	Points	property	to	

null.	When	all	changes	have	been	made,	the	PointCollection	is	reattached	to	the	Polygon,	and	

the	Polygon	responds	to	the	new	collection	of	points.	

The
Path
Element

Although	Line,	Polyline,	and	Polygon	are	all	convenient	and	easy	to	use,	their	functionality	is	

pretty	much	subsumed	in	the	last	of	the	Shape	descendents,	Path.	

The	Path	class	defines	just	one	property	of	its	own	named	Data	of	type	Geometry,	but	

geometries	are	a	very	important	concept	in	Silverlight	vector	graphics.	In	general,	a	geometry	

is	a	collection	of	straight	lines	and	curves,	some	of	which	might	be	connected	to	each	other	

(or	not)	and	might	define	enclosed	areas	(or	not).	In	other	graphics	programming	

environments,	the	geometry	might	be	called	a	graphics	path.	In	Silverlight,	Path	is	an	element	

that	uses	a	Geometry	object	for	its	Data	property.	

It’s	important	to	recognize	that	a	Geometry	object	is	nothing	but	naked	coordinate	points.	

There	is	no	concept	of	brushes	or	line	thickness	or	styles	with	a	geometry.	That’s	why	you	

need	to	combine	a	Geometry	with	a	Path	element	to	actually	render	something	on	the	screen.	

The	Geometry defines	the	coordinate	points;	the	Path defines	the	stroke	brush	and	fill	brush.	

Geometry	fits	into	the	Silverlight	class	hierarchy	like	so:	

Object

DependencyObject	(abstract)		

Geometry	(abstract)	

LineGeometry	(sealed)	

RectangleGeometry	(sealed)	

EllipseGeometry	(sealed)	

GeometryGroup	(sealed)	

PathGeometry	(sealed)	

Just	as	the	Path	element	is	pretty	much	the	only	Shape	derivative	you	really	need,	the	

PathGeometry	class	is	the	only	Geometry derivative	you	really	need.	But	of	course	I’m	going	to	

discuss	the	others	as	well	because	they’re	often	quite	convenient.	You	can’t	derive	from	

Geometry	yourself.	

Geometry	defines	four	public	properties:	

• getonly	static	Empty	of	type	Geometry

• getonly	static	StandardFlatteningTolerance	of	type	double

• getonly	Bounds	of	type	Rect

417	

	

	 	

	 	

	 	 	 	

	 	 	

	

	 	 	

	

	 	

	 	 	 	

	 	 	 	

	

	 	

	

	

• Transform	of	type	Transform

The	most	useful	are	the	last	two.	The	Bounds	property	provides	the	smallest	rectangle	that	

encompasses	the	geometry	and	Transform allows	you	to	apply	a	transform	to	the	geometry	

(as	I	will	demonstrate).	

LineGeometry	defines	two	properties	of	type	Point	named	StartPoint	and	EndPoint:	

<Grid Background="LightCyan">

<Path Stroke="Maroon"

StrokeThickness="4"

StrokeDashArray="3 1">

 <Path.Data>

<LineGeometry StartPoint="100 50"

EndPoint="300 150" />

 </Path.Data>

</Path>

</Grid>

Notice	how	the	duties	are	separated	between	Geometry	and	Path:	The	Geometry	provides	the	

coordinates;	the	Path provides	all	other	rendering	information.	

LineGeometry may	seem	superfluous	after	the	Line	and	Polyline elements,	but	unlike	Line	and	

Polyline,	LineGeometry has	two	dependency	properties	of	type	Point,	and	these	might	be	very	

useful	as	animation	targets	in	some	scenarios.	

RectangleGeometry	defines	a	property	named	Rect	of	type	Rect,	a	structure	that	defines	a	

rectangle	with	four	numbers:	two	numbers	indicate	the	coordinate	point	of	the	upperleft	

corner	and	two	more	numbers	for	the	rectangle’s	size.	In	XAML	you	specify	these	four	

numbers	sequentially:	the	x	and	y	coordinates	of	the	upperleft	corner,	followed	by	the	width	

and	then	the	height:	

<Grid Background="LightCyan">

<Path Stroke="Maroon"

StrokeThickness="8"

Fill="Green">

<Path.Data>

<RectangleGeometry

Rect="100 50 300 200" />

</Path.Data>

 </Path>

</Grid>

418	

	

	 	 	

	 	 	

	

	 	 	 	

	 	

	 	

	 	 	 	 	

	

	 	 	 	

	 	 	 	 	

	

	

	 	 	 	

	

	

	 	

	 	 	 	

	

In	this	example,	the	bottomright	coordinate	of	the	rectangle	is	(400,	250).	In	code,	the	Rect

structure	has	three	constructors	that	let	you	specify	a	Point	and	a	Size,	two	Point	objects,	or	a	

string	of	four	numbers	as	in	XAML:	(x,	y,	width,	height).	

The	Bounds	property	of	Geometry is	also	of	type	Rect.	For	the	RectangleGeometry	above,	

Bounds	would	return	the	same	values:	(100,	50,	300,	200).	For	the	LineGeometry	in	the	

previous	example,	Bounds	would	return	(100,	50,	200,	100).	

RectangleGeometry	also	defines	RadiusX	and	RadiusY	properties	for	rounding	the	corners:	

<Grid Background="LightCyan">

<Path Stroke="Maroon"

StrokeThickness="8"

Fill="Green">

<Path.Data>

<RectangleGeometry

Rect="100 50 300 200"

RadiusX="100"

RadiusY="50" />

</Path.Data>

 </Path>

</Grid>

The	EllipseGeometry	also	defines	RadiusX	and	RadiusY properties,	but	these	are	for	defining	

the	lengths	of	the	two	axes.	The	center	of	the	EllipseGeometry is	provided	by	a	property	

named	Center	of	type	Point:	

<Grid Background="LightCyan">

<Path Stroke="Maroon"

StrokeThickness="8"

Fill="Green">

<Path.Data>

<EllipseGeometry

Center="250 150"

RadiusX="150"

RadiusY="100" />

</Path.Data>

 </Path>

</Grid>

Specifying	the	center	of	a	circle	or	ellipse	to	indicate	its	location	is	often	a	more	convenient	

approach	than	specifying	its	upperleft	corner	(as	with	the	Ellipse	element)—particularly	

considering	that	ellipses	don’t	have	corners!	

Here’s	a	little	exercise	in	interactive	drawing	called	TouchAndDrawCircles.	When	you	touch	

the	screen,	the	program	creates	a	new	circle	from	a	Path	and	an	EllipseGeometry.	As	you	

move	your	finger,	the	circle	gets	larger.	When	you’re	finished,	the	circle	is	filled	with	a	random	

color.	If	you	then	touch	an	existing	circle,	you	can	drag	it	around	the	screen.	

419	

	

	 	 	

	 	 	

	 	 	 	 	

	 	 	

	 	 	 	 	 	

	

	 	 	 	

	 	 	 	 	 	

	 	

	

	

In	the	MainPage.xaml	file,	the	content	grid	is	initially	empty.	The	only	change	I’ve	made	is	to	

give	it	a	nonnull	Background	so	it	can	generate	manipulation	events:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0"

 Background="Transparent" />

The	codebehind	file	has	just	a	few	fields	to	keep	track	of	what’s	going	on:	

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage

{

Random rand = new Random();

 bool isDrawing, isDragging;

Path path;

EllipseGeometry ellipseGeo;

 …

}

The	two	Boolean	fields	indicate	a	current	activity	in	progress.	The	Path	field	is	only	valid	while	

drawing	a	new	circle;	the	EllipseGeometry	field	is	valid	when	drawing	a	new	circle	or	moving	

an	existing	circle.	

The	override	of	the	OnManipulationStarted	method	initiates	a	drawing	or	dragging	operation	

but	doesn’t	let	more	than	one	to	be	going	on	at	any	time.	The	OriginalSource	property	of	the	

event	arguments	is	either	a	Path	element—which	means	that	the	user	touched	one	of	the	

existing	circles	and	wants	to	move	it—or	the	ContentPanel,	which	initiates	a	new	drawing	

operation:	

Silverlight Project: File: (excerpt)

protected override void OnManipulationStarted(ManipulationStartedEventArgs args)

{

if (isDrawing || isDragging)

return;

if (args.OriginalSource is Path)

{

ellipseGeo = (args.OriginalSource as Path).Data as EllipseGeometry;

isDragging = true;

args.ManipulationContainer = ContentPanel;

args.Handled = true;

}

else if (args.OriginalSource == ContentPanel)

420	

	

	 	 	 	 	 	 	

	 	

	

	 	

	 	 	 	 	

	 	 	

 {

ellipseGeo = new EllipseGeometry();

ellipseGeo.Center = args.ManipulationOrigin;

path = new Path();

path.Stroke = this.Resources["PhoneForegroundBrush"] as Brush;

path.Data = ellipseGeo;

ContentPanel.Children.Add(path);

isDrawing = true;

args.Handled = true;

}

base.OnManipulationStarted(args);

}

In	the	XAML	file	I	set	the	Background	of	the	ContentPanel	to	Transparent	so	it	would	generate	

Manipulation	events.	When	the	OriginalSource property	is	this	Grid,	so	is	the	

ManipulationContainer,	and	ManipulationOrigin	is	relative	to	the	Grid.	That’s	the	point	I	need	

for	defining	the	Center of	this	new	EllipseGeometry.	

For	the	dragging	operation,	the	OnManipulationDelta	override	uses	the	DeltaManipulation

property	of	the	event	arguments	to	modify	the	Center	property	of	the	EllipseGeometry:	

Silverlight Project: File: (excerpt)

protected override void OnManipulationDelta(ManipulationDeltaEventArgs args)

{

if (isDragging)

 {

Point center = ellipseGeo.Center;

center.X += args.DeltaManipulation.Translation.X;

center.Y += args.DeltaManipulation.Translation.Y;

ellipseGeo.Center = center;

args.Handled = true;

}

else if (isDrawing)

 {

Point translation = args.CumulativeManipulation.Translation;

double radius = Math.Max(Math.Abs(translation.X),

Math.Abs(translation.Y));

ellipseGeo.RadiusX = radius;

ellipseGeo.RadiusY = radius;

args.Handled = true;

}

base.OnManipulationDelta(args);

}

421

	

	

	 	 	

	 	

	 	 	

	

	 	 	

	 	

	

	 	 	 	 	 	

	 	 	 	

In	contrast,	for	the	drawing	operation,	the	method	modifies	the	RadiusX	and	RadiusY

property	of	the	EllipseGeometry.	For	this	it	uses	the	CumulativeManipulation	property,	which	

reports	the	entire	manipulation	since	the	ManipulationStarted	event.	The	reason	for	the	

different	property	is	simple:	If	the	user	initiates	a	drawing	operation,	and	then	moves	a	finger	

to	the	left	or	up,	the	translation	factors	will	be	negative.	But	these	negative	numbers	must	

become	a	positive	radius	of	the	circle.	It	turns	out	to	be	easier	taking	the	absolute	value	of	the	

total	translation	factors	rather	than	to	modify	existing	dimensions.	

When	the	finger	lifts	from	the	screen,	the	OnManipulationCompleted	event	is	called	for	

cleanup:	

Silverlight Project: File: (excerpt)

protected override void OnManipulationCompleted(ManipulationCompletedEventArgs args)

{

if (isDragging)

 {

isDragging = false;

args.Handled = true;

}

else if (isDrawing)

 {

Color clr = Color.FromArgb(255, (byte)rand.Next(256),

 (byte)rand.Next(256),

 (byte)rand.Next(256));

path.Fill = new SolidColorBrush(clr);

isDrawing = false;

args.Handled = true;

}

base.OnManipulationCompleted(args);

}

For	the	dragging	operation,	cleanup	is	simple.	But	the	drawing	operation	needs	to	conclude	

by	giving	the	Path	element	a	random	Fill	brush.	

422	

	

	

	 	

	

	 	 	

	 	 	 	

	

	

In	actual	use,	you’ll	notice	a	little	delay	between	the	time	your	finger	begins	drawing	or	

dragging	a	circle,	and	the	screen	reacts.	This	is	a	characteristic	of	the	Manipulation	events.	

Geometries
and
Transforms

If	you’re	using	EllipseGeometry	and	you	don’t	want	the	axes	of	the	ellipse	to	be	aligned	on	the	

horizontal	and	vertical,	you	can	apply	a	RotateTransform	to	it.	And	you	have	a	choice.	Because	

Path	derives	from	UIElement,	you	can	set	this	RotateTransform	to	the	RenderTransform

property	of	the	Path:	

<Grid Background="LightCyan">

<Path Stroke="Maroon"

StrokeThickness="8"

Fill="Green">

 <Path.Data>

<EllipseGeometry Center="250 150"

RadiusX="150"

RadiusY="100" />

 </Path.Data>

<Path.RenderTransform>

<RotateTransform Angle="45"

CenterX="250"

CenterY="150" />

 </Path.RenderTransform>

</Path>

</Grid>

423	

	

	 	 	 	 	

	 	 	 	

	 	

	

	

	 	

	 	 	

	

	 	 	

	

	

	

	

	

Notice	that	the	CenterX	and	CenterY	properties	of	RotateTransform	are	set	to	the	same	values	

as	the	Center	point	of	the	EllipseGeometry itself	so	that	the	ellipse	is	rotated	around	its	center.	

When	working	with	Path	and	Geometry	objects,	it’s	usually	easier	to	specify	actual	transform	

centers	rather	than	to	use	RenderTransformOrigin.	Normally	you	set	RenderTransformOrigin	to	

relative	coordinates,	for	example	(0.5,	0.5)	to	specify	the	center,	but	look	what	happens	when	

you	try	that	in	this	case:	

<Grid Background="LightCyan">

<Path Stroke="Maroon"

StrokeThickness="8"

Fill="Green"

RenderTransformOrigin="0.5 0.5">

 <Path.Data>

<EllipseGeometry Center="250 150"

 RadiusX="150"

RadiusY="100" />

 </Path.Data>

<Path.RenderTransform>

<RotateTransform Angle="45" />

 </Path.RenderTransform>

</Path>

</Grid>

The	problem	here	is	that	the	Path	element	is	large	enough	to	accommodate	an	

EllipseGeometry	with	a	center	at	(250,	150)	and	a	RadiusX	of	150	and	a	RadiusY	of	100,	so	the	

Path	element	must	be	at	least	about	400	pixels	wide	and	250	pixels	tall.	(It’s	actually	a	little	

larger	due	to	the	nonzero	StrokeThickness.)	The	center	of	this	Path	is	approximately	the	point	

(200,	125).	In	addition,,	like	other	elements,	the	Path	has	default	HorizontalAlignment	and	

VerticalAlignment	properties	of	Stretch,	so	it’s	really	filling	its	container,	in	this	case	480	pixels	

square,	so	the	rotation	is	actually	around	the	point	(240,	240).	

It’s	also	possible	to	apply	a	transform	to	the	Geometry	object	itself:	

<Grid Background="LightCyan">

<Path Stroke="Maroon"

StrokeThickness="8"

Fill="Green">

 <Path.Data>

<EllipseGeometry Center="250 150"

RadiusX="150"

RadiusY="100">

<EllipseGeometry.Transform>

<RotateTransform Angle="45"

CenterX="250"

CenterY="150" />

</EllipseGeometry.Transform>

</EllipseGeometry>

 </Path.Data>

</Path>

424	

	

	 	 	

	

	 	

	 	

	

	 	 	

	

	 	

	 	 	

	 	

	

</Grid>

This	appears	to	be	exactly	the	same	as	the	earlier	example	with	the	explicit	CenterX	and	

CenterY	settings	on	the	RotateTransform,	but	transforms	can	have	rather	different	results	

depending	whether	they’re	applied	to	the	RenderTransform	property	of	the	Path	element	or	

to	the	Geometry	object.		

The	RenderTransform	property	has	no	effect	on	how	the	element	is	perceived	in	the	layout	

system,	but	the	Transform	property	of	the	Geometry	affects	the	perceived	dimensions.	To	see	

this	difference,	enclose	a	Path	with	an	EllipseGeometry	in	a	centered	Border:	

<Grid Background="LightCyan">

<Border BorderBrush="Red"

BorderThickness="3"

HorizontalAlignment="Center"

VerticalAlignment="Center">

 <Path Stroke="Maroon"

StrokeThickness="8"

Fill="Green">

 <Path.Data>

<EllipseGeometry Center="150 50"

RadiusX="150"

RadiusY="50" />

 </Path.Data>

 </Path>

</Border>

</Grid>

I	deliberately	set	the	Center	of	the	EllipseGeometry	to	the	same	two	values	as	RadiusX	and	

RadiusY	so	the	Path doesn’t	occupy	any	more	space	than	that	necessary	to	render	the	ellipse.	

Now	set	the	RenderTransform	of	the	Path	for	rotation:	

<Grid Background="LightCyan">

<Border BorderBrush="Red"

BorderThickness="3"

HorizontalAlignment="Center"

VerticalAlignment="Center">

 <Path Stroke="Maroon"

StrokeThickness="8"

Fill="Green">

 <Path.Data>

<EllipseGeometry Center="150 50"

RadiusX="150"

RadiusY="50" />

 </Path.Data>

<Path.RenderTransform>

<RotateTransform Angle="90"

CenterX="150"

CenterY="50" />

 </Path.RenderTransform>

 </Path>

425	

	

	 	 	 	 	

	

	 	 	

	

	 	 	 	

	

	

	

	 	

 </Border>

</Grid>

As	was	very	clear	early	on	in	Chapter	8,	the	RenderTransform does	not	affect	how	an	element	

is	perceived	in	the	layout	system.	The	Border	is	still	sizing	itself	based	on	the	unrotated	Path.	

Applying	the	transform	to	the	EllipseGeometry	produces	quite	a	different	result:	

<Grid Background="LightCyan">

<Border BorderBrush="Red"

BorderThickness="3"

HorizontalAlignment="Center"

VerticalAlignment="Center">

 <Path Stroke="Maroon"

StrokeThickness="8"

Fill="Green">

 <Path.Data>

<EllipseGeometry Center="150 50"

RadiusX="150"

RadiusY="50">

 <EllipseGeometry.Transform>

<RotateTransform Angle="90"

CenterX="150"

CenterY="50" />

 </EllipseGeometry.Transform>

</EllipseGeometry>

</Path.Data>

 </Path>

</Border>

</Grid>

Well,	that	doesn’t	look	right,	either!	What	happened?	

The	EllipseGeometry defines	an	ellipse	with	a	bounding	box	with	an	upperleft	corner	at	the	

point	(0,	0)	and	the	lowerright	corner	at	(300,	100).	That’s	being	rotated	90°	around	the	point	

(150,	50).	The	bounding	box	of	the	rotated	ellipse	has	an	upperleft	corner	of	(100,	–100)	and	

a	lowerright	corner	of	(200,	200).	The	Border	is	200	pixels	square	to	accommodate	that	

lowerright	corner,	but	the	negative	part	sticks	out	of	the	top	of	the	Border.	

426

	

	

	

	 	 	

	 	 	 	

	 	

	

	 	 	

	 	 	 	

To	make	it	work	“correctly,”	the	center	of	rotation	needs	to	be	set	to	the	point	(50,	50):	

<Grid Background="LightCyan">

<Border BorderBrush="Red"

BorderThickness="3"

HorizontalAlignment="Center"

VerticalAlignment="Center">

 <Path Stroke="Maroon"

StrokeThickness="8"

Fill="Green">

 <Path.Data>

<EllipseGeometry Center="150 50"

RadiusX="150"

RadiusY="50">

 <EllipseGeometry.Transform>

<RotateTransform Angle="90"

CenterX="50"

CenterY="50" />

 </EllipseGeometry.Transform>

</EllipseGeometry>

</Path.Data>

 </Path>

</Border>

</Grid>

Another	difference	between	the	RenderTransform	property	of	Path	and	the	Transform

property	of	Geometry	is	revealed	when	you	use	ScaleTransform.	Let’s	begin	with	a	little	

rectangle	aligned	at	the	left	edge:	

<Grid Background="LightCyan">

<Path Stroke="Maroon"

StrokeThickness="4"

Fill="Green">

 <Path.Data>

<RectangleGeometry

Rect="2 220 40 40" />

 </Path.Data>

</Path>

</Grid>

I’ve	actually	positioned	the	RectangleGeometry	at	the	point	(2,	220)	so	the	StrokeThickness	of	

the	Path	doesn’t	cause	part	of	the	rendered	object	to	appear	outside	its	confines.	

427	

	

	

	 	

	

	

	 	 	 	 	 	

	

	 	 	

Now	apply	a	ScaleTransform	to	the	RectangleGeometry	to	increase	the	width	by	a	factor	of	10:	

<Grid Background="LightCyan">

<Path Stroke="Maroon"

StrokeThickness="4"

Fill="Green">

 <Path.Data>

<RectangleGeometry

Rect="2 220 40 40">

<RectangleGeometry.Transform>

<ScaleTransform ScaleX="10" />

</RectangleGeometry.Transform>

</RectangleGeometry>

 </Path.Data>

</Path>

</Grid>

The	entire	figure	is	10	times	wider,	and	the	RectangleGeometry is	now	aligned	at	the	point	

(20,	220).	But	something	quite	different	happens	when	you	apply	the	transform	to	the	Path

element:	

<Grid Background="LightCyan">

<Path Stroke="Maroon"

StrokeThickness="4"

Fill="Green">

 <Path.Data>

<RectangleGeometry

Rect="2 220 40 40" />

 </Path.Data>

<Path.RenderTransform>

<ScaleTransform ScaleX="10" />

 </Path.RenderTransform>

</Path>

</Grid>

Now	the	thickness	of	the	stroke	at	the	left	and	right	has	also	increased	by	a	factor	of	10!	

Grouping
Geometries

One	of	the	descendent	classes	of	Geometry	is	GeometryGroup.	This	allows	you	to	combine	

one	or	more	Geometry objects	in	a	composite.	

428	

	

	

	

	

	

	 	

	

	 	

	 	

<Grid Background="LightCyan">

<Path Stroke="Maroon"

StrokeThickness="4"

Fill="Green">

 <Path.Data>

<GeometryGroup>

<EllipseGeometry Center="200 150"

RadiusX="100"

RadiusY="50" />

<RectangleGeometry

Rect="200 150 100 100" />

 </GeometryGroup>

 </Path.Data>

</Path>

</Grid>

Notice	how	the	FillRule	applies	to	this	combination.	Here’s	another:	

<Grid Background="LightCyan">

<Path Stroke="Maroon"

StrokeThickness="4"

Fill="Green">

 <Path.Data>

<GeometryGroup>

<RectangleGeometry

Rect=" 40 40 200 200" />

<RectangleGeometry

Rect=" 90 90 200 200" />

<RectangleGeometry

Rect="140 140 200 200" />

<RectangleGeometry

Rect="190 190 200 200" />

<RectangleGeometry

Rect="240 240 200 200" />

 </GeometryGroup>

 </Path.Data>

</Path>

</Grid>

The
Versatile
PathGeometry
LineGeometry,	RectangleGeometry,	EllipseGeometry,	GeometryGroup—those	are	all	convenient	

special	cases	of	PathGeometry,	certainly	the	most	versatile	of	the	Geometry	derivatives.	With	

Path	and	PathGeometry you	can	perform	any	vector	graphics	job	that	Silverlight	allows.	

PathGeometry	defines	just	two	properties	of	its	own:	the	familiar	FillRule	and	a	property	

named	Figures	of	type	PathFigureCollection,	a	collection	of	PathFigure	objects.	

429	

	

	 	

	 	

	

	 	 	 	

	 	

	

	

	 	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	

	 	 	

	 	

	 	 	

	 	 	 	 	

	 	

	 	

	 	

	 	 	

	

	 	 	 	

	 	 	 	

	 	 	 	 	 	

	 	

	 	 	 	 	 	

	 	 	

	

	 	

		

Conceptually,	a	PathFigure	is	a	series	of	connected	lines	and	curves.	The	key	word	here	is	

connected.	The	PathFigure	starts	at	a	particular	point,	indicated	by	the	StartPoint	property,	

and	then	the	PathFigure continues	in	a	series	of	connected	segments.	

For	these	connected	segments,	PathFigure defines	a	property	named	Segments	of	type	

PathSegmentCollection,	a	collection	of	PathSegment	objects.	PathSegment	is	an	abstract	class,	

as	shown	here:	

Object

DependencyObject	(abstract)	

PathSegment	(abstract)	

LineSegment	(sealed)	

PolyLineSegment	(sealed)	

ArcSegment	(sealed)	

QuadraticBezierSegment	(sealed)	

PolyQuadraticBezierSegment	(sealed)	

BezierSegment	(sealed)	

PolyQuadraticBezierSegment	(sealed)	

The	PathFigure	indicates	a	StartPoint.	The	first	PathSegment	object	in	the	Segments	collection	

continues	from	that	point.	The	next	PathSegment	continues	from	where	the	first	PathSegment

left	off,	and	so	forth.	

The	last	point	of	the	last	PathSegment	in	the	Segments collection	might	be	the	same	as	the	

StartPoint	of	the	PathFigure	or	it	might	not.	To	ensure	that	a	PathFigure	is	closed,	you	can	set	

the	IsClosed	property.	If	necessary,	this	will	cause	a	straight	line	to	be	drawn	from	the	last	

point	of	the	last	PathSegment	to	the	StartPoint	of	the	PathFigure.	

PathFigure	also	defines	an	IsFilled	property	that	is	true	by	default.	This	property	is	

independent	of	any	Fill brush	you	might	set	on	the	Path	itself.	It’s	used	instead	for	clipping	

and	hittesting.	In	some	cases,	Silverlight	might	perceive	that	an	area	is	filled	for	purposes	of	

clipping	and	hittesting	when	that	is	not	your	intention.	In	that	case,	set	IsFilled	to	false.	

In	summary,	a	PathGeometry	is	a	collection	of	PathFigure	objects.	Each	PathFigure	object	is	a	

series	of	connected	lines	or	curves	indicated	by	a	collection	of	PathSegment	objects.	

Let’s	look	at	the	PathSegment	derivatives	in	more	detail.	

LineSegment defines	just	one	property	on	its	own,	Point	of	type	Point.	It	just	needs	one	Point

object	because	it	draws	a	line	from	the	StartPoint	property	of	PathFigure	(if	the	LineSegment	is	

the	first	segment	in	the	collection)	or	from	the	end	of	the	previous	segment.	

PolyLineSegment	defines	a	Points	property	of	type	PointCollection	to	draw	a	series	of	

connected	straight	lines.	

430	

	

	 	 	

	

	

	 	 	 	

	

	 	 	

	 	 	 	 	

	 	

	 	

	

	 	

	 	 	

	

	

Here’s	a	PathGeometry	with	three	PathFigure	objects	containing	3,	2,	and	1	PathSegment

objects,	respectively:	

<Grid Background="LightCyan">

<Path Stroke="Blue"

StrokeThickness="4"

Fill="Green">

 <Path.Data>

<PathGeometry>

<PathFigure StartPoint="240 60">

 <LineSegment Point="380 240" />

 <LineSegment Point="100 240" />

 <LineSegment Point="240 60" />

</PathFigure>

<PathFigure StartPoint="240 150"

IsClosed="True">

 <LineSegment Point="380 330" />

 <LineSegment Point="100 330" />

</PathFigure>

<PathFigure StartPoint="240 240"

IsClosed="True">

 <PolyLineSegment

Points="380 420, 100 420" />

</PathFigure>

</PathGeometry>

 </Path.Data>

</Path>

</Grid>

The	second	and	third	figures	are	explicitly	closed	with	the	IsClosed property,	but	all	three	

PathFigure	collections	are	filled.	

The
ArcSegment
Things	start	getting	tricky	with	ArcSegment.	An	arc	is	just	a	partial	circumference	of	an	ellipse,	

but	because	the	ArcSegment	must	fit	in	with	the	paradigm	of	start	points	and	end	points,	the	

arc	must	be	specified	with	two	points	on	the	circumference	of	some	ellipse.	But	if	you	define	

an	ellipse	with	a	particular	center	and	radii,	how	do	you	specify	a	point	on	that	ellipse	

circumference	exactly	without	doing	some	trigonometry?	

The	solution	is	to	define	only	the	size of	this	ellipse	and	not	where	the	ellipse	is	positioned.	

The	actual	location	of	the	ellipse	is	defined	by	the	two	points.	

I	think	we	need	an	example.	Here’s	a	little	line	that	begins	at	the	point	(120,	240)	and	ends	at	

the	point	(360,	240).	

431	

	

	

	 	

	

	

	 	

	

	 	 	

	

	

	

<Grid Background="LightCyan">

<Polyline Points="120 240, 360 240"

Stroke="Black"

StrokeThickness="6" />

</Grid>

This	line	is	just	for	reference.	I	want	to	draw	an	arc	between	these	same	two	points.	Now	

obviously	there	are	an	infinite	number	of	arcs	you	can	draw	between	these	two	points,	but	for	

any	particular	ellipse	size,	there	are	only	four.	

Let	me	demonstrate:	

Suppose	I	want	the	two	points	to	be	connected	by	an	arc	on	the	circumference	of	a	circle	that	

has	a	radius	of	144	pixels.	Here’s	how	you	specify	an	ArcSegment	of	that	size	that	goes	

between	the	points	(120,	240)	and	(360,	240):	

<Grid Background="LightCyan">

<Polyline Points="120 240, 360 240"

Stroke="Black"

StrokeThickness="6" />

 <Path Stroke="Blue"

StrokeThickness="2">

 <Path.Data>

<PathGeometry>

<PathFigure StartPoint="120 240">

 <ArcSegment Point="360 240"

Size="144 144" />

</PathFigure>

</PathGeometry>

</Path.Data>

</Path>

</Grid>

432	

	

	 	 	 	

	

	

	 	

	

	

	

By	default,	arcs	are	drawn	from	the	start	point	to	the	end	point	in	a	counterclockwise	

direction.	You	can	override	that	behavior	by	setting	the	SweepDirection	property	to	Clockwise:	

<Grid Background="LightCyan">

<Polyline Points="120 240, 360 240"

Stroke="Black"

StrokeThickness="6" />

 <Path Stroke="Red"

StrokeThickness="2">

 <Path.Data>

<PathGeometry>

<PathFigure StartPoint="120 240">

 <ArcSegment

Point="360 240"

Size="144 144"

SweepDirection="Clockwise" />

</PathFigure>

</PathGeometry>

 </Path.Data>

</Path>

</Grid>

In	both	those	cases,	the	arc	drawn	between	the	two	points	is	the	shorter	of	two	possibilities.	

Here’s	the	result	with	the	default	SweepDirection	of	CounterClockwise	but	the	IsLargeArc

property	set	to	true:	

<Grid Background="LightCyan">

<Polyline Points="120 240, 360 240"

Stroke="Black"

StrokeThickness="6" />

 <Path Stroke="Green"

StrokeThickness="2">

 <Path.Data>

<PathGeometry>

<PathFigure StartPoint="120 240">

 <ArcSegment

Point="360 240"

Size="144 144"

IsLargeArc="True" />

</PathFigure>

</PathGeometry>

 </Path.Data>

</Path>

</Grid>

433	

	

	 	

	

	 	 	 	

	 	

	 	 	

	

	

Finally,	you	can	set	both	IsLargeArc	to	true	and	SweepDirection	to	Clockwise:	

<Grid Background="LightCyan">

<Polyline Points="120 240, 360 240"

Stroke="Black"

StrokeThickness="6" />

 <Path Stroke="Brown"

StrokeThickness="2">

 <Path.Data>

<PathGeometry>

<PathFigure StartPoint="120 240">

 <ArcSegment

Point="360 240"

Size="144 144"

IsLargeArc="True"

SweepDirection="Clockwise"/>

</PathFigure>

</PathGeometry>

 </Path.Data>

</Path>

</Grid>

When	you	see	them	all	together,	you	can	get	a	better	sense	of	how	this	works	(at	least	on	a	

conceptual	level).	Think	of	a	circle	of	a	particular	size	positioned	so	it	meets	the	two	points.	

You	can	fit	the	circle	against	those	two	points	in	one	of	two	ways,	and	then	go	around	the	

circle	in	one	of	two	ways:	

<Grid Background="LightCyan">

<Polyline Points="120 240, 360 240"

Stroke="Black"

StrokeThickness="6" />

 <Path Stroke="Blue"

StrokeThickness="2">

 <Path.Data>

<PathGeometry>

<PathFigure StartPoint="120 240">

 <ArcSegment

Point="360 240"

Size="144 144" />

</PathFigure>

</PathGeometry>

 </Path.Data>

</Path>

<Path Stroke="Red"

StrokeThickness="2">

 <Path.Data>

<PathGeometry>

<PathFigure StartPoint="120 240">

 <ArcSegment

Point="360 240"

434	

	

	

	 	

	

Size="144 144"

SweepDirection="Clockwise" />

</PathFigure>

</PathGeometry>

 </Path.Data>

</Path>

<Path Stroke="Green"

StrokeThickness="2">

 <Path.Data>

<PathGeometry>

<PathFigure StartPoint="120 240">

 <ArcSegment

Point="360 240"

Size="144 144"

IsLargeArc="True" />

</PathFigure>

</PathGeometry>

 </Path.Data>

</Path>

<Path Stroke="Brown"

StrokeThickness="2">

 <Path.Data>

<PathGeometry>

<PathFigure StartPoint="120 240">

 <ArcSegment

Point="360 240"

Size="144 144"

IsLargeArc="True"

SweepDirection="Clockwise" />

</PathFigure>

</PathGeometry>

 </Path.Data>

</Path>

</Grid>

This	also	works	with	an	ellipse.	The	following	markup	is	the	same	as	the	previous	example	

except	the	Size	property	of	the	ArcSegment	has	been	changed	from	(144,	144)	to	(200,	100):	

<Grid Background="LightCyan">

<Polyline Points="120 240, 360 240"

Stroke="Black"

StrokeThickness="6" />

 <Path Stroke="Blue"

StrokeThickness="2">

 <Path.Data>

<PathGeometry>

<PathFigure StartPoint="120 240">

 <ArcSegment

Point="360 240"

Size="200 100" />

</PathFigure>

435	

	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	

 </PathGeometry>

 </Path.Data>

</Path>

<Path Stroke="Red"

StrokeThickness="2">

 <Path.Data>

<PathGeometry>

<PathFigure StartPoint="120 240">

 <ArcSegment

Point="360 240"

Size="200 100"

SweepDirection="Clockwise" />

</PathFigure>

</PathGeometry>

 </Path.Data>

</Path>

<Path Stroke="Green"

StrokeThickness="2">

 <Path.Data>

<PathGeometry>

<PathFigure StartPoint="120 240">

 <ArcSegment

Point="360 240"

Size="200 100"

IsLargeArc="True" />

</PathFigure>

</PathGeometry>

 </Path.Data>

</Path>

<Path Stroke="Brown"

StrokeThickness="2">

 <Path.Data>

<PathGeometry>

<PathFigure StartPoint="120 240">

 <ArcSegment

Point="360 240"

Size="200 100"

IsLargeArc="True"

SweepDirection="Clockwise" />

</PathFigure>

</PathGeometry>

 </Path.Data>

</Path>

</Grid>

If	you	want	to	use	an	arc	based	on	the	circumference	of	an	ellipse	that	does	not	have	its	axes	

parallel	to	the	horizontal	and	vertical,	you	can	set	the	final	property	of	ArcSegment,	which	is	

RotationAngle.	

436

	

	

<Grid Background="LightCyan">

<Polyline Points="120 240, 360 240"

Stroke="Black"

StrokeThickness="6" />

 <Path Stroke="Blue"

StrokeThickness="2">

 <Path.Data>

<PathGeometry>

<PathFigure StartPoint="120 240">

 <ArcSegment

Point="360 240"

Size="200 100"

RotationAngle="36" />

</PathFigure>

</PathGeometry>

 </Path.Data>

</Path>

<Path Stroke="Red"

StrokeThickness="2">

 <Path.Data>

<PathGeometry>

<PathFigure StartPoint="120 240">

 <ArcSegment

Point="360 240"

Size="200 100"

SweepDirection="Clockwise"

RotationAngle="36" />

</PathFigure>

</PathGeometry>

 </Path.Data>

</Path>

<Path Stroke="Green"

StrokeThickness="2">

 <Path.Data>

<PathGeometry>

<PathFigure StartPoint="120 240">

 <ArcSegment

Point="360 240"

Size="200 100"

IsLargeArc="True"

RotationAngle="36" />

</PathFigure>

</PathGeometry>

 </Path.Data>

</Path>

<Path Stroke="Brown"

StrokeThickness="2">

 <Path.Data>

<PathGeometry>

<PathFigure StartPoint="120 240">

 <ArcSegment

437	

	

	 	 	 	 	

	 	 	

	

	 	 	

	

	

Point="360 240"

Size="200 100"

IsLargeArc="True"

SweepDirection="Clockwise"

RotationAngle="36" />

</PathFigure>

</PathGeometry>

 </Path.Data>

</Path>

</Grid>

In	code,	you	can	determine	algorithmically	the	points	on	a	circle	where	you	want	the	arc	to	

begin	and	end.	That’s	the	idea	behind	the	SunnyDay	program,	which	combines	LineSegment

and	ArcSegment	objects	into	a	composite	image.	The	MainPage.xaml	file	instantiates	the	Path

element:	and	assigns	all	the	properties	except	the	actual	segments:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Path Fill="Yellow">

<Path.Data>

<PathGeometry>

<PathFigure x:Name="pathFigure"

 IsClosed="True" />

</PathGeometry>

</Path.Data>

</Path>

</Grid>

The	Loaded	event	handler	is	then	responsible	for	obtaining	the	size	of	the	content	area	and	

calculating	all	the	coordinates	for	the	various	path	segments:	

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage

{

 const int BEAMCOUNT = 24;

 const double INCREMENT = Math.PI / BEAMCOUNT;

 public MainPage()

 {

InitializeComponent();

Loaded += OnLoaded;

 }

 void OnLoaded(object sender, RoutedEventArgs args)

{

Point center = new Point(ContentPanel.ActualWidth / 2,

ContentPanel.ActualHeight / 2);

438	

	

double radius = 0.45 * Math.Min(ContentPanel.ActualWidth,

 ContentPanel.ActualHeight);

double innerRadius = 0.8 * radius;

for (int i = 0; i < BEAMCOUNT; i++)

{

 double radians = 2 * Math.PI * i / BEAMCOUNT;

 if (i == 0)

 {

 pathFigure.StartPoint = new Point(center.X, center.Y - radius);

 }

LineSegment lineSeg = new LineSegment();

 lineSeg.Point = new Point(

 center.X + innerRadius * Math.Sin(radians + INCREMENT / 2),

 center.Y - innerRadius * Math.Cos(radians + INCREMENT / 2));

 pathFigure.Segments.Add(lineSeg);

ArcSegment arcSeg = new ArcSegment();

 arcSeg.Point = new Point(

 center.X + innerRadius * Math.Sin(radians + 3 * INCREMENT / 2),

 center.Y - innerRadius * Math.Cos(radians + 3 * INCREMENT / 2));

 pathFigure.Segments.Add(arcSeg);

 lineSeg = new LineSegment();

 lineSeg.Point = new Point(

 center.X + radius * Math.Sin(radians + 2 * INCREMENT),

 center.Y - radius * Math.Cos(radians + 2 * INCREMENT));

 pathFigure.Segments.Add(lineSeg);

}

 }

}

439	

	

	 	

	

	 	 	

	 	 	 	

	 	

	 	

	 	 	 	 	

	 	

	

	 	 	 	 	 	

	 	 	

	 	

	 	

	

	 	

	

		

The	result	is	a	rather	cartoonish	sun:	

Bézier
Curves

Pierre	Etienne	Bézier	(1910–1999)	was	an	engineer	at	the	French	automobile	company	

Renault	from	1933	to	1975.	During	the	1960s	the	company	started	switching	over	from	

designing	car	bodies	with	clay	to	using	computerassisted	design.	The	system	required	

mathematical	descriptions	of	curves	that	engineers	could	manipulate	without	knowing	the	

underlying	mathematics.	From	this	work	came	the	curve	that	now	bears	Pierre	Bézier’s	name.	

The	Bézier	curve	is	a	spline,	which	is	a	type	of	curve	used	to	approximate	discrete	data	with	a	

smooth	continuous	function.	Silverlight	supports	the	standard	twodimensional	form	of	the	

cubic	Bézier	curve	but	also	a	quadratic	Bézier	curve	that	is	somewhat	simpler	and	faster,	so	I’ll	

discuss	that	one	first.	

The	quadratic	Bézier	curve	is	defined	by	three	points,	commonly	denoted	as	p0,	p1,	and	p2.	The	

curve	starts	at	p0	and	ends	at	p2.	The	point	p1	is	known	as	a	control point.	The	curve	usually	

does	not	pass	through	p1.	Instead,	p1	functions	like	a	magnet	pulling	the	curve	towards	it.	At	

p0,	the	curve	is	tangent	to	(and	in	the	same	direction	as)	the	line	from	p0	to	p1,	and	at	p3	the	

curve	is	tangent	to	(and	in	the	same	direction	as)	the	line	from	p2	to	p3.	

Perhaps	the	best	way	to	become	familiar	with	Bézier	curves	is	to	experiment	with	them.	The	

QuadraticBezier	program	draws	a	single	Bézier	curve	but	lets	you	manipulate	the	three	points	

to	see	what	happens.	

440	

	

	 	

	 	

	 	 	

The	XAML	file	assembles	four	Path elements	and	a	Polyline	in	the	singlecell	Grid.	The	first	

Path	is	the	quadratic	Bézier	itself.	Notice	that	p0	is	provided	by	the	StartPoint	property	of	

PathFigure,	while	p1,	and	p2	correspond	to	the	Point1	and	Point2	properties	of	

QuadraticBezierSegment:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Path Stroke="{StaticResource PhoneForegroundBrush}"

 StrokeThickness="2">

<Path.Data>

<PathGeometry>

<PathFigure x:Name="pathFig"

 StartPoint="100 100">

<QuadraticBezierSegment x:Name="pathSeg"

 Point1="300 250"

 Point2="100 400" />

</PathFigure>

</PathGeometry>

</Path.Data>

</Path>

<Polyline Name="ctrlLine"

 Stroke="{StaticResource PhoneForegroundBrush}"

 StrokeDashArray="2 2"

 Points="100 100, 300 250, 100 400" />

<Path Name="pt0Dragger"

 Fill="{StaticResource PhoneAccentBrush}"

 Opacity="0.5">

<Path.Data>

<EllipseGeometry x:Name="pt0Ellipse"

 Center="100 100"

 RadiusX="48"

 RadiusY="48" />

</Path.Data>

</Path>

<Path Name="pt1Dragger"

 Fill="{StaticResource PhoneAccentBrush}"

 Opacity="0.5">

<Path.Data>

<EllipseGeometry x:Name="pt1Ellipse"

 Center="300 250"

 RadiusX="48"

 RadiusY="48" />

</Path.Data>

</Path>

<Path Name="pt2Dragger"

 Fill="{StaticResource PhoneAccentBrush}"

 Opacity="0.5">

<Path.Data>

441	

	

	 	

	 	

	 	

	

	 	

	 	 	

	

	

<EllipseGeometry x:Name="pt2Ellipse"

 Center="100 400"

 RadiusX="48"

 RadiusY="48" />

</Path.Data>

</Path>

</Grid>

The	Polyline	element	draws	a	dotted	line	from	the	two	end	points	to	the	control	point.	The	

remaining	three	Path elements	are	“draggers,”	that	is,	they	let	you	drag	any	of	the	three	

points.	The	initial	screen	looks	like	this:	

The	codebehind	file	provides	all	the	dragging	logic.	Because	Silverlight	for	Windows	Phone	

does	not	support	bindings	for	properties	not	defined	by	FrameworkElement	derivatives,	I	

wasn’t	able	to	hook	all	the	corresponding	points	together	in	the	XAML	file.	Instead,	they	have	

to	be	set	individually	in	the	Manipulation	overrides:	

Silverlight Project: File: (excerpt)

protected override void OnManipulationStarted(ManipulationStartedEventArgs args)

{

if (args.OriginalSource == pt0Dragger ||

args.OriginalSource == pt1Dragger ||

args.OriginalSource == pt2Dragger)

 {

args.ManipulationContainer = ContentPanel;

442	

	

args.Handled = true;

}

base.OnManipulationStarted(args);

}

protected override void OnManipulationDelta(ManipulationDeltaEventArgs args)

{

Point translate = args.DeltaManipulation.Translation;

if (args.OriginalSource == pt0Dragger)

 {

pathFig.StartPoint = Move(pathFig.StartPoint, translate);

ctrlLine.Points[0] = Move(ctrlLine.Points[0], translate);

pt0Ellipse.Center = Move(pt0Ellipse.Center, translate);

args.Handled = true;

}

else if (args.OriginalSource == pt1Dragger)

 {

pathSeg.Point1 = Move(pathSeg.Point1, translate);

ctrlLine.Points[1] = Move(ctrlLine.Points[1], translate);

pt1Ellipse.Center = Move(pt1Ellipse.Center, translate);

args.Handled = true;

}

else if (args.OriginalSource == pt2Dragger)

{

pathSeg.Point2 = Move(pathSeg.Point2, translate);

ctrlLine.Points[2] = Move(ctrlLine.Points[2], translate);

pt2Ellipse.Center = Move(pt2Ellipse.Center, translate);

args.Handled = true;

}

base.OnManipulationDelta(args);

}

Point Move(Point point, Point translate)

{

return new Point(point.X + translate.X, point.Y + translate.Y);

}

443	

	

	

	

	 	 	 	

	 	 	

	 	

	 	 	 	

	 	

	

	

	

	 	 	

	 	

Being	a	quadratic,	this	version	of	the	Bézier	curve	makes	only	a	single	turn,	and	it	is	extremely	

well	behaved:	

If	you	ever	need	them,	the	parametric	formulas	used	to	construct	the	quadratic	Bézier	are:	

for	t	=	0	to	1,	where	p0	=	(x0,	y0)	and	so	forth.	

The	cubic	Bézier	spline	is	more	standard,	and	has	two	control	points	rather	than	just	one.	The	

curve	is	defined	by	four	points	commonly	labeled	p0,	p1,	p2,	and	p3.	The	curve	begins	at	p0	and	

ends	at	p3.	At	p0	the	curve	is	tangent	to	(and	in	the	same	direction	as)	a	line	from	p0	to	p1,	and	

at	p3	the	curve	is	tangent	to	the	line	from	p3	to p2.	The	parametric	equations	describing	the	

curve	are:	

For	the	CubicBezier	program	I	took	a	little	different	approach.	In	an	attempt	to	simplify	it	just	

a	bit,	I	defined	a	UserControl	derivative	named	PointDragger.	The	PointDragger.xaml	file	

defines	a	visual	tree	consisting	of	just	a	Grid	containing	a	Path	with	an	Opacity	of	0.5	and	an	

EllipseGeometry	with	no	Center	point:	

444	

	

	

	 	 	 	

	 	 	 	

	 	 	

Silverlight Project: File:

<UserControl

x:Class="CubicBezier.PointDragger"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

<Grid x:Name="LayoutRoot">

<Path Fill="{StaticResource PhoneAccentBrush}"

 Opacity="0.5">

<Path.Data>

<EllipseGeometry x:Name="ellipseGeometry"

 RadiusX="48"

 RadiusY="48" />

</Path.Data>

</Path>

</Grid>

</UserControl>

The	codebehind	file	defines	a	dependency	property	named	Point	of	type	Point,	and	fires	a	

PointChanged event	when	the	value	changes.	The	propertychanged	handler	is	also	

responsible	for	setting	the	value	on	the	EllipseGeometry defined	in	the	XAML	file:	

Silverlight Project: File: (excerpt)

public partial class PointDragger : UserControl

{

 public static readonly DependencyProperty PointProperty =

DependencyProperty.Register("Point",

 typeof(Point),

 typeof(PointDragger),

 new PropertyMetadata(OnPointChanged));

public event RoutedPropertyChangedEventHandler<Point> PointChanged;

 public PointDragger()

 {

InitializeComponent();

 }

 public Point Point

 {

set { SetValue(PointProperty, value); }

get { return (Point)GetValue(PointProperty); }

 }

 …

 static void OnPointChanged(DependencyObject obj,

DependencyPropertyChangedEventArgs args)

445	

	

	 	 	

	

	 	

	 	 	 	

 {

(obj as PointDragger).OnPointChanged((Point)args.OldValue,

 (Point)args.NewValue);

 }

 protected virtual void OnPointChanged(Point oldValue, Point newValue)

 {

ellipseGeometry.Center = newValue;

if (PointChanged != null)

 PointChanged(this,

new RoutedPropertyChangedEventArgs<Point>(oldValue, newValue));

 }

}

The	PointDragger	class	also	handles	its	own	Manipulation	events,	which	(compared	with	the	

ones	in	QuadraticBezier)	become	very	simple:	

Silverlight Project: File: (excerpt)

protected override void OnManipulationStarted(ManipulationStartedEventArgs args)

{

 args.ManipulationContainer = VisualTreeHelper.GetParent(this) as UIElement;

 args.Handled = true;

base.OnManipulationStarted(args);

}

protected override void OnManipulationDelta(ManipulationDeltaEventArgs args)

{

Point translate = args.DeltaManipulation.Translation;

this.Point = new Point(this.Point.X + translate.X, this.Point.Y + translate.Y);

 args.Handled = true;

base.OnManipulationDelta(args);

}

The	MainPage.xaml	file	defines	a	Path	with	a	BezierSegment,	two	dotted	Polyline	elements	for	

the	tangent	lines,	and	four	instances	of	PointDragger.	The	BezierSegment	class	defines	

properties	named	Point1,	Point2,	and	Point3 for	the	two	control	points	and	the	endpoint:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Path Stroke="{StaticResource PhoneForegroundBrush}"

 StrokeThickness="2">

<Path.Data>

<PathGeometry>

<PathFigure x:Name="pathFig"

 StartPoint="100 100">

<BezierSegment x:Name="pathSeg"

 Point1="300 100"

446

	

 Point2="300 400"

 Point3="100 400" />

</PathFigure>

</PathGeometry>

</Path.Data>

</Path>

<Polyline Name="ctrl1Line"

 Stroke="{StaticResource PhoneForegroundBrush}"

 StrokeDashArray="2 2"

 Points="100 100, 300 100" />

<Polyline Name="ctrl2Line"

 Stroke="{StaticResource PhoneForegroundBrush}"

 StrokeDashArray="2 2"

 Points="300 400, 100 400" />

<local:PointDragger x:Name="pt0Dragger"

 Point="100 100"

 PointChanged="OnPointDraggerPointChanged" />

<local:PointDragger x:Name="pt1Dragger"

 Point="300 100"

 PointChanged="OnPointDraggerPointChanged" />

<local:PointDragger x:Name="pt2Dragger"

 Point="300 400"

 PointChanged="OnPointDraggerPointChanged" />

<local:PointDragger x:Name="pt3Dragger"

 Point="100 400"

 PointChanged="OnPointDraggerPointChanged" />

</Grid>

447

	

	

	

	 	 	

	

The	initial	screen	looks	like	this:	

Notice	the	PointChanged	event	handlers	on	the	PointDragger	controls.	Implementing	that	

handler	is	pretty	much	the	only	thing	left	for	MainPage.xaml.cs	to	do:	

Silverlight Project: File: (excerpt)

void OnPointDraggerPointChanged(object sender,

RoutedPropertyChangedEventArgs<Point> args)

{

Point translate = new Point(args.NewValue.X - args.OldValue.X,

 args.NewValue.Y - args.OldValue.Y);

if (sender == pt0Dragger)

{

pathFig.StartPoint = Move(pathFig.StartPoint, translate);

ctrl1Line.Points[0] = Move(ctrl1Line.Points[0], translate);

 }

else if (sender == pt1Dragger)

 {

pathSeg.Point1 = Move(pathSeg.Point1, translate);

ctrl1Line.Points[1] = Move(ctrl1Line.Points[1], translate);

 }

else if (sender == pt2Dragger)

 {

pathSeg.Point2 = Move(pathSeg.Point2, translate);

ctrl2Line.Points[0] = Move(ctrl2Line.Points[0], translate);

 }

448	

	

	 	 	 	

	

	

	 	 	 	 	

	 	

	 	 	 	

	 	

	 	 	

	 	 	

	 	 	 		

else if (sender == pt3Dragger)

 {

pathSeg.Point3 = Move(pathSeg.Point3, translate);

ctrl2Line.Points[1] = Move(ctrl2Line.Points[1], translate);

 }

}

Point Move(Point point, Point translate)

{

return new Point(point.X + translate.X, point.Y + translate.Y);

}

As	you	play	around	with	the	program,	you	might	notice	that	the	curve	always	stays	confined	

within	a	fourside	polygon	defined	by	the	two	end	points	and	the	two	control	points.	(It’s	

called	a	“convex	hull”	in	Bézier	circles.).	This	version	of	the	Bézier	curve	is	a	cubic,	so	the	curve	

can	make	two	turns:	

Besides	QuadraticBezierSegment	and	BezierSegment to	define	single	Bézier	curves,	you	can	

also	use	PolyQuadraticBezierSegment	and	PolyBezierSegment	for	defining	a	series	of	Bézier	

curves.	Each	curve	begins	at	the	point	the	previous	one	ends.	Each	of	these	classes	contains	a	

property	named	Points	of	type	PointCollection.	

For	PolyQuadraticBezierSegment,	the	number	of	Point	objects	in	the	Points collection	must	be	

a	multiple	of	2.	The	first,	third,	fifth,	and	so	forth	members	of	the	collection	are	control	points.	

For	PolyBezierSegment,	the	number	of	points	is	a	multiple	of	3.	

449	

	

	 	

	 	

	 	

	

	 	

	 	 	 	

	

	

	

	 	

	 	

	 	 	 	

	 	

When	connecting	multiple	Bézier	curves,	the	end	point	of	one	curve	becomes	the	begin	point	

of	the	next	curve.	The	composite	curve	is	smooth	at	this	point	only	if	that	point	and	the	two	

control	points	on	either	side	are	collinear,	that	is,	lie	on	the	same	line.	

The
Path
Markup
Syntax

Silverlight	supports	a	type	of	“minilanguage”	that	allows	you	to	encode	an	entire	

PathGeometry	in	a	string.	The	language	consists	of	letters	(such	as	M	for	Move,	L	for	Line,	A	

for	Arc,	and	C	for	Cubic	Bézier)	that	take	the	place	of	PathFigure	and	PathSegment	objects.	

Each	new	PathFigure	begins	with	a	Move	command.	The	syntax	is	described	in	the	Graphics	

section	of	the	online	Silverlight	documentation.	

Here’s	an	example:	

<Grid Background="LightCyan">

<Path Stroke="Maroon"

StrokeThickness="4"

Data="M 160 140 L 150 50 220 103

 M 320 140 L 330 50 260 103

 M 215 230 L 40 200

 M 215 240 L 40 240

 M 215 250 L 40 280

 M 265 230 L 440 200

 M 265 240 L 440 240

 M 265 250 L 440 280

 M 240 100

 A 100 100 0 0 1 240 300

 A 100 100 0 0 1 240 100

 M 180 170

 A 40 40 0 0 1 220 170

 A 40 40 0 0 1 180 170

 M 300 170

 A 40 40 0 0 1 260 170

 A 40 40 0 0 1 300 170" />

</Grid>

The	Arc	is	probably	the	most	complex	syntax.	It	begins	with	the	size	of	the	ellipse,	followed	by	

a	rotation	angle,	and	then	two	flags,	1	for	IsLargeArc	and	1	for	Clockwise,	and	concluding	with	

the	point.	When	drawing	complete	circles,	you’ll	want	to	separate	the	circle	into	two	halves	

and	use	two	Arc	commands	(or	two	ArcSegment	objects).	

450	

	

	 	 	 	 	 	

	

	

	 	

	 	 	 	 	

	 	 	

Besides	using	geometries	for	drawing	you	can	use	geometries	for	clipping.	Here’s	the	famous	

KeyholeOnTheMoon	image:	

This	program	makes	use	of	the	Clip	property	of	type	Geometry.	Clip	is	defined	by	

FrameworkElement so	you	can	use	the	property	to	make	any	element	or	control	visually	non

rectangular	in	shape,	and	the	Path	Markup	Syntax	makes	it	look	trivial:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0"

 Background="{StaticResource PhoneAccentBrush}">

<Image Source="Images/BuzzAldrinOnTheMoon.png"

 Stretch="None"

 Clip="M 120 95 L 90 265 L 220 265 L 190 95

 A 50 50 0 1 0 120 95" />

</Grid>

451	

	

	 	 	 	

	

	 	 	 	

	

	 	 	

	 	

	

	

	 	

I’ve	also	used	Path	Markup	Syntax	in	the	Analog	Clock	program.	Here’s	what	it	looks	like:	

The	visuals	consist	of	five	Path	elements.	The	curves	on	the	hour	and	minute	hand	are	Bézier	

splines.	The	tick	marks	are	dotted	arc	segments.	

The	XAML	file	defines	a	Style	that’s	used	for	all	five	Path	elements:	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.Resources>

<Style x:Key="pathStyle"

 TargetType="Path">

<Setter Property="Fill" Value="{StaticResource PhoneAccentColor}" />

<Setter Property="Stroke" Value="{StaticResource PhoneForegroundColor}" />

<Setter Property="StrokeThickness" Value="2" />

<Setter Property="StrokeStartLineCap" Value="Round" />

<Setter Property="StrokeEndLineCap" Value="Round" />

<Setter Property="StrokeLineJoin" Value="Round" />

<Setter Property="StrokeDashCap" Value="Round" />

</Style>

</phone:PhoneApplicationPage.Resources>

In	an	attempt	to	keep	the	graphics	simple,	I	devised	an	arbitrary	coordinate	system.	The	clock	

graphics	are	drawn	as	if	the	width	and	height	of	the	clock	were	200	pixels,	and	the	center	

were	the	point	(0,	0).	The	clock	graphics	are	thus	bounded	by	X	coordinates	of	–100	on	the	

left	and	100	on	the	right,	and	Y	coordinates	of	–100	on	the	top	and	100	on	the	bottom.	

452	

	

	 	 	 	

	 	

	 	 	

	

	

	 	 	 	 	 	 	 	

	 	 	 	

	

These	arbitrary	coordinates	of	the	clock	are	in	part	defined	by	the	explicit	Width	and	Height

settings	of	this	nested	Grid:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0"

 SizeChanged="OnContentPanelSizeChanged">

<!-- Draw clock on Grid with center at (0, 0) -->

<Grid Width="200" Height="200">

<Grid.RenderTransform>

<TransformGroup>

<ScaleTransform x:Name="scaleClock" />

<TranslateTransform X="100" Y="100" />

</TransformGroup>

</Grid.RenderTransform>

…

 </Grid>

</Grid>

The	TranslateTransform	shifts	the	whole	Grid	to	the	right	and	down.	The	upperleft	

coordinate	of	(–100,	–100),	for	example,	becomes	(0,	0),	and	a	coordinate	of	(100,	100)	

becomes	(200,	200).	

Notice	the	SizeChanged event	handler	set	on	the	normal	content	grid.	The	code	portion	uses	

the	actual	size	of	the	content	area	to	set	the	ScaleTransform	applied	to	the	nested	Grid.	That	

scales	the	200pixel	dimension	to	the	actual	size:	

Silverlight Project: File: (excerpt)

void OnContentPanelSizeChanged(object sender, SizeChangedEventArgs args)

{

 double scale = Math.Min(args.NewSize.Width, args.NewSize.Height) / 200;

 scaleClock.ScaleX = scale;

 scaleClock.ScaleY = scale;

}

Here	are	the	five	paths:	

Silverlight Project: File: (excerpt)

<!-- Tick marks (small and large). -->

<Path Data="M 0 -90 A 90 90 0 1 1 0 90

 A 90 90 0 1 1 0 -90"

453	

	

	

	

	 	

Style="{StaticResource pathStyle}"

Fill="{x:Null}"

StrokeDashArray="0 3.14159"

StrokeThickness="3" />

<Path Data="M 0 -90 A 90 90 0 1 1 0 90

 A 90 90 0 1 1 0 -90"

Style="{StaticResource pathStyle}"

Fill="{x:Null}"

StrokeDashArray="0 7.854"

StrokeThickness="6" />

<!-- Hour hand pointing up. -->

<Path Data="M 0 -60 C 0 -30, 20 -30, 5 -20 L 5 0

 C 5 7.5, -5 7.5, -5 0 L -5 -20

 C -20 -30, 0 -30 0 -60"

Style="{StaticResource pathStyle}">

<Path.RenderTransform>

<RotateTransform x:Name="rotateHour" />

</Path.RenderTransform>

</Path>

<!-- Minute hand pointing up. -->

<Path Data="M 0 -80 C 0 -75, 0 -70, 2.5 -60 L 2.5 0

 C 2.5 5, -2.5 5, -2.5 0 L -2.5 -60

 C 0 -70, 0 -75, 0 -80"

Style="{StaticResource pathStyle}">

<Path.RenderTransform>

<RotateTransform x:Name="rotateMinute" />

</Path.RenderTransform>

</Path>

<!-- Second hand pointing up. -->

<Path Data="M 0 10 L 0 -80"

Style="{StaticResource pathStyle}">

<Path.RenderTransform>

<RotateTransform x:Name="rotateSecond" />

</Path.RenderTransform>

</Path>

The	StrokeDashArray	settings	on	the	first	two	Path	elements	were	carefully	calculated	to	

produce	the	pattern	of	1second	and	5second	tick	marks	around	the	face	of	the	clock.	The	

other	three	Path	elements	have	RotateTransform	objects	set	to	their	RenderTransform

properties.	These	RotateTransforms	are	reset	every	second	from	the	codebehind	file:	

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage

{

 public MainPage()

 {

InitializeComponent();

454	

	

	 	

	 	 	

	 	 	

	 	 	 	

	 	

	 	 	

	

	 	

	 	 	

	 	 	 	

	

	

	 	

	 	 	 	

	

	

	 	 	 	

	 	 	

	 	

DispatcherTimer tmr = new DispatcherTimer();

tmr.Interval = TimeSpan.FromSeconds(1);

tmr.Tick += new EventHandler(OnTimerTick);

tmr.Start();

 }

 void OnTimerTick(object sender, EventArgs args)

{

DateTime dt = DateTime.Now;

rotateSecond.Angle = 6 * dt.Second;

rotateMinute.Angle = 6 * dt.Minute + rotateSecond.Angle / 60;

rotateHour.Angle = 30 * (dt.Hour % 12) + rotateMinute.Angle / 12;

 }

 …

}

How
This
Chapter
Was
Created

The	little	snippets	of	XAML	and	the	pictures	that	accompany	them	began	life	with	a	concept	

that	originated	in	the	early	days	of	the	Windows	Presentation	Foundation.	Although	XAML	

was	mostly	designed	to	be	compiled	along	with	the	rest	of	your	source	code,	it	was	also	

reasonable	to	assume	that	programmers	might	want	to	convert	XAML	into	objects	(and	

objects	into	XAML)	at	runtime.	For	this	purpose,	the	System.Windows.Markup	namespace	has	

a	static	method	named	XamlReader.Load	for	converting	XAML	into	objects,	and	

XamlWriter.Save	for	going	the	other	way.	

Only	the	first	of	those	two	static	methods	made	it	into	Silverlight	and	Silverlight	for	Windows	

Phone.	But	that’s	the	really	useful	one.	Give	XamlReader.Load	a	string	containing	some	legal	

XAML—including	the	proper	namespace	declarations	but	excluding	events	assignments—and	

the	method	returns	an	object	corresponding	to	the	root	element	with	all	the	other	objects	in	

the	visual	tree	created	as	well.	

One	application	of	XamlReader.Load	in	WPF	was	an	interactive	programming	tool	that	

contained	a	TextBox	to	let	you	edit	and	enter	XAML,	and	then	displayed	the	resultant	object.	

Of	course,	most	of	the	time,	as	the	user	is	editing	a	piece	of	XAML,	it	won’t	be	legal,	so	the	

tool	has	to	trap	those	errors	and	respond	appropriately.	

Several	variations	of	this	programming	tool	were	written.	The	WPF	Software	Development	Kit	

contained	a	version	called	XamlPad,	and	for	my	book	Applications = Code + Markup

(Microsoft	Press,	2006),	I	created	a	version	called	XamlCruncher.	

Later	on,	I	enhanced	XamlCruncher	so	it	could	present	a	type	of	slide	show	of	little	XAML	files	

and	their	resultant	objects.	I	used	this	for	presentations	about	WPF	programming,	and	I	later	

rewrote	the	program	for	Silverlight.	

455	

	

	 	 	The	Petzold.Phone.Silverlight	library	contains	the	“guts”	of	the	Windows	Phone	7	version	of	

XamlCruncher	in	a	class	derived	from	TextBox:	

Silverlight Project: Petzold.Phone.Silverlight File: XamlCruncherTextBox.cs (excerpt)

public class XamlCruncherTextBox : TextBox

{

 public event EventHandler<XamlCruncherEventArgs> XamlResult;

 public XamlCruncherTextBox()

 {

this.AcceptsReturn = true;

this.TextWrapping = TextWrapping.NoWrap;

this.HorizontalScrollBarVisibility = ScrollBarVisibility.Auto;

this.VerticalScrollBarVisibility = ScrollBarVisibility.Auto;

TextChanged += OnTextBoxTextChanged;

 }

 void OnTextBoxTextChanged(object sender, TextChangedEventArgs args)

{

string xaml =

"<UserControl " +

" xmlns='http://schemas.microsoft.com/winfx/2006/xaml/presentation'\r" +

" xmlns:phone='clr-namespace:Microsoft.Phone.Controls;" +

"assembly=Microsoft.Phone'\r" +

" xmlns:shell='clr-namespace:Microsoft.Phone.Shell;" +

"assembly=Microsoft.Phone'\r" +

" xmlns:system='clr-namespace:System;assembly=mscorlib'\r" +

" xmlns:petzold='clr-namespace:Petzold.Phone.Silverlight;" +

"assembly=Petzold.Phone.Silverlight'>\r" +

" " + this.Text + "\r" +

"</UserControl>";

UserControl ctrl = null;

try

{

 ctrl = XamlReader.Load(xaml) as UserControl;

}

catch (Exception exc)

{

 OnXamlResult(new XamlCruncherEventArgs(exc.Message));

 return;

}

if (ctrl == null)

{

 OnXamlResult(new XamlCruncherEventArgs("null result"));

 return;

}

OnXamlResult(new XamlCruncherEventArgs(ctrl));

456	

	

	 	

	

	

	

	 	

	

	

	 	 	 	 	

	 	 	

 }

 protected virtual void OnXamlResult(XamlCruncherEventArgs args)

 {

if (XamlResult != null)

 XamlResult(this, args);

 }

}

The	TextChanged	handler	assumes	that	the	TextBox	contains	a	chunk	of	XAML	that	is	

appropriate	as	content	for	a	UserControl.	It	wraps	that	text	in	UserControl	tags	with	a	bunch	

of	namespace	declarations—including	the	standard	(and	semistandard)	phone,	shell,	system,	

and	petzold—and	passes	it	to	XamlReader.Load,	which	raises	an	exception	of	the	XAML	is	not	

valid.	

Whatever	happens,	the	class	fires	a	XamlResult event	providing	either	the	resultant	

UserControl	or	an	error	message	in	the	following	event	arguments:	

Silverlight Project: Petzold.Phone.Silverlight File: XamlCruncherEventArgs.cs

using System;

using System.Windows;

namespace Petzold.Phone.Silverlight

{

public class XamlCruncherEventArgs : EventArgs

 {

public XamlCruncherEventArgs(UIElement element)

{

 Element = element;

 Error = null;

}

public XamlCruncherEventArgs(string error)

{

 Error = error;

 Element = null;

}

public UIElement Element { set; get; }

public string Error { set; get; }

}

}

I	wrote	two	programs	using	the	XamlCruncherTextBox	class.	The	first	is	called	simply	

XamlCruncher,	and	if	you	have	an	extreme	amount	of	patience	and	diligence,	you	can	actually	

type	XAML	into	the	program	on	your	phone	and	see	the	results.	

457

	

	 	

	 	 	

	 	 	

	 	 	

	 	

	

	 	 	

	 	

	

	 	

	 	

	 	

The	patience	and	diligence	involves	the	keyboard.	Whether	you’re	using	a	virtual	keyboard	or	

your	phone’s	hardware	keyboard,	there’s	a	lot	of	swapping	between	keyboard	layouts	for	

letters,	numbers,	and	symbols.	In	particular,	the	hardware	keyboard	on	the	phone	that	I	used	

for	writing	this	book	doesn’t	have	angle	brackets	or	an	equal	sign,	which	are	absolutely	

necessary	for	XML,	or	curly	braces,	which	is	useful	for	XAML.	These	are	accessible	by	pressing	

a	Sym	key,	which	invokes	a	special	supplementary	software	keyboard	that	contains	these	

symbols.	

The	XamlCruncher	content	area	is	divided	in	half	with	a	UniformStack.	Half	the	area	contains	

the	XamlCruncherTextBox	with	a	TextBlock for	error	messages,	and	the	other	half	is	a	

ScrollViewer	with	a	Border for	hosting	the	resultant	content:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<petzold:UniformStack Name="uniformStack">

<Grid>

<Grid.RowDefinitions>

<RowDefinition Height="*" />

<RowDefinition Height="Auto" />

</Grid.RowDefinitions>

<petzold:XamlCruncherTextBox

 x:Name="txtbox"

 Grid.Row="0"

FontSize="{StaticResource PhoneFontSizeSmall}"

FontFamily="Courier New"

 TextChanged="OnTextBoxTextChanged"

 XamlResult="OnXamlCruncherTextBoxXamlResult" />

<TextBlock Name="statusText"

 Grid.Row="1"

 TextWrapping="Wrap" />

</Grid>

<ScrollViewer HorizontalScrollBarVisibility="Auto"

 VerticalScrollBarVisibility="Auto">

<Border Name="container" />

</ScrollViewer>

</petzold:UniformStack>

</Grid>

The	code	file	has	several	tasks.	Every	time	the	text	changes,	it	stores	the	new	text	in	isolated	

storage.	This	allows	you	to	work	on	a	particular	piece	of	XAML	over	several	days	or	weeks	as	

you	become	frequently	frustrated	and	discouraged.	

458	

	

	

 Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage

{

IsolatedStorageSettings settings = IsolatedStorageSettings.ApplicationSettings;

 public MainPage()

 {

InitializeComponent();

Application.Current.UnhandledException += OnUnhandledException;

string text;

if (!settings.TryGetValue<string>("text", out text))

 text = "<Grid Background=\"AliceBlue\">\r \r</Grid>";

txtbox.Text = text;

 }

 protected override void OnOrientationChanged(OrientationChangedEventArgs args)

{

uniformStack.Orientation =

 ((args.Orientation & PageOrientation.Portrait) == 0) ?

 System.Windows.Controls.Orientation.Horizontal :

 System.Windows.Controls.Orientation.Vertical;

base.OnOrientationChanged(args);

 }

 void OnTextBoxTextChanged(object sender, TextChangedEventArgs args)

{

settings["text"] = txtbox.Text;

 }

 void OnUnhandledException(object sender,

ApplicationUnhandledExceptionEventArgs args)

 {

statusText.Text = args.ExceptionObject.Message;

args.Handled = true;

 }

 void OnXamlCruncherTextBoxXamlResult(object sender, XamlCruncherEventArgs args)

 {

if (args.Error != null)

{

 statusText.Text = args.Error;

}

else

{

 container.Child = args.Element;

 statusText.Text = "OK";

}

459	

	

	 	

	 	 	

	 	 	

	 	

	 	

	

	 	

	

	 	 	

	 	 	 	 	

	 	 	

	 	 	

 }

}

The	OnOrientationChanged method	changes	the	orientation	of	the	UniformStack	when	the	

orientation	of	the	screen	changes.	Because	XamlCruncher	is	(marginally)	easier	to	use	with	the	

hardware	keyboard,	it	is	usable	in	both	portrait	and	landscape	modes.	

The	program	also	attempts	to	handle	unhandled	exceptions.	Particularly	when	animations	are	

involved,	it	is	possible	for	a	piece	of	XAML	to	pass	XamlReader.Load	but	then	raise	an	

exception	later	on.	

You’ll	want	to	run	this	program	without	the	Visual	Studio	debugger;	otherwise,	Visual	Studio	

breaks	when	any	exception	occurs.	

Here’s	a	little	sample:	

The	VectorGraphicsDemos	program	(which	is	included	with	the	source	code	for	this	chapter	

but	not	interesting	enough	to	devote	actual	pages)	incorporates	the	XamlCruncherTextBox

control	and	includes	a	file	containing	all	the	little	XAML	snippets	shown	through	this	chapter.	

You	can	page	through	those	files,	see	the	resultant	images,	and	edit	them	if	you	wish.	

460

	

	

	 	 	 	

	 	 	

	 	 	 	

	 		

	

	 	

	 	

	 	

	 	 	 	

	 	 	

	 	

	

	

	 	

	 	 	

	 	 	 	 	

	 	 	 	 	

	 	 	 	

	 	

	

	

	 	 	 	

	 	 	 	 	

	

	 	

	

Chapter	14	

Raster Graphics
In	Chapter	4	I	demonstrated	how	a	Windows	Phone	7	program	can	obtain	bitmaps.	These	

bitmaps	can	originate	with	the	application	itself,	they	can	be	downloaded	from	the	Web,	or	

they	can	come	from	the	camera	or	from	the	phone’s	picture	library.	In	this	chapter	I’ll	go	

beyond	the	task	of	loading bitmaps	into	the	realm	of	saving	bitmaps.	You	can	save	a	bitmap	

in	isolated	storage,	or	in	a	special	album	of	the	picture	library	identified	as	“Saved	Pictures.”	

If	your	program	needs	to	save	a	bitmap,	there’s	probably	a	good	reason	for	it!	Your	

application	is	probably	creating	a	bitmap	from	scratch	or	modifying	an	existing	bitmap	in	

some	way.	These	jobs	involve	the	use	of	the	exciting	and	powerful	WriteableBitmap	class.	

The
Bitmap
Class
Hierarchy

As	you’ll	recall,	you	can	display	a	bitmap	in	one	of	two	ways:	using	the	Image	element	or	

creating	an	ImageBrush.	The	Source	property	of	the	Image	element	and	the	ImageSource

property	of	the	ImageBrush are	both	of	type	ImageSource,	a	class	occupying	a	very	

fundamental	place	in	the	region	of	the	Silverlight	class	hierarchy	devoted	to	bitmaps:	

Object

DependencyObject	(abstract)		

ImageSource	(abstract)		

BitmapSource	(abstract)	

BitmapImage

WriteableBitmap

ImageSource	has	only	one	descendent	class	and	defines	nothing	public	on	its	own,	so	it	might	

seem	a	little	superfluous.	That’s	true	in	Silverlight	but	not	in	the	Windows	Presentation	

Foundation,	where	ImageSource	is	a	parent	to	classes	that	define	images	derived	from	vector	

graphics	as	well	as	those	involving	raster	graphics.	

The	remaining	three	classes	are	all	defined	in	the	System.Windows.Media.Imaging	namespace.	

BitmapSource defines	two	public	getonly	properties	and	one	method:	

• A	PixelWidth	property	of	type	int.	

• A	PixelHeight property	of	type	int.	

• A	SetSource	method	that	has	one	argument	of	type	Stream.	

461	

	

	 	 	 	 	

	 	 	 	

	 	

	 	

	

	 	

	 	

	 	 	

	

	

	 	

	 	 	

	 	 	

	 	 	

	 	 	 	

	 	

	 	 	 	

	

	 	 	

	 	

	 	

	 	 	 	

	 	

	 	

	

	

That	Stream	argument	can	be	a	file	stream,	a	network	stream,	or	a	memory	stream	of	some	

sort.	But	the	Stream must	provide	bitmap	data	in	either	the	JPEG	or	PNG	file	format.	Once	a	

bitmap	has	been	created,	it	has	a	fixed	size	that	cannot	be	changed.	

The	BitmapImage	class	expands	on	the	functionality	of	BitmapSource	by	letting	you	reference	

a	bitmap	with	a	URI.	BitmapImage	defines	the	following:	

• A	constructor	that	accepts	an	argument	of	type	Uri.	

• A	UriSource	property	of	type	Uri.	

• A	CreateOptions	property.	

• Three	events	that	let	you	track	downloading	progress,	and	report	upon	success	or	failure	

The	CreateOptions	property	is	of	type	CreateOptions,	an	enumeration	with	three	members:	

None,	DelayCreation,	and	IgnoreImageCache.	The	default	is	DelayCreation,	which	doesn’t	start	

loading	an	image	until	it’s	actually	needed	for	rendering.	The	IgnoreImageCache	is	useful	

when	a	program	knows	that	a	previously	loaded	image	has	become	invalid.	You	can	combine	

DelayCreation	and	IgnoreImageCache	with	the	C#	bitwise	OR	operator.	

By	combining	the	features	of	BitmapSource	and	BitmapImage,	the	BitmapImage	class	lets	you	

load	a	bitmap	in	JPEG	or	PNG	format	using	either	a	Stream	object	or	a	Uri object.	There	is	no	

facility	to	save	bitmaps.	

The	WriteableBitmap	class	itself	continues	this	trend.	Taken	by	itself,	WriteableBitmap	does	not

including	any	facility	to	save	bitmaps.	However,	the	WriteableBitmap	class	does	give	you	

access	to	all	the	pixels	that	define	the	bitmap.	Only	one	pixel	format	is	supported,	where	each	

pixel	is	a	32bit	value.	You	can	obtain	the	pixel	bits	from	an	existing	bitmap,	or	set	new	pixel	

bits	on	a	WriteableBitmap	to	define	the	image.	Access	to	these	pixel	bits	allows	you	a	great	

deal	of	flexibility	in	how	you	save	or	load	bitmaps.	You	can	provide	your	own	bitmap	

“encoder”	to	save	pixel	bits	in	a	particular	bitmap	format,	or	your	own	“decoder”	to	access	a	

file	of	a	particular	format	and	convert	to	the	uncompressed	pixel	bits.	

WriteableBitmap	also	provides	a	facility	to	“draw”	images	on	the	bitmap	based	on	Silverlight	

elements.	Although	you	can	indeed	draw	Button	elements	and	Slider	elements	on	a	bitmap,	

it’s	most	common	to	use	elements	that	derive	from	Shape.	In	other	words,	WriteableBitmap

allows	you	to	convert	a	vector	drawing	into	a	raster	image.	

Here	are	the	constructors,	methods,	and	property	defined	by	WriteableBitmap:	

• A	constructor	that	accepts	a	UIElement	and	a	transform.	

• A	constructor	that	accepts	a	pixel	width	and	height.	

• A	constructor	that	accepts	a	BitmapSource	object.	

462	

	

	

	

	 	 	

	 	 	

	 	 	 	 	

	

	

	 	 	

	

	 	 	

	

	 	 	

	 	 	 	 	

	 	

	

	 	

	 	

	 	

	

	 	 	 	

	

	

	 	 	

	 	

	 	

• A	Render	method	that	accepts	a	UIElement	and	a	transform.	

• An	Invalidate	method	to	update	bitmap	visuals.	

• A	property	named	Pixels	of	type	int	array.	

Keep	in	mind	that	WriteableBitmap	derives	from	BitmapSource	rather	than	BitmapImage,	so	

there	is	no	facility	in	WriteableBitmap	to	load	a	bitmap	from	a	URI.	However,	you	can	load	a	

BitmapImage object	from	a	URI	and	then	create	a	WriteableBitmap	from	that	using	the	third	

constructor	I’ve	listed.	

WriteableBitmap	lets	you	put	images	on	the	bitmap	using	two	techniques:	

• By	rendering	the	visuals	of	any	UIElement	on	the	bitmap.	

• By	directly	manipulating	the	pixel	bits.	

You	can	combine	these	techniques	in	whatever	manner	you	want.	

In	addition,	Windows	Phone	7	provides	several	subsidiary	methods	that	provide	you	with	

alternative	ways	to	load	JPEG	files	and	to	save	them:	

• A	static	PictureDecoder.DecodeJpeg	method	in	the	Microsoft.Phone	namespace	lets	you	

load	a	JPEG	file	from	a	Stream but	with	a	maximum	Width	and	Height.	This	is	useful	if	you	

know	that	a	particular	JPEG	might	be	much	larger	than	what	you	need	to	display	on	the	

phone.	The	method	returns	a	WritableBitmap.	

• An	Extensions	class	in	the	System.Windows.Media.Imaging	namespace	has	two	extension	

methods	to	WriteableBitmap:	LoadJpeg	(which	doesn’t	provide	additional	functionality	

over	the	SetSource	method	defined	by	BitmapSource)	and	SaveJpeg,	which	lets	you	alter	

the	width	and	height	of	the	image	and	specify	a	compression	quality.	

• The	SavePicture	method	of	the	XNA	MediaLibrary class	lets	you	save	a	bitmap	to	the	

phone’s	picture	library	from	a	Stream	or	a	byte	array	in	JPEG	format.	You’ll	probably	use	

this	in	conjunction	with	the	SaveJpeg	extension	method	with	a	MemoryStream

intermediary,	as	I’ll	demonstrate	towards	the	end	of	this	chapter.	

WriteableBitmap
and
UIElement
WriteableBitmap	has	two	ways	to	get	the	visuals	of	a	UIElement	onto	a	bitmap.	The	first	uses	

one	of	the	constructors:	

WriteableBitmap writeableBitmap = new WriteableBitmap(element, transform);

The	element	argument	is	of	type	UIElement	and	the	transform	argument	is	of	type	Transform.	

This	constructor	creates	a	bitmap	based	on	the	size	of	the	UIElement argument	as	possibly	

modified	by	the	Transform	argument	(which	you	can	set	to	null).	

463	

	

	 	 	 	

	 	 	 	

	

	 	

	 	

	 	 	

	 	 	

	

	 	 	 	

	

The	element	and	all	its	visual	children	are	rendered	on	the	bitmap.	However,	any	

RenderTransform	applied	to	that	element	is	ignored.	Optionally	taking	account	of	that	

transform	is	the	rationale	behind	the	second	argument.	The	resultant	bitmap	is	based	on	the	

maximum	horizontal	and	vertical	coordinates	of	the	transformed	element.	Any	part	of	the	

element	that	is	transformed	into	a	negative	coordinate	space	(to	the	left	or	above	the	original	

element)	is	cropped.	

Here’s	a	simple	sample	program.	The	content	grid	is	given	a	background	based	on	the	current	

accent	color.	It	contains	a	TextBlock	and	an	Image	element:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0"

 Background="{StaticResource PhoneAccentBrush}">

<TextBlock Text="Tap anywhere to capture page"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

<Image Name="img"

 Stretch="Fill" />

</Grid>

The	Image	element	has	no	bitmap	to	display	but	when	it	does,	it	will	ignore	the	bitmap’s	

aspect	ratio	to	fill	the	content	grid	and	obscure	the	TextBlock.	

When	the	screen	is	tapped,	the	codebehind	file	simply	sets	the	Image	element	source	to	a	

new	WriteableBitmap	based	on	the	page	itself:	

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage

{

 public MainPage()

 {

InitializeComponent();

 }

 protected override void OnManipulationStarted(ManipulationStartedEventArgs args)

 {

img.Source = new WriteableBitmap(this, null);

args.Complete();

args.Handled = true;

base.OnManipulationStarted(args);

 }

}

464	

	

	 	

	

	

	

When	you	first	run	the	program,	the	screen	looks	like	this:	

Tap	once,	and	the	whole	page	becomes	the	bitmap	displayed	by	the	Image	element:	

465		

	

	 	

	 	 	 	 	

	 	

	 	

	

	

	 	

	

	

	 	 	 	 	

	

	 	

	

	 	

	 	 	

	 	 	 	 	

	 	

	 	

Keep	in	mind	that	the	PhoneApplicationPage	object	being	captured	has	its	Background

property	set	to	the	default	value	of	null,	so	that’s	why	you	see	the	original	background	of	the	

content	panel	behind	the	captured	titles.	You	can	continue	tapping	the	screen	to	recapture	

the	page	content,	now	including	the	previous	Image	element:	

There	is	no	sense	in	which	these	elements	are	“retained”	by	the	bitmap	in	any	way	other	than	

becoming	part	of	the	bitmap	image.	

The	WriteableBitmap	class	also	has	a	Render	method	with	the	same	two	arguments	as	the	

constructor	I	just	demonstrated:	

writeableBitmap.Render(element, transform);

You’ll	need	to	follow	the	Render	call	with	a	call	to	Invalidate	to	get	the	actual	bitmap	to	reflect	

the	visuals	of	the	element	argument:	

writeableBitmap.Invalidate();

Obviously	the	WriteableBitmap	must	obviously	already	have	been	created	at	the	time	of	these	

calls,	so	it	already	has	a	fixed	size.	Based	on	the	size	of	the	element	and	the	transform,	some	

(or	all)	of	the	element	might	be	cropped.		

If	you	try	calling	Render	with	a	newly	created	Button	element	(for	example)	you’ll	probably	

discover	that	it	doesn’t	work.	A	newly	created	Button element	has	a	size	of	zero.	You’ll	need	to	

call	Measure	and	Arrange	on	the	element	to	give	it	a	nonzero	size.	However,	I	have	generally	

been	unsuccessful	in	giving	some	elements	a	nonzero	size	even	after	calling	Measure	and	

466	

	

	 	

	 	 	

	 	 	

	 	 	

	 	 	 	

	 	 	

	

	 	 	

	 	 	 	

Arrange.	The	process	seems	to	work	a	lot	better	if	the	element	is	already	part	of	a	visual	tree.	

It	works	much	better	with	Image	elements	and	Shape	derivatives.	

Here’s	a	program	that	obtains	a	square	bitmap	from	the	phone’s	picture	library,	and	then	

chops	it	up	into	four	quadrants,	each	of	which	is	half	the	width	and	half	the	height	of	the	

original	bitmap.	

The	content	area	of	the	SubdivideBitmap	program	contains	a	TextBlock	and	a	Grid	with	two	

rows	and	two	columns	of	equal	size.	Each	of	the	four	cells	of	this	Grid	contains	an	Image

element	with	names	that	indicate	the	location	in	the	grid:	For	example,	imgUL	is	upperleft	

and	imgLR	is	lowerright.	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<TextBlock Name="txtblk"

 Text="Touch to choose image"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

<Grid HorizontalAlignment="Center"

 VerticalAlignment="Center">

<Grid.RowDefinitions>

<RowDefinition Height="*" />

<RowDefinition Height="*" />

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>

<ColumnDefinition Width="*" />

<ColumnDefinition Width="*" />

</Grid.ColumnDefinitions>

<Image Name="imgUL" Grid.Row="0" Grid.Column="0" Margin="2" />

<Image Name="imgUR" Grid.Row="0" Grid.Column="1" Margin="2" />

<Image Name="imgLL" Grid.Row="1" Grid.Column="0" Margin="2" />

<Image Name="imgLR" Grid.Row="1" Grid.Column="1" Margin="2" />

</Grid>

</Grid>

The	codebehind	file	for	the	MainPage class	is	set	up	for	a	PhotoChooserTask:	As	required,	the	

PhotoChooserTask	object	is	defined	as	a	field	and	the	Completed	event	handler	is	attached	at	

the	end	of	the	constructor:	

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage

{

PhotoChooserTask photoChooser = new PhotoChooserTask();

467	

	

	 	 	

	 	 	 	 	 	 	

	 	

	

	 	 	

	 	 	 	 	

	

	

 public MainPage()

 {

InitializeComponent();

photoChooser.Completed += OnPhotoChooserCompleted;

 }

protected override void OnManipulationStarted(ManipulationStartedEventArgs args)

 {

int dimension = (int)Math.Min(ContentPanel.ActualWidth,

 ContentPanel.ActualHeight) - 8;

photoChooser.PixelHeight = dimension;

photoChooser.PixelWidth = dimension;

photoChooser.Show();

args.Complete();

args.Handled = true;

base.OnManipulationStarted(args);

 }

 …

}

The	OnManipulationStarted	override	then	calls	the	Show method	of	the	PhotoChooserTask

requesting	a	square	bitmap	using	dimensions	based	on	the	size	of	the	content	panel.	Eight	

pixels	are	subtracted	from	this	dimension	to	account	for	the	Margin	property	set	on	each	

Image	element	in	the	XAML	file.	

When	the	Completed	event	is	fired	by	the	PhotoChooserTask,	the	handler	begins	by	creating	a	

BitmapImage object	based	on	the	stream	referencing	the	chosen	bitmap.	It	then	creates	an	

Image	element	(named	imgBase)	to	display	the	bitmap.	Notice	that	this	Image	element	is	not	

part	of	a	visual	tree.	It	exists	solely	as	a	source	for	Render	calls.	

Silverlight Project: File: (excerpt)

void OnPhotoChooserCompleted(object sender, PhotoResult args)

{
if (args.Error != null || args.ChosenPhoto == null)

return;

BitmapImage bitmapImage = new BitmapImage();

 bitmapImage.SetSource(args.ChosenPhoto);

Image imgBase = new Image();

 imgBase.Source = bitmapImage;

 imgBase.Stretch = Stretch.None;

// Upper-left

WriteableBitmap writeableBitmap = new WriteableBitmap(bitmapImage.PixelWidth /

2,

 bitmapImage.PixelHeight /

2);

468

	

	 	 	 	 	

	 	 	

	 	 	

	 	 	 	

	 	 	 	 	 	 	 	

	 	 	

	

	 	 	

 writeableBitmap.Render(imgBase, null);

 writeableBitmap.Invalidate();

 imgUL.Source = writeableBitmap;

// Upper-right

 writeableBitmap = new WriteableBitmap(bitmapImage.PixelWidth / 2,

bitmapImage.PixelHeight / 2);

TranslateTransform translate = new TranslateTransform();

 translate.X = -bitmapImage.PixelWidth / 2;

 writeableBitmap.Render(imgBase, translate);

 writeableBitmap.Invalidate();

 imgUR.Source = writeableBitmap;

// Lower-left

 writeableBitmap = new WriteableBitmap(bitmapImage.PixelWidth / 2,

bitmapImage.PixelHeight / 2);

 translate.X = 0;

 translate.Y = -bitmapImage.PixelHeight / 2;

 writeableBitmap.Render(imgBase, translate);

 writeableBitmap.Invalidate();

 imgLL.Source = writeableBitmap;

// Lower-right

 writeableBitmap = new WriteableBitmap(bitmapImage.PixelWidth / 2,

bitmapImage.PixelHeight / 2);

 translate.X = -bitmapImage.PixelWidth / 2;

 writeableBitmap.Render(imgBase, translate);

 writeableBitmap.Invalidate();

 imgLR.Source = writeableBitmap;

 txtblk.Visibility = Visibility.Collapsed;

}

The	remainder	of	the	Completed event	handler	creates	four	WriteableBitmap	objects,	each	½	

the	width	and	½	the	height	of	the	original.	(This	calculation	is	based	on	the	dimensions	of	the	

BitmapImage and	not	the	dimensions	of	the	Image,	which	at	this	time	will	report	a	zero	size.)	

Except	for	the	first	of	the	four	Render	calls,	a	TranslateTransform	is	also	defined	that	shifts	to	

the	left	or	up	(or	both)	by	half	the	bitmap	dimension.	Each	call	to	Render is	followed	by	an	

Invalidate	call.	Each	WriteableBitmap	is	then	assigned	to	the	Source	property	of	the	

appropriate	Image	element	in	the	XAML	file.	The	Margin	property	of	those	Image	elements	

separates	them	sufficiently	to	make	it	clear	that	we’re	now	dealing	with	four	separate	Image

elements:	

469

	

	

	 	 	 	 	

	 	

	 	 	

	

	 	

	 	

	 	

	 	

	

	 	

	

	 	

	 	 		

	 	 	

	 	

	 	

	

Notice	that	the	code	uses	a	single	TranslateTransform	object.	Normally	you	wouldn’t	want	to	

share	a	transform	among	multiple	elements	unless	you	wanted	the	same	transform	to	be	

applied	to	all	elements.	But	here	the	TranslateTransform is	only	being	used	temporarily	for	

rendering	purposes.	

Later	in	this	chapter	I’ll	show	another	approach	to	dividing	a	bitmap	into	pieces	that	has	an	

application	in	a	little	game.	

The
Pixel
Bits

The	Pixels	property	of	WritableBitmap	is	an	array	of	int,	which	means	that	each	pixel	is	32	bits	

wide.	The	Pixels	property	itself	is	getonly	so	you	can’t	replace	the	actual	array,	but	you	can	

set	and	get	elements	of	that	array.	

A	bitmap	is	a	two	dimensional	array	of	pixels;	the	Pixels	property	of	WriteableBitmap	is	a	one

dimensional	array	of	int	values.	The	Pixels	array	stores	the	pixels	of	the	bitmap	starting	with	

the	top	row	and	working	down,	and	within	each	row	from	left	to	right.	The	number	of	

elements	in	the	array	is	equal	to	the	product	of	the	bitmap’s	pixel	width	and	pixel	height.	

If	bm	is	a	WriteableBitmap	object,	then	the	number	of	elements	in	the	Pixels	property	is	

bm.PixelWidth	*	bm.PixelHeight.	Suppose	you	want	to	access	the	pixel	in	column	x	(where	x

ranges	from	0	through	bm.PixelWidth	–	1)	and	row	y,	where	y	ranges	from	0	to	

bm.PixelHeight	–	1.	You	index	the	Pixels	property	like	so:	

470	

	

	 	

	 	

	 	

	 	 	

	 	 	 	

	 	 	

	 	 	 	 	 	

	

	

	

	 	

	

	 	

	

	 	 	

	

	 	

	

	

	

	 	

bm.Pixels[y * bm.PixelWidth + x]

Silverlight	for	Windows	Phone	supports	only	one	pixel	format,	sometimes	denoted	as	

PARGB32.	Let	me	decode	this	format	code	working	backwards:	

The	“32”	at	the	end	means	32	bits,	or	4	bytes.	That’s	the	size	of	each	pixel.	The	ARGB	part	

indicates	that	the	Alpha	byte	(opacity)	occupies	the	high	8	bits	of	the	32bit	integer,	followed	

by	the	Red	byte,	Green	byte,	and	Blue	byte,	which	occupies	the	bottom	8	bits	of	the	integer.	

If	A,	R,	G,	and	B	are	all	of	type	byte,	you	can	create	a	32bit	integer	pixel	value	like	so:	

int pixel = A << 24 | R << 16 | G << 8 | B

The	shifted	values—implicitly	converted	to	type	int—are	combined	with	the	C#	bitwise	OR	

operator.	You	can	obtain	the	components	of	an	existing	pixel	value	like	so:	

byte A = (byte)(pixel & 0xFF000000 >> 24);

byte R = (byte)(pixel & 0x00FF0000 >> 16);

byte G = (byte)(pixel & 0x0000FF00 >> 8);

byte B = (byte)(pixel & 0x000000FF);

When	the	Alpha	channel	byte	is	255,	the	pixel	is	opaque.	A	value	of	0	means	completely	

transparent,	and	values	in	between	indicate	various	levels	of	transparency.	

In	the	PARGB32	pixel	format,	the	P	stands	for	“premultiplied,”	which	means	that	if	the	Alpha	

value	is	anything	other	than	255,	then	the	Red,	Green,	and	Blue	values	have	been	already	

adjusted	for	the	transparency	indicated	by	that	Alpha	value.	

To	better	understand	this	concept,	let’s	look	at	an	example	involving	a	single	pixel.	Suppose	

you	want	the	pixel	to	have	the	following	color:	

Color.FromArgb(128, 0, 0, 255)

That’s	blue	with	50%	transparency.	When	that	pixel	is	rendered	on	a	particular	background	

surface,	the	color	of	the	pixel	must	be	combined	with	the	existing	colors	of	the	surface.	Drawn	

against	a	black	background,	the	resultant	RGB	color	is	(0,	0,	128),	which	is	the	average	of	the	

blue	pixel	and	the	black	background.	Drawn	against	a	white	background,	the	resultant	color	is	

(127,	127,	255).	Each	of	the	three	components	is	an	average	of	the	pixel	and	the	surface.	

With	a	transparency	of	anything	other	than	50%,	the	resultant	color	is	a	weighted	average	of	

the	pixel	source	and	the	surface:	The	subscripts	in	the	following	formulas	indicate	the	“result”	

of	rendering	a	partially	transparent	“source”	pixel	on	an	existing	“surface”:	

471	

	

	

	

	 	 	

	

	 	

	 	 	

	

	

	 	 	 	 	

	

	

	

	

	 	

	

	

	

	 	

	 	 	

	

	 	 	

	 	 	 	

	 	

When	a	bitmap	is	rendered	on	an	arbitrary	surface,	these	calculations	must	be	performed	for	

each	pixel.	

Very	often	a	single	bitmap	is	rendered	on	different	surfaces	multiple	times.	The	calculations	

shown	above	can	be	speeded	up	somewhat	if	the	Red,	Green,	and	Blue	components	of	the	

pixels	in	the	bitmap	have	already	been	multiplied	by	the	Alpha	channel.	These	premultiplied	

components	are	calculated	like	so:	

and	similarly	for	Green	and	Blue.	The	resultant	formulas	for	rendering	the	bitmap	have	half	

the	number	of	multiplications:	

Whenever	you’re	working	with	the	Pixels	property	of	WriteableBitmap,	you’re	dealing	with	

premultiplied	alphas.	For	example,	suppose	you	want	a	pixel	in	the	bitmap	to	have	an	RGB	

color	value	of	(40,	60,	255)	but	with	an	Alpha	value	of	192.	The	ARGB	value	in	the	bitmap	

would	be	(192,	30,	45,	192).	Each	of	the	R,	G,	and	B	values	have	been	multiplied	by	192/255	or	

about	0.75.	

In	any	premultiplied	color	value,	the	R,	G,	or	B	values	should	all	be	less	than	or	equal	to	the	A	

value.	Nothing	will	“blow	up”	if	any	R,	G,	or	B	value	is	greater	than	A,	but	you	won’t	get	the	

level	of	transparency	you	want.	

When	working	with	ARGB	color	values	without	premultiplied	alphas,	there	is	a	distinction	

between	“transparent	black,”	the	ARGB	color	(0,	0,	0,	0),	and	“transparent	white,”	the	ARGB	

color	(0,	255,	255,	255).	With	premultiplied	alphas,	the	distinction	disappears	because	

transparent	white	is	also	(0,	0,	0,	0).	

When	you	first	create	a	WriteableBitmap,	all	the	pixels	are	zero,	which	you	can	think	of	as	

“transparent	black”	or	“transparent	white”	or	“transparent	chartreuse.”	

By	directly	writing	into	the	Pixels	array	of	a	WriteableBitmap	you	can	create	any	type	of	image	

you	can	conceive.	

Comparatively	simple	algorithms	let	you	create	styles	of	brushes	that	are	not	supported	by	

the	standard	Brush	derivatives.	The	content	area	of	the	CircularGradient	project	consists	solely	

of	an	Image	element	waiting	for	a	bitmap:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Image Name="img"

 HorizontalAlignment="Center"

472	

	

	 	 	

	 	 	

	

	 	 	 	 	 	

	 	 	

	 	

	 	 	 	

	

	 	 	 	

	 	 	

 VerticalAlignment="Center" />

</Grid>

The	codebehind	file	for	MainPage	defines	a	rather	arbitrary	radius	value	and	makes	a	square	

WriteableBitmap	twice	that	value.	The	two	for	loops	for	x	and	y	touch	every	pixel	in	that	

bitmap:	

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage

{

 const int RADIUS = 200;

 public MainPage()

 {

InitializeComponent();

WriteableBitmap writeableBitmap = new WriteableBitmap(2 * RADIUS, 2 *

RADIUS);

for (int y = 0; y < writeableBitmap.PixelWidth; y++)

 for (int x = 0; x < writeableBitmap.PixelHeight; x++)

 {

 if (Math.Sqrt(Math.Pow(x - RADIUS, 2) + Math.Pow(y - RADIUS, 2)) <

RADIUS)

 {

 double angle = Math.Atan2(y - RADIUS, x - RADIUS);

 byte R = (byte)(255 * Math.Abs(angle) / Math.PI);

 byte B = (byte)(255 - R);

 int color = 255 << 24 | R << 16 | B;

 writeableBitmap.Pixels[y * writeableBitmap.PixelWidth + x] =

color;

 }

 }

writeableBitmap.Invalidate();

img.Source = writeableBitmap;

 }

}

The	center	of	the	WriteableBitmap	is	the	point	(200,	200).	The	code	within	the	nested	for

loops	begins	by	skipping	every	pixel	that	is	more	than	200	pixels	in	length	from	that	center.	

Within	the	square	bitmap,	only	a	circle	will	have	nontransparent	pixels.	

If	you	connect	that	center	point	with	any	pixel	in	the	bitmap,	the	line	makes	an	angle	with	the	

horizontal	axis.	The	angle	of	that	line	is	obtained	from	the	Math.Atan2	method.	The	method	

then	assigns	values	to	the	R	and	B	variables	based	on	this	angle,	creates	a	color	value,	and	

stores	it	in	the	Pixels	array.	A	call	to	Invalidate	then	makes	the	actual	bitmap	image	match	

these	pixels,	and	the	bitmap	is	set	to	the	Source	property	of	the	Image	element:	

473

	

	

	

	 	

	

	 	 	

	 	

	 	 	

	

Vector
Graphics
on
a
Bitmap

You	can	combine	the	two	approaches	of	drawing	on	a	WriteableBitmap.	The	next	sample	

displays	a	Path	on	a	WriteableBitmap	against	a	gradient	that	uses	transparency	so	that	you	

can	see	how	the	premultiplied	alphas	work.	

I’m	sure	you	remember	the	Path	element	from	the	end	of	the	previous	chapter	that	displayed	

a	cat	from	a	string	in	the	Silverlight	Path	Markup	Syntax.	The	goal	of	the	VectorToRaster	

program	is	to	make	a	bitmap	of	precisely	the	right	size	for	that	cat,	and	then	put	that	cat	in	

the	bitmap.	

The	Path	Markup	Syntax	for	the	cat	is	defined	in	a	Path	element	in	the	Resources	section	of	

the	MainPage.xaml	file:	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.Resources>

<Path x:Key="catPath"

 Data="M 160 140 L 150 50 220 103

 M 320 140 L 330 50 260 103

 M 215 230 L 40 200

 M 215 240 L 40 240

 M 215 250 L 40 280

 M 265 230 L 440 200

 M 265 240 L 440 240

474	

	

	 	

	 	 	 	

	 	 	

	

	 	 	 	

	 	 	 	

	 	 	

	 	 	 	

	

 M 265 250 L 440 280

 M 240 100 A 100 100 0 0 1 240 300

 A 100 100 0 0 1 240 100

 M 180 170 A 40 40 0 0 1 220 170

 A 40 40 0 0 1 180 170

 M 300 170 A 40 40 0 0 1 260 170

 A 40 40 0 0 1 300 170" />

</phone:PhoneApplicationPage.Resources>

This	is	not	exactly	the	way	I	wanted	to	define	the	PathGeometry	in	the	XAML	Resources

collection.	I	would	have	preferred	defining	the	PathGeometry	directly	without	a	Path.	But	no	

matter	how	I	tried	it—setting	the	Path	Markup	Syntax	string	to	the	Figures	property	of	a	

PathGeometry	or	putting	the	string	between	a	PathGeometry	start	tag	and	end	tag—I	could	

not	get	it	to	work.	

I’m	using	this	Path	element	solely	to	force	the	XAML	parser	to	acknowledge	this	string	as	Path	

Markup	Syntax;	the	Path	element	won’t	be	used	for	any	other	purpose	in	the	program.	

The	content	area	consists	of	just	an	Image	element	awaiting	a	bitmap:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Image Name="img"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Grid>

Everything	else	happens	in	the	constructor	of	the	MainPage	class.	It’s	a	little	lengthy	but	well	

commented	and	I’ll	also	walk	you	through	the	logic:	

Silverlight Project: File: (excerpt)

public MainPage()

{

 InitializeComponent();

// Get PathGeometry from resource

Path catPath = this.Resources["catPath"] as Path;

PathGeometry pathGeometry = catPath.Data as PathGeometry;

 catPath.Data = null;

// Get geometry bounds

Rect bounds = pathGeometry.Bounds;

// Create new path for rendering on bitmap

Path newPath = new Path

 {

475

	

Stroke = this.Resources["PhoneForegroundBrush"] as Brush,

StrokeThickness = 5,

Data = pathGeometry

 };

// Create the WriteableBitmap

WriteableBitmap writeableBitmap =

new WriteableBitmap((int)(bounds.Width + newPath.StrokeThickness),

(int)(bounds.Height + newPath.StrokeThickness));

// Color the background of the bitmap

Color baseColor = (Color)this.Resources["PhoneAccentColor"];

// Treat the bitmap as an ellipse:

// radiusX and radiusY are also the centers!

double radiusX = writeableBitmap.PixelWidth / 2.0;

double radiusY = writeableBitmap.PixelHeight / 2.0;

for (int y = 0; y < writeableBitmap.PixelHeight; y++)

for (int x = 0; x < writeableBitmap.PixelWidth; x++)

{

double angle = Math.Atan2(y - radiusY, x - radiusX);

double ellipseX = radiusX * (1 + Math.Cos(angle));

double ellipseY = radiusY * (1 + Math.Sin(angle));

double ellipseToCenter =

Math.Sqrt(Math.Pow(ellipseX - radiusX, 2) +

Math.Pow(ellipseY - radiusY, 2));

double pointToCenter =

Math.Sqrt(Math.Pow(x - radiusX, 2) + Math.Pow(y - radiusY, 2));

double opacity = Math.Min(1, pointToCenter / ellipseToCenter);

byte A = (byte)(opacity * 255);

byte R = (byte)(opacity * baseColor.R);

byte G = (byte)(opacity * baseColor.G);

byte B = (byte)(opacity * baseColor.B);

int color = A << 24 | R << 16 | G << 8 | B;

 writeableBitmap.Pixels[y * writeableBitmap.PixelWidth + x] = color;

}

 writeableBitmap.Invalidate();

// Find transform to move Path to edges

TranslateTransform translate = new TranslateTransform

 {

X = -bounds.X + newPath.StrokeThickness / 2,

Y = -bounds.Y + newPath.StrokeThickness / 2

 };

 writeableBitmap.Render(newPath, translate);

 writeableBitmap.Invalidate();

476	

	

	 	 	

	 	 	 	 	

	 	 	 	 	 	

	 	

	 	 	 	

	 	 	

	

	 	 	 	 	 	 	 	 	

	

	 	 	 	 	 	

	 	 	 	 	

	 	

	 	 	 	

	

	 	

	

	 	

	 	

	 	 	

	 	

	 	 	

	

	 	 	 	 	

	 	 	

	 	 	

	 	

// Set bitmap to Image element

 img.Source = writeableBitmap;

}

The	code	begins	by	obtaining	the	PathGeometry	from	the	Resources	collection.	Because	it’s	

attached	to	a	Path element,	it	normally	wouldn’t	be	usable	for	other	purposes.	That’s	why	the	

Data	property	of	that	Path	element	is	assigned	null.	The	Path	element	is	now	abandoned	and	

has	no	more	role	in	this	program.	

The	Bounds	property	defined	by	Geometry	returns	the	Rect	object	indicating	the	coordinate	of	

the	upperleft	corner	of	the	PathGeometry—in	this	case	the	point	(40,50)—and	its	width	and	

height,	in	this	case,	400	and	250,	respectively.	Notice	that	these	values	are	strictly	geometric	

and	do	not	take	account	of	any	nonzero	stroke	widths	that	may	be	present	when	rendering	

the	geometry.	

The	code	then	creates	a	Path element	for	this	geometry.	Unlike	the	Path	element	in	the	

Resources	collection	of	the	XAML	file,	this	Path	has	an	actual	Stroke	brush	and	a	

StrokeThickness	value	of	5.	

How	large	will	the	rendered	geometry	actually	be?	We	know	it	will	be	at	least	400	pixels	wide	

and	250	pixels	tall.	Beyond	that,	an	exact	calculation	is	difficult,	but	a	reasonable	calculation	is	

easy:	If	all	the	lines	in	the	geometry	are	stroked	with	a	thickness	of	5,	then	the	rendered	

geometry	will	be	2.5	pixels	more	on	the	left,	top,	right,	and	bottom,	or	5	pixels	more	than	the	

width	and	height	of	the	geometry.	This	is	the	calculation	used	to	create	a	WriteableBitmap	of	

the	correct	size.	(This	is	not	sufficient	to	account	for	miter	joins,	and	might	be	a	little	more	

than	is	needed	for	other	line	caps	and	joins,	but	the	calculation	is	easy	and	usually	adequate.)	

Before	rendering	the	Path	on	the	WriteableBitmap,	I	want	to	give	the	bitmap	a	gradient	brush	

that	is	transparent	in	the	center	but	the	current	accent	color	at	the	edges:	

Color baseColor = (Color)this.Resources["PhoneAccentColor"];

The	gradient	actually	might	be	more	attractive	the	other	way	around	(that	is,	transparent	at	

the	edges)	but	I	want	you	to	see	how	close	the	bitmap	comes	to	matching	the	size	of	the	

rendered	geometry.	

At	this	point,	two	nested	for	loops	take	x	and	y	though	all	the	pixels	of	the	bitmap.	For	each	

pixel,	an	opacity	value	is	calculated	ranging	from	0	(transparent)	to	1	(opaque):	

double opacity = Math.Min(1, pointToCenter / ellipseToCenter);

This	opacity	value	is	used	not	only	to	calculate	the	Alpha	byte	but	also	as	a	premultiplication	

factor	for	the	Red,	Green,	and	Blue	values:	

byte A = (byte)(opacity * 255);

byte R = (byte)(opacity * baseColor.R);

477	

	

	 	

	 	 	 	

	

	 	 	

	 	

	 	 	

	 	 	

	 	 	

	 	

	

byte G = (byte)(opacity * baseColor.G);

byte B = (byte)(opacity * baseColor.B);

Then	it’s	just	a	matter	of	shifting	all	the	color	components	into	place	and	indexing	the	Pixels

array:	

int color = A << 24 | R << 16 | G << 8 | B;

writeableBitmap.Pixels[y * writeableBitmap.PixelWidth + x] = color;

At	this	point,	the	program	is	done	referencing	the	Pixels	array,	so	the	actual	image	must	be	

updated:	

writeableBitmap.Invalidate();

Now	the	Path	element	named	newPath	must	be	rendered	on	the	bitmap.	This	Path	element	

has	a	PathGeometry with	an	upperleft	corner	at	the	point	(40,	50)	but	the	WriteableBitmap

was	sized	only	to	account	for	the	width	and	height	of	the	geometry	with	nonzero	stroke	

thickness.	When	rendering	the	Path	on	the	WriteableBitmap,	a	TranslateTransform	must	shift	

left	and	up	by	the	X	and	Y	values	of	the	rectangle	obtained	from	the	Bounds	property	of	the	

PathGeometry.	But	then	the	Path	also	needs	to	be	shifted	a	little	right	and	down	to	

accommodate	the	stroke	thickness:	

TranslateTransform translate = new TranslateTransform

{

 X = -bounds.X + newPath.StrokeThickness / 2,

 Y = -bounds.Y + newPath.StrokeThickness / 2

};

Now	the	Path can	be	rendered	on	the	WriteableBitmap:	

writeableBitmap.Render(newPath, translate);

writeableBitmap.Invalidate();

478	

	

	

	 	 	 	

	 	 	 	 	 	

	 	 	

	

Here’s	the	result:	

The	bitmap	matches	the	geometry	exactly	at	the	bottom,	but	it’s	a	little	larger	on	the	left	and	

right.	(Give	those	whiskers	rounded	ends	and	they’ll	come	precisely	to	the	edge.)	The	top	of	

the	bitmap	is	insufficient	to	accomodate	the	miter	join	of	the	ears.	Make	that	a	round	join,	

and	you’ll	see	a	better	match.	Try	adding	the	following	three	assignments	to	the	definition	of	

newPath:	

StrokeStartLineCap = PenLineCap.Round,

StrokeEndLineCap = PenLineCap.Round,

StrokeLineJoin = PenLineJoin.Round,

479	

	

	

	 	 	 	

	 	

	

	

	 	 	 	

	 	 	

	 	

	

	 	 	 	

	

	 	

	

	 	 	

	

Now	the	bitmap	is	precisely	right:	

Images
and
Tombstoning

In	the	1890s,	American	puzzlemake	Sam	Loyd	popularized	a	puzzle	that	was	invented	a	

couple	decades	earlier	and	has	since	come	to	be	known	as	the	15	Puzzle,	or	the	1415	Puzzle,	

or	(in	France)	Jeu de Taquin,	the	“teasing	game.”	In	its	classic	form,	the	puzzle	consists	of	15	

tiles	labeled	1	through	15	arranged	randomly	in	a	4×4	grid,	leaving	one	blank	tile.	The	goal	is	

to	shift	the	tiles	around	so	the	numbers	are	sequential.	

In	computer	form,	this	puzzle	was	one	of	the	first	game	programs	created	for	the	Apple	

Macintosh,	where	it	was	called	PUZZLE.	A	Windows	version	appeared	in	early	versions	of	the	

Microsoft	Windows	Software	Development	Kit	(SDK)	under	the	name	MUZZLE,	where	it	was	

the	only	sample	program	in	the	SDK	coded	in	Microsoft	Pascal	rather	than	C.	

The	version	I’m	going	to	show	you	does	not	use	numbered	tiles.	Instead	it	lets	you	access	a	

photo	from	the	phone’s	picture	library	and	chops	that	up	into	tiles.	(The	game	becomes	

rather	more	difficult	as	a	result.)	As	a	bonus,	the	program	shows	you	how	to	save	images	

when	an	application	is	tombstoned.	

The	program’s	content	area	consists	of	a	Grid	named	playGrid	(used	for	holding	the	tiles)	and	

two	buttons:	

480	

	

	

	 	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Grid.RowDefinitions>

<RowDefinition Height="*" />

<RowDefinition Height="Auto" />

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>

<ColumnDefinition Width="*" />

<ColumnDefinition Width="*" />

</Grid.ColumnDefinitions>

<Grid Name="playGrid"

 Grid.Row="0" Grid.Column="0" Grid.ColumnSpan="2"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

<Button Content="load"

 Grid.Row="1" Grid.Column="0"

 Click="OnLoadClick" />

<Button Name="scrambleButton"

 Content="scramble"

 Grid.Row="2" Grid.Column="1"

 IsEnabled="False"

 Click="OnScrambleClick" />

</Grid>

Seemingly	redundantly,	the	XAML	file	also	includes	two	buttons	in	the	ApplicationBar	also	

labeled	“load”	and	“scramble”:	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.ApplicationBar>

<shell:ApplicationBar IsVisible="False">

<shell:ApplicationBarIconButton x:Name="appbarLoadButton"

 IconUri="/Images/appbar.folder.rest.png"

 Text="load"

 Click="OnLoadClick" />

<shell:ApplicationBarIconButton x:Name="appbarScrambleButton"

 IconUri="/Images/appbar.refresh.rest.png"

 Text="scramble"

 IsEnabled="False"

 Click="OnScrambleClick" />

</shell:ApplicationBar>

</phone:PhoneApplicationPage.ApplicationBar>

481	

	

	 	

	 	

	 	 	

	

	 	

	 	

	 	 	

	

	 	

	

I	couldn’t	get	the	randomizing	feature	to	work	when	it	was	initiated	from	the	ApplicationBar,	

but	I	left	in	the	markup	(and	the	code)	and	set	IsVisible	to	false.	Maybe	someday	the	

ApplicationBar will	behave	better.	

The	MainPage	class	in	the	codebehind	file	begins	with	some	constants.	The	program	is	set	up	

for	4	tiles	horizontally	and	vertically	but	you	can	change	those.	(Obviously	in	Portrait	mode,	

the	program	works	best	if	VERT_TILES	is	greater	than	HORZ_TILES.)	Other	fields	involve	

storing	state	information	in	the	PhoneApplicationService	object	for	tombstoning,	and	using	

the	PhotoChooserTask for	picking	a	photo.	

The	tileImages	array	is	extremely	important.	This	array	stores	all	the	Image	elements	for	the	

tiles.	At	any	time,	one	of	the	members	of	this	array	will	be	null,	representing	the	empty	space.	

That	empty	space	is	also	indicated	by	the	emptyRow	and	emptyCol	indices.	

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage

{

 const int HORZ_TILES = 4;

 const int VERT_TILES = 4;

 const int MARGIN = 2;

PhoneApplicationService appService = PhoneApplicationService.Current;

PhotoChooserTask photoChooser = new PhotoChooserTask();

Random rand = new Random();

Image[,] tileImages = new Image[VERT_TILES, HORZ_TILES];

 bool haveValidTileImages;

 int emptyRow, emptyCol;

 int scrambleCountdown;

 public MainPage()

 {

InitializeComponent();

for (int col = 0; col < HORZ_TILES; col++)

{

ColumnDefinition coldef = new ColumnDefinition();

 coldef.Width = new GridLength(1, GridUnitType.Star);

 playGrid.ColumnDefinitions.Add(coldef);

}

for (int row = 0; row < VERT_TILES; row++)

{

RowDefinition rowdef = new RowDefinition();

 rowdef.Height = new GridLength(1, GridUnitType.Star);

 playGrid.RowDefinitions.Add(rowdef);

}

appbarScrambleButton = this.ApplicationBar.Buttons[1] as

ApplicationBarIconButton;

482	

	

	 	

	 	 	 	

	

	 	

	 	

	 	 	 	

	 	

	 	 	

	 	 	

	 	

	

photoChooser.Completed += OnPhotoChooserCompleted;

 }

 …

}

In	the	constructor,	the	program	initializes	the	ColumnDefinition	and	RowDefinition	collections	

of	the	Grid	that	holds	the	tiles,	and	(as	usual)	sets	a	handler	for	the	Completed	event	of	the	

PhotoChooserTask.	

When	the	user	clicks	the	button	labeled	“load”,	the	program	determines	how	large	each	tile	

should	be	based	on	the	width	and	height	of	the	content	area,	the	number	of	tiles,	and	the	

margin.	This	value	is	set	to	the	PixelWidth	and	PixelHeight	properties	of	the	

PhotoChooserTask:	

Silverlight Project: File: (excerpt)

void OnLoadClick(object sender, EventArgs args)

{

int tileSize = (int)Math.Min(ContentPanel.ActualWidth / HORZ_TILES,

ContentPanel.ActualHeight / VERT_TILES)

- 2 * MARGIN;

 photoChooser.PixelWidth = tileSize * HORZ_TILES;

 photoChooser.PixelHeight = tileSize * VERT_TILES;

 photoChooser.Show();

}

On	return	from	the	PhotoChooserTask,	the	event	handler	divides	the	bitmap	into	small	square	

tiles	and	creates	an	Image	element	for	each	square.	The	SubdivideBitmap	program	earlier	in	

this	chapter	showed	how	to	chop	up	a	bitmap	into	squares	using	the	Render	method	of	

WriteableBitmap.	This	program	instead	does	it	by	creating	WriteableBitmap	objects	of	the	tile	

size,	and	then	copying	pixels	into	their	individual	Pixels	arrays	from	the	fullsize	returned	

bitmap:	

Silverlight Project: File: (excerpt)

void OnPhotoChooserCompleted(object sender, PhotoResult args)

{

if (args.Error == null && args.ChosenPhoto != null)

{

BitmapImage bitmapImage = new BitmapImage();

bitmapImage.SetSource(args.ChosenPhoto);

WriteableBitmap writeableBitmap = new WriteableBitmap(bitmapImage);

int tileSize = writeableBitmap.PixelWidth / HORZ_TILES;

emptyCol = HORZ_TILES - 1;

483	

	

	 	 	 	 	 	

	

emptyRow = VERT_TILES - 1;

for (int row = 0; row < VERT_TILES; row++)

for (int col = 0; col < HORZ_TILES; col++)

if (row != emptyRow || col != emptyCol)

 {

WriteableBitmap tile = new WriteableBitmap(tileSize, tileSize);

for (int y = 0; y < tileSize; y++)

for (int x = 0; x < tileSize; x++)

 {

int yBit = row * tileSize + y;

int xBit = col * tileSize + x;

tile.Pixels[y * tileSize + x] =

 writeableBitmap.Pixels[yBit *

 writeableBitmap.PixelWidth + xBit];

 }

 GenerateImageTile(tile, row, col);

 }

haveValidTileImages = true;

scrambleButton.IsEnabled = true;

appbarScrambleButton.IsEnabled = true;

}

}

void GenerateImageTile(BitmapSource tile, int row, int col)

{

Image img = new Image();

 img.Stretch = Stretch.None;

 img.Source = tile;

 img.Margin = new Thickness(MARGIN);

 tileImages[row, col] = img;

Grid.SetRow(img, row);

Grid.SetColumn(img, col);

 playGrid.Children.Add(img);

}

Actually	creating	the	Image elements	and	adding	them	to	the	Grid is	the	responsibility	of	the	

GenerateImageTile,	which	also	stores	the	Image	elements	in	the	tileImages	array.	

484	

	

	

	

	 	 	

	

	 	 	

	 	 	

	 	

	 	 	 	 	

	 	

	

	

At	this	point,	the	tiles	are	not	in	a	random	order,	but	it’s	still	possible	to	move	them	around.	

As	you	begin	thinking	about	how	tiles	move,	you’ll	discover	that	it’s	algorithmically	much	

simpler	than	you	might	have	initially	guessed.	Think	about	it	in	terms	of	the	empty	square.	

What	tiles	can	be	moved	into	that	square?	Only	the	tiles	on	the	left,	top,	right,	and	bottom	of	

that	square,	and	those	tiles	can	move	in	only	one	direction.	This	means	that	the	user	interface	

need	only	take	account	of	taps	and	not	bother	with	any	type	of	tile	sliding.	

If	you	think	about	the	game	further,	you’ll	see	that	you	can	move	multiple	tiles	at	once	by	

tapping	any	tile	in	the	same	row	or	the	same	column	as	the	empty	square.	There’s	absolutely	

no	ambiguity.	

Here’s	the	entire	manipulation	logic:	

Silverlight Project: File: (excerpt)

protected override void OnManipulationStarted(ManipulationStartedEventArgs args)

{

if (args.OriginalSource is Image)

{

Image img = args.OriginalSource as Image;

MoveTile(img);

args.Complete();

args.Handled = true;

}

base.OnManipulationStarted(args);

}

485	

	

	 	 	 	 	 	

	 	 	

	 	

	 	

	 	

void MoveTile(Image img)

{

int touchedRow = -1, touchedCol = -1;

for (int y = 0; y < VERT_TILES; y++)

for (int x = 0; x < HORZ_TILES; x++)

if (tileImages[y, x] == img)

 {

 touchedRow = y;

 touchedCol = x;

 }

if (touchedRow == emptyRow)

 {

int sign = Math.Sign(touchedCol - emptyCol);

for (int x = emptyCol; x != touchedCol; x += sign)

{

 tileImages[touchedRow, x] = tileImages[touchedRow, x + sign];

Grid.SetColumn(tileImages[touchedRow, x], x);

}

tileImages[touchedRow, touchedCol] = null;

emptyCol = touchedCol;

 }

else if (touchedCol == emptyCol)

 {

int sign = Math.Sign(touchedRow - emptyRow);

for (int y = emptyRow; y != touchedRow; y += sign)

{

 tileImages[y, touchedCol] = tileImages[y + sign, touchedCol];

Grid.SetRow(tileImages[y, touchedCol], y);

}

tileImages[touchedRow, touchedCol] = null;

emptyRow = touchedRow;

 }

}

The	MoveTile method	first	determines	the	row	and	column	of	the	tile	that	the	user	touched.	

For	anything	to	happen,	this	row	must	be	the	row	or	the	column	with	the	empty	square.	(It	

can’t	be	both.)	Rather	generalized	for	loops	move	multiple	tiles	up,	down,	left,	or	right.	

The	randomizing	logic	piggybacks	on	this	manipulation	logic.	When	the	“scramble”	button	is	

clicked,	the	program	attaches	a	handler	for	the	CompositionTarget.Rendering	event:	

Silverlight Project: File: (excerpt)

void OnScrambleClick(object sender, EventArgs args)

{

 scrambleCountdown = 10 * VERT_TILES * HORZ_TILES;

 scrambleButton.IsEnabled = false;

486	

	

	

	

	

	

	 	

	 	 	 	 	

	

	

 appbarScrambleButton.IsEnabled = false;

CompositionTarget.Rendering += OnCompositionTargetRendering;

}

void OnCompositionTargetRendering(object sender, EventArgs args)

{

 MoveTile(tileImages[emptyRow, rand.Next(HORZ_TILES)]);

 MoveTile(tileImages[rand.Next(VERT_TILES), emptyCol]);

if (--scrambleCountdown == 0)

 {

CompositionTarget.Rendering -= OnCompositionTargetRendering;

scrambleButton.IsEnabled = true;

appbarScrambleButton.IsEnabled = true;

}

}

The	event	handler	calls	MoveTile	twice,	once	to	move	a	tile	from	the	same	row	as	the	empty	

square,	and	secondly	to	move	a	tile	from	the	same	column	as	the	empty	square.	

This	program	also	handles	tombstoning,	which	means	that	it	saves	the	entire	game	state	

when	the	user	navigates	away	from	the	page,	and	restores	that	game	state	when	the	game	is	

reactivated.	

I	managed	to	restrict	game	state	to	just	a	few	fields:	The	haveValidTileImages	field	is	true	if	

the	tileImages	array	contains	valid	Image	elements;	otherwise	there’s	really	nothing	going	on.	

The	emptyRow	and	emptyCol	fields	are	also	crucial.	Most	important,	of	course,	are	the	actual	

487

	

	 	 	

	

	

	 	 	

	 	

	 	 	 	 	 	

	

	

bitmaps	that	make	up	the	tiles.	Rather	than	save	the	entire	Pixels array	of	each	

WriteableBitmap,	I	decided	to	save	space	by	saving	these	images	in	a	compressed	JPEG	

format:	

Silverlight Project: File: (excerpt)

protected override void OnNavigatedFrom(NavigationEventArgs args)

{

 appService.State["haveValidTileImages"] = haveValidTileImages;

if (haveValidTileImages)

 {

appService.State["emptyRow"] = emptyRow;

appService.State["emptyCol"] = emptyCol;

for (int row = 0; row < VERT_TILES; row++)

for (int col = 0; col < HORZ_TILES; col++)

if (col != emptyCol || row != emptyRow)

 {

WriteableBitmap tile = tileImages[row, col].Source as

WriteableBitmap;

MemoryStream stream = new MemoryStream();

 tile.SaveJpeg(stream, tile.PixelWidth, tile.PixelHeight, 0, 75);

 appService.State[TileKey(row, col)] = stream.GetBuffer();

 }

 }

base.OnNavigatedFrom(args);

}

…

string TileKey(int row, int col)

{

return String.Format("tile {0} {1}", row, col);

}

For	each	Image	element	in	the	tileImages	array,	the	program	obtains	the	corresponding	

WriteableBitmap	and	creates	a	new	MemoryStream.	The	extension	method	SaveJpeg	allows	

saving	the	WriteableBitmap in	JPEG	format	into	the	stream.	The	GetBuffer	method	of	

MemoryStream	obtains	a	byte	array	that	is	simply	saved	with	the	other	state	information.	

When	the	program	returns	from	its	tombstoned	state,	the	process	goes	in	reverse:	

Silverlight Project: File: (excerpt)

protected override void OnNavigatedTo(NavigationEventArgs args)

{

object objHaveValidTileImages;

if (appService.State.TryGetValue("haveValidTileImages", out

488	

	

	 	 	

	 	

	 	

	 	 	 	 	

	 	 	 	 	

	 	

	 	 	

	 	

	 	

	

	 	

	 	 	 	

	 	

objHaveValidTileImages) &&

(bool)objHaveValidTileImages)

 {

emptyRow = (int)appService.State["emptyRow"];

emptyCol = (int)appService.State["emptyCol"];

for (int row = 0; row < VERT_TILES; row++)

for (int col = 0; col < HORZ_TILES; col++)

if (col != emptyCol || row != emptyRow)

 {

byte[] buffer = (byte[])appService.State[TileKey(row, col)];

MemoryStream stream = new MemoryStream(buffer);

BitmapImage bitmapImage = new BitmapImage();

 bitmapImage.SetSource(stream);

WriteableBitmap tile = new WriteableBitmap(bitmapImage);

 GenerateImageTile(tile, row, col);

 }

haveValidTileImages = true;

appbarScrambleButton.IsEnabled = true;

}

base.OnNavigatedTo(args);

}

The	method	reads	the	byte	buffer	and	converts	into	a	MemoryStream,	from	which	a	

BitmapImage and	then	a	WriteableBitmap	is	created.	The	method	then	uses	the	earlier	

GenerateTileImage method	to	create	each	Image	element	and	add	it	to	the	Grid.	

It’s	important	to	keep	in	mind	that	this	byte	array	used	to	save	and	restore	the	bitmap	is	very	

different	from	the	int	array	available	from	the	Pixels	property	of	WriteableBitmap.	The	Pixels

array	has	a	value	for	every	pixel	in	the	bitmap,	but	the	byte	array	is	the	compressed	bitmap	in	

JPEG	format,	with	all	the	JPEG	file	information	and	headers	and	such.	

Saving
to
the
Picture
Library

The	remaining	two	programs	in	this	chapter	create	images	that	you	might	want	to	save	for	

posterity	(if	not	prosperity).	For	example,	a	program	might	want	to	save	a	bitmap	in	isolated	

storage	so	the	user	can	work	on	a	particular	image	from	session	to	session.	

However,	it	is	most	valuable	to	the	user	to	save	a	bitmap	into	the	picture	library	on	the	

phone.	There	is	a	special	folder	(or	“album”	as	it’s	termed)	called	“Saved	Pictures”	specifically	

for	this	purpose.	From	the	picture	library,	the	user	can	view	the	resultant	bitmap,	or	email	it,	

or	send	it	with	a	text	message.	The	bitmap	is	also	moved	to	the	user’s	PC	during	normal	

synchronization,	at	which	point	it	might	be	printed.	

489	

	

	 	 	

	 	 	 	

	

	 	

	 	 	

	 	 	

	 	 	

	

	 	 	 	 	 	 	

	 	

	 	

	 	 	 	

	 	 	

	 	

	

	

	

	 	 	 	

	

	 	

	 	 	 	 	

	

	 	

	 	

	

Access	to	the	picture	library	is	provided	with	the	XNA	libraries,	but	you	can	use	those	libraries	

from	a	Silverlight	program.	You’ll	need	a	reference	to	the	Microsoft.Xna.Framework	library,	

and	a	using	directive	for	the	Microsoft.Xna.Framework.Media	namespace.	

In	your	program,	you	create	an	instance	of	the	MediaLibrary	class.	The	SavedPictures	property	

returns	a	PictureCollection	with	a	Picture object	for	each	item	currently	in	the	Saved	Pictures	

album.	These	can	be	presented	to	the	user	with	names.		

The	MediaLibrary class	also	contains	a	method	named	SavePicture	that	requires	two	

arguments:	a	filename	and	a	Stream	referencing	a	bitmap	in	JPEG	format.	This	Stream	object	

is	commonly	a	MemoryStream whose	contents	have	been	created	by	a	call	to	the	SaveJpeg

extension	method	of	WriteableBitmap.	

The	Monochromize	program	lets	the	user	select	a	picture	from	the	picture	library.	As	soon	as	

the	program	obtains	the	photo	in	the	form	of	a	WriteableBitmap,	it	accesses	the	Pixels

property	and	converts	it	to	monochrome.	A	Save	button	navigates	to	a	screen	that	lets	the	

user	enter	a	filename	and	press	OK;	on	navigation	back	to	the	program,	the	monochrome	

bitmap	is	saved	to	the	picture	library	under	that	name.	

The	page	in	Monochromize	that	lets	the	user	enter	a	filename	is	the	Windows	Phone	7	

equivalent	of	a	traditional	savefile	dialog	box,	and	so	I	called	it	SaveFileDialog.	It	derives	from	

PhoneApplicationPage and	resides	in	the	Petzold.Phone.Silverlight	library.		

I	took	a	little	different	strategy	to	return	filename	information	to	the	particular	program	that	

makes	use	of	the	SaveFileDialog	page:	When	the	user	presses	the	“save”	or	“cancel”	button,	

SaveFileDialog	calls	the	GoBack	method	of	the	NavigationService object	as	usual,	but	during	

the	subsequent	OnNavigagedFrom	override,	it	attempts	to	call	a	method	in	the	program’s	

main	page	called	SaveFileDialogCompleted.	For	this	reason,	any	page	that	navigates	to	

SaveFileDialog	should	also	implement	the	following	interface:	

Silverlight Project: Petzold.Phone.Silverlight File: ISaveFileDialogCompleted.cs

namespace Petzold.Phone.Silverlight

{

 public interface ISaveFileDialogCompleted

 {

void SaveFileDialogCompleted(bool okPressed, string filename);

 }

}

The	content	area	of	SaveFileDialog	has	the	traditional	TextBox	with	two	buttons	labeled	“save”	

and	“cancel”:	

490	

	

	 	 	

	 	 	

Silverlight Project: Petzold.Phone.Silverlight File: SaveFileDialog.xaml (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<StackPanel>

<TextBlock Text="file name" />

<TextBox Name="txtbox"

 TextChanged="OnTextBoxTextChanged" />

<Grid>

<Grid.ColumnDefinitions>

<ColumnDefinition Width="*" />

<ColumnDefinition Width="*" />

</Grid.ColumnDefinitions>

<Button Name="saveButton"

 Content="save"

 Grid.Column="0"

 IsEnabled="False"

 Click="OnSaveButtonClick" />

<Button Content="cancel"

 Grid.Column="2"

 Click="OnCancelButtonClick" />

</Grid>

</StackPanel>

</Grid>

The	codebehind	file	also	defines	a	public	method	named	SetTitle.	A	program	that	makes	use	

of	SaveFileDialog	can	call	that	method	to	set	the	title	of	the	page	with	the	application	name:	

Silverlight Project: Petzold.Phone.Silverlight File: SaveFileDialog.xaml.cs (excerpt)

public partial class SaveFileDialog : PhoneApplicationPage

{

PhoneApplicationService appService = PhoneApplicationService.Current;

 bool okPressed;

 string filename;

 public SaveFileDialog()

 {

InitializeComponent();

 }

 public void SetTitle(string appTitle)

 {

ApplicationTitle.Text = appTitle;

 }

 void OnTextBoxTextChanged(object sender, TextChangedEventArgs args)

{

saveButton.IsEnabled = txtbox.Text.Length > 0;

 }

491	

	

	

	

	 	 	 	 	

	 	 	 	

	

	 	 	

 void OnSaveButtonClick(object sender, RoutedEventArgs args)

 {

okPressed = true;

filename = txtbox.Text;

this.NavigationService.GoBack();

 }

 void OnCancelButtonClick(object sender, RoutedEventArgs args)

{

okPressed = false;

this.NavigationService.GoBack();

 }

 …

}

Notice	also	that	the	“save”	button	is	disabled	unless	the	TextBox	contains	at	least	a	one

character	filename.	

The	navigation	overrides	need	to	handle	a	couple	jobs.	The	OnNavigatedTo	method	checks	if	

the	query	string	contains	an	initial	filename.	(The	Monochromize	program	does	not	make	use	

of	this	feature,	but	the	following	program	in	this	chapter	does.)	The	methods	also	handle	

tombstoning	by	saving	the	application	title	and	any	filename	the	user	might	have	entered:	

Silverlight Project: Petzold.Phone.Silverlight File: SaveFileDialog.xaml.cs (excerpt)

protected override void OnNavigatedTo(NavigationEventArgs args)

{

if (appService.State.ContainsKey("filename"))

txtbox.Text = appService.State["filename"] as string;

if (appService.State.ContainsKey("apptitle"))

ApplicationTitle.Text = appService.State["apptitle"] as string;

if (this.NavigationContext.QueryString.ContainsKey("FileName"))

txtbox.Text = this.NavigationContext.QueryString["FileName"];

base.OnNavigatedTo(args);

}

protected override void OnNavigatedFrom(NavigationEventArgs args)

{

if (!String.IsNullOrEmpty(txtbox.Text))

appService.State["filename"] = txtbox.Text;

 appService.State["apptitle"] = ApplicationTitle.Text;

if (args.Content is ISaveFileDialogCompleted)

(args.Content as ISaveFileDialogCompleted).

 SaveFileDialogCompleted(okPressed, filename);

492

	

	

	 	 	

	

	 	

	

	 	

base.OnNavigatedFrom(args);

}

The	most	important	part	of	OnNavigagedFrom	is	at	the	bottom	of	the	method,	where	it	

checks	if	the	page	it’s	navigating	to	implements	the	ISaveFileDialogCompleted	interface	and	if	

so,	calls	the	SaveFileDialogCompleted	method	in	that	page.	

In	the	Monochromize	program	itself,	the	content	area	in	the	XAML	file	contains	only	an	

Image	element	with	no	bitmap:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Image Name="img" />

</Grid>

The	ApplicationBar	has	two	buttons	for	load	and	save:	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.ApplicationBar>

<shell:ApplicationBar>

<shell:ApplicationBarIconButton x:Name="appbarLoadButton"

 IconUri="/Images/appbar.folder.rest.png"

 Text="load"

 Click="OnAppbarLoadClick" />

<shell:ApplicationBarIconButton x:Name="appbarSaveButton"

 IconUri="/Images/appbar.save.rest.png"

 Text="save"

 IsEnabled="False"

 Click="OnAppbarSaveClick" />

</shell:ApplicationBar>

</phone:PhoneApplicationPage.ApplicationBar>

In	the	codebehind	file,	the	fields	are	few,	and	the	only	one	that’s	really	necessary	is	the	

PhotoChooserTask.	(The	PhoneApplicationService	field	is	only	a	convenience,	and	after	the	

program	creates	WriteableBitmap	object,	it	is	also	stored	as	the	Source	property	of	the	Image

element.)	

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage, ISaveFileDialogCompleted

{

PhoneApplicationService appService = PhoneApplicationService.Current;

PhotoChooserTask photoChooser = new PhotoChooserTask();

493	

	

	 	

	 	 	

	 	 	 	 	 	

	 	 	

WriteableBitmap writeableBitmap;

 public MainPage()

 {

InitializeComponent();

appbarLoadButton = this.ApplicationBar.Buttons[0] as

ApplicationBarIconButton;

appbarSaveButton = this.ApplicationBar.Buttons[1] as

ApplicationBarIconButton;

photoChooser.Completed += OnPhotoChooserCompleted;

 }

 …

}

Notice	that	the	class	implements	the	ISaveFileDialogCompleted	interface.	

Clicking	the	“load”	button	causes	the	PhotoChooserTask to	be	invoked;	on	return	the	

Completed	handler	creates	a	WriteableBitmap and	then	changes	every	member	of	the	Pixels

array	by	applying	standard	weights	to	the	Red,	Green,	and	Blue	values.	

Silverlight Project: File: (excerpt)

void OnAppbarLoadClick(object sender, EventArgs args)

{

 appbarSaveButton.IsEnabled = false;

 photoChooser.Show();

}

void OnPhotoChooserCompleted(object sender, PhotoResult args)

{

if (args.Error == null && args.ChosenPhoto != null)

{

BitmapImage bitmapImage = new BitmapImage();

bitmapImage.SetSource(args.ChosenPhoto);

writeableBitmap = new WriteableBitmap(bitmapImage);

// Monochromize

for (int pixel = 0; pixel < writeableBitmap.Pixels.Length; pixel++)

{

int color = writeableBitmap.Pixels[pixel];

byte A = (byte)(color & 0xFF000000 >> 24);

byte R = (byte)(color & 0x00FF0000 >> 16);

byte G = (byte)(color & 0x0000FF00 >> 8);

byte B = (byte)(color & 0x000000FF);

byte gray = (byte)(0.30 * R + 0.59 * G + 0.11 * B);

 color = (A << 24) | (gray << 16) | (gray << 8) | gray;

 writeableBitmap.Pixels[pixel] = color;

}

img.Source = writeableBitmap;

494	

	

	 	 	

	 	

	

	 	 	

	 	 	

	 	

appbarSaveButton.IsEnabled = true;

}

}

The	“monochromized”	WriteableBitmap	is	set	to	the	Source	property	of	the	Image	element	

and	the	save	button	is	enabled.	

Pressing	the	save	button	navigates	to	the	SaveFileDialog.xaml	page	in	the	

Petzold.Phone.Silverlight	library.	As	you’ve	just	seen,	the	SaveFileDialog	class	handles	its	

OnNavigatedFrom override	by	calling	the	SaveFileDialogCompleted	method	in	the	class	that	

it’s	navigating	to:	

Silverlight Project: File: (excerpt)

void OnAppbarSaveClick(object sender, EventArgs args)

{

this.NavigationService.Navigate(

new Uri("/Petzold.Phone.Silverlight;component/SaveFileDialog.xaml",

UriKind.Relative));

}

public void SaveFileDialogCompleted(bool okPressed, string filename)

{

if (okPressed)

 {

MemoryStream memoryStream = new MemoryStream();

495	

	

	

	 	

	

	

	

	

	 	 	 	

	

	 	

writeableBitmap.SaveJpeg(memoryStream, writeableBitmap.PixelWidth,

writeableBitmap.PixelHeight, 0, 75);

memoryStream.Position = 0;

MediaLibrary mediaLib = new MediaLibrary();

mediaLib.SavePicture(filename, memoryStream);

 }

}

The	SaveFileDialogCompleted	method	uses	the	filename	entered	by	the	user	to	write	the	

bitmap	to	the	pictures	library.	This	happens	in	two	steps:	First	the	SaveJpeg	method	writes	the	

WriteableBitmap	to	a	MemoryStream in	JPEG	format.	The	Position	on	the	MemoryStream	is	

then	reset,	and	the	stream	is	saved	to	the	pictures	library.	

The	Monochromize	program	also	handles	tombstoning.	The	OnNavigatedFrom	method	uses	

the	SaveJpeg	extension	method	to	write	to	a	MemoryStream	and	then	saves	the	byte	array.	

This	method	is	also	responsible	for	calling	SetTitle	on	the	SaveFileDialog	if	navigating	to	that	

page:	

Silverlight Project: File: (excerpt)

protected override void OnNavigatedFrom(NavigationEventArgs args)

{

if (writeableBitmap != null)

{

MemoryStream stream = new MemoryStream();

writeableBitmap.SaveJpeg(stream, writeableBitmap.PixelWidth,

 writeableBitmap.PixelHeight, 0, 75);

appService.State["jpegBits"] = stream.GetBuffer();

 }

if (args.Content is SaveFileDialog)

{

SaveFileDialog page = args.Content as SaveFileDialog;

page.SetTitle(ApplicationTitle.Text);

 }

base.OnNavigatedFrom(args);

}

The	OnNavigatedTo	method	is	responsible	for	reactivating	after	tombstoning.	The	byte	array	

is	converted	by	to	a	WriteableBitmap,	and	the	save	button	is	enabled:	

Silverlight Project: File: (excerpt)

protected override void OnNavigatedTo(NavigationEventArgs args)

{

if (appService.State.ContainsKey("jpegBits"))

496	

	

	

	 	 	

	 	 	

	 	

	 	 	

	 	

	 	 	 	

	 	

	

 {

byte[] bitmapBits = (byte[])appService.State["jpegBits"];

MemoryStream stream = new MemoryStream(bitmapBits);

BitmapImage bitmapImage = new BitmapImage();

bitmapImage.SetSource(stream);

writeableBitmap = new WriteableBitmap(bitmapImage);

img.Source = writeableBitmap;

appbarSaveButton.IsEnabled = true;

}

base.OnNavigatedTo(args);

}

Becoming
a
Photo
Extras
Application

Architecturally	and	functionally,	the	Posterizer	program	that	concludes	this	chapter	is	similar	

to	the	Monochromize	program.	It	lets	the	user	select	a	photo	from	the	picture	library	and	to	

save	it	back	in	the	Saved	Pictures	album.	But	the	Posterizer	program	allows	the	user	to	reduce	

the	bit	resolution	of	each	color	independently	(creating	a	posterlike	effect)	and	for	this	it	

needs	to	display	a	row	of	RadioButton	elements.	The	program	must	also	retain	the	original	

unadulterated	pixels	array	so	it	can	restore	the	image	to	full	color	resolution.	

In	addition,	Posterizer	registers	itself	as	a	“photos	extra”	application,	which	means	that	it	can	

be	invoked	by	the	user	from	the	picture	library	itself.	

For	maximum	convenience,	I	decided	to	implement	the	controls	to	select	the	bit	resolution	as	

an	overlay:	

497

	

	

	 	 		

	

	 	

	 	 	

	 	

	 	 	

	 	

	 	 	

	

	 	 	 	

	 	

The	middle	ApplicationBar	button	toggles	the	visibility	of	that	overlay.	The	accent	color	is	

used	to	indicate	the	selected	value	in	each	column.	

This	overlay	is	a	UserControl	derivative	called	BitSelectDialog,	and	I’ll	discuss	that	control	first.	

The	visual	tree	just	defines	a	Grid	with	three	columns	and	nine	rows:	

Silverlight Project: File: (excerpt)

<Grid x:Name="LayoutRoot" Background="Transparent">

<Grid.ColumnDefinitions>

<ColumnDefinition Width="*" />

<ColumnDefinition Width="*" />

<ColumnDefinition Width="*" />

</Grid.ColumnDefinitions>

<Grid.RowDefinitions>

<RowDefinition Height="Auto" />

<RowDefinition Height="*" />

<RowDefinition Height="*" />

<RowDefinition Height="*" />

<RowDefinition Height="*" />

<RowDefinition Height="*" />

<RowDefinition Height="*" />

<RowDefinition Height="*" />

<RowDefinition Height="*" />

<RowDefinition Height="*" />

</Grid.RowDefinitions>

</Grid>

Each	cell	is	a	TextBlock	and	the	codebehind	file	handles	the	manipulation	logic	to	make	them	

behave	like	radio	buttons.	The	public	interface	to	the	class	includes	an	event	and	a	public	

property	that	stores	the	three	current	settings:	

Silverlight Project: File: (excerpt)

public event EventHandler ColorBitsChanged;

…

public int[] ColorBits { protected set; get; }

You	may	see	a	little	flaw	in	this	already.	Although	the	set	accessor	for	the	ColorBits	array	is	

protected	and	the	array	cannot	be	replaced	by	an	external	class,	the	individual	members	of	

the	array	can	be	set,	and	there	is	no	way	for	the	class	to	know	about	it,	let	alone	to	fire	the	

ColorBitsChanged	event.	But	I	allowed	the	flaw	to	exist	rather	than	make	the	class	more	

complex.	

The	class	creates	all	the	TextBlock	elements	in	the	constructor.	Notice	that	the	ColorBits	array	

is	initialized	to	contain	three	values	of	2.	

498	

	

 Silverlight Project: File: (excerpt)

public partial class BitSelectDialog : UserControl

{

Brush selectedBrush;

Brush normalBrush;

TextBlock[,] txtblks = new TextBlock[3, 9];

 …

 public BitSelectDialog()

 {

InitializeComponent();

ColorBits = new int[3];

ColorBits[0] = 2;

ColorBits[1] = 2;

ColorBits[2] = 2;

selectedBrush = this.Resources["PhoneAccentBrush"] as Brush;

normalBrush = this.Resources["PhoneForegroundBrush"] as Brush;

string[] colors = { "red", "green", "blue" };

for (int col = 0; col < 3; col++)

{

TextBlock txtblk = new TextBlock

 {

 Text = colors[col],

 FontWeight = FontWeights.Bold,

 TextAlignment = TextAlignment.Center,

 Margin = new Thickness(8, 2, 8, 2)

 };

Grid.SetRow(txtblk, 0);

Grid.SetColumn(txtblk, col);

 LayoutRoot.Children.Add(txtblk);

 for (int bit = 0; bit < 9; bit++)

 {

 txtblk = new TextBlock

 {

 Text = bit.ToString(),

 Foreground = bit == ColorBits[col] ? selectedBrush :

normalBrush,

 TextAlignment = TextAlignment.Center,

 Padding = new Thickness(2),

 Tag = col.ToString() + bit

 };

Grid.SetRow(txtblk, bit + 1);

Grid.SetColumn(txtblk, col);

 LayoutRoot.Children.Add(txtblk);

 txtblks[col, bit] = txtblk;

499	

	

	

	 	

	

	 	

	 	

	 	

	 	

 }

}

 }

}

Each	TextBlock	has	a	twocharacter	string	set	to	its	Tag	property	to	indicate	the	color	and	the	

number	of	bits	associated	with	that	element.	

I	also	defined	a	public	method	that	allows	a	program	to	initialize	the	three	ColorBits	values,	

changing	the	TextBlock	colors	in	the	process	but	not	raising	the	ColorBitsChanged	event.	This	

was	useful	during	reactivating	from	a	tombstoned	condition.	

Silverlight Project: File: (excerpt)

public void Initialize(int[] colorBits)

{

for (int clr = 0; clr < 3; clr++)

 {

txtblks[clr, ColorBits[clr]].Foreground = normalBrush;

ColorBits[clr] = colorBits[clr];

txtblks[clr, ColorBits[clr]].Foreground = selectedBrush;

 }

}

The	OnManipulationStarted	override	decodes	the	Tag	property	from	the	touched	TextBlock	to	

determine	the	user’s	selection:	

Silverlight Project: File: (excerpt)

protected override void OnManipulationStarted(ManipulationStartedEventArgs args)

{

if (args.OriginalSource is TextBlock)

{

TextBlock txtblk = args.OriginalSource as TextBlock;

string tag = txtblk.Tag as string;

if (tag != null && tag.Length == 2)

{

int clr = Int32.Parse(tag[0].ToString());

int bits = Int32.Parse(tag[1].ToString());

if (ColorBits[clr] != bits)

 {

 txtblks[clr, ColorBits[clr]].Foreground = normalBrush;

 ColorBits[clr] = bits;

 txtblks[clr, ColorBits[clr]].Foreground = selectedBrush;

if (ColorBitsChanged != null)

 ColorBitsChanged(this, EventArgs.Empty);

500

	

	

	 	 	

	 	

	

	

	 	 	

	

 }

 args.Complete();

 args.Handled = true;

}

 }

base.OnManipulationStarted(args);

}

Based	on	the	information	decoded	from	the	Tag property	of	the	touched	TextBlock,	the	

method	can	recolor	that	TextBlock	(and	the	one	becoming	unselected),	store	a	new	value	in	

the	ColorBits	array,	and	raise	the	ColorBitsChanged	event.	

In	the	MainPage	class	of	the	program	itself,	the	content	area	includes	a	(by	now	familiar)	

Image	element	with	no	bitmap	and	this	BitSelectDialog	control:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Image Name="img" />

<local:BitSelectDialog x:Name="bitSelectDialog"

 Visibility="Collapsed"

 FontSize="{StaticResource PhoneFontSizeExtraLarge}"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 ColorBitsChanged="OnBitSelectDialogColorBitsChanged" />

</Grid>

Notice	that	the	BitSelectDialog	control	has	its	Visibility	property	set	to	Collapsed.	

The	XAML	file	also	contains	three	buttons	in	its	ApplicationBar:	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.ApplicationBar>

<shell:ApplicationBar>

<shell:ApplicationBarIconButton x:Name="appbarLoadButton"

 IconUri="/Images/appbar.folder.rest.png"

 Text="load"

 Click="OnAppbarLoadClick" />

<shell:ApplicationBarIconButton x:Name="appbarSetBitsButton"

IconUri="/Images/appbar.feature.settings.rest.png"

 Text="set bits"

 IsEnabled="False"

 Click="OnAppbarSetBitsClick" />

501

	

	

	

	 	

	

	 	

	 	 	

	 	

	 	 	

	

	 	 	

	 	 	

<shell:ApplicationBarIconButton x:Name="appbarSaveButton"

 IconUri="/Images/appbar.save.rest.png"

 Text="save"

 IsEnabled="False"

 Click="OnAppbarSaveClick" />

</shell:ApplicationBar>

</phone:PhoneApplicationPage.ApplicationBar>

In	the	codebehind	file,	the	fields	of	the	MainPage	class	include	three	variables	that	represent	

bitmaps:	of	type	WriteableBitmap,	byte	array,	and	int	array.	

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage, ISaveFileDialogCompleted

{

PhoneApplicationService appService = PhoneApplicationService.Current;

PhotoChooserTask photoChooser = new PhotoChooserTask();

WriteableBitmap writeableBitmap;

 byte[] jpegBits;

 int[] pixels;

 public MainPage()

 {

InitializeComponent();

appbarLoadButton = this.ApplicationBar.Buttons[0] as

ApplicationBarIconButton;

appbarSetBitsButton = this.ApplicationBar.Buttons[1] as

ApplicationBarIconButton;

appbarSaveButton = this.ApplicationBar.Buttons[2] as

ApplicationBarIconButton;

photoChooser.Completed += OnPhotoChooserCompleted;

 }

}

The	WriteableBitmap	field	is	the	bitmap	that	is	set	to	the	Image	element	and	displayed	to	the	

user.	This	is	the	bitmap	that	has	its	pixels	adjusted	for	lower	color	resolution.	The	jpegBits

array	is	the	original	file	that	the	user	loads	from	the	picture	library.	Retaining	the	jpegBits

array	is	very	convenient	for	tombstoning,	and	ensures	that	the	photo	reconstituted	after	

tombstoning	is	the	same	one	that	was	originally	loaded.	The	pixels	array	stores	the	unaltered	

pixels	of	the	loaded	bitmap,	but	this	is	not	saved	during	tombstoning.	Saving	jpegBits	rather	

than	pixels	requires	much	less	storage.	

When	the	user	presses	the	“load”	button,	the	PhotoChooserTask is	invoked.	During	the	

Completed	event,	the	program	sets	jpegBits	from	the	ChosenPhoto	stream,	and	then	calls	

LoadBitmap.	

502	

	

	 	 	

	 	

	 	 	 	 	

	 	

	 	

	

	 	

	

Silverlight Project: File: (excerpt)

void OnAppbarLoadClick(object sender, EventArgs args)

{

 bitSelectDialog.Visibility = Visibility.Collapsed;

 appbarSetBitsButton.IsEnabled = false;

 appbarSaveButton.IsEnabled = false;

 photoChooser.Show();

}

void OnPhotoChooserCompleted(object sender, PhotoResult args)

{

if (args.Error == null && args.ChosenPhoto != null)

{

jpegBits = new byte[args.ChosenPhoto.Length];

args.ChosenPhoto.Read(jpegBits, 0, jpegBits.Length);

LoadBitmap(jpegBits);

}

}

void LoadBitmap(byte[] jpegBits)

{

// Create WriteableBitmap from JPEG bits

MemoryStream memoryStream = new MemoryStream(jpegBits);

BitmapImage bitmapImage = new BitmapImage();

 bitmapImage.SetSource(memoryStream);

 writeableBitmap = new WriteableBitmap(bitmapImage);

 img.Source = writeableBitmap;

// Copy pixels into field array

 pixels = new int[writeableBitmap.PixelWidth * writeableBitmap.PixelHeight];

for (int i = 0; i < pixels.Length; i++)

pixels[i] = writeableBitmap.Pixels[i];

 appbarSetBitsButton.IsEnabled = true;

 appbarSaveButton.IsEnabled = true;

 ApplyBitSettingsToBitmap();

}

The	LoadBitmap	method	then	turns	that	byte array	back	into	a	MemoryStream	for	creating	

the	BitmapImage	and	WriteableBitmap.	This	may	seem	like	a	roundabout	way	to	create	the	

bitmap,	but	it	makes	much	more	sense	in	conjunction	with	tombstoning.	

The	LoadBitmap	method	then	makes	a	copy	of	the	Pixels	array	of	the	WriteableBitmap	as	the	

pixels	field.	This	pixels field	will	remain	unaltered	as	the	Pixels	array	of	the	WriteableBitmap	is	

changed	based	on	the	user	selection	of	bit	resolution.	The	objective	is	to	do	nothing	

irrevocable.	The	user	should	always	be	able	to	select	a	greater	color	resolution	after	choosing	

a	lower	one.	

503	

	

	

	 	 	

	 	

	 	 	

	

	 	 	 	

	 	

	

	 	

The	ApplyBitSettingsToBitmap	called	at	the	end	of	the	LoadBitmap	method	is	also	called	

whenever	the	ColorBitsChanged	event	is	fired	by	the	BitSelectDialog.	The	visibility	of	that	

dialog	is	toggled	on	and	off	by	the	middle	button	in	the	ApplicationBar:	

Silverlight Project: File: (excerpt)

void OnAppbarSetBitsClick(object sender, EventArgs args)

{

 bitSelectDialog.Visibility =

bitSelectDialog.Visibility == Visibility.Collapsed ?

Visibility.Visible : Visibility.Collapsed;

}

void OnBitSelectDialogColorBitsChanged(object sender, EventArgs args)

{

 ApplyBitSettingsToBitmap();

}

void ApplyBitSettingsToBitmap()

{

if (pixels == null || writeableBitmap == null)

return;

int mask = -16777216; // ie, FF000000

for (int clr = 0; clr < 3; clr++)

mask |= (byte)(0xFF << (8 - bitSelectDialog.ColorBits[clr]))

 << (16 - 8 * clr);

for (int i = 0; i < pixels.Length; i++)

writeableBitmap.Pixels[i] = mask & pixels[i];

 writeableBitmap.Invalidate();

}

The	mask	variable	is	built	from	the	three	bitresolution	values,	and	then	applied	to	all	the	

values	in	the	pixels	field	to	set	all	the	values	in	the	Pixels	array	of	the	WriteableBitmap.	

The	Posterizer	program	also	does	something	a	little	special	when	the	user	presses	the	button	

to	save	the	file	to	the	picture	library.	The	program	wants	to	suggest	to	the	user	a	filename	of	

Posterizer	followed	by	a	three	digit	number	higher	than	anything	currently	in	the	picture	

library.	It	obtains	the	saved	pictures	album	through	the	SavedPictures	property	of	the	

MediaLibrary and	searches	for	matching	filenames:	

Silverlight Project: File: (excerpt)

void OnAppbarSaveClick(object sender, EventArgs args)

{

int fileNameNumber = 0;

504	

	

	 	

	 	 	 	 	

	 	

	 	

	

MediaLibrary mediaLib = new MediaLibrary();

PictureCollection savedPictures = mediaLib.SavedPictures;

foreach (Picture picture in savedPictures)

 {

string filename = Path.GetFileNameWithoutExtension(picture.Name);

int num;

if (filename.StartsWith("Posterizer"))

{

if (Int32.TryParse(filename.Substring(10), out num))

 fileNameNumber = Math.Max(fileNameNumber, num);

}

 }

string saveFileName = String.Format("Posterizer{0:D3}", fileNameNumber + 1);

string uri = "/Petzold.Phone.Silverlight;component/SaveFileDialog.xaml" +

"?FileName=" + saveFileName;

this.NavigationService.Navigate(new Uri(uri, UriKind.Relative));

}

public void SaveFileDialogCompleted(bool okPressed, string filename)

{

if (okPressed)

 {

MemoryStream memoryStream = new MemoryStream();

writeableBitmap.SaveJpeg(memoryStream, writeableBitmap.PixelWidth,

writeableBitmap.PixelHeight, 0, 75);

memoryStream.Position = 0;

MediaLibrary mediaLib = new MediaLibrary();

mediaLib.SavePicture(filename, memoryStream);

 }

}

A	program	that	modifies	a	photo	from	the	picture	library	has	the	option	of	becoming	a	

“photos	extra”	program.	If	so,	the	user	can	press	a	photo	in	the	library,	which	brings	up	a	

menu	including	the	item	“extras.”	Pressing	this	item	includes	all	the	programs	that	have	

registered	themselves	as	“photos	extra”	applications.	Pressing	one	of	these	programs	invokes	

the	program	with	the	photo	already	loaded.	

Among	the	files	in	the	program’s	project,	the	following	is	required:	

Silverlight Project: File:

<Extras>

 <PhotosExtrasApplication>

<Enabled>true</Enabled>

505	

	

	 	 	

	

	 	 	

	

	 	 	

	 	

	

	 	 	 	 	

	

 </PhotosExtrasApplication>

</Extras>

The	Properties	for	this	file	must	indicate	a	Build	Action	of	Content,	and	a	Copy	to	Output	

Directory	option	of	Copy	Always.	

The	program	must	also	be	prepared	to	handle	a	special	OnNavigatedTo	call	that	indicates	the	

selected	photo.	

Here	are	both	navigation	overrides.	The	OnNavigatedFrom	method	indicates	either	that	the	

program	is	being	tombstoned	or	that	it’s	navigating	to	the	SaveFileDialog	object.	If	being	

tombstoned,	the	program	must	save	both	the	current	state	of	the	color	bit	selection	and	(if	it	

exists)	the	bitmap	itself.	If	navigating	to	the	SaveFileDialog,	the	method	sets	the	title	on	the	

page.	

Silverlight Project: File: (excerpt)

protected override void OnNavigatedFrom(NavigationEventArgs args)

{

 appService.State["colorBits"] = bitSelectDialog.ColorBits;

if (jpegBits != null)

{

appService.State["jpegBits"] = jpegBits;

 }

if (args.Content is SaveFileDialog)

{

SaveFileDialog page = args.Content as SaveFileDialog;

page.SetTitle(ApplicationTitle.Text);

 }

base.OnNavigatedFrom(args);

}

protected override void OnNavigatedTo(NavigationEventArgs args)

{

if (this.NavigationContext.QueryString.ContainsKey("token"))

 {

string token = this.NavigationContext.QueryString["token"];

MediaLibrary mediaLib = new MediaLibrary();

Picture picture = mediaLib.GetPictureFromToken(token);

Stream stream = picture.GetImage();

jpegBits = new byte[stream.Length];

stream.Read(jpegBits, 0, jpegBits.Length);

LoadBitmap(jpegBits);

}

else if (appService.State.ContainsKey("colorBits"))

 {

int[] colorBits = (int[])appService.State["colorBits"];

506

	

	 	

	

	 	

	 	 	

	 	 	

	

bitSelectDialog.Initialize(colorBits);

 }

if (appService.State.ContainsKey("jpegBits"))

 {

jpegBits = (byte[])appService.State["jpegBits"];

LoadBitmap(jpegBits);

}

base.OnNavigatedTo(args);

}

The	OnNavigatedTo	method	could	indicate	that	the	program	was	just	invoked	from	the	

picture	library.	If	so,	then	the	QueryString	dictionary	of	the	NavigationContext	will	contain	the	

special	key	string	“token”.	The	item	corresponding	to	that	string	is	then	passed	to	the	special	

GetPictureFromToken	method	of	MediaLibrary	to	obtain	a	memory	stream	from	which	the	

JPEG	file	can	be	accessed.	

I	mentioned	earlier	that	the	LoadBitmap method	was	convenient	when	being	reactivated	

from	a	tombstoned	condition,	and	the	logic	near	the	bottom	of	the	method	proves	it.	

507	

	

	 	

	 	 	 	

	 	

	 	 	 	

	 	 	 	

	 	

	 	 	

	

	 	 	

	

	 	

	

	

	

	 	 	 	

	 	 	

	 	

	

	

	 	 	 	

	 	 	

	 	 	

	

Chapter	15	

Animations
Anima	is	a	Latin	word	that	translates	vaguely	as	vital force,	rather	equivalent	to	the	Greek	

word	psyche.	Introducing	animation	into	our	programs	is	therefore	the	process	of	giving	dead	

(or	inanimate)	objects	a	little	life	and	vigor.	

In	previous	chapters	you’ve	seen	how	to	change	the	location	of	elements	on	the	screen	

through	touch,	or	based	on	periodic	Tick	events	from	DispatcherTimer.	You’ve	also	seen	the	

CompositionTarget.Rendering	event	that	lets	your	program	perform	animations	by	altering	

visuals	in	synchronization	with	the	refresh	rate	of	the	video	display.	

Both	the	DispatcherTimer	and	CompositionTarget.Rendering	can	be	very	useful.	But	for	most	

animation	needs,	it	is	easier	and	better	to	use	Silverlight’s	builtin	animation	support.	This	

support	consists	of	over	50	classes,	structures,	and	enumerations	in	the	

System.Windows.Media.Animation	namespace.	

Silverlight’s	animation	library	is	easier	than	the	alternatives	in	part	because	you	can	define	

animations	in	XAML.	But	these	animations	are	also	preferred	to	CompositionTarget.Rendering

because	several	key	types	of	animations	exploit	the	Graphics	Processing	Unit	(GPU)	on	the	

phone.	These	animations	don’t	run	in	the	userinterface	thread;	they	run	in	a	separate	thread	

called	the	compositor	or	render	thread.	

Animations	play	a	big	role	in	control	templates	used	to	redefine	the	visuals	of	controls.	

Controls	have	states,	such	as	the	Pressed	state	associated	with	a	Button,	and	all	state	

transitions	are	based	on	animations.	I’ll	discuss	control	templates	in	the	next	chapter.	

Eventually,	many	programmers	gravitate	towards	Expression	Blend	for	defining	animations	

and	control	templates.	That’s	fine,	but	in	this	chapter	I’m	going	to	show	you	how	to	write	

animations	by	hand,	and	I’ll	also	show	you	that	valuable	(but	often	neglected)	technique	of	

defining	animations	in	code	rather	than	XAML.	

Frame-Based
vs.
Time-Based

Suppose	you	want	to	write	a	little	program	that	rotates	some	text	using	the	

CompositionTarget.Rendering	event.	You	can	pace	this	animation	either	by	the	rate	that	video	

hardware	refreshes	the	display,	or	by	clock	time.	Because	each	refresh	of	the	video	display	is	

called	a	frame,	these	two	methods	of	pacing	animation	are	referred	to	as	frame-based	and	

time-based.	

508	

	

	 	 	

	 	

	

	 	 	 	

Here’s	a	little	program	that	shows	the	difference.	The	content	area	of	the	XAML	file	has	two	

TextBlock	elements	with	RotateTransform objects	set	to	their	RenderTransform	properties,	and	

a	Button:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <Grid.RowDefinitions>

<RowDefinition Height="*" />

<RowDefinition Height="*" />

<RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

 <TextBlock Grid.Row="0"

 Text="Frame-Based"

 FontSize="{StaticResource PhoneFontSizeLarge}"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 RenderTransformOrigin="0.5 0.5">

<TextBlock.RenderTransform>

 <RotateTransform x:Name="rotate1" />

</TextBlock.RenderTransform>

 </TextBlock>

 <TextBlock Grid.Row="1"

 Text="Time-Based"

 FontSize="{StaticResource PhoneFontSizeLarge}"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 RenderTransformOrigin="0.5 0.5">

<TextBlock.RenderTransform>

 <RotateTransform x:Name="rotate2" />

</TextBlock.RenderTransform>

 </TextBlock>

<Button Grid.Row="2"

 Content="Hang for 5 seconds"

 HorizontalAlignment="Center"

 Click="OnButtonClick" />

</Grid>

The	codebehind	file	saves	the	current	time	in	a	field	and	then	attaches	a	handler	for	the	

CompositionTarget.Rendering	event.	This	event	handler	is	then	called	in	synchronization	with	

the	video	frame	rate.		

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage

{

DateTime startTime;

509	

	

	 	 	

	

	 	 	

	 	 	 	 	

	 	

	 	

 public MainPage()

 {

InitializeComponent();

startTime = DateTime.Now;

CompositionTarget.Rendering += OnCompositionTargetRendering;

 }

 void OnCompositionTargetRendering(object sender, EventArgs args)

{

// Frame-based

rotate1.Angle = (rotate1.Angle + 0.2) % 360;

// Time-based

TimeSpan elapsedTime = DateTime.Now - startTime;

rotate2.Angle = (elapsedTime.TotalMinutes * 360) % 360;

 }

void OnButtonClick(object sender, RoutedEventArgs args)

 {

Thread.Sleep(5000);

 }

}

The	rotation	angle	for	the	first	TextBlock	is	increased	by	0.2°	every	frame.	I	calculated	this	by	

knowing	that	the	phone	display	is	refreshed	at	30	frames	per	second.	Multiply	30	frames	per	

second	by	60	seconds	per	minute	by	0.2°	and	you	get	360°.	

The	rotation	angle	for	the	second	TextBlock is	calculated	based	on	the	elapsed	time.	The	

TimeSpan	structure	has	a	convenient	TotalMinutes	property	and	this	is	multiplied	by	360	for	

the	total	number	of	degrees	to	rotate	the	text.	

510

	

	

	

	

	 	 	 	 	

	 	 	

	 	 	

	 	 	

		

	

	 	 	

	

	 	

	 	

	 	 	

	 	 	

	

	 	 	

	 	 	

Both	work,	and	they	work	approximately	the	same:	

But	if	your	phone	is	anything	like	my	phone,	you’ll	see	that	the	framebased	animation	lags	a	

little	behind	the	timebased	animation,	and	the	lag	progressively	gets	larger	and	larger.	Why?	

The	calculation	for	the	framebased	animation	assumes	that	the	CompositionTarget.Rendering

handler	is	called	at	the	rate	of	30	times	per	second.	However,	the	phone	I’m	using	for	this	

book	has	a	video	refresh	rate	closer	to	27	frames	per	second—about	27.35,	to	be	more	

precise.	

That’s	one	problem	with	framebased	animation:	It’s	dependent	on	the	actual	hardware.	Your	

mileage	may	vary.	

Here’s	another	difference:	Suppose	the	program	suddenly	needs	to	perform	some	job	that	

hogs	the	processor.	The	FrameBasedVsTimeBased	program	simulates	such	a	job	with	a	Button

that	hangs	the	thread	for	5	seconds.	Both	animations	grind	to	a	halt	during	this	time	because	

the	calls	to	the	CompositionTarget.Rendering	handler	are	not	asynchronous.	When	the	

revolutions	start	up	again,	the	framebased	animation	continues	from	where	it	left	off;	the	

timebased	animation	jumps	ahead	to	where	it	would	have	been	had	the	delay	never	

occurred.	

Whether	you	prefer	one	approach	to	the	other	ultimately	depends	on	the	application.	

Sometimes	you	really	do	need	a	framebased	animation.	But	if	you	ever	need	to	use	an	

511	

	

	 	

	 	

	 	

	

	 	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	

	 	

	 	 	 	

	 	

	 	

	 	 	 	

	 	 	

	 	

	 	

	 	

	

	 	 	 	 	 	 	 	

	 	 	 	

	 	

	 	 	 	 	

	 	

	 	 	

	

	 	 	 	

	 	 	 	 	

	 	

	 	 	 	 	

	 	 	

animation	to	pace	the	hands	of	a	clock	or	something	similar,	a	timebased	animation	is	

essential;	framebased	animations	are	just	too	unpredictable	for	the	job.	

The	Silverlight	animation	library	is	all	timebased.	You	specify	what	change	you	want	over	a	

particular	period	of	time,	and	the	Silverlight	animation	classes	handle	the	rest.	

Animation
Targets

Animations	in	Silverlight	work	by	changing	a	particular	property	of	a	particular	object,	for	

example	the	Opacity	property	of	an	Image.	Changing	that	Opacity	property	over	time	makes	

the	Image	element	fade	in,	or	fade	out,	or	fade	in	and	out,	depending	on	what	you	want.	

The	target	of	an	animation	must	be	a	dependency	property!	Obviously	that	dependency	

property	must	be	defined	by	a	class	that	derives	from	DependencyObject.	

The	animation	classes	are	distinguished	by	the	type of	the	property	that	they	animate.	

Silverlight	animations	can	target	properties	of	type	double,	Color,	Point,	and	Object.	(The	

inclusion	of	Object	in	this	short	list	might	seem	to	encompass	all	the	others	but	you’ll	see	

shortly	that	the	Object	animations	are	quite	restricted	in	functionality.)	

Properties	of	type	double	are	very	common	in	Silverlight.	They	include	Opacity,	Canvas.Left

and	Canvas.Top,	Height	and	Width,	but	also	all	the	properties	of	the	transform	classes:	X	and	Y

of	TranslateTransform,	ScaleX	and	ScaleY	of	ScaleTransform	and	Angle	of	RotateTransform.	

Animating	transforms	is	extremely	common	and	one	of	the	most	efficient	way	to	use	

animations.	

Also	in	this	chapter	I’ll	show	you	how	to	use	the	Projection	property	defined	by	UIElement	for	

creating	3Dlike	perspective	effects.	

But	use	your	imagination:	Whenever	you	come	across	a	dependency	property	of	type	double,	

Color,	or	Point,	think	about	how	you	might	animate	that	property	to	create	an	interesting	

visual	effect.	For	example,	you	can	animate	the	Offset	property	in	GradientStop	objects	to	

change	gradient	brushes	over	time,	or	you	can	animate	the	StrokeDashOffset	property	

defined	by	Shape	to	make	dots	and	dashes	travel	along	lines.	(Remind	me	to	show	you	an	

example	of	that	one!)	

Animating	properties	of	type	Color	is	pretty	much	restricted	to	brushes:	SolidColorBrush,	

LinearGradientBrush,	and	RadialGradientBrush.	

Properties	of	type	Point	are	fairly	rare	in	Silverlight	except	among	Geometry objects,	and	I’ll	

show	you	a	couple	examples	later	in	this	chapter.	

You’ll	use	the	classes	DoubleAnimation,	ColorAnimation,	and	PointAnimation	to	animate	

properties	of	type	double,	Color,	or	Point continuously	from	one	value	to	another,	and	

perhaps	back	again,	either	once	or	multiple	times.	(Even	after	many	years	of	programming	

512	

	

	

	 	 	

	 	

	 	 	 	

	 	 	

		

	 	 	 	 	 	

	 	

	 	

	

	 	 	 	

	 	

	 	 	

	 	 	

	

	 	

	

	

	

	 	 	 	

	 	 	 	 	 	

	

	

WPF	and	Silverlight,	the	name	DoubleAnimation	still	suggests	to	me	two	animations.	No!	It’s	

an	animation	that	targets	doubleprecision	floating	point	properties.)	

The	DoubleAnimation,	ColorAnimation,	and	PointAnimation classes	have	a	property	named	

Easing	that	you	can	set	to	an	instance	of	one	of	a	variety	of	classes	that	change	the	velocity	of	

the	animation	either	at	the	beginning	or	the	end	(or	both)	to	make	it	more	natural,	and	even	

to	briefly	“overshoot”	the	target	value	of	an	animation.	

You	can	put	together	more	complex	animations	using	the	classes	

DoubleAnimationUsingKeyFrames,	ColorAnimationUsingKeyFrames,	and	

PointAnimationUsingKeyFrames.	These	classes	have	a	property	named	KeyFrames	that	is	a	

collection	of	individual	key	frame	objects	that	indicate	what	the	value	of	the	target	property	

should	be	at	a	particular	elapsed	time.	

For	example,	a	DoubleAnimationUsingKeyFrames	object	can	contain	individual	key	frames	of	

type	DiscreteDoubleKeyFrame	(to	jump	to	a	particular	value	at	a	particular	time),	

LinearDoubleKeyFrame	(to	move	with	constant	velocity	so	the	property	reaches	a	particular	

value	at	a	particular	time),	SplineDoubleKeyFrame	(which	lets	you	define	an	animation	that	

speeds	up	or	slows	down	in	accordance	with	a	Bézier	spline),	and	EasingDoubleKeyFrame,	

which	lets	you	apply	one	of	the	Easing functions.Similar	classes	exist	for	

ColorAnimationUsingKeyFrames	and	PointAnimationUsingKeyFrames.	

In	theory	you	can	animate	properties	of	type	Object,	but	the	only	classes	you	have	available	

are	ObjectAnimationUsingKeyFrames	and	DiscreteObjectKeyFrame,	which	means	that	you’re	

limited	to	jumping	among	discrete	values.	This	is	almost	always	used	to	animate	properties	of	

an	enumeration	type,	such	as	Visibility.	

Click
and
Spin

Suppose	you	want	to	enhance	a	button	to	give	some	extra	visual	feedback	to	the	user.	You	

decide	you	actually	want	a	lot	of	visual	feedback	to	wake	up	a	drowsy	user,	and	therefore	you	

choose	to	spin	the	button	around	in	a	circle	every	time	it’s	clicked.	

Here	are	a	few	buttons	in	a	XAML	file:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Grid.RowDefinitions>

<RowDefinition Height="*" />

<RowDefinition Height="*" />

<RowDefinition Height="*" />

</Grid.RowDefinitions>

<Button Content="Button No. 1"

513	

	

	 	

	 	

	 	 	 	

	 	 	 	

	

 Grid.Row="0"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 RenderTransformOrigin="0.5 0.5"

 Click="OnButtonClick">

<Button.RenderTransform>

<RotateTransform />

</Button.RenderTransform>

</Button>

<Button Content="Button No. 2"

 Grid.Row="1"
 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 RenderTransformOrigin="0.5 0.5"

 Click="OnButtonClick">

<Button.RenderTransform>

<RotateTransform />

</Button.RenderTransform>

</Button>

<Button Content="Button No. 3"

 Grid.Row="2"
 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 RenderTransformOrigin="0.5 0.5"

 Click="OnButtonClick">

<Button.RenderTransform>

<RotateTransform />

</Button.RenderTransform>

</Button>

</Grid>

Each	of	the	buttons	has	its	RenderTransform	property	set	to	a	RotateTransform,	and	its	

RenderTransformOrigin	set	for	the	element	center.	

The	Click	event	handler	is	responsible	for	defining	and	initiating	the	animation	that	spins	the	

clicked	button.	(Of	course,	in	a	real	application,	the	Click	handler	would	also	perform	

something	important	to	the	program!)	The	handler	begins	by	obtaining	the	Button	that	the	

user	touched,	and	the	RotateTransform	associated	with	that	particular	Button:	

Silverlight Project: File: (excerpt)

void OnButtonClick(object sender, RoutedEventArgs args)

{

Button btn = sender as Button;

RotateTransform rotateTransform = btn.RenderTransform as RotateTransform;

// Create and define animation

DoubleAnimation anima = new DoubleAnimation();

 anima.From = 0;

514

	

	 	

	 	 	

	

	 	

	 	 	 	 	

	 	 	

	 	 	

	 	 	

	

	 	

	 	

	 	 	

	 	 	

	 	 	 	 	 	

	

	 	 	

	 	 	

	

 anima.To = 360;

 anima.Duration = new Duration(TimeSpan.FromSeconds(0.5));

// Set attached properties

Storyboard.SetTarget(anima, rotateTransform);

Storyboard.SetTargetProperty(anima, new

PropertyPath(RotateTransform.AngleProperty));

// Create storyboard, add animation, and fire it up!

Storyboard storyboard = new Storyboard();

 storyboard.Children.Add(anima);

 storyboard.Begin();

}

Getting	the	animation	going	requires	three	steps:	

1.		 Define	the	animation	itself.	The	animation	needed	here	will	target	the	Angle	property	of	a	

RotateTransform,	and	the	Angle	property	is	of	type	double,	so	that	suggests	a	

DoubleAnimation:	

DoubleAnimation anima = new DoubleAnimation();

anima.From = 0;

anima.To = 360;

anima.Duration = new Duration(TimeSpan.FromSeconds(0.5));

This	DoubleAnimation	will	animate	a	property	of	type	double	from	a	value	of	0	to	a	

value	of	360	in	½	second.	The	Duration	property	of	DoubleAnimation	is	of	type	

Duration,	and	in	code	it	is	very	common	to	set	it	from	a	TimeSpan	object.	But	the	

Duration	property	is	not	itself	of	type	TimeSpan	primarily	due	to	legacy	issues.	You	can	

alternatively	set	the	Duration	property	to	the	static	Duration.Automatic	value,	which	is	

the	same	as	not	setting	Duration	at	all	(or	setting	it	to	null),	and	which	creates	an	

animation	with	a	duration	of	1	second.	

2.		 Set	the	attached	properties.	The	DoubleAnimation	must	be	associated	with	a	particular	

object	and	property	of	that	object.	You	specify	these	using	two	attached	properties	

defined	by	the	Storyboard	class:	

Storyboard.SetTarget(anima, rotateTransform);

Storyboard.SetTargetProperty(anima, new PropertyPath(RotateTransform.AngleProperty));

The	attached	properties	are	Target	and	TargetProperty.	As	you’ll	recall,	when	you	set	

attached	properties	in	code,	you	use	static	methods	that	begin	with	the	word	Set.	

In	both	cases,	the	first	argument	is	the	DoubleAnimation	just	created.	The	SetTarget	call	

indicates	the	object	being	animated	(in	this	case	RotateTransform),	and	the	

SetTargetProperty call	indicates	a	property	of	that	object.	The	second	argument	of	the	

SetTargetProperty method	is	of	type	PropertyPath,	and	you’ll	note	that	I’ve	specified	the	

fullyqualified	dependency	property	for	the	Angle	property	of	RotateTransform.	

3.	 Define,	set,	and	start	the	Storyboard.	

515

	

	 	

	 	

	 	

	 	

	

	

	 	 	

	

	

At	this	point,	everything	seems	to	be	ready.	But	there’s	still	another	step.	In	Silverlight,	

animations	are	always	enclosed	in	Storyboard	objects.	A	particular	Storyboard	can	have	

multiple	children,	so	it	is	very	useful	for	synchronizing	multiple	animations.	But	even	if	you	

have	just	one	animation	running	by	itself,	you	still	need	a	Storyboard:	

Storyboard storyboard = new Storyboard();

storyboard.Children.Add(anima);

storyboard.Begin();

As	soon	as	you	call	Begin	on	the	Storyboard	object,	the	clicked	button	spins	around	in	half	a	

second,	giving	the	user	perhaps	a	little	too	much	visual	feedback.	

Some
Variations

I	set	the	target	property	of	the	animation	using	the	fullyqualified	dependency	property	

name:	

Storyboard.SetTargetProperty(anima, new PropertyPath(RotateTransform.AngleProperty));

The	alternative	is	using	a	string:	

Storyboard.SetTargetProperty(anima, new PropertyPath("Angle"));

You	might	prefer	that	syntax	because	it’s	shorter,	but	it	doesn’t	guarantee	that	you	haven’t	

misspelled	the	property	name.	

516	

	

	 	 	

	

	 	

	

	 	

	 	 	

	 	 	 	 	

	

	 	 	

	 	 	

	 	

	 	

	

	

	

	

	 	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	

	

The	advantage	of	using	strings	for	property	names	is	that	you	can	stack	property	names	in	a	

pile.	This	allows	you	to	animate	a	property	of	an	object	without	referencing	that	object	itself.	

For	example,	in	the	Click event	handler	above	you	can	set	the	target	of	the	animation	to	be	

the	Button	instead	of	the	RotateTransform:	

Storyboard.SetTarget(anima, btn);

The	RotateTransform	still	needs	to	exist,	and	you	still	need	to	indicate	that	you’re	targeting	

the	Angle	property	of	that	object,	but	look	at	how	you	do	it:	

Storyboard.SetTargetProperty(anima,

new PropertyPath("(Button.RenderTransform).(RotateTransform.Angle)"));

This	syntax—admittedly	more	common	in	XAML	than	in	code—indicates	that	

RenderTransform	is	a	property	of	Button,	and	Angle	is	a	property	of	RotateTransform,	and	the	

RotateTransform	is	set	on	the	RenderTransform	property.	If	the	RenderTransform	property	is	

not	set	to	a	RotateTransform	object,	this	will	fail.	

You	can	simplify	the	syntax	a	bit	by	removing	the	qualification	of	the	Angle	property:	

Storyboard.SetTargetProperty(anima,

new PropertyPath("(Button.RenderTransform).Angle"));

But	this	might	be	a	little	confusing.	It	looks	like	Angle	is	a	property	of	RenderTransform,	and	

it’s	really	not.	Angle	is	a	property	of	a	RotateTransform	that’s	set	on	the	RenderTransform

property.	

Regardless	how	you	specify	it,	the	animated	property	must	be	a	dependency	property.	

The	Storyboard	class	and	the	DoubleAnimation	class	are	actually	siblings,	as	the	following	class	

hierarchy	shows:	

Object

DependencyObject	(abstract)	

Timeline	(abstract)		

DoubleAnimation

DoubleAnimationUsingKeyFrames

ColorAnimation

ColorAnimationUsingKeyFrames

PointAnimation

PointAnimationUsingKeyFrames

ObjectAnimationUsingKeyFrames

Storyboard

Storyboard	defines	a	Children	property	of	type	TimelineCollection,	meaning	that	a	Storyboard

can	contain	not	only	animation	objects	but	also	other	Storyboard	objects	to	control	a	complex	

517	

	

	 	

	

	

	 	 	

	 	 	 	 	

	

	

	 	 	 	 	

	

		

	 	

	

	 	

	

	

	

	

collection	of	animations.	Storyboard	also	defines	the	attached	properties	that	you	use	to	

associate	an	animation	with	a	particular	object	and	dependency	property.	

The	Timeline	class	defines	the	Duration	property	that	the	program	set	to	0.5	seconds:	

anima.Duration = new Duration(TimeSpan.FromSeconds(0.5));

You	can	also	set	the	duration	on	the	storyboard	to	something	less	than	that:	

storyboard.Duration = new Duration(TimeSpan.FromSeconds(0.25));

This	will	cause	the	animation	to	be	truncated	at	0.25	seconds.	By	default,	the	duration	of	a	

storyboard	is	the	longest	duration	of	its	child	timelines	(in	this	case	0.5	seconds),	and	in	most	

cases	you	don’t	want	to	override	that.	

Timeline	also	defines	a	BeginTime	property	that	you	can	set	on	either	the	Storyboard	or	

DoubleAnimation:	

anima.BeginTime = TimeSpan.FromSeconds(1);

Now	the	animation	doesn’t	start	for	a	second.	

The	AutoReverse	property	is	a	Boolean	with	a	default	value	of	false.	Try	setting	it	to	true:	

anima.AutoReverse = true;

Now	the	button	spins	around	360°	clockwise	and	then	spins	360°	counterclockwise.	The	total	

animation	lasts	for	a	second.	

The	RepeatBehavior	property	indicates	how	many	times	you	want	the	animation	to	repeat	

itself:	

anima.RepeatBehavior = new RepeatBehavior(3);

Now	the	button	spins	around	three	times	for	a	total	duration	of	1.5	seconds.	You	can	

combine	RepeatBehavior	with	AutoReverse:	

anima.RepeatBehavior = new RepeatBehavior(3);

anima.AutoReverse = true;

Now	the	button	spins	around	once,	and	then	back,	and	then	forward	again,	and	then	back,	

forward	for	the	third	time,	and	then	back.	Total	duration:	3	seconds.	

But	perhaps	that’s	not	what	you	want.	Perhaps	you	want	the	button	to	spin	forward	three	

times	and	then	back	three	times.	Easy	enough.	Just	set	RepeatBehavior	on	the	animation:	

anima.RepeatBehavior = new RepeatBehavior(3);

And	set	AutoReverse	on	the	Storyboard:	

storyboard.AutoReverse = true;

518	

	

	 	

	 	

	 	

	

	 	 	 	 	 	

	 	

	 	 	 	

	

	 	

	 	

	 	

	 	

	

	 	 	 	 	

	 	

	 	 	

	

	 	 	 	 	

	

	 	 	

	 	 	

	 	 	 	 	

	 	

	

	

	 	

	 	

It’s	also	possible	to	set	RepeatBehavior	in	terms	of	time	rather	than	a	number:	

anima.RepeatBehavior = new RepeatBehavior(TimeSpan.FromSeconds(0.75));

Now	the	button	animation	keeps	repeating	for	the	duration	of	the	RepeatBehavior	time.	In	

this	case,	it	will	make	1½	revolutions	and	be	left	upsidedown	(unless	AutoReverse	is	also	set	

to	true to	bring	it	back	to	normal).	

The	RepeatBehavior	property	can	also	be	set	to	the	static	RepeatBehavior.Forever	value,	but	

you	probably	don’t	want	to	use	that	in	this	particular	example!	

For	the	next	several	experiments,	remove	all	the	changes	you	might	have	made	to	the	original	

program	but	change	the	duration	of	the	animation	to	5	seconds	to	see	more	clearly	what’s	

going	on:	

anima.Duration = new Duration(TimeSpan.FromSeconds(5));

You	can	sequentially	click	the	three	buttons	and	all	the	animations	run	independently.	That’s	

expected	because	all	the	animations	are	separate	objects.	But	what	happens	when	you	click	a	

button	that’s	already	in	the	middle	of	an	animation?	You’ll	discover	that	it	starts	over	again	

from	zero.	You’re	basically	applying	a	new	animation	that	replaces	the	old	animation,	and	the	

new	animation	always	begins	at	0°	and	proceeds	to	360°.	That’s	how	the	properties	are	

defined:	

anima.From = 0;

anima.To = 360;

Dependency	properties	such	as	the	Angle	property	of	RotateTransform	have	a	base value,	

which	is	the	value	of	the	property	when	an	animation	is	not	active.	There’s	actually	a	method	

defined	by	DependencyObject	that	lets	you	obtain	this	value:	GetAnimationBaseValue	can	be	

called	on	any	DependencyObject	derivative	with	an	argument	set	to	a	DependencyProperty,	

such	as	RotateTransform.AngleProperty.	

If	you	call	GetAnimationBaseValue	for	that	Angle property,	you’ll	get	the	value	zero.	Try	

commenting	out	the	From property	setting,	leaving	only	the	To:	

// anima.From = 0;

anima.To = 360;

And	it	works.	The	animation	animates	the	Angle property	from	its	base	value	of	zero	to	360.	

But	if	you	click	the	Button multiple	times	as	the	button	is	slowly	spinning,	something	odd	

happens:	It	won’t	start	over	from	0	because	there	is	no	From	property	setting.	But	the	velocity	

of	the	button	slows	down	because	each	new	animation	starts	from	the	current	position	of	the	

button,	so	it	has	less	distance	to	travel	to	reach	360	but	the	same	amount	of	time	to	do	it	in.	

But	does	it	really	work?	After	the	animation	has	concluded,	try	clicking	the	button	again.	

Nothing	happens!	The	animation	has	left	the	Angle property	at	a	value	of	360,	so	there’s	

nothing	for	subsequent	animations	to	do!	

519	

	

	

	 	

	

	 	 	 	

	 	

	 	

	 	

	

	 	

	 	 	 	 	

	 	 	

	 	 	 	 	

	 	 	

	 	 	

	

Now	try	this:	

anima.From = -360;

anima.To = null;

The	To	property	setting	might	look	a	little	strange	since	you	probably	assumed	that	From	and	

To	are	of	type	double.	They’re	actually	nullable	double	values,	and	the	default	values	are	null.	

Setting	the	value	to	null	is	the	same	as	not	setting	it	at	all.	These	settings	work	much	like	the	

original	settings.	Whenever	you	click	the	button,	it	jumps	to	the	value	of	–360°	and	then	is	

animated	to	its	base	value,	which	is	0.	

Let’s	look	at	this	one	again:	

// anima.From = 0;

anima.To = 360;

After	the	animation	ends,	the	Angle	property	is	left	at	the	value	of	360.	That	behavior	is	the	

result	of	the	FillBehavior	property	defined	by	Timeline.	By	default,	this	property	is	set	to	the	

enumeration	value	FillBehavior.HoldEnd,	which	causes	a	property	to	be	left	at	the	animated	

value	after	the	animation	ends.	Try	this	alternative:	

// anima.From = 0;

anima.To = 360;

anima.FillBehavior = FillBehavior.Stop;

This	setting	causes	the	effect	of	the	animation	to	be	removed	from	the	property.	After	the	

animation	concludes,	the	Angle	property	reverts	to	its	preanimated	value	of	0.	We	can’t	

actually	see	that	property	snap	back,	because	0°	is	the	same	as	360°,	but	it	does.	You	can	see	

the	effect	more	clearly	if	you	set	the	To	value	to	180.	

An	alternative	to	the	To	and	From	properties	is	By.	Try	this:	

// anima.From = 0;

// anima.To = 360;

anima.By = 90;

anima.FillBehavior = FillBehavior.HoldEnd;

This	setting	of	FillBehavior	is	the	default	value	of	HoldEnd.	Each	time	you	click	the	button,	it	

advances	by	90°.	However,	if	you	click	it	while	it’s	moving,	it	will	be	animated	90°	from	that	

position,	so	it	ends	up	in	some	odd	angle.	The	By	value	is	useful	in	some	cases	to	

progressively	increment	a	property	by	a	certain	amount	with	each	successive	application	of	an	

animation.	

XAML-Based
Animations

Defining	storyboards	and	animations	in	XAML	is	ostensibly	easier	than	defining	them	in	code,	

and	for	that	reason	you’ll	find	the	vast	majority	of	Silverlight	storyboards	and	animations	in	

XAML.	But	there	are	some	issues	involving	the	sharing	of	resources.	

520	

	

	 	

	 	

	 	

	 	 	 	 	 	 	

Let’s	try	to	rewrite	the	ClickAndSpin	program	to	use	XAML	for	the	storyboards	and	

animations.	The	XamlClickAndSpin	program	has	the	following	content	area:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Grid.RowDefinitions>

<RowDefinition Height="*" />

<RowDefinition Height="*" />

<RowDefinition Height="*" />

</Grid.RowDefinitions>

<Button Name="btn1"

 Content="Button No. 1"

 Grid.Row="0"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 RenderTransformOrigin="0.5 0.5"

 Click="OnButtonClick">

<Button.RenderTransform>

<RotateTransform x:Name="rotate1" />

</Button.RenderTransform>

</Button>

<Button Name="btn2"

 Content="Button No. 2"

 Grid.Row="1"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 RenderTransformOrigin="0.5 0.5"

 Click="OnButtonClick">

<Button.RenderTransform>

<RotateTransform x:Name="rotate2" />

</Button.RenderTransform>

</Button>

<Button Name="btn3"

 Content="Button No. 3"

 Grid.Row="2"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 RenderTransformOrigin="0.5 0.5"

 Click="OnButtonClick">

<Button.RenderTransform>

<RotateTransform x:Name="rotate3" />

</Button.RenderTransform>

</Button>

</Grid>

This	is	basically	the	same	as	the	previous	version	except	that	all	the	Button	elements	and	all	

the	RotateTransform objects	have	been	given	names	for	easy	reference.	

521	

	

	 	

	

	 	

	 	 	 	

	

	 	 	

	

	 	 	

The	storyboards	and	animations	are	defined	in	the	Resources	collection	of	the	page:	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.Resources>

<Storyboard x:Name="storyboard1">

<DoubleAnimation Storyboard.TargetName="rotate1"

 Storyboard.TargetProperty="Angle"

 From="0" To="360" Duration="0:0:0.5" />

</Storyboard>

<Storyboard x:Name="storyboard2">

<DoubleAnimation Storyboard.TargetName="rotate2"

 Storyboard.TargetProperty="Angle"

 From="0" To="360" Duration="0:0:0.5" />

</Storyboard>

<Storyboard x:Name="storyboard3">

<DoubleAnimation Storyboard.TargetName="rotate3"

 Storyboard.TargetProperty="Angle"

 From="0" To="360" Duration="0:0:0.5" />

</Storyboard>

</phone:PhoneApplicationPage.Resources>

Three	buttons;	three	storyboards.	Notice	the	attached	properties:	

<DoubleAnimation Storyboard.TargetName="rotate1"

 Storyboard.TargetProperty="Angle"

 From="0" To="360" Duration="0:0:0.5" />

To	set	the	attached	properties	in	code,	you	make	calls	to	the	static	methods	

Storyboard.SetTarget	and	Storyboard.SetTargetProperty.	In	XAML	you	set	the	attached	

properties	Storyboard.TargetName	and	Storyboard.TargetProperty.	Notice	the	difference:	The	

markup	needs	to	reference	a	target	object	by	name	whereas	code	has	access	to	the	actual	

object	itself.	

Alternatively,	the	Angle	property	could	be	referenced	through	the	Button	object:	

<DoubleAnimation Storyboard.TargetName="btn1"

Storyboard.TargetProperty="(Button.RenderTransform).(RotateTransform.Angle)"

 From="0" To="360" Duration="0:0:0.5" />

Or:	

<DoubleAnimation Storyboard.TargetName="btn1"

 Storyboard.TargetProperty="(Button.RenderTransform).Angle"

 From="0" To="360" Duration="0:0:0.5" />

With	this	syntax,	the	RotateTransform objects	do	not	require	names.	

522	

	

	 	 	

	 	 	 	

		

	 	 	

	 	 	

	 	 	 	 	 	

	 	

	 	 	

	 	 	 	

	 	

	 	

	 	

	 	

	 	

	 	 	 	 	 	 	

	 	

	 	 	 	

	 	

	

Notice	how	the	duration	is	defined.	At	least	three	numbers	are	required:	hours,	minutes,	and	

seconds	separated	by	colons.	The	seconds	can	have	a	fractional	part.	You	can	also	preface	

hours	with	a	number	of	days	and	a	period.	

I	used	x:Name	rather	than	x:Key	with	the	Storyboard	resources	to	make	them	easier	to	

reference	in	code.	The	handler	for	the	button’s	Click	event	simply	calls	Begin	on	the	

appropriate	object:	

Silverlight Project: File: (excerpt)

void OnButtonClick(object sender, RoutedEventArgs args)

{

if (sender == btn1)

storyboard1.Begin();

else if (sender == btn2)

storyboard2.Begin();

else if (sender == btn3)

storyboard3.Begin();

}

Simple	enough.	But	I’m	probably	not	alone	in	desiring	a	way	to	define	just	one	storyboard	

and	animation	in	XAML	rather	than	three.	It	seems	like	it	should	be	possible	to	leave	out	the	

Storyboard.TargetName	assignment	in	the	XAML	and	call	the	Storyboard.SetTarget	method	in	

code	once	you	know	what	button	is	involved.	But	you	can’t	get	around	the	fact	that	resources	

are	shared,	and	if	a	particular	Storyboard	and	DoubleAnimation	are	associated	with	one	

Button,	they	can’t	also	be	used	with	another	Button.	With	one	Storyboard	and	

DoubleAnimation	resource	you	couldn’t	have	two	buttons	spinning	at	the	same	time.	

Even	if	you	could	assure	yourself	that	one	Button	would	be	stopped	before	another	Button

would	begin,	you	still	have	to	make	sure	that	the	storyboard	is	stopped	as	well,	which	means	

you	need	to	call	Stop	on	the	Storyboard	object.	(Besides	Begin	and	Stop	methods,	the	

Storyboard	class	also	defines	Pause	and	Resume,	but	they’re	not	often	used.)	

A
Cautionary
Tale

In	previous	chapters	I’ve	showed	you	how	to	use	CompositionTarget.Rendering	for	moving	

and	changing	visual	objects	in	synchronization	with	the	refresh	rate	of	the	video	display.	

While	certainly	convenient	for	some	scenarios,	this	feature	of	Silverlight	should	be	used	with	

discretion.	If	you’re	really	interested	in	using	CompositionTarget.Rendering	for	a	fullfledged	

game	loop,	for	example,	perhaps	it’s	time	to	start	thinking	about	XNA.	

523	

	

	 	

	 	 	

	 	

The	big	problem	is	that	sometimes	CompositionTarget.Rendering	does	not	work	as	well	as	you	

might	anticipate.	For	example,	you	might	remember	the	Spiral	program	from	Chapter	13.	

Here	is	a	program	that	attempts	to	use	CompositionTarget.Rendering to	rotate	that	spiral.	

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage

{

RotateTransform rotateTransform = new RotateTransform();

 public MainPage()

 {

InitializeComponent();

Loaded += OnLoaded;

 }

 void OnLoaded(object sender, RoutedEventArgs args)

{

Point center = new Point(ContentPanel.ActualWidth / 2 - 1,

ContentPanel.ActualHeight / 2 - 1);

double radius = Math.Min(center.X, center.Y);

Polyline polyline = new Polyline();

polyline.Stroke = this.Resources["PhoneForegroundBrush"] as Brush;

polyline.StrokeThickness = 3;

for (double angle = 0; angle < 3600; angle += 0.25)

{

 double scaledRadius = radius * angle / 3600;

 double radians = Math.PI * angle / 180;

 double x = center.X + scaledRadius * Math.Cos(radians);

 double y = center.Y + scaledRadius * Math.Sin(radians);

 polyline.Points.Add(new Point(x, y));

}

ContentPanel.Children.Add(polyline);

rotateTransform.CenterX = center.X;

rotateTransform.CenterY = center.Y;

polyline.RenderTransform = rotateTransform;

CompositionTarget.Rendering += OnCompositionTargetRendering;

 }

 void OnCompositionTargetRendering(object sender, EventArgs args)

{

TimeSpan elapsedTime = (args as RenderingEventArgs).RenderingTime;

rotateTransform.Angle = 360 * elapsedTime.TotalSeconds / 3 % 360;

 }

}

524	

	

	

	 	 	 	 	

	 	 	 	

	 	

	

	 	 	 	

	 	 	 	 	

	

	

	

	

	 	

	

	 	

	 	 	 	

	 	

	 	 	

	 	

	 	

	 	

	

	 	 	 	

	

	

	 	

	 	

Most	of	this	code	is	the	same	as	the	Spiral	program,	but	notice	the	RotateTransform	field.	At	

the	end	of	the	Loaded	handler,	this	RotateTransform	is	set	to	the	RenderTransform	property	of	

the	Polyline defining	the	spiral,	and	a	handler	is	attached	to	the	CompositionTarget.Rendering

event.	That	event	handler	changes	the	Angle property	of	the	RotateTransform	to	rotate	the	

spiral	once	every	3	seconds.	

There’s	nothing	really	wrong	with	this	code,	but	if	your	phone	is	similar	to	my	phone,	the	

performance	will	be	terrible.	The	screen	will	be	updated	only	once	or	twice	a	second,	and	the	

resultant	animation	will	seem	very	jumpy.	

I’m	going	to	tell	you	three	ways	to	fix	the	problem	and	improve	the	performance.	Fortunately,	

all	three	ways	to	fix	the	problem	are	general	enough	to	be	usable	beyond	this	particular	

application.	

Solution	1:	Simplify
the
graphics.	This	spiral	is	a	Polyline	with	14,400	points.	That	is	way

more	than	sufficient.	If	you	change	the	increment	in	the	for	loop	from	0.25	to	5,	the	

animation	will	be	much	smoother	and	the	spiral	itself	will	still	seem	round.	The	lesson:	Fewer	

visual	objects	often	result	in	better	performance.	Simplify	your	graphics	and	simplify	your	

visual	trees.	

Solution	2:	Cache
the
visuals.	Silverlight	is	attempting	to	rotate	a	Polyline	with	very	many	

individual	points.	It	would	find	this	job	a	lot	easier	if	the	spiral	were	a	simple	bitmap	rather	

than	a	complex	Polyline.	You	could	make	a	WriteableBitmap	of	this	graphic	yourself	and	

rotate	that.	Or	you	could	let	Silverlight	do	the	equivalent	optimization	by	simply	setting	the	

following	property	on	Polyline:	

polyline.CacheMode = new BitmapCache();

This	instructs	Silverlight	to	create	a	bitmap	of	the	element	and	to	use	that	bitmap	for	

rendering.	You	shouldn’t	use	this	option	for	vector	graphics	that	dynamically	change.	But	

complex	graphics	that	are	static	within	themselves,	and	which	might	be	subjected	to	

animations,	are	excellent	candidates	for	bitmap	caching.	In	XAML	it	looks	like	this:	

CacheMode="BitmapCache"

Solution	3:	Use
Silverlight
animations
instead
of
CompositionTarget.Rendering.	

Let’s	rewrite	the	RotatedSpiral	program	with	the	same	number	of	points	in	the	Polyline	and	

without	explicit	bitmap	caching	but	replacing	CompositionTarget.Rendering	with	a	

DoubleAnimation:	

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage

{

 public MainPage()

525	

	

	

	 	 	

	 	 	

 {

InitializeComponent();

Loaded += OnLoaded;

 }

 void OnLoaded(object sender, RoutedEventArgs args)

{

Point center = new Point(ContentPanel.ActualWidth / 2 - 1,

ContentPanel.ActualHeight / 2 - 1);

double radius = Math.Min(center.X, center.Y);

Polyline polyline = new Polyline();

polyline.Stroke = this.Resources["PhoneForegroundBrush"] as Brush;

polyline.StrokeThickness = 3;

for (double angle = 0; angle < 3600; angle += 0.25)

{

 double scaledRadius = radius * angle / 3600;

 double radians = Math.PI * angle / 180;

 double x = center.X + scaledRadius * Math.Cos(radians);

 double y = center.Y + scaledRadius * Math.Sin(radians);

 polyline.Points.Add(new Point(x, y));

}

ContentPanel.Children.Add(polyline);

RotateTransform rotateTransform = new RotateTransform();

rotateTransform.CenterX = center.X;

rotateTransform.CenterY = center.Y;

polyline.RenderTransform = rotateTransform;

DoubleAnimation anima = new DoubleAnimation

{

 From = 0,

 To = 360,

 Duration = new Duration(TimeSpan.FromSeconds(3)),

 RepeatBehavior = RepeatBehavior.Forever

};

Storyboard.SetTarget(anima, rotateTransform);

Storyboard.SetTargetProperty(anima,

new

PropertyPath(RotateTransform.AngleProperty));

Storyboard storyboard = new Storyboard();

storyboard.Children.Add(anima);

storyboard.Begin();

 }

}

And	it	runs	much	smoother	than	the	previous	version.	

Why	the	big	difference?	Surely	on	some	level	the	Silverlight	animations	are	making	use	of	

something	equivalent	to	CompositionTarget.Rendering,	right?	

526

	

	

	 	 	

	

	 	 	

	

	 	 	 	

	

	 	

	 	 	

	

	 	

	 	 	 	

	 	 	 	 	

	 	 	 	

	 	

	

Actually,	that’s	not	true.	It’s	pretty	much	true	for	the	desktop	version	of	Silverlight,	but	

Silverlight	for	Windows	Phone	has	been	enhanced	to	make	greater	use	of	the	phone’s	

graphics	processing	unit	(GPU).	Although	GPUs	are	customarily	associated	with	hardware	

accelerations	of	complex	texture	processing	and	other	algorithms	associated	with	3D	

graphics,	Silverlight	puts	the	GPU	to	work	performing	simple	2D	animations.	

Much	of	a	Silverlight	application	runs	in	a	single	thread	called	the	UI thread.	The	UI	thread	

handles	touch	input,	layout,	and	the	CompositionTarget.Rendering	event.	Some	worker	

threads	are	also	used	for	jobs	such	as	rasterization,	media	decoding,	sensors,	and	

asynchronous	web	access.		

Silverlight	for	Windows	Phone	also	supports	a	compositor	or	render thread	that	involves	the	

GPU.	This	render	thread	is	used	for	several	types	of	animations	of	properties	of	type	double,	

specifically:	

• Transforms	you	set	to	the	RenderTransform	property	

• Perspective	transforms	you	set	to	Projection	property	

• Canvas.Left	and	Canvas.Top	attached	properties	

• Opacity	property	

• Anything	that	causes	rectangular	clipping	to	occur	

Animations	that	target	properties	of	type	Color	or	Point	continue	to	be	performed	in	the	UI	

thread.	Nonrectangular	clipping	or	use	of	OpacityMask	are	also	performed	in	the	UI	thread	

and	can	result	in	poor	performance.	

As	a	little	demonstration,	the	UIThreadVsRenderThread	project	rotates	some	text	in	two	

different	ways:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Grid.RowDefinitions>

<RowDefinition Height="*" />

<RowDefinition Height="*" />

<RowDefinition Height="Auto" />

</Grid.RowDefinitions>

<TextBlock Grid.Row="0"

 Text="UI Thread"

 FontSize="{StaticResource PhoneFontSizeLarge}"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 RenderTransformOrigin="0.5 0.5">

<TextBlock.RenderTransform>

527	

	

	 	

	 	 	 	

	

	

<RotateTransform x:Name="rotate1" />

</TextBlock.RenderTransform>

</TextBlock>

<TextBlock Grid.Row="1"

 Text="Render Thread"

 FontSize="{StaticResource PhoneFontSizeLarge}"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 RenderTransformOrigin="0.5 0.5">

<TextBlock.RenderTransform>

<RotateTransform x:Name="rotate2" />

</TextBlock.RenderTransform>

</TextBlock>

<Button Grid.Row="2"

 Content="Hang for 5 seconds"

 HorizontalAlignment="Center"

 Click="OnButtonClick" />

</Grid>

The	first	TextBlock	is	rotated	in	code	using	CompositionTarget.Rendering.	The	second	

TextBlock	is	animated	by	the	following	Storyboard	defined	in	the	page’s	Resources	collection:	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.Resources>

<Storyboard x:Name="storyboard">

<DoubleAnimation Storyboard.TargetName="rotate2"

 Storyboard.TargetProperty="Angle"

 From="0" To="360" Duration="0:1:0"

 RepeatBehavior="Forever" />

</Storyboard>

</phone:PhoneApplicationPage.Resources>

The	MainPage	constructor	starts	the	animation	going	and	attaches	a	handler	for	the	

CompositionTarget.Rendering	event.	

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage

{

DateTime startTime;

 public MainPage()

 {

InitializeComponent();

storyboard.Begin();

startTime = DateTime.Now;

528	

	

	 	

	 	

	 	 	 	

	

	 	

	 	 	 	

	 	 	

	 	

	

	 	 	

	 	 	 	 	 	

	 	 	

	 	 	 	

	 	

	 	

	 	

	 	

	 	

	 	 	

	

	

	

CompositionTarget.Rendering += OnCompositionTargetRendering;

 }

 void OnCompositionTargetRendering(object sender, EventArgs args)

{

TimeSpan elapsedTime = DateTime.Now - startTime;

rotate1.Angle = (elapsedTime.TotalMinutes * 360) % 360;

 }

 void OnButtonClick(object sender, RoutedEventArgs args)

 {

Thread.Sleep(5000);

 }

}

I’m	using	the	timebased	logic	for	CompositionTarget.Rendering	so	the	two	animations	move	

at	the	same	rate.	But	press	that	button	and	you’ll	see	something	amazing:	The	TextBlock

rotated	by	CompositionTarget.Rendering	stops	dead	for	five	seconds,	but	the	one	powered	by	

DoubleAnimation	keeps	right	on	going!	That’s	the	render	thread	working	for	you	even	though	

the	UI	thread	is	blocked.	

If	you’re	applying	rotation	and	scaling	to	text,	there’s	another	setting	you	might	want	to	know	

about.	This	is	the	attached	property	you	set	in	XAML	like	this:	

TextOptions.TextHintingMode="Animated"

The	alternative	is	Fixed,	which	is	the	default.	When	you	indicate	that	text	is	to	be	animated,	

certain	optimizations	for	readability	won’t	be	performed.	

Silverlight	has	three	builtin	features	that	can	help	you	visualize	performance	issues.	Although	

you	can	use	these	on	the	phone	emulator,	the	emulator	tends	to	run	faster	than	the	actual	

phone,	so	you’re	not	getting	a	true	view	of	performance	anyway.	

For	more	details	about	performance	issues,	you’ll	want	to	study	the	document	“Creating	High	

Performance	Silverlight	Applications	for	Windows	Phone”	available	online	The	Settings	class	in	

the	System.Windows.Interop namespace	has	three	Boolean	properties	that	can	help	you	

visualize	performance.	You	access	these	three	properties	through	the	SilverlightHost	object	

available	as	the	Host	property	of	the	current	Application	object.	These	properties	are	

considered	so	important	that	you’ll	find	them	set—and	all	but	one	commented	out—in	the	

constructor	of	the	App	class	in	the	standard	App.xaml.cs	file.		

Here’s	the	first:	

Application.Current.Host.Settings.EnableFrameRateCounter = true;

This	flag	enables	a	little	display	at	the	side	of	the	phone	showing	several	items:	

• The	frame	rate	(in	frames	per	second)	of	the	render	thread	(GPU)	

529	

	

	 	 	 	 	

	

	

	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	

	

	

	 	 	

	 	

	 	 	

	 	 	 	 	

	 	

	

	 	

	 	 	

	 	

	 	 	

	 	 	

	 	 	 	

	 	 	 	 		

• The	frame	rate	(in	frames	per	second)	of	the	UI	thread	(CPU)	

• The	amount	of	video	RAM	in	use	in	kilobytes	

• The	number	of	textures	stored	on	the	GPU	

• The	number	of	intermediate	objects	created	for	complex	graphics	

• The	fraction	of	total	screen	pixels	painted	per	frame	

The	first	two	items	are	the	most	important.	When	your	program	is	running	on	the	phone	

these	two	numbers	should	both	be	in	the	region	of	30	frames	per	second.	It	is	probably	best	

to	use	these	numbers	(and	the	others)	in	comparative	ways:	Get	accustomed	to	what	the	

numbers	are	like	in	relatively	simple	programs,	and	then	observe	the	changes	as	the	program	

gets	more	complex.	

The	second	diagnostics	flag	is:	

Application.Current.Host.Settings.EnableRedrawRegions = true;

This	flag	is	rather	fun.	Whenever	the	UI	thread	needs	to	rasterize	graphics	for	a	particular	

region	of	the	video	display,	that	region	is	highlighted	with	a	different	color.	(These	are	

sometimes	called	“dirty	regions”	because	they	need	to	be	refreshed	with	new	visuals.)	If	you	

see	a	lot	of	flickering	over	wide	areas	of	the	video	display,	the	UI	thread	is	working	overtime	

to	update	the	display.	Optimally,	you	should	be	seeing	very	little	color	flashing,	which	is	the	

case	when	the	render	thread	is	performing	animations	rather	than	the	UI	thread.	

Here’s	the	third	flag:	

Application.Current.Host.Settings.EnableCacheVisualization = true;

This	flag	uses	a	color	overlay	to	highlight	areas	of	the	display	that	are	cached	to	bitmaps.	You	

might	want	to	try	this	flag	with	the	RotatedSpiral	program	(the	version	that	uses	

CompositionTarget.Rendering).	When	you	run	the	program	as	it’s	shown	above,	the	whole	

display	is	tinted,	meaning	that	the	whole	display	needs	to	rasterized	every	time	the	Polyline

changes	position.	That	takes	some	times,	and	that’s	why	the	performance	is	so	poor.	Now	set:	

polyline.CacheMode = new BitmapCache();

Now	you’ll	see	the	spiral	in	a	tinted	box,	and	the	box	itself	is	rotated.	That’s	the	cached	

bitmap.		

Key
Frame
Animations

If	you	like	the	idea	of	giving	the	user	some	visual	feedback	from	a	button,	but	the	360°	spin	is	

just	a	bit	too	ostentatious,	perhaps	jiggling	the	button	a	little	might	be	more	polite.	So	you	

open	a	new	project	named	JiggleButtonTryout	and	begin	experimenting.	

530	

	

	 	

	

	

	 	

	

	

	 	

	 	

	 	

Let’s	start	with	just	one	Button	with	a	TranslateTransform	set	to	the	RenderTransform

property:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Button Content="Jiggle Button"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 Click="OnButtonClick">

<Button.RenderTransform>

<TranslateTransform x:Name="translate" />

</Button.RenderTransform>

</Button>

</Grid>

In	the	Resources	collection	you’ll	want	to	define	a	Storyboard:	

<phone:PhoneApplicationPage.Resources>

<Storyboard x:Name="jiggleStoryboard">

</Storyboard>

</phone:PhoneApplicationPage.Resources>

The	codebehind	file	starts	the	animation	when	the	button	is	clicked:	

Silverlight Project: File: (excerpt)

void OnButtonClick(object sender, RoutedEventArgs args)

{

 jiggleStoryboard.Begin();

}

Perhaps	the	first	thing	you	try	is	a	DoubleAnimation	that	animates	the	X	property	of	the	

TranslateTransform:	

<Storyboard x:Name="jiggleStoryboard">

<DoubleAnimation Storyboard.TargetName="translate"

 Storyboard.TargetProperty="X"

 From="-10" To="10" Duration="0:0:0.05"

 AutoReverse="True"

 RepeatBehavior="3x" />

</Storyboard>

The	result	looks	vaguely	OK,	but	it’s	not	quite	right,	because	the	animation	initially	jumps	the	

button	to	the	left	10	pixels,	and	then	the	animation	goes	from	left	to	right	and	back	again	

three	times.	(Notice	the	XAML	syntax	for	repeating	the	animation	three	times	or	“3x”.)	Then	it	

stops	with	the	button	still	10	units	to	the	left.	You	can	see	the	problem	more	clearly	if	you	

change	the	offsets	to	–100	and	100,	and	the	duration	to	½	second.	

531	

	

	

	 	

	 	 	

	 	

	

	 	

	 	

	 	 	 	 	

	 	

	 	

		

	

	 	

	 	 	 	

	 	 	 	 	

	 	

	

	 	

	

	 	

One	way	to	fix	part	of	the	problem	is	to	set	the	FillBehavior	to	Stop,	which	releases	the	

animation	at	the	end,	causing	the	button	to	jump	back	to	its	original	position.	But	that	creates	

another	discontinuous	jump	at	the	end	of	the	animation	besides	the	one	at	the	beginning.	

To	make	this	correct,	we	really	need	a	couple	different	animations.	We	first	want	to	animate	

from	0	to	–10,	then	from	–10	to	10	and	back	again	a	few	times,	and	then	finally	back	to	zero.	

Fortunately,	Silverlight	has	a	facility	to	string	animations	like	this	in	a	sequence.	It’s	called	a	

keyframe	animation,	and	the	first	step	is	to	replace	DoubleAnimation	with	

DoubleAnimationUsingKeyFrames.	Everything	except	the	TargetName	and	TargetProperty

doesn’t	apply	in	new	approach:	

<Storyboard x:Name="jiggleStoryboard">

<DoubleAnimationUsingKeyFrames Storyboard.TargetName="translate"

 Storyboard.TargetProperty="X">

</DoubleAnimationUsingKeyFrames>

</Storyboard>

When	you’re	animating	properties	of	type	double,	DoubleAnimationUsingKeyFrames	is	the	

only	alternative	to	DoubleAnimation,	but	it	gives	you	a	lot	more	flexibility.	The	

DoubleAnimationUsingKeyFrames	class	has	children	of	type	DoubleKeyFrame,	and	you	have	

four	choices:	

• DiscreteDoubleKeyFrame	jumps	to	a	particular	position	

• LinearDoubleKeyFame performs	a	linear	animation	

• SplineDoubleKeyFrame can	speed	up	and	slow	down	

• EasingDoubleKeyFrame	animates	with	an	easing	function	

For	now,	I	want	to	use	DiscreteDoubleKeyFrame	and	LinearDoubleKeyFrame.	Each	keyframe	

object	requires	two	properties	to	be	set:	a	KeyTime	and	a	Value.	The	KeyTime	is	an	elapsed	

time	from	the	beginning	of	the	animation;	the	Value	property	is	the	desired	value	of	the	

target	property	at	that	time.	

To	get	a	better	view	of	what’s	happening,	let’s	swing	the	button	very	wide,	and	let’s	do	it	

slowly.	At	time	zero,	we	want	the	value	to	be	zero:	

<DiscreteDoubleKeyFrame KeyTime="0:0:0" Value="0" />

This	isn’t	actually	required,	because	0	is	the	value	of	the	target	property	at	the	beginning	of	

the	animationanyway,	but	it	doesn’t	hurt.	

At	the	end	of	1	second,	let’s	set	the	value	to	be	–100:	

<LinearDoubleKeyFrame KeyTime="0:0:01" Value="-100" />

532	

	

	 	

	

	

	 	 	

	

	 	 	

	

		

	 	 	 		

	 	 	 	

	 	 	 	

	 	 	

	

	

The	use	of	LinearDoubleKeyFrame	here	means	that	in	the	duration	from	time	zero	to	1	

second,	the	X	property	of	TranslateTransform	will	change	linearly	from	0	to	–100.	The	velocity	

is	100	units	a	second,	so	to	keep	the	same	velocity	for	the	swing	to	100,	the	next	key	time	

should	be	three	seconds:	

<LinearDoubleKeyFrame KeyTime="0:0:03" Value="100" />

This	means	that	from	an	elapsed	time	of	1	second	to	an	elapsed	time	of	3	seconds,	the	value	

changes	from	–100	to	100.	Finally,	another	elapsed	second	brings	it	back	to	the	starting	

position:	

<LinearDoubleKeyFrame KeyTime="0:0:04" Value="0" />

If	you	try	this	out,	you	can	see	that	the	button	moves	left,	then	all	the	way	right,	then	back	to	

the	center	without	any	jumps	in	a	total	of	4	seconds.	The	total	duration	of	a	keyframe	

animation	is	the	maximum	KeyTime	on	all	the	keyframe	objects.	

Now	let’s	perform	that	entire	maneuver	three	times:	

<Storyboard x:Name="jiggleStoryboard">

<DoubleAnimationUsingKeyFrames Storyboard.TargetName="translate"

 Storyboard.TargetProperty="X"

 RepeatBehavior="3x">

<DiscreteDoubleKeyFrame KeyTime="0:0:0" Value="0" />

<LinearDoubleKeyFrame KeyTime="0:0:01" Value="-100" />

<LinearDoubleKeyFrame KeyTime="0:0:03" Value="100" />

<LinearDoubleKeyFrame KeyTime="0:0:04" Value="0" />

</DoubleAnimationUsingKeyFrames>

</Storyboard>

The	total	show	lasts	for	12	seconds	but	without	any	discontinuities.	

Now	that	the	button	has	the	desired	behavior,	the	offsets	can	be	reduced	from	100	to	10:	

<Storyboard x:Name="jiggleStoryboard">

<DoubleAnimationUsingKeyFrames Storyboard.TargetName="translate"

 Storyboard.TargetProperty="X"

 RepeatBehavior="3x">

<DiscreteDoubleKeyFrame KeyTime="0:0:0" Value="0" />

<LinearDoubleKeyFrame KeyTime="0:0:01" Value="-10" />

<LinearDoubleKeyFrame KeyTime="0:0:03" Value="10" />

<LinearDoubleKeyFrame KeyTime="0:0:04" Value="0" />

</DoubleAnimationUsingKeyFrames>

</Storyboard>

To	bring	the	time	values	down	to	something	reasonable,	I	want	to	show	you	a	little	trick.	

Often	when	you’re	developing	animations	you	want	to	do	run	them	very	slowly	to	get	them	

working	correctly,	and	then	you	want	to	speed	them	up	for	the	final	version.	Of	course,	you	

could	go	through	and	adjust	all	the	KeyTime	values,	or	you	could	simply	specify	a	SpeedRatio

on	the	animation,	as	in	the	version	of	the	animation	in	the	JiggleButtonTryout	project:	

533	

	

	 	 	 	

	 	

	 	 	 	

	

	

	

	 	

	 	

	 	

	

	 	

	 	 	

	 	 	 	

	

	 	 	

	

	 	 	

	 	 	

	 	 	

	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.Resources>

<Storyboard x:Name="jiggleStoryboard">

<DoubleAnimationUsingKeyFrames Storyboard.TargetName="translate"

 Storyboard.TargetProperty="X"

 RepeatBehavior="3x"

 SpeedRatio="40">

<DiscreteDoubleKeyFrame KeyTime="0:0:0" Value="0" />

<LinearDoubleKeyFrame KeyTime="0:0:01" Value="-10" />

<LinearDoubleKeyFrame KeyTime="0:0:03" Value="10" />

<LinearDoubleKeyFrame KeyTime="0:0:04" Value="0" />

</DoubleAnimationUsingKeyFrames>

</Storyboard>

</phone:PhoneApplicationPage.Resources>

Each	cycle	of	the	key	frames	requires	4	seconds;	this	is	repeated	3	times	for	a	total	of	12	

seconds,	but	the	SpeedRatio	value	of	40	effectively	speeds	up	the	animation	by	a	factor	of	40	

so	it’s	only	0.3	seconds	total.	

If	you	want	to	immortalize	this	effect	in	a	custom	control	called	JiggleButton	for	easy	

reusability,	you	have	a	few	choices,	none	of	which	are	entirely	satisfactory.	

You	could	derive	from	UserControl	and	incorporate	the	Button	and	the	transform	in	that	

control.	But	to	do	this	right	would	require	reproducing	all	the	Button	properties	and	events	as	

UserControl	properties	and	events.	Another	approach	involves	a	template.	Perhaps	the	easiest	

option	is	to	derive	from	Button,	but	in	doing	so	you’d	have	to	appropriate	the	

RenderTransform	property	for	this	specific	purpose,	and	the	RenderTransform	property	would	

be	unusable	for	other	purposes.	

Trigger
on
Loaded

The	Windows	Presentation	Foundation	has	somewhat	more	flexibility	than	Silverlight	in	

defining	and	using	animations.	WPF	includes	objects	called	triggers,	which	respond	to	event	

firings	or	to	changes	in	properties	and	which	can	start	animations	going	entirely	in	XAML,	

eliminating	the	need	for	the	codebehind	file	to	start	the	Storyboard.	Triggers	are	largely	

gone	from	Silverlight—mostly	replaced	by	the	Visual	State	Manager	that	I’ll	discuss	in	the	

next	chapter.	

However,	one	trigger	remains	in	Silverlight.	This	is	a	trigger	that	responds	to	the	Loaded

event.	This	allows	you	to	define	an	animation	entirely	in	XAML	that	automatically	starts	up	

when	the	page	(or	another	element)	is	loaded.	

The	FadeInOnLoaded	project	contains	the	following	XAML	near	the	bottom	of	the	page,	right	

above	the	PhoneApplicationPage	end	tag.	This	is	the	traditional	spot	for	event	triggers:	

534	

	

	 	 	 	 	

	 	 	

	 	

	 	 	

	 	

	

	 	 	 	 	

	 	

	 	

	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.Triggers>

<EventTrigger>

<BeginStoryboard>

<Storyboard>

<DoubleAnimation Storyboard.TargetName="TitlePanel"

 Storyboard.TargetProperty="Opacity"

 From="0" To="1" Duration="0:0:10" />

</Storyboard>

</BeginStoryboard>

</EventTrigger>

</phone:PhoneApplicationPage.Triggers>

The	markup	begins	with	a	propertyelement	tag	for	the	Triggers property	defined	by	

FrameworkElement.	The	Triggers	property	is	of	type	TriggerCollection,	which	sounds	quite	

extensive	and	versatile,	but	in	Silverlight	the	only	thing	you	can	put	in	there	is	an	EventTrigger

tag	that	is	always	associated	with	the	Loaded	event.	This	next	tag	is	BeginStoryboard.	This	is	

the	only	place	you’ll	see	a	BeginStoryboard	tag	in	Silverlight.	And	now	we	get	to	something	

familiar:	A	Storyboard	with	one	or	more	animations	that	can	target	any	dependency	object	of	

any	object	on	the	page.	

This	one	targets	the	Opacity property	of	the	TitlePanel,	which	is	the	StackPanel	containing	the	

two	titles	at	the	top	of	the	page.	I	made	the	animation	10	seconds	long	so	you	don’t	miss	it.	

As	the	page	is	loaded,	the	titles	fade	into	view:	

535	

	

	 	 	

	 	

	 	 	 	 	 	

	 	

	 	 	 	 	

	 	 	 	 	

	

	

	 	

	 	 	 	

	 	 	

	 	 	

The	Silverlight	documentation	discourages	the	use	of	animations	triggered	in	this	way.	

Certainly	the	technique	has	limited	use	in	real	life.	But	it	remains	very	popular	for	XAML

based	demonstration	programs	with	animations	that	run	“forever.”	You	can	make	an	

animation	run	forever	(or	to	the	limits	of	your	toleration)	with:	

RepeatBehavior="Forever"

Although	I’ve	read	that	you	can’t	put	the	markup	with	the	Triggers	property	element	on	

anything	other	than	the	root	element	of	the	page,	in	reality	it’s	possible	to	define	it	on	

something	a	little	closer	to	the	actual	objects	being	animated.	I’ll	do	that	in	the	next	several	

programs	in	this	chapter	so	the	visual	tree	in	the	content	area	and	the	animation	are	all	

together	in	one	happy	family.	

All	the	visuals	in	the	following	program	are	in	a	centered	Grid	with	a	fixed	400pixel	square	

size.	The	Grid contains	five	concentric	circles,	all	of	which	are	Path	elements	whose	Data

properties	are	set	to	EllipseGeometry	objects.	Each	EllipseGeometry	has	RadiusX	and	a	RadiusY

properties	set	to	values	that	are	25	pixels	longer	than	the	next	smallest	object.	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Grid Width="400" Height="400"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" >

<!-- The inner circle. -->

<Path Name="pathInner"

 Stroke="{StaticResource PhoneAccentBrush}"

 StrokeThickness="12.5">

<Path.Data>

<EllipseGeometry x:Name="ellipse1"

 Center="200 200"

 RadiusX="0" RadiusY="0" />

</Path.Data>

</Path>

<!-- All circles except the inner and outer. -->

<Path Stroke="{StaticResource PhoneAccentBrush}"

 StrokeThickness="12.5">

<Path.Data>

<GeometryGroup>

<EllipseGeometry x:Name="ellipse2"

 Center="200 200"

 RadiusX="25" RadiusY="25" />

<EllipseGeometry x:Name="ellipse3"

 Center="200 200"

 RadiusX="50" RadiusY="50" />

<EllipseGeometry x:Name="ellipse4"

 Center="200 200"

 RadiusX="75" RadiusY="75" />

536	

	

</GeometryGroup>

</Path.Data>

</Path>

<!-- The outer circle. -->

<Path Name="pathOuter"

 Stroke="{StaticResource PhoneAccentBrush}"

 StrokeThickness="12.5">

<Path.Data>

<EllipseGeometry x:Name="ellipse5"

 Center="200 200"

 RadiusX="100" RadiusY="100" />

</Path.Data>

</Path>

<Grid.Triggers>

<EventTrigger>

<BeginStoryboard>

<Storyboard RepeatBehavior="Forever">

<DoubleAnimation Storyboard.TargetName="pathInner"

Storyboard.TargetProperty="StrokeThickness"

 From="0" Duration="0:0:5" />

<DoubleAnimation Storyboard.TargetName="ellipse1"

 Storyboard.TargetProperty="RadiusX"

 From="0" To="25" Duration="0:0:5" />

<DoubleAnimation Storyboard.TargetName="ellipse1"

 Storyboard.TargetProperty="RadiusY"

 From="0" To="25" Duration="0:0:5" />

<DoubleAnimation Storyboard.TargetName="ellipse2"

 Storyboard.TargetProperty="RadiusX"

 From="25" To="50" Duration="0:0:5" />

<DoubleAnimation Storyboard.TargetName="ellipse2"

 Storyboard.TargetProperty="RadiusY"

 From="25" To="50" Duration="0:0:5" />

<DoubleAnimation Storyboard.TargetName="ellipse3"

 Storyboard.TargetProperty="RadiusX"

 From="50" To="75" Duration="0:0:5" />

<DoubleAnimation Storyboard.TargetName="ellipse3"

 Storyboard.TargetProperty="RadiusY"

 From="50" To="75" Duration="0:0:5" />

<DoubleAnimation Storyboard.TargetName="ellipse4"

 Storyboard.TargetProperty="RadiusX"

 From="75" To="100" Duration="0:0:5" />

<DoubleAnimation Storyboard.TargetName="ellipse4"

 Storyboard.TargetProperty="RadiusY"

 From="75" To="100" Duration="0:0:5" />

537	

	

	 	 	 	

	 	 	 	 	

	 	 	 	 	 	

	 	

	 	

	

	 	

	 	 	 	

	 	 	

	

<DoubleAnimation Storyboard.TargetName="ellipse5"

 Storyboard.TargetProperty="RadiusX"

 From="100" To="125" Duration="0:0:5" />

<DoubleAnimation Storyboard.TargetName="ellipse5"

 Storyboard.TargetProperty="RadiusY"

 From="100" To="125" Duration="0:0:5" />

<DoubleAnimation Storyboard.TargetName="pathOuter"

 Storyboard.TargetProperty="Opacity"

 From="1" To="0" Duration="0:0:4.9" />

</Storyboard>

</BeginStoryboard>

</EventTrigger>

</Grid.Triggers>

</Grid>

</Grid>

That	centered	Path	is	also	the	element	on	which	the	EventTrigger is	attached,	and	the	

Storyboard	contains	12	DoubleAnimation	objects,	all	of	which	run	in	parallel	for	5	seconds.	

(The	last	one	is	actually	4.9	seconds,	but	I	made	that	change	to	avoid	a	sporadic	visual	glitch.)	

The	entire	Storyboard	is	then	repeated	forever.	All	but	two	of	these	DoubleAnimation	objects	

target	the	RadiusX	and	RadiusY	properties	of	the	five	EllipseGeometry	objects,	making	them	

25	pixels	larger—that	is,	as	large	as	the	base	value	of	the	next	larger	circle.	

At	the	same	time,	the	Opacity	property	of	the	outermost	circle	is	animated	to	fade	out,	and	

the	innermost	circle	has	it	StrokeThickness property	animated	to	make	it	seem	as	if	it	grows	

from	nothing.	The	overall	visual	effect	is	that	circles	seem	to	be	generated	from	the	center,	

and	then	disappear	once	they	reach	the	outside:	

538	

	

	

	 	 	

	 	

	 	 	 	 	 	

	 	

	 	

	

	 	 	 	

	 	 	 	

	 	 	 	 	 	 	

	

	 	

	

	 	

	 	

	

	

The	next	program	is	called	DashOffsetAnimation,	and	it	uses	a	Path	to	draw	an	infinity	sign	in	

landscape	mode.	The	infinity	sign	includes	two	semicircles	(at	the	far	left	and	far	right),	each	

of	which	is	drawn	using	two	Bézier	splines	based	on	a	wellknown	approximation.	

A	single	Bézier	curve	approximates	a	quarter	circle	very	well.	For	a	circle	centered	at	the	point	

(0,	0)	with	a	radius	of	100,	the	lowerright	quartercircle	arc	begins	at	the	point	(100,	0)	and	

goes	clockwise	to	end	at	the	point	(0,	100).	You	can	approximate	that	arc	with	a	Bézier	curve	

that	begins	at	the	point	(100,	0)	and	ends	at	the	point	(0,	100)	with	the	two	control	points	

(100,	55)	and	(55,	100).	Continue	that	same	pattern—I	think	of	it	as	the	“Bezier	55”	rule—to	

construct	an	entire	circle	from	four	connected	Bézier	curves.	The	approximation	is	so	good	

that	some	graphics	systems	actually	implement	circles	using	this	technique.	

The	Data	definition	used	below	is	Path	Markup	Syntax	that	starts	with	an	M	(“move”)	and	

then	a	C	(“cubic	Bézier”)	with	two	control	points	and	an	end	point.	But	then	it	switches	to	S	

(“smooth	Bézier”),	which	requires	only	the	second	control	point	and	the	end	point.	The	S	

automatically	uses	the	previous	Bézier	to	determine	a	first	control	point	that	is	collinear	with	

the	start	point	and	previous	control	point.	

The	StrokeDashArray is	set	with	the	two	points	0	and	1.5	indicating	a	dash	length	of	0	and	a	

gap	of	1.5.	However,	the	StrokeDashCap	is	set	to	Round,	so	the	dots	are	round	and	are	

separated	by	half	the	thickness	of	the	line.	

539	

	

	 	 	

	 	

	 	

	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Path Name="path"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 Stroke="{StaticResource PhoneAccentBrush}"

 StrokeThickness="23.98"

 StrokeDashArray="0 1.5"

 StrokeDashCap="Round"

 Data="M 100 0

C 45 0, 0 45, 0 100

 S 45 200, 100 200

 S 200 150, 250 100

 S 345 0, 400 0

 S 500 45, 500 100

 S 455 200, 400 200

 S 300 150, 250 100

 S 155 0, 100 0">

<Path.Triggers>

<EventTrigger>

<BeginStoryboard>

<Storyboard>

<DoubleAnimation Storyboard.TargetName="path"

Storyboard.TargetProperty="StrokeDashOffset"

 From="0" To="1.5" Duration="0:0:1"

 RepeatBehavior="Forever" />

</Storyboard>

</BeginStoryboard>

</EventTrigger>

</Path.Triggers>

</Path>

</Grid>

This	DoubleAnimation	targets	the	StrokeDashOffset	property	of	the	Path,	which	is	normally	

zero.	This	is	the	property	that	indicates	the	location	in	the	sequence	of	dots,	dashes,	and	gaps	

that	is	aligned	with	the	beginning	of	the	line.	The	result	is	that	the	dots	seem	to	travel	

continuously	around	the	figure.	

540	

	

	

	

	 	 	 	 	

	 	 	

	 	 	

	 	

	 	

	

To	avoid	discontinuities	when	animating	StrokeDashOffset	in	a	closed	path,	the	crucial	

number	is	the	StrokeThickness.	You	want	the	total	length	of	the	line	to	be	an	integral	multiple	

of	the	StrokeDashArray	times	the	StrokeThickness.	If	StrokeThickness	isn’t	anywhere	close	to	

the	correct	value,	you’ll	see	a	kind	of	bubbling	effect	as	partial	dots	are	drawn;	if	it’s	very	close	

to	the	correct	value	but	not	exact,	you	may	see	flickering.	

AnimatedInfinity	is	another	landscape	program	that	uses	that	same	Path	Markup	Syntax	but	

colors	the	infinity	sign	with	a	LinearGradientBrush	with	the	traditional	colors	of	the	rainbow:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Path HorizontalAlignment="Center"

 VerticalAlignment="Center"

 StrokeThickness="25"

 Data="M 100 0

C 45 0, 0 45, 0 100

 S 45 200, 100 200

 S 200 150, 250 100

 S 345 0, 400 0

 S 500 45, 500 100

 S 455 200, 400 200

 S 300 150, 250 100

 S 155 0, 100 0">

<Path.Stroke>

<LinearGradientBrush SpreadMethod="Repeat">

<LinearGradientBrush.Transform>

<TranslateTransform x:Name="translate" />

</LinearGradientBrush.Transform>

<LinearGradientBrush.GradientStops>

<GradientStop Offset="0.00" Color="Red" />

<GradientStop Offset="0.14" Color="Orange" />

<GradientStop Offset="0.28" Color="Yellow" />

<GradientStop Offset="0.42" Color="Green" />

<GradientStop Offset="0.56" Color="Blue" />

<GradientStop Offset="0.70" Color="Indigo" />

541	

	

	 	

	

	

	 	

	

<GradientStop Offset="0.85" Color="Violet" />

<GradientStop Offset="1.00" Color="Red" />

</LinearGradientBrush.GradientStops>

</LinearGradientBrush>

</Path.Stroke>

<Path.Triggers>

<EventTrigger>

<BeginStoryboard>

<Storyboard>

<DoubleAnimation Storyboard.TargetName="translate"

 Storyboard.TargetProperty="X"

 From="0" To="625" Duration="0:0:2"

 RepeatBehavior="Forever" />

</Storyboard>

</BeginStoryboard>

</EventTrigger>

</Path.Triggers>

</Path>

</Grid>

The	Brush	defines	a	Transform	property	(although	it’s	not	often	used),	and	this	program	sets	it	

to	a	TranslateTransform	and	then	animates	it,	making	the	colors	continuously	sweep	across	

the	figure:	

You	can	also	animate	properties	of	type	Color,	which	means	you	can	animate	brush	colors.	

Here’s	a	program	that	animates	the	Color	properties	in	two	GradientStop	objects	of	a	

LinearGradientBrush:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Grid HorizontalAlignment="Center"

 VerticalAlignment="Center">

<TextBlock Text="GRADIENT"

 FontSize="96"

 FontWeight="Bold">

<TextBlock.Foreground>

542	

	

	

	

	

	 	

	 	 	 	

	

	

	 	 	 	

	 	 	 	 	

	 	

	

	

<LinearGradientBrush>

<GradientStop x:Name="gradientStop1"

 Offset="0" Color="Red" />

<GradientStop x:Name="gradientStop2"

 Offset="1" Color="Blue" />

</LinearGradientBrush>

</TextBlock.Foreground>

</TextBlock>

<Grid.Triggers>

<EventTrigger>

<BeginStoryboard>

<Storyboard>

<ColorAnimation Storyboard.TargetName="gradientStop1"

 Storyboard.TargetProperty="Color"

 From="Red" To="Blue" Duration="0:0:11"

 AutoReverse="True"

 RepeatBehavior="Forever" />

<ColorAnimation Storyboard.TargetName="gradientStop2"

 Storyboard.TargetProperty="Color"

 From="Blue" To="Red" Duration="0:0:13"

 AutoReverse="True"

 RepeatBehavior="Forever" />

</Storyboard>

</BeginStoryboard>

</EventTrigger>

</Grid.Triggers>

</Grid>

</Grid>

The	two	animations	are	given	primenumber	periods	of	11	seconds	and	13	seconds	so	the	

overall	cycle,	including	AutoReverse,	lasts	almost	5	minutes	before	it	repeats.	

Animating
Attached
Properties
(or
Not)

You	can	use	Silverlight	animations	in	a	couple	different	ways	to	move	an	element	around	the	

screen.	One	way	is	to	target	a	TranslateTransform	set	to	the	element’s	RenderTransform

property.	But	programmers	who	are	more	comfortable	with	Canvas	might	want	to	animate	

the	Canvas.Left	and	Canvas.Top	attached	properties.	A	special	syntax	is	required	to	animate	

attached	properties,	but	it’s	fairly	simple.	

This	program	defines	a	Canvas	that	is	450	pixels	square,	centers	it	in	the	content	area,	

instantiates	an	Ellipse that	is	50	pixels	in	size,	and	then	moves	that	Ellipse	around	the	

perimeter	of	the	Canvas in	four	seconds,	repeated	forever.	

543	

	

	 	 	

	

	 	

	

	 	 	 	 	 	

	 	 	

	 	 	 	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Canvas Width="450" Height="450"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

<Ellipse Name="ball"

 Fill="{StaticResource PhoneAccentBrush}"

 Width="50" Height="50" />

<Canvas.Triggers>

<EventTrigger>

<BeginStoryboard>

<Storyboard RepeatBehavior="Forever">

<DoubleAnimationUsingKeyFrames

 Storyboard.TargetName="ball"

Storyboard.TargetProperty="(Canvas.Left)">

<DiscreteDoubleKeyFrame KeyTime="0:0:0" Value="0" />

<LinearDoubleKeyFrame KeyTime="0:0:1" Value="400" />

<DiscreteDoubleKeyFrame KeyTime="0:0:2" Value="400" />

<LinearDoubleKeyFrame KeyTime="0:0:3" Value="0" />

<DiscreteDoubleKeyFrame KeyTime="0:0:4" Value="0" />

</DoubleAnimationUsingKeyFrames>

<DoubleAnimationUsingKeyFrames

 Storyboard.TargetName="ball"

Storyboard.TargetProperty="(Canvas.Top)">

<DiscreteDoubleKeyFrame KeyTime="0:0:0" Value="0" />

<DiscreteDoubleKeyFrame KeyTime="0:0:1" Value="0" />

<LinearDoubleKeyFrame KeyTime="0:0:2" Value="400" />

<DiscreteDoubleKeyFrame KeyTime="0:0:3" Value="400" />

<LinearDoubleKeyFrame KeyTime="0:0:4" Value="0" />

</DoubleAnimationUsingKeyFrames>

</Storyboard>

</BeginStoryboard>

</EventTrigger>

</Canvas.Triggers>

</Canvas>

</Grid>

Notice	that	the	Storyboard.TargetName	is	set	to	reference	the	Ellipse element,	and	the	

Storyboard.TargetProperty	attributes	are	set	to	the	strings	“(Canvas.Left)”	and	“(Canvas.Top)”.	

When	targeting	attached	properties	in	an	animation,	put	the	fullyqualified	property	names	in	

parentheses.	Simple.	

What	isn’t	so	simple—and	you’ll	find	the	same	problem	with	targeting	TranslateTransform—is	

the	complexity	of	moving	an	object	in	more	than	one	dimension.	You	need	to	handle	the	X

and	Y	coordinates	separately,	and	this	is	often	confusing.	The	approach	I’ve	used	involves	key	

frames.	Both	start	with	an	unnecessary	DiscreteDoubleKeyFrame	that	sets	the	property	to	zero,	

544	

	

	 	

	

	 	 	 	 	 	

	 	 	

	 	

	

	 	

but	the	DiscreteDoubleKeyFrame	objects	and	LinearDoubleKeyFrame	objects	alternate	as	the	

Ellipse	makes	it	way	around	the	edges	of	the	Canvas.	

It’s	usually	much	easier	handling	both	X	and	Y	coordinates	in	unison	with	PointAnimation	or	

PointAnimationUsingKeyFrames.	Of	course,	there	are	very	few	classes	in	Silverlight	that	define	

dependency	properties	of	type	Point,	but	those	that	do—in	particular,	the	Geometry

derivatives—are	central	to	vector	graphics.	

Let’s	rewrite	this	program	with	a	DoubleAnimationUsingKeyFrames	to	target	the	Center

property	of	an	EllipseGeometry:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Grid Width="450" Height="450"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

<Path Fill="{StaticResource PhoneAccentBrush}">

<Path.Data>

<EllipseGeometry x:Name="ballGeometry"

 RadiusX="25" RadiusY="25" />

</Path.Data>

</Path>

<Grid.Triggers>

<EventTrigger>

<BeginStoryboard>

<Storyboard RepeatBehavior="Forever">

<PointAnimationUsingKeyFrames

 Storyboard.TargetName="ballGeometry"

 Storyboard.TargetProperty="Center">

<DiscretePointKeyFrame KeyTime="0:0:0" Value=" 25 25"

/>

<LinearPointKeyFrame KeyTime="0:0:1" Value="425 25"

/>

<LinearPointKeyFrame KeyTime="0:0:2" Value="425 425"

/>

<LinearPointKeyFrame KeyTime="0:0:3" Value=" 25 425"

/>

<LinearPointKeyFrame KeyTime="0:0:4" Value=" 25 25"

/>

</PointAnimationUsingKeyFrames>

</Storyboard>

</BeginStoryboard>

</EventTrigger>

</Grid.Triggers>

</Grid>

</Grid>

545	

	

	 	 	

	 	 	

	 	

	 	 	

	 	

	 	 	

	

	 	

	 	 	

	 	

The	coordinates	have	to	be	adjusted	a	bit	because	now	we’re	positioning	the	center	of	the	

ball	rather	than	its	upperleft	corner,	but	the	progression	of	the	animation	is	much	clearer,	

and	it’s	been	reduced	to	one	animation	rather	than	two.	

And	now,	the	downside:	Animations	that	target	properties	of	type	Point	are	not	handled	in	

the	GPU	on	the	render	thread.	If	that’s	a	concern,	stick	to	animating	properties	of	type	double.	

If	you	value	fun	more	than	performance,	you	can	construct	a	PathGeometry	using	explicit	

PathFigure,	LineSegment,	ArcSegment,	BezierSegment,	and	QuadraticBezierSegment	objects,	

and	every	property	of	type	Point	can	be	an	animation	target.	

Here’s	a	program	that	stretches	that	concept	to	an	extreme.	It	creates	a	circle	from	four	Bézier	

splines,	and	then	animates	the	various	Point	properties,	turning	the	circle	into	a	square	and	

solving	a	geometric	problem	that’s	been	bedeviling	mathematicians	since	the	days	of	Euclid:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Path HorizontalAlignment="Center"

 VerticalAlignment="Center"

 Fill="{StaticResource PhoneAccentBrush}"

 Stroke="{StaticResource PhoneForegroundBrush}"

 StrokeThickness="3" >

<Path.Data>

<PathGeometry>

<PathFigure x:Name="bezier1" IsClosed="True">

<BezierSegment x:Name="bezier2" />

<BezierSegment x:Name="bezier3" />

<BezierSegment x:Name="bezier4" />

<BezierSegment x:Name="bezier5" />

</PathFigure>

<PathGeometry.Transform>

<TransformGroup>

<ScaleTransform ScaleX="2" ScaleY="2" />

<RotateTransform Angle="45" />

<TranslateTransform X="200" Y="200" />

</TransformGroup>

</PathGeometry.Transform>

</PathGeometry>

</Path.Data>

<Path.Triggers>

<EventTrigger>

<BeginStoryboard>

<Storyboard RepeatBehavior="Forever"

 AutoReverse="True" >

<PointAnimation Storyboard.TargetName="bezier1"

 Storyboard.TargetProperty="StartPoint"

 From="0 100" To="0 125" />

<PointAnimation Storyboard.TargetName="bezier2"

546	

	

 Storyboard.TargetProperty="Point1"

 From="55 100" To="62.5 62.5" />

<PointAnimation Storyboard.TargetName="bezier2"

 Storyboard.TargetProperty="Point2"

 From="100 55" To="62.5 62.5" />

<PointAnimation Storyboard.TargetName="bezier2"

 Storyboard.TargetProperty="Point3"

 From="100 0" To="125 0" />

<PointAnimation Storyboard.TargetName="bezier3"

 Storyboard.TargetProperty="Point1"

 From="100 -55" To="62.5 -62.5" />

<PointAnimation Storyboard.TargetName="bezier3"

 Storyboard.TargetProperty="Point2"

 From="55 -100" To="62.5 -62.5" />

<PointAnimation Storyboard.TargetName="bezier3"

 Storyboard.TargetProperty="Point3"

 From="0 -100" To="0 -125" />

<PointAnimation Storyboard.TargetName="bezier4"

 Storyboard.TargetProperty="Point1"

 From="-55 -100" To="-62.5 -62.5" />

<PointAnimation Storyboard.TargetName="bezier4"

 Storyboard.TargetProperty="Point2"

 From="-100 -55" To="-62.5 -62.5" />

<PointAnimation Storyboard.TargetName="bezier4"

 Storyboard.TargetProperty="Point3"

 From="-100 0" To="-125 0" />

<PointAnimation Storyboard.TargetName="bezier5"

 Storyboard.TargetProperty="Point1"

 From="-100 55" To="-62.5 62.5" />

<PointAnimation Storyboard.TargetName="bezier5"

 Storyboard.TargetProperty="Point2"

 From="-55 100" To="-62.5 62.5" />

<PointAnimation Storyboard.TargetName="bezier5"

 Storyboard.TargetProperty="Point3"

 From="0 100" To="0 125" />

</Storyboard>

</BeginStoryboard>

</EventTrigger>

</Path.Triggers>

</Path>

</Grid>

547

	

	 	

	

	

	 	

	 	 	 	 	

	

	

	 	

	 	 	

	 	 	 	

	 	 	 	 	

	 	 	

	

	

	 	 	 	

	 	 	 	 	 	 	

	 	

	 	

	

Here’s	halfway	between	a	square	and	a	circle:	

Splines
and
Key
Frames

Three	of	the	keyframe	classes	begin	with	the	word	Spline:	SplineDoubleKeyFrame,	

SplinePointKeyFrame,	and	SplineColorKeyFrame.	These	classes	have	KeyTime	and	Value

properties	like	the	Discrete	and	Linear	keyframes,	but	they	also	define	a	property	named	

KeySpline.	This	property	allows	you	to	create	a	key	frame	that	speeds	up	or	slows	down	(or	

both)	during	its	course	but	still	ending	at	the	correct	value	by	the	time	KeyTime	comes	

around.	The	change	in	velocity	is	governed	by	a	Bézier	spline.	

KeySpline	is	a	structure	with	two	properties	named	ControlPoint1	and	ControlPoint2	of	type	

Point.	The	X	and	Y	coordinates	of	each	of	these	points	must	be	between	0	and	1.	A	single	

KeySpline	object	effectively	describes	a	Bézier	curve	that	begins	at	the	point	(0,	0)	and	ends	at	

the	point	(1,	1)	with	these	two	control	points.	It	is	not	possible	to	create	an	arbitrary	Bézier	

curve	under	these	constraints—for	example,	the	curve	can’t	make	a	loop—but	you’ll	see	you	

have	a	considerable	amount	of	flexibility.	

Conceptually,	during	the	course	of	the	key	frame,	the	X	coordinate	of	this	spline	represents	

normalized	time,	which	changes	linearly	from	0	to	1.	The	Y	coordinate	is	the	normalized	value	

of	the	animation,	also	changing	from	0	to	1	but	in	a	nonlinear	fashion.	

Certainly	the	best	way	to	get	a	feel	for	splinebased	key	frames	is	to	experiment	with	them,	

and	I	have	just	the	program.	It’s	even	called	SplineKeyFrameExperiment:		

548		

	

	

	 	 	

	 	 		

	 	 	 	 	

	

	

	 	

	 	 		

	 	 	

	 	 	 	

	

You	can	move	the	control	points	of	the	spline	using	the	blue	semitranslucent	circles.	The	

ApplicationBar	has	only	one	button	labeled	“animate”:	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.ApplicationBar>

<shell:ApplicationBar>

<shell:ApplicationBarIconButton

IconUri="/Images/appbar.transport.play.rest.png"

 Text="animate"

 Click="OnAppbarAnimateButtonClick" />

</shell:ApplicationBar>

</phone:PhoneApplicationPage.ApplicationBar>

When	you	press	it,	the	white	ball	on	the	bottom	of	the	grid	moves	linearly	from	left	to	right,	

representing	the	linear	increase	in	time.	The	white	ball	at	the	right	of	the	grid	moves	non

linearly	from	top	to	bottom	based	on	the	shape	of	the	spline.	

For	purposes	of	simplicity,	the	layout	of	the	screen	is	based	on	a	grid	with	a	fixed	width	and	

height	of	400	pixels,	so	the	program	will	need	to	be	modified	a	bit	for	a	smaller	screen.	

The	content	area	begins	with	a	gray	400pixel	square	with	horizontal	and	vertical	grid	lines	

every	40	pixels.	Each	grid	line	represents	0.1	units	for	displaying	the	spline.	

549	

	

 Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Grid.RowDefinitions>

<RowDefinition Height="*" />

<RowDefinition Height="Auto" />

</Grid.RowDefinitions>

<Grid Name="graphGrid"

 Grid.Row="0"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

<!-- Background -->

<Path Fill="#808080"

 Data="M 0 0 L 400 0, 400 400, 0 400 Z" />

<!-- Horizontal lines -->

<Polyline Stroke="{StaticResource PhoneForegroundBrush}"

 Points="0 0 400 0" />

<Polyline Stroke="{StaticResource PhoneForegroundBrush}"

 Points="0 40 400 40" />

<Polyline Stroke="{StaticResource PhoneForegroundBrush}"

 Points="0 80 400 80" />

<Polyline Stroke="{StaticResource PhoneForegroundBrush}"

 Points="0 120 400 120" />

<Polyline Stroke="{StaticResource PhoneForegroundBrush}"

 Points="0 160 400 160" />

<Polyline Stroke="{StaticResource PhoneForegroundBrush}"

 Points="0 200 400 200" />

<Polyline Stroke="{StaticResource PhoneForegroundBrush}"

 Points="0 240 400 240" />

<Polyline Stroke="{StaticResource PhoneForegroundBrush}"

 Points="0 280 400 280" />

<Polyline Stroke="{StaticResource PhoneForegroundBrush}"

 Points="0 320 400 320" />

<Polyline Stroke="{StaticResource PhoneForegroundBrush}"

 Points="0 360 400 360" />

<Polyline Stroke="{StaticResource PhoneForegroundBrush}"

 Points="0 400 400 400" />

<!-- Vertical lines -->

<Polyline Stroke="{StaticResource PhoneForegroundBrush}"

 Points="0 0 0 400" />

<Polyline Stroke="{StaticResource PhoneForegroundBrush}"

 Points="40 0 40 400" />

<Polyline Stroke="{StaticResource PhoneForegroundBrush}"

 Points="80 0 80 400" />

<Polyline Stroke="{StaticResource PhoneForegroundBrush}"

 Points="120 0 120 400" />

<Polyline Stroke="{StaticResource PhoneForegroundBrush}"

 Points="160 0 160 400" />

<Polyline Stroke="{StaticResource PhoneForegroundBrush}"

 Points="200 0 200 400" />

550	

	

	 	 	

	 	 	 	

	 	 	 	

	

	

	 	

	

	 	

<Polyline Stroke="{StaticResource PhoneForegroundBrush}"

 Points="240 0 240 400" />

<Polyline Stroke="{StaticResource PhoneForegroundBrush}"

 Points="280 0 280 400" />

<Polyline Stroke="{StaticResource PhoneForegroundBrush}"

 Points="320 0 320 400" />

<Polyline Stroke="{StaticResource PhoneForegroundBrush}"

 Points="360 0 360 400" />

<Polyline Stroke="{StaticResource PhoneForegroundBrush}"

 Points="400 0 400 400" />

…

</Grid>

<TextBlock Name="txtblk"

 Grid.Row="1"

 TextAlignment="Center"

 Margin="0, 24" />

</Grid>

The	TextBlock	at	the	bottom	is	used	to	display	the	values	of	the	two	control	points.	

The	markup	below	is	for	the	Bézier	curve	that	always	begins	at	the	upperleft	of	the	grid,	

which	represents	the	point	(0,	0),	and	which	ends	at	the	bottomright	of	the	grid,	representing	

the	point	(1,	1).	The	two	control	points	(Point1	and	Point2	of	the	BezierSegment	object)	are	

userselectable.	

This	snippet	of	XAML	also	includes	the	two	tangent	lines	from	the	end	points	to	the	control	

points.	I	would	much	prefer	to	bind	the	various	properties	of	these	elements	to	each	other	

using	data	bindings,	but	in	Silverlight	3	data	binding	targets	must	always	be	properties	of	

elements,	and	these	are	properties	of	PathSegment	derivatives.	

Silverlight Project: File: (excerpt)

<!-- Bezier curve -->

<Path Stroke="{StaticResource PhoneBackgroundBrush}">

<Path.Data>

<PathGeometry>

<PathFigure StartPoint="0 0">

<BezierSegment x:Name="bezierSegment"

 Point1="200 80"

 Point2="200 320"

 Point3="400 400" />

</PathFigure>

</PathGeometry>

</Path.Data>

</Path>

<!-- Tangent lines -->

<Path Stroke="{StaticResource PhoneAccentBrush}">

<Path.Data>

<PathGeometry>

551	

	

	 	

	

	 	

	

	

	

<PathFigure StartPoint="0 0">

<LineSegment x:Name="tangentLine1"

 Point="200 80" />

</PathFigure>

</PathGeometry>

</Path.Data>

</Path>

<Path Stroke="{StaticResource PhoneAccentBrush}">

<Path.Data>

<PathGeometry>

<PathFigure StartPoint="400 400">

<LineSegment x:Name="tangentLine2"

 Point="200 320" />

</PathFigure>

</PathGeometry>

 </Path.Data>

</Path>

Here	are	the	two	little	white	balls	that	appear	on	the	bottom	and	right,	one	representing	time	

and	the	other	representing	the	animated	object:	

Silverlight Project: File: (excerpt)

<!-- Balls -->

<Path Fill="{StaticResource PhoneForegroundBrush}">

<Path.Data>

<EllipseGeometry x:Name="timeBall"

 RadiusX="10"

 RadiusY="10"

 Center="0 400" />

</Path.Data>

</Path>

<Path Fill="{StaticResource PhoneForegroundBrush}">

<Path.Data>

<EllipseGeometry x:Name="animaBall"

 RadiusX="10"

 RadiusY="10"

 Center="400 0" />

</Path.Data>

</Path>

You	can’t	see	it	when	the	program	is	inactive,	but	two	lines—one	horizontal	and	one	

vertical—connect	the	small	balls	with	the	spline	curve.	These	lines	track	the	spline	curve	when	

the	small	balls	are	moving:	

552	

	

	 	

	

	 	

	

Silverlight Project: File: (excerpt)

<!-- Tracking lines -->

<Line x:Name="timeTrackLine"

Stroke="{StaticResource PhoneBackgroundBrush}"

Y2="400" />

<Line x:Name="animaTrackLine"

Stroke="{StaticResource PhoneBackgroundBrush}"

X2="400" />

Finally,	two	semitransparent	circles	respond	to	touch	input	and	are	used	to	drag	the	control	

points	within	the	grid:	

Silverlight Project: File: (excerpt)

<!-- Draggers -->

<Path Name="dragger1"

Fill="{StaticResource PhoneAccentBrush}"

Opacity="0.5">

<Path.Data>

<EllipseGeometry x:Name="dragger1Geometry"

RadiusX="50"

RadiusY="50"

Center="200 80" />

</Path.Data>

</Path>

<Path Name="dragger2"

Fill="{StaticResource PhoneAccentBrush}"

 Opacity="0.5">

<Path.Data>

<EllipseGeometry x:Name="dragger2Geometry"

RadiusX="50"

RadiusY="50"

Center="200 320" />

</Path.Data>

</Path>

The	centers	of	these	two	EllipseGeometry	objects	provide	the	two	control	points	of	the	

KeySpline object.	In	the	codebehind	file,	the	constructor	initializes	the	TextBlock	at	the	

bottom	with	the	values,	normalized	to	the	range	of	0	to	1:	

Silverlight Project: SplineKeyFrameExperiment File: MainPage.xaml.cs (excerpt)

public partial class MainPage : PhoneApplicationPage

{

 public MainPage()

 {

553	

	

	 	 	 	

	 	

InitializeComponent();

UpdateTextBlock();

 }

 void UpdateTextBlock()

 {

txtblk.Text = String.Format("pt1 = {0:F2}\npt2 = {1:F2}",

NormalizePoint(dragger1Geometry.Center),

NormalizePoint(dragger2Geometry.Center));

 }

Point NormalizePoint(Point pt)

{

return new Point(pt.X / 400, pt.Y / 400);

 }

 …

}

With	the	absence	of	data	bindings	in	the	XAML,	the	OnManipulationDelta	override	must	

modify	two	additional	properties	of	type	Point	(plus	the	TextBlock)	every	time	one	of	the	

semitransparent	circles	is	dragged:	

Silverlight Project: SplineKeyFrameExperiment File: MainPage.xaml.cs (excerpt)

protected override void OnManipulationDelta(ManipulationDeltaEventArgs args)

{

Point translation = args.DeltaManipulation.Translation;

if (args.ManipulationContainer == dragger1)

 {

Point pt = new Point(Clamp(dragger1Geometry.Center.X + translation.X),

 Clamp(dragger1Geometry.Center.Y + translation.Y));

dragger1Geometry.Center = pt;

bezierSegment.Point1 = pt;

tangentLine1.Point = pt;

UpdateTextBlock();

 }

if (args.ManipulationContainer == dragger2)

 {

Point pt = new Point(Clamp(dragger2Geometry.Center.X + translation.X),

 Clamp(dragger2Geometry.Center.Y + translation.Y));

dragger2Geometry.Center = pt;

bezierSegment.Point2 = pt;

tangentLine2.Point = pt;

UpdateTextBlock();

 }

base.OnManipulationDelta(args);

}

554	

	

	 	 	

	 		

	 	 	

double Clamp(double input)

{

return Math.Max(0, Math.Min(400, input));

}

When	the	button	in	the	ApplicationBar	is	pressed,	the	program	needs	to	set	four	different	

animations	with	identical	KeySpline	objects	and	then	start	the	Storyboard	going:	

Silverlight Project: SplineKeyFrameExperiment File: MainPage.xaml.cs (excerpt)

void OnAppbarAnimateButtonClick(object sender, EventArgs args)

{

Point controlPoint1 = NormalizePoint(dragger1Geometry.Center);

Point controlPoint2 = NormalizePoint(dragger2Geometry.Center);

 splineKeyFrame1.KeySpline = new KeySpline();

 splineKeyFrame1.KeySpline.ControlPoint1 = controlPoint1;

 splineKeyFrame1.KeySpline.ControlPoint2 = controlPoint2;

 splineKeyFrame2.KeySpline = new KeySpline();

 splineKeyFrame2.KeySpline.ControlPoint1 = controlPoint1;

 splineKeyFrame2.KeySpline.ControlPoint2 = controlPoint2;

 splineKeyFrame3.KeySpline = new KeySpline();

 splineKeyFrame3.KeySpline.ControlPoint1 = controlPoint1;

 splineKeyFrame3.KeySpline.ControlPoint2 = controlPoint2;

 splineKeyFrame4.KeySpline = new KeySpline();

 splineKeyFrame4.KeySpline.ControlPoint1 = controlPoint1;

 splineKeyFrame4.KeySpline.ControlPoint2 = controlPoint2;

 storyboard.Begin();

}

That	storyboard	is	defined	in	the	Resources	collection	of	the	page:	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.Resources>

<Storyboard x:Name="storyboard"

 SpeedRatio="0.25">

<PointAnimation Storyboard.TargetName="timeBall"

 Storyboard.TargetProperty="Center"

 From="0 400" To="400 400" Duration="0:0:1" />

<DoubleAnimation Storyboard.TargetName="timeTrackLine"

 Storyboard.TargetProperty="X1"

 From="0" To="400" Duration="0:0:1" />

<DoubleAnimation Storyboard.TargetName="timeTrackLine"

555	

	

	

	 	 	 	

	 	 	

	 	 	 	 	 	 	

	 	 	 	

	 	 	 	 	

	

	 	

 Storyboard.TargetProperty="X2"

 From="0" To="400" Duration="0:0:1" />

<DoubleAnimation Storyboard.TargetName="animaTrackLine"

 Storyboard.TargetProperty="X1"

 From="0" To="400" Duration="0:0:1" />

<PointAnimationUsingKeyFrames Storyboard.TargetName="animaBall"

 Storyboard.TargetProperty="Center">

<DiscretePointKeyFrame KeyTime="0:0:0" Value="400 0" />

<SplinePointKeyFrame x:Name="splineKeyFrame1"

 KeyTime="0:0:1" Value="400 400" />

</PointAnimationUsingKeyFrames>

<DoubleAnimationUsingKeyFrames Storyboard.TargetName="timeTrackLine"

 Storyboard.TargetProperty="Y1">

<DiscreteDoubleKeyFrame KeyTime="0:0:0" Value="0" />

<SplineDoubleKeyFrame x:Name="splineKeyFrame2"

 KeyTime="0:0:1" Value="400" />

</DoubleAnimationUsingKeyFrames>

<DoubleAnimationUsingKeyFrames Storyboard.TargetName="animaTrackLine"

 Storyboard.TargetProperty="Y1">

<DiscreteDoubleKeyFrame KeyTime="0:0:0" Value="0" />

<SplineDoubleKeyFrame x:Name="splineKeyFrame3"

 KeyTime="0:0:1" Value="400" />

</DoubleAnimationUsingKeyFrames>

<DoubleAnimationUsingKeyFrames Storyboard.TargetName="animaTrackLine"

 Storyboard.TargetProperty="Y2">

<DiscreteDoubleKeyFrame KeyTime="0:0:0" Value="0" />

<SplineDoubleKeyFrame x:Name="splineKeyFrame4"

 KeyTime="0:0:1" Value="400" />

</DoubleAnimationUsingKeyFrames>

</Storyboard>

</phone:PhoneApplicationPage.Resources>

Try	it	out:	If	you	set	both	control	points	to	(1,	0)	you	get	an	animation	that	starts	off	slow	and	

then	gets	very	fast.	Setting	both	control	points	to	(0,	1)	has	the	opposite	effect.	Set	the	first	

control	point	to	(1,	0)	and	the	second	to	(0,	1)	and	you	get	an	animation	that	starts	off	slow,	

then	gets	fast,	and	ends	up	slow.	Switch	them	and	get	the	opposite	effect.	

Of	course,	you	don’t	have	to	use	the	extremes.	You’ll	probably	want	to	find	values	that	have	a	

more	subtle	effect.	You	can	simulate	free	fall	with	values	of	(0.25,	0)	and	(0.6,	0.2),	for	

example.	For	an	object	moving	up	and	decelerating	from	the	effects	of	gravity,	subtract	each	

of	those	coordinates	from	1.	

Yes,	I	have	an	example.	

556

	

	 	 	 	

	

	 	

	

	 	 	

	 	 	 	

	

	 	 	 	 	

	

	 	 	

	 	

The
Bouncing
Ball
Problem

Here’s	some	XAML	designed	for	a	largescreen	phone	that	moves	a	ball	up	and	down:	

<Grid x:Name="ContentPanel" Grid.Row="1">

<Path Fill="Red">

<Path.Data>

<EllipseGeometry RadiusX="25" RadiusY="25" />

</Path.Data>

<Path.RenderTransform>

<TranslateTransform x:Name="translate" X="240" />

</Path.RenderTransform>

</Path>

<Path Fill="{StaticResource PhoneAccentBrush}"

 Data="M 100 625 L 380 625, 380 640, 100 640 Z" />

<Grid.Triggers>

<EventTrigger>

<BeginStoryboard>

<Storyboard RepeatBehavior="Forever">

<DoubleAnimation Storyboard.TargetName="translate"

 Storyboard.TargetProperty="Y"

 From="50" To="600" Duration="0:0:1"

 AutoReverse="True"

 RepeatBehavior="Forever" />

</Storyboard>

</BeginStoryboard>

</EventTrigger>

</Grid.Triggers>

</Grid>

There	are	two	Path	elements	here.	The	first	one	is	the	red	ball;	the	second	is	a	“floor”	on	

which	the	ball	is	supposed	to	bounce.		

The	ball	has	a	TranslateTransform	applied	to	it:	the	X	property	is	fixed	to	keep	the	ball	

horizontally	centered;	the	Y	property	is	animated	between	50	and	600	and	back	again.	But	it	

really	doesn’t	look	like	it’s	bouncing	because	it	has	the	same	velocity	throughout	its	

movement.	It	doesn’t	obey	the	laws	of	physics.	In	the	real	world,	obeying	the	laws	of	physics	is	

pretty	much	mandatory,	but	in	computer	graphics,	often	more	work	is	involved.	

Getting	a	better	bouncing	effect	is	possible	with	a	DoubleAnimationUsingKeyFrames	object	

with	a	SplineDoubleKeyFrame	that	speeds	up	the	ball	as	it’s	falling	and	slows	it	down	as	it’s	

rising.	These	use	the	spline	control	points	that	approximate	free	fall:	

<Storyboard RepeatBehavior="Forever">

<DoubleAnimationUsingKeyFrames Storyboard.TargetName="translate"

Storyboard.TargetProperty="Y">

<DiscreteDoubleKeyFrame KeyTime="0:0:0" Value="50" />

<SplineDoubleKeyFrame KeyTime="0:0:1" Value="600"

 KeySpline="0.25 0, 0.6 0.2" />

557	

	

	

	 	

	 	 	

	

	

	 	

	

	 	

	 	

	 	

	 	

	 	

	

	 	 	 	 	

	

	 	 	 	

	

<SplineDoubleKeyFrame KeyTime="0:0:2" Value="50"

 KeySpline="0.75 1, 0.4 0.8" />

</DoubleAnimationUsingKeyFrames>

</Storyboard>

This	is	much	better.	But	it’s	still	not	quite	right,	and	the	problem	involves	what	happens	when	

the	ball	hits	the	ground.	The	ball	is	at	maximum	velocity	when	it	hits	the	ground,	and	then	

immediately	it’s	at	maximum	velocity	going	in	the	opposite	direction.	

In	reality,	this	is	not	the	way	it	works.	When	the	ball	hits	the	ground,	it	decelerates	and	

compresses	somewhat,	and	then	the	decompression	of	the	ball	causes	it	to	accelerate	again.	

Can	that	be	simulated?	Why	not?		

Pausing	the	ball	momentarily	as	it	hits	the	ground	is	an	additional	key	frame.	I	decided	the	

ball	will	be	compressed	and	uncompressed	over	the	course	of	a	tenth	second	(which	is	

probably	a	bit	exaggerated),	so	I	adjusted	the	times	somewhat:	

<Storyboard RepeatBehavior="Forever">

<DoubleAnimationUsingKeyFrames Storyboard.TargetName="translate"

Storyboard.TargetProperty="Y">

<DiscreteDoubleKeyFrame KeyTime="0:0:0" Value="50" />

<SplineDoubleKeyFrame KeyTime="0:0:1" Value="600"

 KeySpline="0.25 0, 0.6 0.2" />

<DiscreteDoubleKeyFrame KeyTime="0:0:1.1" Value="600" />

<SplineDoubleKeyFrame KeyTime="0:0:2.1" Value="50"

 KeySpline="0.75 1, 0.4 0.8" />

</DoubleAnimationUsingKeyFrames>

</Storyboard>

The	TranslateTransform	starts	at	time	zero	with	a	value	of	50.	Over	the	next	second	it	goes	to	

600	while	speeding	up.	Over	the	next	10th	second,	it	remains	at	600,	and	then	goes	back	up	to	

50	during	the	next	second.	The	new	animation	now	lasts	2.1	seconds	rather	than	2	seconds.	

Of	course,	by	itself,	this	looks	even	worse.	But	let’s	add	a	ScaleTransform	to	the	Path	defining	

the	ball:	

<Path.RenderTransform>

<TransformGroup>

<ScaleTransform x:Name="scale" CenterY="25" />

<TranslateTransform x:Name="translate" X="240" />

</TransformGroup>

</Path.RenderTransform>

The	untransformed	center	of	the	ball	is	the	point	(0,	0),	and	the	two	radii	are	25	pixels,	so	the	

middle	bottom	of	the	ball	is	the	point	(0,	25).	That’s	the	point	that	touches	the	floor,	and	the	

point	that	should	stay	in	the	same	spot	during	the	ScaleTransform,	which	is	the	reason	for	

setting	CenterY	to	25.	CenterX is	0	by	default.	

Here	are	the	two	additional	animations	for	momentarily	flattening	out	the	ball:	

558	

	

	

	 	 	

	

<Storyboard RepeatBehavior="Forever">

 …

<DoubleAnimationUsingKeyFrames

 Storyboard.TargetName="scale"

 Storyboard.TargetProperty="ScaleX">

<DiscreteDoubleKeyFrame KeyTime="0:0:1" Value="1" />

<SplineDoubleKeyFrame KeyTime="0:0:1.05" Value="1.5"

 KeySpline="0.75 1, 0.4 0.8" />

<SplineDoubleKeyFrame KeyTime="0:0:1.1" Value="1"

 KeySpline="0.25 0, 0.6 0.2" />

</DoubleAnimationUsingKeyFrames>

<DoubleAnimationUsingKeyFrames

 Storyboard.TargetName="scale"

 Storyboard.TargetProperty="ScaleY">

<DiscreteDoubleKeyFrame KeyTime="0:0:1" Value="1" />

<SplineDoubleKeyFrame KeyTime="0:0:1.05" Value="0.66"

 KeySpline="0.75 1, 0.4 0.8" />

<SplineDoubleKeyFrame KeyTime="0:0:1.1" Value="1"

 KeySpline="0.25 0, 0.6 0.2" />

</DoubleAnimationUsingKeyFrames>

</Storyboard>

Between	1	second	and	1.05	seconds,	the	ball’s	width	grows	by	50%	and	its	height	decreases	

by	a	third.	That’s	reversed	over	the	next	0.05	seconds,	at	which	point	the	ball	is	normal	and	it	

begins	its	upward	path.	

The	final	version	of	the	BouncingBall	program	also	applies	a	RadialGradientBrush	to	the	ball:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1">

<Path>

<Path.Data>

<EllipseGeometry RadiusX="25" RadiusY="25" />

</Path.Data>

<Path.Fill>

<RadialGradientBrush GradientOrigin="0.35 0.35"

 Center="0.35 0.35">

<GradientStop Offset="0" Color="White" />

<GradientStop Offset="1" Color="Red" />

</RadialGradientBrush>

</Path.Fill>

<Path.RenderTransform>

<TransformGroup>

<ScaleTransform x:Name="scale" CenterY="25" />

<TranslateTransform x:Name="translate" X="240" />

</TransformGroup>

</Path.RenderTransform>

</Path>

559	

	

<Path Fill="{StaticResource PhoneAccentBrush}"

 Data="M 100 625 L 380 625, 380 640, 100 640 Z" />

<Grid.Triggers>

<EventTrigger>

<BeginStoryboard>

<Storyboard RepeatBehavior="Forever">

<DoubleAnimationUsingKeyFrames

 Storyboard.TargetName="translate"

 Storyboard.TargetProperty="Y">

<DiscreteDoubleKeyFrame KeyTime="0:0:0" Value="50" />

<SplineDoubleKeyFrame KeyTime="0:0:1" Value="600"

 KeySpline="0.25 0, 0.6 0.2" />

<DiscreteDoubleKeyFrame KeyTime="0:0:1.1" Value="600" />

<SplineDoubleKeyFrame KeyTime="0:0:2.1" Value="50"

 KeySpline="0.75 1, 0.4 0.8" />

</DoubleAnimationUsingKeyFrames>

<DoubleAnimationUsingKeyFrames

 Storyboard.TargetName="scale"

 Storyboard.TargetProperty="ScaleX">

<DiscreteDoubleKeyFrame KeyTime="0:0:1" Value="1" />

<SplineDoubleKeyFrame KeyTime="0:0:1.05" Value="1.5"

 KeySpline="0.75 1, 0.4 0.8" />

<SplineDoubleKeyFrame KeyTime="0:0:1.1" Value="1"

 KeySpline="0.25 0, 0.6 0.2" />

</DoubleAnimationUsingKeyFrames>

<DoubleAnimationUsingKeyFrames

 Storyboard.TargetName="scale"

 Storyboard.TargetProperty="ScaleY">

<DiscreteDoubleKeyFrame KeyTime="0:0:1" Value="1" />

<SplineDoubleKeyFrame KeyTime="0:0:1.05" Value="0.66"

 KeySpline="0.75 1, 0.4 0.8" />

<SplineDoubleKeyFrame KeyTime="0:0:1.1" Value="1"

 KeySpline="0.25 0, 0.6 0.2" />

</DoubleAnimationUsingKeyFrames>

</Storyboard>

</BeginStoryboard>

</EventTrigger>

</Grid.Triggers>

</Grid>

560	

	

	

	

	 	 	

	 	 	 	

	

	 	

	

	 	

	 	 	 	

	 	 	

	 	

	

	 	 	

	 	 	 	 	 	 	

	

	 	 	 	 	 	 	

	 	 	 	

	 	 	 	

Here	it	is	in	action:	

The
Easing
Functions

Defining	key	frames	with	splines	is	easy	in	one	sense—there	are	only	four	numbers	involved—	

but	also	hard:	You	need	to	approximate	a	certain	desired	effect	with	a	Bézier	spline,	and	that’s	

not	always	obvious.	

You	might	prefer	something	more	“canned”	that	gives	you	an	overall	impression	of	adherence	

to	physical	law	without	requiring	a	lot	of	thought.	This	is	the	purpose	of	the	animation	easing

functions.	These	are	classes	that	derive	from	EasingFunctionBase with	common	types	of	

transitions	that	you	can	add	to	the	beginning	or	end	(or	both	beginning	and	end)	of	your	

animations.	DoubleAnimation,	PointAnimation,	and	ColorAnimation all	have	properties	named	

EasingFunction	of	type	EasingFunctionBase.	There	are	also	EasingDoubleKeyFrame,	

EasingColorKeyFrame,	and	EasingPointKeyFrame	classes.	

EasingFunctionBase	defines	just	one	property:	EasingMode	of	the	enumeration	type	

EasingMode,	either	EaseOut (the	default,	which	uses	the	transition	only	at	the	end	of	the	

animation),	EaseIn,	or	EaseInOut.	Eleven	classes	derive	from	EasingFunctionBase	and	you	can	

derive	your	own	if	you	want	to	have	even	more	control	and	power.	

The	project	named	TheEasingLife	lets	you	choose	among	the	eleven	EasingFunctionBase

derivatives	to	see	their	effect	on	a	simple	PointAnimation involving	a	balllike	object.	The	

561	

	

	 	

	

	

	 	 	

	

	 	

	 	 	 	 	 	 	

		

	

content	area	is	populated	with	two	Polyline	elements	and	a	Path but	no	coordinates	are	

supplied;	that’s	done	in	code.	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Polyline Name="polyline1"

 Stroke="{StaticResource PhoneForegroundBrush}" />

<Polyline Name="polyline2"

 Stroke="{StaticResource PhoneForegroundBrush}" />

<Path Fill="{StaticResource PhoneAccentBrush}">

<Path.Data>

<EllipseGeometry x:Name="ballGeometry"

 RadiusX="25"

 RadiusY="25" />

</Path.Data>

</Path>

</Grid>

The	Resources	collection	contains	a	Storyboard	with	a	PointAnimation	targeting	the	Center

property	of	the	EllipseGeometry.	The	PointAnimation	is	given	a	Duration	property	but	nothing	

else:	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.Resources>

<Storyboard x:Name="storyboard"

 Completed="OnStoryboardCompleted">

<PointAnimation x:Name="pointAnimation"

 Storyboard.TargetName="ballGeometry"

 Storyboard.TargetProperty="Center"

 Duration="0:0:2" />

</Storyboard>

</phone:PhoneApplicationPage.Resources>

Notice	that	a	handler	is	set	for	the	Completed	event	of	the	Storyboard.	This	Completed	event	is	

defined	by	Timeline and	is	often	convenient	for	letting	a	program	know	when	an	animation	

has	completed.	

The	ApplicationBar	has	two	buttons	for	“animate”	and	“settings”:	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.ApplicationBar>

<shell:ApplicationBar>

562	

	

	 	 	

	 	

	 	 	

	 	

<shell:ApplicationBarIconButton

IconUri="/Images/appbar.transport.play.rest.png"

 Text="animate"

 Click="OnAppbarPlayButtonClick" />

<shell:ApplicationBarIconButton

IconUri="/Images/appbar.feature.settings.rest.png"

 Text="settings"

 Click="OnAppbarSettingsButtonClick" />

</shell:ApplicationBar>

</phone:PhoneApplicationPage.ApplicationBar>

The	coordinates	for	the	two	Polyline	elements	and	EllipseGeometry	are	set	during	the	Loaded

event	handler	based	on	the	size	of	the	content	panel.	The	ball	is	intended	to	be	animated	

between	a	Polyline	at	the	top	and	a	Polyline	at	the	bottom;	the	actual	points	are	stored	in	the	

ballPoints	array.	The	direction	(going	down	or	going	up)	is	governed	by	the	isForward	field.	

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage

{

PointCollection ballPoints = new PointCollection();

 bool isForward = true;

 public MainPage()

 {

InitializeComponent();

Loaded += OnMainPageLoaded;

 }

 public EasingFunctionBase EasingFunction { get; set; }

 void OnMainPageLoaded(object sender, RoutedEventArgs args)

 {

double left = 100;

double right = ContentPanel.ActualWidth - 100;

double center = ContentPanel.ActualWidth / 2;

double top = 100;

double bottom = ContentPanel.ActualHeight - 100;

polyline1.Points.Add(new Point(left, top));

polyline1.Points.Add(new Point(right, top));

polyline2.Points.Add(new Point(left, bottom));

polyline2.Points.Add(new Point(right, bottom));

ballPoints.Add(new Point(center, top));

ballPoints.Add(new Point(center, bottom));

ballGeometry.Center = ballPoints[1 - Convert.ToInt32(isForward)];

 }

 …

}

563	

	

	 	 	

	 	 	 	 	

	

	

	 	 	 	 	

	 	 	 	 	 	

	 	 	

	 	

	 	 	

	

Notice	also	the	public	property	named	EasingFunction.	When	you	press	the	“animate”	button,	

the	Click	handler	fills	in	the	missing	pieces	of	the	PointAnimation	(including	the	

EasingFunction	property)	and	starts	it	going:	

Silverlight Project: File: (excerpt)

void OnAppbarPlayButtonClick(object sender, EventArgs args)

{

 pointAnimation.From = ballPoints[1 - Convert.ToInt32(isForward)];

 pointAnimation.To = ballPoints[Convert.ToInt32(isForward)];

 pointAnimation.EasingFunction = EasingFunction;

 storyboard.Begin();

}

void OnStoryboardCompleted(object sender, EventArgs args)

{

 isForward ^= true;

}

The	Completed	handler	toggles	the	isForward value	in	preparation	for	the	next	animation.	

When	you	press	the	“settings”	button,	the	program	navigates	to	the	EasingFunctionDialog

page	that	lets	you	choose	which	easing	function	you	want:	

Silverlight Project: File: (excerpt)

void OnAppbarSettingsButtonClick(object sender, EventArgs args)

{

 NavigationService.Navigate(new Uri("/EasingFunctionDialog.xaml",

UriKind.Relative));

}

protected override void OnNavigatedFrom(NavigationEventArgs args)

{

if (args.Content is EasingFunctionDialog)

{

(args.Content as EasingFunctionDialog).EasingFunction = EasingFunction;

 }

base.OnNavigatedTo(args);

}

When	the	OnNavigatedFrom	override	determines	that	a	transition	from	MainPage	to	

EasingFunctionDialog	page	is	in	progress,	it	transfers	the	contents	of	its	EasingFunction

property	to	EasingFunctionDialog,	which	also	has	a	public	EasingFunction	property.	

The	content	area	of	the	EasingFunctionDialog.xaml	file	just	has	a	StackPanel	in	a	ScrollViewer:	

564	

	

	 	

	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<ScrollViewer>

<StackPanel Name="stack" />

</ScrollViewer>

</Grid>

In	its	OnNavigatedTo	override,	the	dialog	uses	reflection	to	fill	up	the	StackPanel	with	

RadioButton	elements.	By	the	time	OnNavigatedTo	is	called,	the	EasingFunction	property	

already	has	a	valid	value	set	by	the	OnNavigatedFrom	override	in	MainPage:	

Silverlight Project: TheEasingLife File: EasingFunctionDialog.xaml.cs (excerpt)

public partial class EasingFunctionDialog : PhoneApplicationPage

{

 public EasingFunctionDialog()

 {

InitializeComponent();

 }

 public EasingFunctionBase EasingFunction { get; set; }

 …

 protected override void OnNavigatedTo(NavigationEventArgs args)

 {

// Create "None" RadioButton

RadioButton radio = new RadioButton();

radio.Content = "None";

radio.IsChecked = (EasingFunction == null);

radio.Checked += OnRadioButtonChecked;

stack.Children.Add(radio);

Assembly assembly = Assembly.Load("System.Windows");

// Create RadioButton for each easing function

foreach (Type type in assembly.GetTypes())

 if (type.IsPublic && type.IsSubclassOf(typeof(EasingFunctionBase)))

{

 radio = new RadioButton();

 radio.Content = type.Name;

 radio.Tag = type;

 radio.IsChecked = (EasingFunction != null &&

EasingFunction.GetType() == type);

 radio.Checked += OnRadioButtonChecked;

 stack.Children.Add(radio);

 }

 base.OnNavigatedTo(args);

 }

565	

	

	 	 	 	

	 	

	 	

	 	 	 	 	 	

	

	 	

	 	

	 	 	

	 	 	

	 	 	 	

 …

}

Notice	how	the	Tag property	of	each	RadioButton	is	a	Type	object	indicating	the	

EasingFunctionBase derivative	associated	with	that	button.	When	the	user	presses	one	of	the	

RadioButton	elements,	that	Tag	property	is	used	to	make	a	new	object	of	that	type:	

Silverlight Project: TheEasingLife File: EasingFunctionDialog.xaml.cs (excerpt)

void OnRadioButtonChecked(object sender, RoutedEventArgs args)

{

Type type = (sender as RadioButton).Tag as Type;

if (type == null)

{

EasingFunction = null;

}

else

 {

ConstructorInfo constructor = type.GetConstructor(Type.EmptyTypes);

EasingFunction = constructor.Invoke(null) as EasingFunctionBase;

}

}

Finally,	when	you’re	finished	choosing	the	easing	function	you	want,	you	press	the	Back	

button	and	the	dialog’s	OnNavigatedFrom	override	is	called.	This	responds	by	storing	the	

current	selection	back	in	MainPage:	

Silverlight Project: TheEasingLife File: EasingFunctionDialog.xaml.cs (excerpt)

protected override void OnNavigatedFrom(NavigationEventArgs args)

{

if (args.Content is MainPage)

{

(args.Content as MainPage).EasingFunction = EasingFunction;

 }

base.OnNavigatedFrom(args);

}

Keep	in	mind	that	these	EasingFunctionBase	derivatives	have	all	default	property	settings,	

including	the	EasingMode	property	that	restricts	the	effect	only	to	the	end	of	the	animation.	

You’ll	find	that	a	couple	of	these	effects—specifically	BackEase	and	ElasticEase—actually	

overshoot	the	destination.	While	this	doesn’t	matter	in	many	cases,	for	some	properties	it	

might	result	in	illegal	values.	You	don’t	want	to	set	Opacity	to	values	outside	the	range	of	0	

and	1,	for	example.	

566

	

	 	 	 	 	

	

	

	

	 	 	

	 	

		

	 	 	

	

	 	 	

	 	 	

	 	 	

	

	 	

	 	 	

	 	 	 	

	 	 	 	

	 	 	

		

	 	

	

	

	

	 	

	 	

	

	 	 	

	

	 	

	 	

	

Animating
Perspective
Transforms

The	types	of	transforms	you	set	with	RenderTransform are	all	examples	of	twodimensional	

affine	transforms.	Affine	transforms	are	very	well	behaved	and	just	a	little	dull:	Straight	lines	

are	always	transformed	to	straight	lines,	ellipses	are	always	transformed	to	ellipses,	and	

squares	are	always	transformed	to	parallelograms.	Two	lines	that	are	parallel	before	the	

transform	are	still	parallel	after	the	transform.	

Silverlight	3	introduced	a	new	UIElement	property	named	Projection	that	allows	setting	non-

affine	transforms	on	graphical	objects,	text,	controls,	and	media.	Nonaffine	transforms	do	not	

preserve	parallelism.	

The	type	of	nonaffine	transform	allowed	in	Silverlight	3	is	still	represented	by	a	matrix	

multiplication,	and	it	still	has	restrictions	on	what	it	can	do.	Straight	lines	are	always	

transformed	to	straight	lines,	and	a	square	is	always	transformed	into	a	simple	convex	

quadrilateral.	By	“quadrilateral”	I	mean	a	foursided	figure	(also	called	a	tetragon	or	

quadrangle);	by	“simple”	I	mean	that	the	sides	don’t	intersect	except	at	their	vertices;	by	

“convex”	I	mean	that	the	internal	angles	at	each	vertex	are	less	than	180	degrees.	

This	type	of	nonaffine	transform	is	very	useful	for	creating	taper	transforms,	where	opposite	

sides	of	a	square	or	rectangle	taper	somewhat	in	one	direction.	Objects	appear	to	be	

somewhat	three	dimensional	because	part	of	the	object	seems	further	away	from	our	eyes—	

an	effect	called	a	perspective	projection.	

In	a	sense,	the	Projection	property	gives	Silverlight	a	little	bit	of	“pseudo	3D.”	It’s	not	a	real	3D	

system	because	there’s	no	way	to	define	objects	in	3D	space,	no	concept	of	cameras,	lights,	or	

shading,	and—perhaps	most	crucially—no	clipping	of	objects	based	on	their	arrangement	in	

3D	space.	

Still,	working	with	the	Projection	transform	requires	the	programmer	to	begin	thinking	about	

three	dimensions	and	especially	about	3D	rotation.	Fortunately,	the	developers	of	Silverlight	

have	made	common	and	simple	use	of	the	Projection	property	fairly	easy.	

You	can	set	this	Projection	property	to	one	of	two	objects:	You	can	be	mathematical	and	

flexible	by	using	Matrix3DProjection,	or	you	can	do	as	I’ll	do	here	and	take	the	easy	way	out	

with	PlaneProjection.	Although	PlaneProjection	defines	twelve	settable	properties,	you	can	

pretty	much	limit	yourself	to	six	of	them.	

The	three	crucial	properties	of	PlaneProjection	are	RotationX,	RotationY,	and	RotationX,	which	

you	can	set	to	angle	values	to	cause	rotation	around	the	X	axis	(which	extends	in	a	positive	

direction	from	left	to	right),	the	Y	axis	(which	extends	from	top	to	bottom),	and	the	Z	axis	

(which	comes	out	of	the	screen	towards	the	viewer).	

You	can	anticipate	the	direction	of	rotation	using	the	righthand	rule:	Point	your	thumb	in	the	

direction	of	the	positive	axis.	(For	X,	that’s	to	the	right,	for	Y	it’s	down,	for	Z,	it’s	toward	you.)	

567	

	

	 	 	 	

	 	

	 	

	 	

	 	

	 	 	 	

	 	 	 	

	

	 	

The	curve	that	your	other	fingers	make	indicates	the	direction	of	rotation	for	positive	rotation	

angles.	Negative	angles	rotate	in	the	opposite	direction.	

A	composite	rotation	depends	on	the	order	in	which	the	individual	rotations	are	applied.	

When	you	use	PlaneProjection,	you	are	sacrificing	some	flexibility	in	these	rotations.	

PlaneProjection	always	applies	RotationX	first,	then	RotationY,	and	finally	RotationZ,	but	in	

many	cases	you	only	need	set	one	of	these	properties.	As	with	RenderTransform,	Projection

doesn’t	affect	layout.	The	layout	system	always	sees	an	untransformed	and	unprojected	

element.	

RotationX,	RotationY,	and	RotationZ	are	all	backed	by	dependency	properties,	so	they	can	all	

be	animation	targets,	as	demonstrated	by	the	PerspectiveRotation	program.	The	content	area	

contains	a	TextBlock	with	a	PlaneProjection object	set	to	its	Projection	property,	and	three	

buttons:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Grid.RowDefinitions>

<RowDefinition Height="*" />

<RowDefinition Height="Auto" />

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>

<ColumnDefinition Width="*" />

<ColumnDefinition Width="*" />

<ColumnDefinition Width="*" />

</Grid.ColumnDefinitions>

<TextBlock Name="txtblk"

 Grid.Row="0" Grid.Column="0" Grid.ColumnSpan="3"

 Text="ROTATE"

 FontSize="{StaticResource PhoneFontSizeHuge}"

 Foreground="{StaticResource PhoneAccentBrush}"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

<TextBlock.Projection>

<PlaneProjection x:Name="planeProjection" />

</TextBlock.Projection>

</TextBlock>

<Button Grid.Row="1" Grid.Column="0"

 Content="Rotate X"

 Click="RotateXClick" />

<Button Grid.Row="1" Grid.Column="1"

 Content="Rotate Y"

 Click="RotateYClick" />

<Button Grid.Row="1" Grid.Column="2"

568	

	

	

	

	

 Content="Rotate Z"

 Click="RotateZClick" />

</Grid>

Three	storyboards	defined	in	the	Resources	collection	are	defined	to	animate	the	RotationX,	

RotationY,	and	RotationZ	properties	of	the	PlaneProjection	object:	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.Resources>

<Storyboard x:Name="rotateX">

<DoubleAnimation Storyboard.TargetName="planeProjection"

 Storyboard.TargetProperty="RotationX"

 From="0" To="360" Duration="0:0:5" />

</Storyboard>

<Storyboard x:Name="rotateY">

<DoubleAnimation Storyboard.TargetName="planeProjection"

 Storyboard.TargetProperty="RotationY"

 From="0" To="360" Duration="0:0:5" />

</Storyboard>

<Storyboard x:Name="rotateZ">

<DoubleAnimation Storyboard.TargetName="planeProjection"

 Storyboard.TargetProperty="RotationZ"

 From="0" To="360" Duration="0:0:5" />

</Storyboard>

</phone:PhoneApplicationPage.Resources>

The	buttons	simply	start	the	corresponding	storyboards:	

Silverlight Project: File: (excerpt)

void RotateXClick(object sender, RoutedEventArgs args)

{

 rotateX.Begin();

}

void RotateYClick(object sender, RoutedEventArgs args)

{

 rotateY.Begin();

}

void RotateZClick(object sender, RoutedEventArgs args)

{

 rotateZ.Begin();

}

Here’s	rotation	around	the	Y	axis:	

569

	

	

	 	

	 	

	 	 	

	 	

	

	

	 	

	

	 	 	

	 	 	

	

	 	 	 	

	 	

	

	 	

	

	 	

	

The	animations	are	slow	enough	that	you	can	click	multiple	buttons	and	see	the	interactions.	

It	almost	looks	as	if	the	text	is	tumbling	through	the	weightlessness	of	space.	

In	2D	space,	rotation	is	relative	to	a	point;	in	3D	space,	rotation	is	relative	to	a	line,	commonly	

referred	to	as	an	“axis	of	rotation.”	But	the	PlaneProjection	class	prefers	to	treat	this	center	of	

rotation	using	three	numbers—the	properties	CenterOfRotationX,	CenterOfRotationY,	and	

CenterOfRotationZ.	In	effect,	these	three	numbers	define	a	3D	point	that	remains	unchanged	

during	rotation.	CenterOfRotationX does	not	affect	rotation	around	the	X	axis,	and	similarly	

for	the	other	two	properties.	

The	CenterOfRotationX	and	CenterOfRotationY	properties	are	relative	coordinates	based	on	

the	size	of	the	element	being	rotated,	where	(0,	0)	is	the	upperleft	corner.	The	default	values	

are	0.5,	indicating	the	center	of	the	element.	

If	you	set	CenterOfRotationX to	0,	the	RotationY	property	causes	the	element	to	rotate	around	

its	left	side.	If	CenterOfRotationY	is	set	to	1,	then	the	RotationX property	causes	the	element	to	

be	rotated	around	its	bottom.	

The	CenterOfRotationZ	property	is	in	absolute	coordinates—pixels,	in	other	words—where	0	is	

the	plane	of	the	screen	and	positive	coordinates	come	out	of	the	screen	toward	the	user.	For	

purposes	of	its	internal	calculations,	the	viewer	(you)	is	assumed	to	be	1000	pixels	in	front	of	

the	screen.	In	PerspectiveRotation,	try	setting	the	CenterOfRotationZ	property	of	

PlaneProjection	to	200:	

<TextBlock.Projection>

<PlaneProjection x:Name="planeProjection"

 CenterOfRotationZ="200" />

</TextBlock.Projection>

Now	try	the	“Rotate	X”	and	“RotateY”	buttons:	You’ll	see	the	text	sweep	around	as	if	it’s	

leaving	the	screen	(where	the	Z	coordinate	is	0)	and	circling	around	a	Z	value	of	200,	curving	

in	front	of	the	viewer	at	a	Z	value	of	400.	A	CenterOfRotationZ	value	greater	than	500	will	

cause	projections	to	stop	working	right.	The	projected	object	will	get	a	Z	value	of	1000	and	

strike	the	viewer	right	on	the	nose.	

570	

	

	 	

	

	 	 	

	

	

	 	 	

	 	

	 	 	

	

	 	

	 	 	

	

The	other	properties	of	PlaneProjection	cause	translation	in	the	X,	Y,	and	Z	directions:	

Conceptually,	the	LocalOffsetX,	LocalOffsetY,	and	LocalOffsetZ	properties	are	applied	first,	then	

the	element	is	rotated,	then	GlobalOffsetX,	GlobalOffsetY,	and	GlobalOffsetZ	properties	are	

applied.	

Try	setting	LocalOffsetX	or	GlobalOffsetX	to	200.	In	either	case,	the	unrotated	text	is	moved	to	

the	right	by	200	pixels.	But	GlobalOffsetX	is	more	like	the	whole	screen	shifting	right.	Try	

setting	LocalOffsetX	and	rotate	the	text	around	the	Y	axis.	The	actual	offset	will	begin	at	the	

right,	and	shift	to	the	left,	and	then	back	to	the	right.	

You	can	use	animated	projection	transforms	for	small	effects	or	for	big	effects.	An	example	of	

a	big	effect	is	to	change	the	way	a	new	page	in	your	program	comes	into	view.	The	

SweepIntoView	program	has	a	MainPage.xaml	file	containing	just	a	little	text:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<TextBlock Text="Touch to go to second page"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Grid>

The	codebehind	file	uses	touch	to	navigate	to	Page2.xaml:	

Silverlight Project: File: (excerpt)

protected override void OnManipulationStarted(ManipulationStartedEventArgs args)

{

this.NavigationService.Navigate(new Uri("/Page2.xaml", UriKind.Relative));

 args.Complete();

 args.Handled = true;

base.OnManipulationStarted(args);

}

For	some	variety	(and	to	see	more	clearly	what’s	happening)	Page2.xaml	colors	its	content	

area	with	an	accented	background:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0"

 Background="{StaticResource PhoneAccentBrush}">

<TextBlock Text="Touch to go back"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Grid>

571	

	

	

	 	 	 	

	

	 	

	

	 	 	

	

The	codebehind	file	also	has	an	OnManipulationStarted	override:	

Silverlight Project: File: (excerpt)

protected override void OnManipulationStarted(ManipulationStartedEventArgs args)

{

this.NavigationService.GoBack();

 args.Complete();

 args.Handled = true;

base.OnManipulationStarted(args);

}

But	what	makes	this	program	different	is	some	additional	markup	in	the	Page2.xaml	file.	This	

ensures	that	the	page	just	doesn’t	come	on	the	stage	in	a	sudden	pop,	but	dramatically	

sweeps	into	view:	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.Projection>

<PlaneProjection x:Name="planeProjection"

 CenterOfRotationX="0" />

</phone:PhoneApplicationPage.Projection>

<phone:PhoneApplicationPage.Triggers>

<EventTrigger>

<BeginStoryboard>

<Storyboard>

<DoubleAnimation Storyboard.TargetName="planeProjection"

 Storyboard.TargetProperty="RotationY"

 From="-90" To="0" Duration="0:0:01" />

</Storyboard>

</BeginStoryboard>

</EventTrigger>

</phone:PhoneApplicationPage.Triggers>

The	PlaneProjection	is	set	to	the	Projection	property	of	the	whole	PhoneApplicationPage

element,	and	the	animation	is	triggered	when	the	page	is	first	loaded.	The	animation	makes	

the	RotationY	property	go	from	–90	degrees	to	zero,	with	a	CenterOfRotationX	equal	to	zero.	

This	causes	the	page	to	sweep	in	almost	like	a	door:	

572	

	

	

	 	

	 	 	 	

	 	 	

	

Animations
and
Property
Precedence

The	sample	code	for	this	chapter	includes	a	little	program	called	ButtonSetAndAnimate	that	

doesn’t	do	anything	particularly	useful	except	to	illustrate	how	animation	fits	into	

dependency	property	precedence.	

The	XAML	file	contains	a	Slider	with	a	range	of	0	to	100,	a	TextBlock	showing	the	Slider	value,	

and	four	buttons:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Grid.RowDefinitions>

<RowDefinition Height="Auto" />

<RowDefinition Height="*" />

<RowDefinition Height="Auto" />

<RowDefinition Height="Auto" />

<RowDefinition Height="Auto" />

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>

<ColumnDefinition Width="*" />

<ColumnDefinition Width="*" />

</Grid.ColumnDefinitions>

<TextBlock Grid.Row="0" Grid.Column="0" Grid.ColumnSpan="2"

573	

	

	 	

	

 Text="{Binding ElementName=slider, Path=Value}"

 HorizontalAlignment="Center"

 Margin="24" />

<Slider Name="slider"

 Grid.Row="1" Grid.Column="0" Grid.ColumnSpan="2"

 Minimum="0" Maximum="100"

 Orientation="Horizontal"

 VerticalAlignment="Center" />

<Button Grid.Row="2" Grid.Column="0"

 Content="Set to 0"

 Click="OnSetToZeroClick" />

<Button Grid.Row="2" Grid.Column="1"

 Content="Set to 100"

 Click="OnSetToOneHundredClick" />

<Button Grid.Row="3" Grid.Column="0" Grid.ColumnSpan="2"

 Content="Animate to 50"

 HorizontalAlignment="Center"

 Click="OnAnimateTo50Click" />

<Button Grid.Row="4" Grid.Column="0" Grid.ColumnSpan="2"

 Content="Set Maximum to 25"

 HorizontalAlignment="Center"

 Click="OnSetMaxTo40Click" />

</Grid>

Also	in	the	XAML	file	is	an	animation	that	targets	the	Value	property	of	the	Slider.	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.Resources>

<Storyboard x:Name="storyboard">

<DoubleAnimation Storyboard.TargetName="slider"

 Storyboard.TargetProperty="Value"

 To="50" Duration="0:0:5" />

</Storyboard>

</phone:PhoneApplicationPage.Resources>

Handlers	for	the	four	buttons	are	in	the	codebehind	file:	

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage

{

 public MainPage()

 {

InitializeComponent();

574

	

	

	

	 	 	 	

	 	

	

 }

 void OnSetToZeroClick(object sender, RoutedEventArgs args)

 {

slider.Value = 0;

 }

 void OnSetToOneHundredClick(object sender, RoutedEventArgs args)

{

slider.Value = 100;

 }

 void OnAnimateTo50Click(object sender, RoutedEventArgs args)

 {

storyboard.Begin();

 }

 void OnSetMaxTo40Click(object sender, RoutedEventArgs e)

 {

slider.Maximum = 25;

 }

}

Here’s	the	program:	

You	can	manipulate	the	Slider	with	your	finger	and	you	can	also	use	the	topmost	two	buttons	

to	set	the	Slider	value	to	its	minimum	or	maximum.	So	far,	so	good.	Now	click	the	“Animate	to	

50”	button.	

575

	

	

	 	 	

	 	 	 	

	 	

	 	

	 	

	

	

	 	 	

	

	 	 	 	

	

	 	 	 	

	 	 	

	 	 	 	 	

	 	 	

	 	

	 	

	

	

	 	 	 	

	

	 	

	

	 	

	
 	

	 	

	 	

	

	

	 	 	

As	the	Slider	is	animated	and	moving	to	the	center	position,	try	overriding	that	movement	

with	your	finger	or	by	pressing	the	“Set	to	0”	or	“Set	to	100”	buttons.	You	can’t	do	it.	The	

animation	has	precedence	over	local	settings,	which	means	that	the	chart	of	dependency	

property	precedence	(last	encountered	in	Chapter	11)	must	be	supplemented	by	putting	

animations	at	the	very	top:	

Animations	have	precedence	over	

Local
Settings
which	have	precedence	over

 Style
Settings,	which	have	precedence	over	the

 Theme
Style,	which	has	precedence	over	

Property
Inheritance,	which	has	precedence	over	

Default
Values

This	is	as	it	should	be.	Animations	must	have	precedence	over	local	settings	or	they	wouldn’t	

work	on	properties	that	are	simply	initialized	to	some	value.	

After	the	animation	has	concluded,	you’ll	discover	that	you	can	now	manipulate	the	Slider

both	manually	and	with	the	first	two	buttons.	This	behavior	is	not	correct	and	not	in	

accordance	with	documentation.	With	the	default	FillBehavior	setting	of	HoldEnd,	the	Slider

should	actually	be	frozen	after	the	animation	has	concluded.	The	Slider	should	continue	to	

reflect	the	final	value	of	the	animation.	

Is	there	something	more	powerful	than	animations?	Yes	there	is,	but	it’s	probably	not	

something	you’d	immediately	consider,	and	you	probably	won’t	find	any	examples	outside	

the	realm	of	Slider	and	ScrollBar.	

Set	the	Slider	to	its	maximum	value,	and	press	the	“Animate	to	50”	button	again.	As	the	Slider

is	approaching	50,	click	the	“Set	Maximum	to	25”	button.	That	sets	the	Maximum	property	of	

the	Slider	to	25	and	immediately	halts	the	animation.	And	once	again,	it	seems	logical.	No	

matter	what	an	animation	does,	it	makes	no	sense	whatsoever	for	a	Slider	to	have	a	Value	that	

is	outside	the	range	of	Minimum	and	Maximum.	This	is	an	example	of	property	coercion:	

Property
Coercion
has	precedence	over	

Animations	which	have	precedence	over	

Local
Settings
which	have	precedence	over

 Style
Settings,	which	have	precedence	over	the

 Theme
Style,	which	has	precedence	over	

Property
Inheritance,	which	has	precedence	over	

576	

	

	

	

	

Default
Values

In	theory,	values	of	templated	properties	also	fit	into	this	chart	between	local	settings	and	

style	settings,	but	these	are	hard	to	differentiate,	so	this	is	the	final	version	of	this	chart	in	this	

book.	

577	

	

	

	

	

	 	 	 	 	 	

		

	 	 	 	

	

	

	

	 	 	

	

	 	 	 	 	 	

	

	 	 	 	

	 	

	

	 	 	 	

	 	 	 	

	

Chapter	16	

The Two Templates
Silverlight	templates	are	visual	trees	of	elements	and	controls	defined	in	XAML.	What	makes	

these	visual	trees	special	is	that	they	function	as	patterns	or	molds	to	create	identical	visual	

trees.	Templates	are	almost	always	defined	as	resources,	so	they	are	shared,	and	they	almost	

always	contain	bindings,	so	they	can	be	associated	with	different	objects	and	assume	different	

appearances.	

You’ll	use	one	type	of	template	(the	DataTemplate)	to	render	objects	that	otherwise	have	no	

visual	representation.	Use	another	type	(the	ControlTemplate)	to	customize	the	visual	

appearance	of	controls.	There’s	actually	a	third	type	(ItemsPanelTemplate)	but	this	one	is	very	

simple	and	has	a	special	use	that	I’ll	discuss	in	the	next	chapter.	

The	template	is	easily	one	of	the	most	powerful	features	in	Silverlight,	and	perhaps	one	of	the	

most	difficult.	For	that	reason,	many	developers	swear	by	Expression	Blend	to	generate	their	

templates.	This	chapter	will	demonstrate	how	to	write	templates	by	hand	so	you’ll	be	in	a	

better	position	to	understand	Expression	Blend	output	if	you	later	decide	to	go	that	route.	

ContentControl
and
DataTemplate
In	Chapter	10	I	demonstrated	how	you	can	assign	the	Content	property	of	a	ContentControl

derivative	(such	as	a	Button)	to	almost	any	object.	If	that	object	derives	from	

FrameworkElement	(such	as	TextBlock	or	Image),	then	the	element	is	displayed	inside	the	

ContentControl.	But	you	can	also	set	the	Content property	to	an	object	that	does	not	derive	

from	FrameworkElement.	Here’s	the	Content	of	a	Button	set	to	a	RadialGradientBrush:	

<Button HorizontalAlignment="Center"

 VerticalAlignment="Center">

<RadialGradientBrush>

<GradientStop Offset="0" Color="Blue" />

<GradientStop Offset="1" Color="AliceBlue" />

</RadialGradientBrush>

</Button>

Normally	you’d	set	the	Foreground	property	of	a	Button to	a	brush,	or	the	Background

property,	or	perhaps	the	BorderBrush property.	But	setting	the	Content	property	to	a	brush?	

What	does	that	even	mean?	

578	

	

	 	 	 	 	

	 	 	 	

	 	

	

	

	 	 	

	

	 	

	 	 	 	 	 	

If	the	object	set	to	the	Content	property	of	a	ControlControl does	not	derive	from	

FrameworkElement,	it	is	rendered	with	its	ToString	method,	and	if	the	class	has	no	ToString

override,	the	fullyqualified	class	name	is	displayed,	so	this	particular	Button	looks	like	this:	

This	is	not	exactly	something	you	want	to	use	to	show	off	your	programming	skills	to	your	

friends.	

Here’s	the	Clock	class	from	Chapter	12	inside	a	Button:	

<Button HorizontalAlignment="Center"

 VerticalAlignment="Center">

<petzold:Clock />

</Button>

And	this	Button	doesn’t	display	much	of	value	either:	

Yet,	there	is	a	way	to	display	this	object	intelligently.	The	solution	is	an	object	of	type	

DataTemplate set	to	the	ContentTemplate	property	of	the	Button.	Here’s	the	syntax	with	an	

empty	DataTemplate:	

<Button HorizontalAlignment="Center"

 VerticalAlignment="Center">

579	

	

	 	 	 	 	 	

	

	 	

	

	 	 	 	

	 	

	 	 	 	

	 	 	

	

<petzold:Clock />

<Button.ContentTemplate>

<DataTemplate>

</DataTemplate>

</Button.ContentTemplate>

</Button>

ContentTemplate	is	one	of	two	properties	defined	by	ContentControl	and	inherited	by	Button;	

the	other	property	is	Content	itself.	

And	now	all	you	need	to	do	is	supply	a	visual	tree	within	the	DataTemplate	tags	that	contains	

bindings	to	properties	in	the	Clock	class:	

<Button HorizontalAlignment="Center"

 VerticalAlignment="Center">

<petzold:Clock />

<Button.ContentTemplate>

<DataTemplate>

<StackPanel>

<TextBlock Text="The time is:"

 TextAlignment="Center" />

<StackPanel Orientation="Horizontal"

 HorizontalAlignment="Center">

<TextBlock Text="{Binding Hour}" />

<TextBlock Text=":" />

<TextBlock Text="{Binding Minute}" />

<TextBlock Text=":" />

<TextBlock Text="{Binding Second}" />

</StackPanel>

</StackPanel>

</DataTemplate>

</Button.ContentTemplate>

</Button>

The	Button uses	this	visual	tree	to	display	the	Content	object.	The	bindings	in	this	visual	tree	

are	often	rather	simple.	The	data	bindings	don’t	need	a	Source	property	because	the	

DataContext	associated	with	this	visual	tree	is	the	object	set	to	the	Content	property.	The	

bindings	shown	here	require	only	Path	properties,	and	the	“Path=”	part	of	the	Binding

markup	extension	can	be	omitted.	

580	

	

	

	 	 	

	 	 	

	

	 	 	 	

	 	

	

	 	 	

	 	

The	displayed	time	is	dynamically	updated.	Of	course,	the	bindings	for	the	Minute	and	Second

properties	should	really	reference	a	stringformatting	converter	to	always	be	displayed	with	

two	digits.	

The	existence	of	the	DataTemplate	means	that	you	really	can set	the	content	of	a	Button	to	a	

RadialGradientBrush just	as	long	as	you	define	a	visual	tree	that	makes	use	of	that	brush	in	

the	DataTemplate:	

<Button HorizontalAlignment="Center"

 VerticalAlignment="Center">

<RadialGradientBrush>

<GradientStop Offset="0" Color="Blue" />

<GradientStop Offset="1" Color="AliceBlue" />

</RadialGradientBrush>

<Button.ContentTemplate>

<DataTemplate>

<Ellipse Width="100"

 Height="100"

 Fill="{Binding}" />

</DataTemplate>

</Button.ContentTemplate>

</Button>

Notice	the	Fill	property	setting	of	the	Ellipse.	It’s	just	a	Binding	markup	extension	with	no	Path

settings	set.	The	Fill	property	doesn’t	want	a	particular	property	of	the	RadialGradientBrush.	It	

wants	the	whole	thing.	Here’s	the	Button:	

581	

	

	

	 	 	

	 	 	 	 	

	 	 	 	 	

	 	

You	can	use	this	technique	with	any	ContentControl derivative,	or	even	ContentControl	itself.	

Let’s	define	that	DataTemplate	in	the	Resources	collection	of	a	MainPage.xaml	files:	

Silverlight Project: ContentControlWithDataTemplates File: MainPage.xaml (excerpt)

<phone:PhoneApplicationPage.Resources>

<DataTemplate x:Key="brushTemplate">

<Ellipse Width="100"

 Height="100"

 Fill="{Binding}" />

</DataTemplate>

</phone:PhoneApplicationPage.Resources>

Let’s	give	the	content	panel	of	this	page	three	Button	instances,	each	with	its	ContentTemplate

property	set	to	that	resource,	but	with	three	different	types	of	Brush	objects	set	to	the	

Content	property:	

Silverlight Project: ContentControlWithDataTemplates File: MainPage.xaml (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<StackPanel>

<Button HorizontalAlignment="Center"

 ContentTemplate="{StaticResource brushTemplate}">

<SolidColorBrush Color="{StaticResource PhoneAccentColor}" />

</Button>

<Button HorizontalAlignment="Center"

 ContentTemplate="{StaticResource brushTemplate}">

<RadialGradientBrush>

<GradientStop Offset="0" Color="Blue" />

<GradientStop Offset="1" Color="AliceBlue" />

</RadialGradientBrush>

</Button>

<Button HorizontalAlignment="Center"

582	

	

	

	

	

	 	 	

	 	 	 	 	

	 	

	 	 	 	 	

	

 ContentTemplate="{StaticResource brushTemplate}">

<LinearGradientBrush>

<GradientStop Offset="0" Color="Pink" />

<GradientStop Offset="1" Color="Red" />

</LinearGradientBrush>

</Button>

</StackPanel>

</Grid>

Here’s	the	result:	

The	DataTemplate	is	defined	as	a	resource	so	it	is	shared	among	all	Button	controls.	However,	

a	separate	visual	tree	based	on	that	template	is	built	for	each	Button.	Somewhere	within	the	

visual	tree	for	each	Button	is	an	Ellipse	with	a	binding	to	the	SolidColorBrush	set	to	the	

Content	property.	

Sharing	the	DataTemplate	among	a	few	Button	controls	is	convenient,	but	it	doesn’t	really	

show	off	the	sheer	power	of	this	technique.	Imagine	that	you	can	define	a	DataTemplate	for	

displaying	the	items	in	a	ListBox	or	ComboBox.	I’ll	show	you	how	to	do	that	in	the	next	

chapter.	

Examining
the
Visual
Tree

I’ve	been	mentioning	visual	trees.	Let’s	look	at	a	few.	

583

	

	 	 	

	 	

	

	 	 	

	

The	ButtonTree	program	lets	you	dump	the	visual	tree	for	a	rather	conventional	Button	(one	

with	its	Content	just	set	to	text),	a	Button	with	its	Content	property	set	to	an	Image	element,	

and	two	others	with	their	Content properties	set	to	the	RadialGradientBrush	and	Clock	(as	

shown	in	the	examples	above)	together	with	a	ContentTemplate.	The	program’s	content	Grid

displays	each	Button	in	a	cell:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Grid.RowDefinitions>

<RowDefinition Height="Auto" />

<RowDefinition Height="Auto" />

<RowDefinition Height="*" />

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>

<ColumnDefinition Width="*" />

<ColumnDefinition Width="*" />

</Grid.ColumnDefinitions>

<Button Grid.Row="0" Grid.Column="0"

 Content="Click to Dump"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 Click="OnButtonClick" />

<Button Grid.Row="0" Grid.Column="1"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 Click="OnButtonClick">

<Image Source="ApplicationIcon.png"

 Stretch="None" />

</Button>

<Button Grid.Row="1" Grid.Column="0"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 Click="OnButtonClick">

<Button.Content>

<RadialGradientBrush>

<GradientStop Offset="0" Color="Blue" />

<GradientStop Offset="1" Color="AliceBlue" />

</RadialGradientBrush>

</Button.Content>

<Button.ContentTemplate>

<DataTemplate>

<Ellipse Width="100"

 Height="100"

 Fill="{Binding}" />

</DataTemplate>

</Button.ContentTemplate>

584	

	

	

	

	

</Button>

<Button Grid.Row="1" Grid.Column="1"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 Click="OnButtonClick">

<Button.Content>

<petzold:Clock />

</Button.Content>

<Button.ContentTemplate>

<DataTemplate>

<StackPanel>

<TextBlock Text="The time is:"

 TextAlignment="Center" />

<StackPanel Orientation="Horizontal"

 HorizontalAlignment="Center">

<TextBlock Text="{Binding Hour}" />

<TextBlock Text=":" />

<TextBlock Text="{Binding Minute}" />

<TextBlock Text=":" />

<TextBlock Text="{Binding Second}" />

</StackPanel>

</StackPanel>

</DataTemplate>

</Button.ContentTemplate>

</Button>

<ScrollViewer Grid.Row="2" Grid.Column="0" Grid.ColumnSpan="2"

 HorizontalScrollBarVisibility="Auto">

<StackPanel Name="stackPanel" />

</ScrollViewer>

</Grid>

Way	down	at	the	bottom	is	a	StackPanel	inside	a	ScrollViewer	for	displaying	the	visual	tree.	

The	codebehind	file	uses	the	static	VisualTreeHelper class	for	enumerating	an	element’s	

children	in	a	recursive	method,	and	then	displays	their	names	in	a	hierarchical	list:	

Silverlight Project: File: (excerpt)

void OnButtonClick(object sender, RoutedEventArgs args)

{

Button btn = sender as Button;

 stackPanel.Children.Clear();

 DumpVisualTree(btn, 0);

}

void DumpVisualTree(DependencyObject parent, int indent)

{

TextBlock txtblk = new TextBlock();

 txtblk.Text = String.Format("{0}{1}", new string(' ', 4 * indent),

parent.GetType().Name);

585	

	

	 	

	 	

	

	 	

	 	

	 	 	

	 	 	 	

	 	 	

	

 stackPanel.Children.Add(txtblk);

int numChildren = VisualTreeHelper.GetChildrenCount(parent);

for (int childIndex = 0; childIndex < numChildren; childIndex++)

 {

DependencyObject child = VisualTreeHelper.GetChild(parent, childIndex);

DumpVisualTree(child, indent + 1);

 }

}

Click	the	button	in	the	upperleft	corner	that	has	its	Content	set	to	text	and	the	program	

displays	the	visual	tree	of	the	Button:	

The	Border	element	is	no	surprise;	it’s	clearly	visible	in	the	actual	Button	as	is	the	TextBlock

used	to	display	the	text.	The	first	Grid	hosting	the	Border is	obviously	a	singlecell	Grid;	later	in	

this	chapter	you’ll	see	the	purpose	of	that	Grid.	The	purpose	of	the	Grid	hosting	the	TextBlock

is	not	so	obvious.	If	you	set	the	Content	of	the	Button	to	an	explicit	TextBlock,	that	second	

Grid	disappears,	and	the	tree	looks	more	like	the	one	for	the	Button	with	its	Content	property	

set	to	an	Image	element:	

586

	

	

	 	 	

	 	 	 	 	 	 	

	 	

	 	 	

	

The	portion	of	the	visual	tree	up	to	an	including	the	ContentPresenter	defines	the	appearance	

of	the	standard	Button.	(Soon	you’ll	see	how	that’s	the	part	that	can	be	replaced	by	setting	

the	control’s	Template	property	to	an	object	of	type	ControlTemplate.)	Everything	after	the	

ContentPresenter	is	used	to	display	the	content	of	the	Button.	Here’s	the	tree	when	the	

Content property	is	set	to	a	RadialGradientBrush	but	the	ContentTemplate	is	set	to	an	Ellipse

referencing	that	brush:	

587	

	

	

	 	 	 	

	

	 	 	

	

	 	

	 	 	

	 	 	 	

	

If	you’re	familiar	with	control	templates	from	the	Windows	Presentation	Foundation	or	the	

web	version	of	Silverlight,	you	undoubtedly	expect	to	see	the	ContentPresenter.	That’s	a	

FrameworkElement	derivative	used	specifically	for	hosting	content.	It	is	the	ContentPresenter

that	formats	some	objects	as	text	in	the	absence	of	a	DataTemplate,	or	actually	applies	a	

DataTemplate.	But	you	may	be	a	little	puzzled	about	the	ContentControl.	I	was	puzzled	as	well	

for	awhile.	A	Button	derives	from	ContentControl,	but	that	doesn’t	necessarily	mean	that	the	

visual	tree	of	a	Button	should	contain	another	ContentControl!	I’ll	have	a	little	more	to	say	

about	the	peculiar	appearance	of	ContentControl	later	in	this	chapter.	

Finally,	here’s	the	visual	tree	resulting	from	the	more	extensive	DataTemplate	for	displaying	

the	Clock	object:	

588	

	

	

	 	 	 	

	 	 	 	 	

	

	 	 	 	

	

	

	

	 	

	 	 	

	 	 	 	

	 	

	 	 	 	 	

	 	 	

	 	

	

For	any	control	that	derives	from	ContentControl,	you	now	know	how	to	define	the	portion	of	

the	visual	tree	following	the	ContentPresenter.	Now	let’s	see	how	you	can	redefine	the	top	

part	of	this	visual	tree.	

ControlTemplate
Basics

A	DataTemplate allows	you	to	customize	the	display	of	content	in	a	ContentControl.	The	

ControlTemplate—which	you	can	set	to	the	Template	property	of	any	Control—allows	you	to	

customize	the	appearance	of	the	control	itself—what’s	commonly	referred	to	as	the	control	

“chrome.”	These	two	different	purposes	are	summarized	in	the	following	table:	

Property Property Type Purpose

Template ControlTemplate customizes	display	of	control	“chrome”	

ContentTemplate DataTemplate customizes	display	of	content	

Keep	in	mind	that	the	ContentTemplate	property	is	defined	by	ContentControl and	is	only	

something	you’ll	find	only	in	classes	that	derive	from	ContentControl.	But	the	Template

property	is	defined	by	Control,	and	it’s	presence	is	perhaps	the	primary	distinction	between	

controls	and	FrameworkElement	derivatives	like	TextBlock	and	Image.	

Whenever	you	think	you	need	a	custom	control,	you	should	ask	yourself	if	it	is	truly	a	new	

control	you	need,	or	if	it’s	merely	a	new	look	for	an	existing	control.	For	example,	suppose	

you	need	a	control	that	has	a	particular	appearance,	and	when	you	tap	it,	it	changes	

589	

	

	 	 	

	 	 	

	

	 	 	

	 	

	 	 	 	

	

	 	

	 	 	

	

	 	 	

	 	

	 	 	

	

	 	

	 	

	 	 	

	 	 	

	

appearance,	and	then	you	tap	it	again,	it	goes	back	to	the	original	appearance.	This	is	a	

ToggleButton with	just	different	visuals—a	different	ControlTemplate.	

As	with	styles,	very	often	templates	are	defined	as	resources.	Also	as	with	Style,	

ControlTemplate	requires	a	TargetType:	

<ControlTemplate x:Key="btnTemplate" TargetType="Button">

…

</ControlTemplate>

It	is	very	common	to	see	a	Template	defined	as	part	of	a	Style:	

<Style x:Key="btnStyle" TargetType="Button">

<Setter Property="Margin" Value="6" />

<Setter Property="Template">

<Setter.Value>

<ControlTemplate TargetType="Button">

 …

</ControlTemplate>

</Setter.Value>

</Setter>

</Style>

Notice	that	propertyelement	syntax	is	used	for	the	Setter	that	sets	the	Template	property	to	

an	object	of	type	ControlTemplate.	Defining	a	template	as	part	of	a	style	is	a	very	common	

approach	because	generally	you	want	to	set	some	properties	of	the	control	to	make	them	

more	conducive	with	the	template	you’re	building.	These	Setter	tags	effectively	redefine	the	

default	property	values	for	the	styled	and	templated	control,	but	they	can	still	be	overridden	

with	local	settings	on	the	actual	control.	

Let’s	create	a	custom	Button.	This	new	Button	will	retain	the	full	functionality	of	the	familiar	

Button	except	that	you	(the	programmer)	will	have	total	control	over	its	appearance.	Of	

course,	to	keep	it	simple,	the	new	Button won’t	look	all	that	different	from	the	normal	Button!	

But	it	will	show	you	the	concepts	involved.	

Here’s	a	standard	Button	with	text	content	and	alignment	set	so	it	takes	up	only	as	much	

space	as	it	needs	to	display	that	content:	

<Button Content="Click me!"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

</Button>

To	experiment	with	the	ControlTemplate with	greatest	ease,	let’s	not	define	the	

ControlTemplate	as	a	resource	but	break	out	the	Template	property	as	a	propertyelement	of	

the	Button	and	set	that	to	a	ControlTemplate:	

<Button Content="Click me!"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

<Button.Template>

590	

	

	 	 	

	

	 	 	 	 	

	

	 	 	

	

	 	 	 	

<ControlTemplate TargetType="Button">

</ControlTemplate>

</Button.Template>

</Button>

As	soon	as	you	set	the	Template	property	to	an	empty	ControlTemplate,	the	button	itself	

disappears.	A	visual	tree	defining	the	appearance	of	the	control	no	longer	exists.	That	visual	

tree	is	what	you’ll	be	putting	in	the	ControlTemplate.	Just	to	make	sure	that	we	haven’t	done	

anything	serious	damaging,	let’s	stick	a	TextBlock	in	the	ControlTemplate:	

<Button Content="Click me!"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

<Button.Template>

<ControlTemplate TargetType="Button">

<TextBlock Text="temporary" />

</ControlTemplate>

</Button.Template>

</Button>

Now	the	Button	consists	solely	of	the	word	“temporary.”	It	doesn’t	have	any	visual	feedback	

when	you	touch	it,	but	otherwise	it’s	a	fully	functional	button.	It’s	seriously	flawed,	of	course,	

because	the	Button should	really	be	displaying	“Click	me!”	but	that	will	be	fixed	soon.	

You	can	put	a	Border	around	the	TextBlock:	

<Button Content="Click me!"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

<Button.Template>

<ControlTemplate TargetType="Button">

<Border BorderBrush="{StaticResource PhoneAccentBrush}"

 BorderThickness="6">

<TextBlock Text="temporary" />

</Border>

</ControlTemplate>

</Button.Template>

</Button>

591	

	

	

	

	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	 	

	 	 	 	

	

	 	 	

Here’s	what	it	looks	like:	

But	it’s	really	not	a	good	idea	to	hardcode	property	values	like	this	in	the	template,	

particularly	if	you’re	going	to	be	sharing	that	template	in	multiple	controls.	It	particularly	

doesn’t	make	sense	to	hardcode	BorderBrush	and	BorderThickness	in	the	template	because	

the	Control	class	itself	defines	BorderBrush	and	BorderThickness	properties,	and	if	we	really	

want	a	border	around	the	button,	we	should	set	those	properties	in	the	Button	rather	than	the	

template	because	we	might	want	to	share	this	template	among	multiple	buttons	and	set	

different	border	brushes	and	border	thickness.	

So,	let’s	move	those	properties	from	the	template	to	the	button	itself:	

<Button Content="Click me!"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 BorderBrush="{StaticResource PhoneAccentBrush}"

 BorderThickness="6">

<Button.Template>

<ControlTemplate TargetType="Button">

<Border>

<TextBlock Text="temporary" />

</Border>

</ControlTemplate>

</Button.Template>

</Button>

592	

	

	 	 	 	 	

	 	

	 	 	

	 	 	 	 	

	 	

	 	 	

	 	 	

	 	

Unfortunately,	now	we’ve	lost	the	properties	in	the	visual	tree	of	the	template,	so	the	border	

has	now	disappeared	and	it	doesn’t	seem	like	much	of	an	improvement.	The	border	in	the	

template	in	not	automatically	inheriting	the	properties	of	BorderBrush	and	BorderThickness

set	on	the	button.	Those	are	not	inheritable	properties.	

What	we	need	is	a	binding	so	the	properties	of	the	Border	in	the	template	get	set	from	

properties	in	the	Button.	It’s	a	special	type	of	binding	that	has	its	own	markup	extension.	It’s	

called	a	TemplateBinding:	

<Button Content="Click me!"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 BorderBrush="{StaticResource PhoneAccentBrush}"

 BorderThickness="6">

<Button.Template>

<ControlTemplate TargetType="Button">

<Border BorderBrush="{TemplateBinding BorderBrush}"

 BorderThickness="{TemplateBinding BorderThickness}">

<TextBlock Text="temporary" />

</Border>

</ControlTemplate>

</Button.Template>

</Button>

What	the	TemplateBinding	means	is	that	the	properties	of	this	particular	element	in	the	visual	

tree	of	the	template—specifically,	the	BorderBrush	and	BorderThickness	properties	of	the	

Border	element—are	bound	to	values	set	on	properties	in	the	control	itself.	The	Button	now	

has	a	border	colored	with	the	accent	brush:	

593	

	

	

	 	

	 	 	 	

	 	

	 	 	

	 	 	 	 	

	

	

	 	

	

	 	

	 	

		

	

	

	 	 	 	 	 	 	

	 	 	

The	TemplateBinding	is	syntactically	very	simple.	It	always	targets	a	dependency	property	in	

the	visual	tree	of	the	template.	It	always	references	a	property	of	the	control	on	which	the	

template	is	applied.	There	is	nothing	else	that	can	go	in	the	TemplateBinding	markup	

extension.	TemplateBinding	is	only	found	in	visual	trees	defined	within	a	ControlTemplate.	

On	the	other	hand,	there	is	nothing	all	that	special	about	TemplateBinding.	It	is	actually	a	

shortcut,	and	when	you	see	the	longer	version,	you’ll	be	glad	it	exists.	The	attribute	setting	

BorderBrush="{TemplateBinding BorderBrush}"

is	a	shortcut	for	

BorderBrush="{Binding RelativeSource={RelativeSource TemplatedParent},

 Path=BorderBrush}"

This	binding	is	on	a	Border,	and	the	RelativeSource	syntax	refers	to	another	element	in	the	

tree	relative	to	this	Border.	The	TemplatedParent	is	the	Button on	which	the	template	is	

applied,	so	the	binding	is	referencing	the	BorderBrush	of	that	Button.	(Makes	sense,	no?)	You’ll	

want	to	use	this	alternative	to	TemplateBinding	if	you	need	to	establish	a	twoway	binding	on	

a	property	in	the	template	because	TemplateBinding is	oneway	only	and	doesn’t	allow	a	

Mode	setting.	

Back	to	the	template	at	hand:	Now	that	we’ve	established	a	TemplateBinding	on	the	

BorderBrush	and	BorderThickness,	another	issue	has	arisen.	Perhaps	we’ve	decided	that	we	

want	this	Button to	have	a	border	that	is	6	pixels	wide	colored	with	the	accent	brush,	but	

you’ll	only	get	those	values	if	the	Button	contains	explicit	settings	of	the	BorderBrush	and	

594	

	

	 	 	 	 	

	 	 	 	 	

	 	

	 	

	 	 	

	 	

	 	 	 	 	

	 	 	

	

	 	 	 	

BorderThickness properties.	It	would	be	nice	if	these	properties	did	not	need	to	be	set	on	the	

Button.	In	other	words,	we	want	the	Button to	have	default	values	of	these	properties	that	

might	be	overridden	by	local	settings.	

This	can	be	done	by	setting	the	desired	default	properties	in	a	Style.	For	convenience,	I’ve	

defined	such	a	Style	directly	on	the	Button:	

<Button Content="Click me!"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

<Button.Style>

<Style TargetType="Button">

<Setter Property="BorderBrush" Value="{StaticResource PhoneAccentBrush}" />

<Setter Property="BorderThickness" Value="6" />

</Style>

</Button.Style>

<Button.Template>

<ControlTemplate TargetType="Button">

<Border BorderBrush="{TemplateBinding BorderBrush}"

 BorderThickness="{TemplateBinding BorderThickness}">

<TextBlock Text="temporary" />

</Border>

</ControlTemplate>

</Button.Template>

</Button>

Now	the	template	picks	up	some	default	values	from	the	Style	but	those	settings	can	be	

overridden	by	setting	them	locally	on	the	button.	(If	you	don’t	want	the	properties	to	be	

overridden	by	local	settings—if	you	want	the	properties	to	always	have	specific	values—then	

by	all	means	hardcode	them	directly	in	the	template.)	

It	is	very	common	to	define	the	Template property	as	part	of	a	Style,	like	so:	

<Button Content="Click me!"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

<Button.Style>

<Style TargetType="Button">

<Setter Property="BorderBrush" Value="{StaticResource PhoneAccentBrush}" />

<Setter Property="BorderThickness" Value="6" />

<Setter Property="Template">

<Setter.Value>

<ControlTemplate TargetType="Button">

<Border BorderBrush="{TemplateBinding BorderBrush}"

 BorderThickness="{TemplateBinding BorderThickness}">

<TextBlock Text="temporary" />

</Border>

</ControlTemplate>

</Setter.Value>

</Setter>

</Style>

595	

	

	 	 	

	

	 	 	

	 	 	 	 	

	

</Button.Style>

</Button>

Now	the	Style sets	default	values	for	properties	also	used	by	the	template.	Let’s	add	a	

Background	property	to	the	Border	and	give	it	a	default	value	as	well:	

<Button Content="Click me!"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

<Button.Style>

<Style TargetType="Button">

<Setter Property="BorderBrush" Value="{StaticResource PhoneAccentBrush}" />

<Setter Property="BorderThickness" Value="6" />

<Setter Property="Background" Value="{StaticResource PhoneChromeBrush}" />

<Setter Property="Template">

<Setter.Value>

<ControlTemplate TargetType="Button">

<Border BorderBrush="{TemplateBinding BorderBrush}"

 BorderThickness="{TemplateBinding BorderThickness}"

 Background="{TemplateBinding Background}">

<TextBlock Text="temporary" />

</Border>

</ControlTemplate>

</Setter.Value>

</Setter>

</Style>

</Button.Style>

</Button>

On	the	other	hand,	perhaps	we	want	our	newly	designed	button	to	have	rounded	corners	on	

the	Border.	We	know	that	the	Button does	not	define	a	CornerRadius	property,	so	it	can	be	set	

to	an	explicit	value	right	in	the	template:	

<Button Content="Click me!"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

<Button.Style>

<Style TargetType="Button">

<Setter Property="BorderBrush" Value="{StaticResource PhoneAccentBrush}" />

<Setter Property="BorderThickness" Value="6" />

<Setter Property="Background" Value="{StaticResource PhoneChromeBrush}" />

<Setter Property="Template">

<Setter.Value>

<ControlTemplate TargetType="Button">

<Border BorderBrush="{TemplateBinding BorderBrush}"

 BorderThickness="{TemplateBinding BorderThickness}"

 Background="{TemplateBinding Background}"

 CornerRadius="12">

<TextBlock Text="temporary" />

</Border>

</ControlTemplate>

</Setter.Value>

</Setter>

</Style>

596	

	

	 	

	

	

	

	 	

	 	 	 	

	 	 	

	 	

	 	

	 	

	

	

</Button.Style>

</Button>

Here’s	what	we’re	up	to	so	far:	

The	button	still	displays	the	text	“temporary”	and	it	should	really	be	displaying	the	text	“Click	

me!”	You	might	be	tempted	to	put	a	TextBlock	in	there	and	set	its	Text property	to	a	

TemplateBinding	of	the	Content	property	of	the	Button:	

<TextBlock Text="{TemplateBinding Content}" />

This	actually	works	in	this	example,	but	it’s	very,	very	wrong.	The	problem	is	that	the	Content

property	of	the	Button	is	of	type	object.	We	can	set	it	to	anything—an	Image,	a	Panel,	a	

Shape,	a	RadialGradientBrush,	and	then	the	TextBlock	would	have	a	little	problem.	

Fortunately,	there	is	a	class	in	Silverlight	that	exists	specifically	to	display	content	in	a	

ContentControl	derivative.	That	class	is	called	ContentPresenter.	It	has	a	property	named	

Content of	type	object,	and	ContentPresenter	displays	that	object	regardless	whether	it’s	a	text	

string	or	any	other	element:	

<Button Content="Click me!"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

<Button.Style>

<Style TargetType="Button">

<Setter Property="BorderBrush" Value="{StaticResource PhoneAccentBrush}" />

<Setter Property="BorderThickness" Value="6" />

<Setter Property="Background" Value="{StaticResource PhoneChromeBrush}" />

597	

	

	 	 	 	

	 	 	 	 	

	 	 	 	

	 	 	

	 	

	 	

	 	 	

<Setter Property="Template">

<Setter.Value>

<ControlTemplate TargetType="Button">

<Border BorderBrush="{TemplateBinding BorderBrush}"

 BorderThickness="{TemplateBinding BorderThickness}"

 Background="{TemplateBinding Background}"

 CornerRadius="12">

<ContentPresenter Content="{TemplateBinding Content}" />

</Border>

</ControlTemplate>

</Setter.Value>

</Setter>

</Style>

</Button.Style>

</Button>

Notice	how	the	Content property	of	the	ContentPresenter	is	bound	to	the	Content	property	of	

the	Button.	The	ContentPresenter	has	the	distinct	advantage	of	working	for	any	kind	of	object.	

The	ContentPresenter	might	create	its	own	visual	tree;	for	example,	if	the	Content	is	of	type	

string,	then	the	ContentPresenter	creates	a	TextBlock	to	display	that	string.	The	

ContentPresenter	is	also	entrusted	with	the	job	of	building	a	visual	tree	to	display	content	

based	on	a	DataTemplate	set	to	the	Control.	For	this	purpose,	the	ContentPresenter	has	its	

own	ContentTemplate	property	that	you	can	bind	to	the	ContentTemplate	of	the	control:	

<Button Content="Click me!"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

 <Button.Style>

<Style TargetType="Button">
<Setter Property="BorderBrush" Value="{StaticResource PhoneAccentBrush}" />

<Setter Property="BorderThickness" Value="6" />

<Setter Property="Background" Value="{StaticResource PhoneChromeBrush}" />

<Setter Property="Template">

<Setter.Value>

<ControlTemplate TargetType="Button">

<Border BorderBrush="{TemplateBinding BorderBrush}"

 BorderThickness="{TemplateBinding BorderThickness}"

 Background="{TemplateBinding Background}"

 CornerRadius="12">

<ContentPresenter

 Content="{TemplateBinding Content}"

ContentTemplate="{TemplateBinding ContentTemplate}" />

</Border>

</ControlTemplate>

</Setter.Value>

</Setter>

</Style>

</Button.Style>

</Button>

598	

	

	

	 	

	 	

	

	

	

	 	 	

	 	 	

	

	 	 	 	 	 	 	

	 	

	

	 	 	

	 	 	 	 	

	

	 	 	 	

These	two	TemplateBinding	settings	on	ContentPresenter	are	so	standard	that	they	are	not	

required	to	be	explicitly	set!	They	will	be	set	for	you.	I	feel	more	comfortable	seeing	them	

explicitly	set,	however.	

You	may	recall	that	the	Control	class	defines	a	property	named	Padding	that	is	intended	to	

provide	a	little	breathing	room	around	the	control’s	content.	Try	setting	the	Padding	property	

of	the	Button:	

<Button Content="Click me!"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 Padding="24">

 …

</Button>

Nothing	happens.	The	visual	tree	in	the	template	needs	to	accommodate	this	Padding

property.	It	needs	to	leave	some	space	between	the	Border	and	the	ContentPresenter.	How	

can	this	be	done?	One	solution	is	to	use	a	TemplateBinding	on	the	Padding	property	of	the	

Border.	But	if	there’s	some	other	stuff	in	the	Border	besides	the	ContentPresenter	that’s	not	

going	to	work	right.	The	standard	approach	is	to	set	a	TemplateBinding	on	the	Margin

property	of	the	ContentPresenter:	

<ContentPresenter

Content="{TemplateBinding Content}"

ContentTemplate="{TemplateBinding ContentTemplate}"

Margin="{TemplateBinding Padding}" />

You	don’t	need	to	set	a	Padding	value	on	the	Button	for	this	to	have	an	effect.	The	theme	

Style	for	the	Button	defines	a	Padding	value	that	seems	to	work	well	with	this	Button,	even	

with	the	rounded	Border	corners.	

Now	try	setting	the	HorizontalAlignment	and	VerticalAlignment	properties	of	the	Button	to	

Stretch.	These	work	fine,	so	that’s	something	you	don’t	have	to	worry	about	in	the	template.	

Similarly,	you	can	set	the	Margin	property	of	the	Button and	that’s	still	recognized	by	the	

layout	system.	

But	when	you	set	the	HorizontalAlignment	and	VerticalAlignment	properties	of	the	Button	to	

Stretch,	you’ll	discover	that	the	content	of	the	Button	is	at	the	upperleft	corner:	

599	

	

	

	 	

	

	 	

	 	

	

	

	

	

	 	

	 	 	 	

	

	 	 	

	 	

	 	 	

Control	defines	two	properties	named	HorizontalContentAlignment	and	

VerticalContentAlignment	that	are	supposed	to	govern	how	the	content	is	aligned	within	the	

ContentControl.	If	you	set	these	properties	on	the	button,	you’ll	discover	that	they	don’t	work.	

This	tells	us	that	we	need	to	add	something	to	the	template	to	handle	these	properties.	We	

have	to	align	the	ContentPresenter	within	the	Border	based	on	the	

HorizontalContentAlignment	and	VerticalContentAlignment	properties.	This	is	accomplished	by	

providing	TemplateBinding	markup	targeting	the	HorizontalAlignment	and	VerticalAlignment

properties	of	the	ContentPresenter:	

<ContentPresenter

Content="{TemplateBinding Content}"

ContentTemplate="{TemplateBinding ContentTemplate}"

Margin="{TemplateBinding Padding}"

HorizontalAlignment="{TemplateBinding HorizontalContentAlignment}"

VerticalAlignment="{TemplateBinding VerticalContentAlignment}" />

Again,	this	is	very	standard	markup	for	a	ContentPresenter.	It’s	copyandpaste	stuff.	

If	you	set	the	fontrelated	properties	or	the	Foreground	property	on	the	Button,	you’ll	find	

that	the	text	changes	accordingly.	These	properties	are	inherited	through	the	visual	tree	of	

the	template	and	you	don’t	need	to	do	anything	in	the	template	to	accommodate	them.	

(However	the	theme	Style	for	the	Button explicitly	sets	the	Foreground,	FontFamily,	and	

FontSize	properties,	so	the	Button	itself	cannot	inherit	these	properties	through	the	visual	tree,	

and	there	is	apparently	nothing	you	can	do	in	a	custom	Style	to	change	this	behavior.)	

600	

	

	 	

	 	

	 	 	

	

	 	 		

	

	 	

	

	

	

	 	 	 	 	

	 	 	

	

	

	 	 	

	

	

	

	 	 	

	 	

	 	 	 	

	 	 	 	 	

	

The
Visual
State
Manager

All	this	time	that	the	Button has	been	redesigned	with	a	template,	it	has	otherwise	remained	a	

fullyfunctional	button	and	it’s	been	generating	Click	events	every	time	it’s	been	tapped.	The	

big	problem	is	that	the	Button	does	not	deliver	visual	feedback	to	the	user.	It	has	a	

customized	visual	appearance,	but	that	appearance	does	not	change.	

There	are	really	just	two	features	that	need	to	be	added	to	this	template	to	make	it	

functionally	and	visually	complete:	

• The	Button needs	to	provide	visual	feedback	when	the	user	presses	it.	

• The	Button needs	to	indicate	a	disabled	state	if	it’s	disabled.	

These	two	features	are	related	because	they	both	involve	changing	the	visuals	of	the	control	

under	certain	circumstances.	And	the	two	features	are	also	related	because	the	solution	

involves	a	Silverlight	feature	called	the	Visual	State	Manager.	

The	Visual	State	Manager	helps	the	developer	deal	with	visual states,	which	are	changes	in	

control	visuals	that	result	from	changes	in	properties	(or	other	states)	of	the	control.	For	the	

Button	on	Windows	Phone	7,	the	relevant	visual	states	correspond	to	the	properties	IsPressed

and	IsEnabled.	

You	can	determine	the	visual	states	supported	by	a	particular	control	by	looking	at	the	

documentation	for	that	control.	In	the	first	page	of	the	Button	documentation,	you’ll	see	the	

class	defined	with	six	attributes	of	type	TemplateVisualStateAttribute:	

[TemplateVisualStateAttribute(Name = "Disabled", GroupName = "CommonStates")]

[TemplateVisualStateAttribute(Name = "Normal", GroupName = "CommonStates")]

[TemplateVisualStateAttribute(Name = "MouseOver", GroupName = "CommonStates")]

[TemplateVisualStateAttribute(Name = "Pressed", GroupName = "CommonStates")]

[TemplateVisualStateAttribute(Name = "Unfocused", GroupName = "FocusStates")]

[TemplateVisualStateAttribute(Name = "Focused", GroupName = "FocusStates")]

public class Button : ButtonBase

These	are	the	six	visual	states	of	the	Button.	Each	of	these	states	has	a	name,	but	notice	also	

that	each	of	them	has	a	group	name,	either	CommonStates	or	FocusStates.	

Within	any	group,	the	visual	states	are	mutually	exclusive.	One	and	only	one	visual	state	in	

each	group	currently	applies	to	the	Button.	In	the	CommonStates	group,	either	a	button	is	

Normal,	or	Disabled,	or	the	mouse	is	hovering,	or	the	button	is	pressed.	You	don’t	need	to	

worry	about	combinations	of	these	states.	You	don’t	have	to	come	up	with	a	special	state	for	

mouse	hovering	on	a	disabled	button	because	those	two	states	will	never	occur	at	the	same	

time.	

601	

	

	 	

	 	

	 	

	 	

	

	 	 	 	

	

	 	 	 	

	 	

	 	 	 	 	 	

		

	 	 	

	

	

	 	

	

	

	 	

	 	

	 	 	 	

	 	 	 	 	 	

	 	 	

The	code	in	the	Button	class	is	responsible	for	the	button	going	into	a	particular	state.	It	does	

this	through	calls	to	the	static	VisualStateManager.GoToState	method.	The	template	is	

responsible	for	responding	to	visual	changes	based	on	these	states.	

As	Windows	Phone	7	programmers,	we	have	a	somewhat	easier	job	than	template	authors	

targeting	Silverlight	on	the	web.	We	don’t	have	to	worry	about	the	two	states	in	the	

FocusStates	group,	or	the	MouseOver	state.	That	leaves	Normal,	Disabled,	and	Pressed.	

Very	often,	additional	elements	are	inserted	into	the	template	specifically	for	these	visual	

states.	When	a	control	is	disabled,	the	contents	usually	get	grayer	in	some	way	regardless	of	

the	nature	of	the	content—be	it	text,	a	bitmap,	or	something	else.	This	suggests	that	a	

disabled	state	can	be	handled	by	putting	a	semiopaque	Rectangle	on	top	of	the	entire	

control.	

So	let’s	put	the	entire	visual	tree	of	the	template	inside	a	singlecell	Grid	and	add	a	Rectangle

on	top:	

<ControlTemplate TargetType="Button">

<Grid>

<Border BorderBrush="{TemplateBinding BorderBrush}"

 BorderThickness="{TemplateBinding BorderThickness}"

 Background="{TemplateBinding Background}"

 CornerRadius="24">

<ContentPresenter

 Content="{TemplateBinding Content}"

 ContentTemplate="{TemplateBinding ContentTemplate}"

 Margin="{TemplateBinding Padding}"

 HorizontalAlignment="{TemplateBinding HorizontalContentAlignment}"

 VerticalAlignment="{TemplateBinding VerticalContentAlignment}" />

</Border>

<Rectangle Name="disableRect"

 Fill="{StaticResource PhoneBackgroundBrush}"

 Opacity="0" />

</Grid>

</ControlTemplate>

Fortunately	the	new	Rectangle	has	its	Opacity	set	to	0	or	it	would	block	out	the	entire	control!	

But	if	you	set	the	Opacity	to	0.6	(for	example)	it	provides	a	proper	dimming	effect,	regardless	

of	control	content.	

Notice	the	color	of	the	Rectangle	is	set	as	the	PhoneBackgroundBrush	resource.	The	Button

has	rounded	corners	so	you	don’t	want	the	Rectangle changing	the	color	of	whatever’s	

behind	the	Button	and	visible	through	those	corners.	It’s	also	possible	to	give	the	Rectangle

the	same	corner	rounding	as	the	Border	and	you’ll	have	a	little	more	flexibility	with	the	color.	

Now	that	we	have	the	Rectangle	in	there,	all	we	need	to	do	is	find	some	way	to	change	the	

Opacity from	0	to	0.6	when	the	visual	state	becomes	Disabled.	

602	

	

	

	

	 	 	

	

	 	 	

	

	

	 	 	

	 	

	 	 	 	

	 	 	

	 	

	 	 	

	 	

	 	 	 	 	

	

The	markup	for	the	Visual	State	Manager	always	appears	after	the	start	tag	of	the	top	level	

element	of	the	template,	in	this	case	the	Grid.	It	begins	with	a	

VisualStateManager.VisualStateGroups tag	within	which	can	be	multiple	VisualStateGroups

sections.	I’ll	be	ignoring	the	FocusStates	group:	

<ControlTemplate TargetType="Button">

 <Grid>

<VisualStateManager.VisualStateGroups>

<VisualStateGroup x:Name="CommonStates">

</VisualStateGroup>

</VisualStateManager.VisualStateGroups>

…

 </Grid>

</ControlTemplate>

The	VisualStateGroup	tags	enclose	a	series	of	VisualState	tags	for	each	of	the	visual	states	in	

that	group:	

<ControlTemplate TargetType="Button">

<Grid>

<VisualStateManager.VisualStateGroups>

<VisualStateGroup x:Name="CommonStates">

<VisualState x:Name="Normal" />

<VisualState x:Name="MouseOver" />

<VisualState x:Name="Pressed">

</VisualState>

<VisualState x:Name="Disabled">

</VisualState>

</VisualStateGroup>

</VisualStateManager.VisualStateGroups>

…

</Grid>

</ControlTemplate>

The	VisualState	tag	for	the	Normal	state	is	empty	because	the	template	that’s	already	been	

designed	is	for	the	normal	button.	But	don’t	leave	out	the	tag;	otherwise	the	control	won’t	

return	to	its	Normal	state	after	being	in	another	state.	The	MouseOver	state	won’t	be	used;	it	

too	will	remain	empty.	

Within	the	VisualState	tags	you	indicate	what	you	want	to	happen	for	that	state.	How	do	you	

do	that?	You	might	imagine	doing	it	with	a	Setting	tag	as	in	a	Style,	and	that	would	work	well.	

But	to	allow	you	to	be	very	much	more	flexible,	the	Visual	State	Manager	lets	you	use	

animations	instead,	and	because	the	animation	syntax	isn’t	very	much	more	complex	than	the	

Setting	syntax,	the	Visual	State	Manager	actually	requires you	to	use	animations.	Within	the	

VisualState	tags	you’ll	put	a	Storyboard containing	one	or	more	animations	targeting	

properties	of	named	elements	within	the	template.	In	many	cases,	these	animations	will	have	

603	

	

	

	 	

	

	 	

	 	 	

	 	 	 	

	

	 	 	 	 	 	 	

	 	

	 	 	

	

	 	 	

	 	 	

	 	

	

	 	 	 	

	 	 	 	

	

	 	

a	Duration	setting	of	0	so	that	the	visual	state	changes	immediately.	But	you	can	have	

smoother	state	animations	if	you	want.	Here’s	an	animation	for	the	Opacity	property	of	the	

Rectangle	named	disableRect:	

<ControlTemplate TargetType="Button">

<Grid>

<VisualStateManager.VisualStateGroups>

<VisualStateGroup x:Name="CommonStates">

<VisualState x:Name="Normal" />

<VisualState x:Name="MouseOver" />

<VisualState x:Name="Pressed">

</VisualState>

<VisualState x:Name="Disabled">

<Storyboard>

<DoubleAnimation Storyboard.TargetName="disableRect"

Storyboard.TargetProperty="Opacity"

To="0.6" Duration="0:0:0" />

</Storyboard>

</VisualState>

</VisualStateGroup>

</VisualStateManager.VisualStateGroups>

…

</Grid>

</ControlTemplate>

The	animations	in	the	Visual	State	Manager	don’t	usually	have	From	values	so	they	just	take	

off	from	the	existing	value.	The	empty	VisualState	tag	for	the	Normal	state	effectively	restores	

the	Opacity	value	back	to	its	preanimation	value	when	the	state	goes	back	to	Normal.	

The	Pressed	state	presents	some	challenges.	Usually	a	Pressed	state	is	often	rendered	as	a	

form	of	reverse	video.	In	the	web	version	of	Silverlight,	the	Button	template	hardcodes	a	

LinearGradientBrush	for	the	background	and	changes	properties	of	that	brush	for	the	Pressed	

state.	Because	the	template	is	controlling	the	brush	for	the	Normal	state,	it	can	easily	change	

that	brush	for	the	Pressed	state.	

In	the	Button template	being	created	here,	the	default	Foreground	color	is	set	in	the	theme	

style	for	the	Button,	and	a	default	Background	color	is	set	in	the	Style	that	the	template	is	part	

of.	If	these	properties	aren’t	changed,	the	colors	will	be	either	white	on	black	(with	the	“dark”	

theme)	or	black	on	white.	But	the	properties	can	be	changed	with	local	property	settings	on	

the	Button.	

It	would	be	great	to	have	some	kind	of	graphic	effect	to	reverse	the	colors,	but	that’s	not	

available.	We	need	to	define	animations	to	set	new	foreground	and	background	colors	for	the	

Pressed	state	that	will	seem	to	reverse	colors	in	the	normal	case,	that	is,	when	the	foreground	

is	set	to	the	PhoneForegroundBrush	resource	and	the	background	is	PhoneBackgroundBrush,	

604	

	

	

	

	 	

	 	 	

	

	 	 	

	

	

	

	

	 	 	

	 	

	 	 	

which	means	that	the	Pressed	state	can	set	Foreground	to	PhoneBackgroundBrush	and	

Background	to	PhoneForegroundBrush.	

Can	we	use	a	ColorAnimation	for	this	job?	We	could	if	we	knew	that	the	Foreground	and	

Background	brushes	were	actually	SolidColorBrush	objects.	But	we	don’t	know	that.	That	

means	we	need	to	use	ObjectAnimationUsingKeyFrames objects	to	target	the	Foreground	and	

Background	properties	themselves.	The	ObjectAnimationUsingKeyFrames	can	have	children	of	

only	one	type:	DiscreteObjectKeyFrame.	

Let’s	do	the	Background	property	first	by	giving	the	Border	a	name:	

<Border Name="border"

BorderBrush="{TemplateBinding BorderBrush}"

BorderThickness="{TemplateBinding BorderThickness}"

Background="{TemplateBinding Background}"

CornerRadius="12">

That	name	allows	the	animation	to	target	the	Background	property	of	Border:	

<VisualState x:Name="Pressed">

<Storyboard>

<ObjectAnimationUsingKeyFrames Storyboard.TargetName="border"

Storyboard.TargetProperty="Background">

<DiscreteObjectKeyFrame KeyTime="0:0:0"

Value="{StaticResource PhoneForegroundBrush}" />

</ObjectAnimationUsingKeyFrames>

 </Storyboard>

</VisualState>

For	the	Pressed	state,	the	animation	changes	the	Background	property	of	the	Border	element	

to	the	brush	referenced	as	the	PhoneForegroundBrush	resource.	Excellent!	

Now	let’s	add	a	similar	animation	to	target	the	Foreground	property	of	…	of	what?	There	is	no	

element	in	this	template	visual	tree	that	has	a	Foreground	property!	

It	would	be	ideal	if	ContentPresenter	had	a	Foreground property	but	it	does	not.		

But	wait	a	minute.	What	about	ContentControl?	ContentControl	is	basically	just	a	

ContentPresenter	but	ContentControl	has	a	Foreground	property.	So	let’s	replace	

ContentPresenter	with	a	ControlControl	and	give	it	a	name:	

<ContentControl Name="contentControl"

Content="{TemplateBinding Content}"

ContentTemplate="{TemplateBinding ContentTemplate}"

Margin="{TemplateBinding Padding}"

HorizontalAlignment="{TemplateBinding HorizontalContentAlignment}"

VerticalAlignment="{TemplateBinding VerticalContentAlignment}" />

Now	it’s	possible	to	define	the	second	animation	for	the	Pressed	state:	

<VisualState x:Name="Pressed">

<Storyboard>

605	

	

	

	

	

	

	 	 	 	

	 	 	 	

	 	 	 	

	

…

<ObjectAnimationUsingKeyFrames Storyboard.TargetName="contentControl"

Storyboard.TargetProperty="Foreground">

<DiscreteObjectKeyFrame KeyTime="0:0:0"

Value="{StaticResource PhoneBackgroundBrush}" />

</ObjectAnimationUsingKeyFrames>

 </Storyboard>

</VisualState>

And	here’s	the	pressed	Button:	

I	will	now	declare	this	template	to	be	completed!	(And	now	you’ll	understand	why	the	default	

template	for	the	Button	contains	a	ContentControl.)	

Let’s	look	at	this	entire	Style	and	ControlTemplate	in	the	context	of	a	page.	In	the	

CustomButtonTemplate	program,	the	Style	is	defined	in	the	page’s	Resources	collection.	

Mostly	to	reduce	keep	the	lines	lengths	shorter	than	the	width	of	the	page,	the	

ControlTemplate	is	defined	as	a	separate	resource	and	then	referenced	by	the	Style.	Here’s	the	

ControlTemplate	first	followed	by	the	Style	referencing	that	template:	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.Resources>

<ControlTemplate x:Key="buttonTemplate" TargetType="Button">

<Grid>

<VisualStateManager.VisualStateGroups>

<VisualStateGroup x:Name="CommonStates">

606	

	

<VisualState x:Name="Normal" />

<VisualState x:Name="MouseOver" />

<VisualState x:Name="Pressed">

<Storyboard>

<ObjectAnimationUsingKeyFrames

 Storyboard.TargetName="border"

 Storyboard.TargetProperty="Background">

<DiscreteObjectKeyFrame KeyTime="0:0:0"

 Value="{StaticResource PhoneForegroundBrush}" />

</ObjectAnimationUsingKeyFrames>

<ObjectAnimationUsingKeyFrames

 Storyboard.TargetName="contentControl"

 Storyboard.TargetProperty="Foreground">

<DiscreteObjectKeyFrame KeyTime="0:0:0"

 Value="{StaticResource PhoneBackgroundBrush}" />

</ObjectAnimationUsingKeyFrames>

</Storyboard>

</VisualState>

<VisualState x:Name="Disabled">

<Storyboard>

<DoubleAnimation Storyboard.TargetName="disableRect"

Storyboard.TargetProperty="Opacity"

To="0.6" Duration="0:0:0" />

</Storyboard>

</VisualState>

</VisualStateGroup>

</VisualStateManager.VisualStateGroups>

<Border Name="border"

BorderBrush="{TemplateBinding BorderBrush}"

BorderThickness="{TemplateBinding BorderThickness}"

Background="{TemplateBinding Background}"

CornerRadius="12">

<ContentControl Name="contentControl"

Content="{TemplateBinding Content}"

ContentTemplate="{TemplateBinding ContentTemplate}"

Margin="{TemplateBinding Padding}"

HorizontalAlignment="{TemplateBinding

 HorizontalContentAlignment}"

VerticalAlignment="{TemplateBinding

 VerticalContentAlignment}" />

</Border>

<Rectangle Name="disableRect"

 Fill="{StaticResource PhoneBackgroundBrush}"

 Opacity="0" />

</Grid>

</ControlTemplate>

<Style x:Key="buttonStyle" TargetType="Button">

<Setter Property="BorderBrush" Value="{StaticResource PhoneAccentBrush}" />

607	

	

	 	

	 	

	 	 	

	 	 	 	

	 	 	 	

	 	

	 	

	

	 	

	 	

<Setter Property="BorderThickness" Value="6" />

<Setter Property="Background" Value="{StaticResource PhoneChromeBrush}" />

<Setter Property="Template" Value="{StaticResource buttonTemplate}" />

</Style>

</phone:PhoneApplicationPage.Resources>

The	content	area	contains	a	Button	that	references	this	Style,	of	course,	but	I	wanted	to	test	

the	enabling	and	disabling	of	the	Button	in	a	very	interactive	manner,	so	I	added	a	

ToggleButton	to	the	page	and	set	a	binding	targeting	the	IsEnabled	property	on	the	styled	

and	templated	Button	from	the	IsChecked property	of	the	ToggleButton.	

But	it	didn’t	look	quite	right	for	the	ToggleButton	to	be	toggled	on	(that	is,	highlighted)	when	

the	regular	Button was	in	its	normal	(that	is,	enabled)	state.	It	occurred	to	me	that	what	I	really	

wanted	was	for	the	ToggleButton	to	actually	say	“Button	Enabled”	when	the	ToggleButton	was	

toggled	on	and	the	Button	was	enabled,	and	for	it	to	say	“Button	Disabled”	when	the	

ToggleButton	was	toggled	off	and	the	Button	was	disabled.	

This	is	the	beauty	of	templates.	You	can	do	something	like	this	right	in	XAML	without	a	whole	

lot	of	fuss	and	without	any	extra	tools	like	Expression	Blend.	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Grid.RowDefinitions>

<RowDefinition Height="*" />

<RowDefinition Height="*" />

</Grid.RowDefinitions>

<Button Grid.Row="0"

 Content="Click me!"

 Style="{StaticResource buttonStyle}"

 IsEnabled="{Binding ElementName=toggleButton, Path=IsChecked}"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

<ToggleButton Name="toggleButton"

 Grid.Row="1"

 IsChecked="true"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

<ToggleButton.Template>

<ControlTemplate TargetType="ToggleButton">

<Border BorderBrush="{StaticResource PhoneForegroundBrush}"

 BorderThickness="{StaticResource PhoneBorderThickness}">

<VisualStateManager.VisualStateGroups>

<VisualStateGroup x:Name="CheckStates">

<VisualState x:Name="Checked">

<Storyboard>

<ObjectAnimationUsingKeyFrames

608	

	

	 	

	 	 	 	

	 	

	

	 	 	

	

 Storyboard.TargetName="txtblk"

 Storyboard.TargetProperty="Text">

<DiscreteObjectKeyFrame KeyTime="0:0:0"

Value="Button Enabled" />

</ObjectAnimationUsingKeyFrames>

</Storyboard>

</VisualState>

<VisualState x:Name="Unchecked" />

</VisualStateGroup>

</VisualStateManager.VisualStateGroups>

<TextBlock Name="txtblk"

 Text="Button Disabled"/>

</Border>

</ControlTemplate>

</ToggleButton.Template>

</ToggleButton>

</Grid>

This	ToggleButton	here	has	what	I	think	of	as	a	singlepurpose	specialuse	ad	hoc	

ControlTemplate,	so	it	doesn’t	have	a	lot	of	extra	frills.	The	visual	tree	consists	entirely	of	a	

Border	and	a	TextBlock.	It	ignores	the	Content	property,	and	the	Text	property	of	the	TextBlock

is	initialized	with	“Button	Disabled”.	Everything	else	is	done	with	visual	states.	In	addition	to	

the	regular	Button	visual	states,	the	ToggleButton	also	defines	a	CheckStates	group	with	states	

Checked	and	Unchecked.	These	are	the	only	states	this	template	handles,	and	the	animation	

for	the	Checked	state	sets	the	Text	property	of	the	TextBlock	to	“Button	Enabled.”	Here	it	is	in	

action	with	the	Button	disabled:	

609

	

	

	 	 	 	

	 	

	 	

	 	 	 	

	 	

	 	 	

	

	

	 	 	 	

	 	 	

	

	 	 	

	 	 	

	 	

	 	 	

	 	 	

	 	

I	didn’t	define	a	Disabled	state	for	the	ToggleButton	because	this	is	a	template	I	intend	to	use	

only	for	this	program,	and	I	know	that	this	ToggleButton	will	never	be	disabled.	

Sharing
and
Reusing
Styles
and
Templates

As	you	know,	it’s	possible	to	derive	one	Style	from	another,	in	the	process	inheriting	all	the	

Setter objects.	The	new	Style can	add	to	those	Setter objects	or	override	them.	

However,	it	is	not	possible	to	derive	from	a	ControlTemplate.	There’s	no	way	to	reference	an	

existing	ControlTemplate	and	specify	an	additional	piece	of	the	visual	tree,	or	a	replacement	

for	part	of	the	visual	tree.	(It’s	hard	enough	imaging	the	mechanics	or	syntax	of	such	a	

process.)	

Generally	if	you	want	to	apply	some	changes	to	an	existing	ControlTemplate,	you	obtain	a	

copy	of	that	entire	template	and	begin	editing	it.	These	default	templates	are	generally	

included	with	Silverlight	documentation.	(However,	as	I	write	this	chapter,	the	Silverlight	

documentation	contains	only	the	templates	for	the	webbased	version	of	Silverlight	and	not	

those	for	Silverlight	for	Windows	Phone.)	Expression	Blend	also	has	access	to	the	standard	

default	templates.	

If	you	need	to	share	a	Style	or	a	ControlTemplate	(or	a	Style	containing	a	ControlTemplate)	

among	multiple	controls	on	a	page,	you	simply	put	it	in	the	Resources	collection	of	the	page.	

If	you	need	to	share	the	Style	or	ControlTemplate	among	multiple	pages,	put	it	in	the	

Resources collection	of	App.xaml.	

610	

	

	 	 	 	 	 	

	

	 	

	 	 	 	 	 	 	 	

	 	 	 	

	 	

	 	 	

	

	 	

	

	

	

	 	 	 	

	 	

It	is	also	possible	to	share	resources	among	multiple	applications.	To	share	these	resources	

you	define	them	in	a	XAML	file	with	a	root	element	of	ResourceDictionary.	Here’s	such	a	file	

with	the	name	SharedResources.xaml:	

<ResourceDictionary

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

<SolidColorBrush x:Key="brush" Color="Blue" />

 …

</ResourceDictionary>

The	file	probably	has	a	lot	more	resources	than	just	the	SolidColorBrush.	Each	resource	has	an	

x:Key attribute,	of	course.	You	could	create	this	file	as	part	of	a	project,	or	you	can	add	this	

existing	file	to	a	project.	In	either	case,	the	Build	Action	in	the	properties	window	should	

indicate	Page.	

Now	you	can	reference	that	file	in	the	Resources	collection	in	App.xaml:	

<Application.Resources>

<ResourceDictionary>

<ResourceDictionary.MergedDictionaries>

<ResourceDictionary Source="SharedResources.xaml" />

 …

</ResourceDictionary.MergedDictionaries>

…

</ResourceDictionary>

</Application.Resources>

Notice	the	ResourceDictionary.MergedDictionary	property	element	used	for	referencing	

external	ResourceDictionary	objects.	

Here’s	a	different	approach:	You	might	want	to	define	a	custom	style	and	template	for	an	

existing	control,	and	then	refer	to	that	control	with	a	new	name	rather	than	to	explicitly	

reference	the	style.	That	too	is	possible.	

Here’s	a	program	called	FlipToggleDemo	that	includes	a	custom	class	named	FlipToggleButton

that	derives	from	ToggleButton.	But	FlipToggleButton	doesn’t	add	any	code	to	ToggleButton—	

just	a	Style	and	ControlTemplate.	

In	the	FlipToggleDemo	project,	I	added	a	new	item	of	type	Windows	Phone	User	Control	and	

I	gave	it	a	name	of	FlipToggleButton.xaml.	This	process	creates	a	FlipToggleButton.xaml	file	

and	a	FlipToggleButton.xaml.cs	file	for	a	class	that	derives	from	UserControl.	But	then	I	went	

611	

	

	 	

	

	 	

	

into	both	files	and	changed	UserControl	to	ToggleButton	so	FlipToggleButton	derives	from	

ToggleButton.	

To	keep	things	simple,	I	decided	not	to	implement	any	state	transitions	for	a	disabled	button,	

but	to	flip	the	button	upside	down	for	the	Unchecked	state.	Here’s	the	complete	XAML	file	for	

the	custom	button,	with	indentation	reduced	to	2	spaces	to	avoid	lines	wider	than	the	pages	

of	this	book:	

Silverlight Project: FlipToggleDemo File: FlipToggleButton.xaml

<ToggleButton x:Class="FlipToggleDemo.FlipToggleButton"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

<ToggleButton.Style>

<Style TargetType="ToggleButton">

<Setter Property="Template">

<Setter.Value>

<ControlTemplate TargetType="ToggleButton">

<Border BorderBrush="{StaticResource PhoneForegroundBrush}"

 BorderThickness="{StaticResource PhoneBorderThickness}"

 Background="{TemplateBinding Background}"

 RenderTransformOrigin="0.5 0.5">

<Border.RenderTransform>

<RotateTransform x:Name="rotate" />

</Border.RenderTransform>

<VisualStateManager.VisualStateGroups>

<VisualStateGroup x:Name="CheckStates">

<VisualState x:Name="Checked">

<Storyboard>

<DoubleAnimation Storyboard.TargetName="rotate"

 Storyboard.TargetProperty="Angle"

 To="180" Duration="0:0:0.5" />

</Storyboard>

</VisualState>

<VisualState x:Name="Unchecked">

<Storyboard>

<DoubleAnimation Storyboard.TargetName="rotate"

Storyboard.TargetProperty="Angle"

Duration="0:0:0.5" />

</Storyboard>

</VisualState>

</VisualStateGroup>

</VisualStateManager.VisualStateGroups>

<ContentPresenter Content="{TemplateBinding Content}"

ContentTemplate="{TemplateBinding ContentTemplate}"

Margin="{TemplateBinding Padding}"

HorizontalAlignment="{TemplateBinding

HorizontalContentAlignment}"

 VerticalAlignment="{TemplateBinding

612	

	

	 	 	 	

	 	 	 	

	 	 	 	 	

	 	 	 	 	

	 	 	

	

	 	 	

	 	

	 	

	 	

	

	 	

	 	 	

	 	 	 	

	 	 	

	 	 	

	 	

 VerticalContentAlignment}" />

</Border>

</ControlTemplate>

</Setter.Value>

</Setter>

</Style>

</ToggleButton.Style>

</ToggleButton>

Usually	when	you’re	looking	at	XAML	file,	the	bulk	of	the	file	is	set	to	the	Content	property	of	

the	root	element.	Here	the	bulk	of	the	file	is	set	to	the	Style property	of	the	root	element.	

Notice	that	the	Style	object	and	the	ControlTemplate	object	both	have	TargetType	set	to	

ToggleButton	rather	than	FlipToggleButton.	This	is	fine	because	neither	references	any	

properties	specifically	defined	by	FlipToggleButton	because	FlipToggleButton does	not	define	

any	new	properties.	

The	template	itself	is	very	plain	vanilla,	consisting	of	just	a	Border	and	a	ContentPresenter	with	

all	the	standard	template	bindings.	But	the	Border	also	has	its	RenderTransformOrigin

property	defined	and	its	RenderTransform property	set	to	a	RotateTransform	object.	

The	two	animations	that	flip	the	button	upside	down	(for	the	Checked	state)	and	back	(for	the	

Unchecked	state)	have	nonzero	times.	The	DoubleAnimation	for	the	Checked	state	has	no	

From	value;	it	uses	the	base	value	of	the	property,	which	is	zero.	The	DoubleAnimation	for	the	

Unchecked	state	has	neither	a	To	or	From	value!	The	animation	starts	at	whatever	value	the	

Angle	property	of	the	RotateTransform	happens	to	be—probably	180	but	perhaps	something	

lower	if	the	animation	to	flip	the	button	hasn’t	quite	completed	when	the	button	is	

unchecked—and	it	ends	at	the	base	value,	which	is	zero.	

Here’s	the	complete	codebehind	file	for	the	custom	control:	

Silverlight Project: FlipToggleDemo File: FlipToggleButton.xaml.cs

using System.Windows.Controls.Primitives;

namespace FlipToggleDemo

{

public partial class FlipToggleButton : ToggleButton

 {

public FlipToggleButton()

{

 InitializeComponent();

}

 }

}

The	MainPage.xaml	file	of	the	project	instantiates	the	custom	button	to	test	it	out:	

613

	

	 	 	 	 	

	

	

	 	

	 	 	

	

	 	 	

	 	 	

	 	 	 	

	 	

	 	 	 	 	 	 	 	

	

	 	 	

	 	 	

	

	

	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<local:FlipToggleButton Content="Flip Toggle"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Grid>

Custom
Controls
in
a
Library

Generally	when	you	create	a	custom	control,	you	define	some	new	properties	for	the	control	

as	well	as	a	default	Style	and	ControlTemplate,	and	you	put	that	new	control	in	a	DLL	for	

sharing	among	multiple	applications.	You	can	couple	the	code	and	Style	as	shown	in	the	

FlipToggleButton	example,	but	a	more	standard	approach	for	Silverlight	libraries	involves	

defining	the	Style	in	a	special	file	named	generic.xaml	located	in	a	directory	named	Themes.	

This	generic.xaml	file	has	a	root	element	of	ResourceDictionary.	

Let’s	look	at	an	example.	

Suppose	you	conceive	of	a	ToggleButton	template	something	like	the	one	in	the	

CustomButtonTemplate	project	but	much	more	generalized.	Rather	than	just	switch	between	

two	hardcoded	text	strings,	you	want	to	switch	between	two	objects	of	any	type.	And	not	

just	switch—you	want	an	object	associated	with	the	Checked	state	and	an	object	associated	

with	the	Unchecked	state	to	fade	from	one	to	the	other.	Your	name	for	this	new	button	is	

called	FadableToggleButton.	

As	you	think	about	it,	you	realize	that	the	control	needs	to	define	a	new	property	named	

CheckedContent,	similar	to	the	normal	Content	property.	The	Content	property	is	the	object	

displayed	for	the	button’s	Unchecked	state,	and	CheckedContent	is	displayed	for	the	Checked	

state.	

I	defined	this	class	in	the	Petzold.Phone.Silverlight	library.	The	complete	code	for	

FadableToggleButton	is	here:	

Silverlight Project: Petzold.Phone.Silverlight File: FadableToggleButton.cs

using System.Windows;

using System.Windows.Controls.Primitives;

namespace Petzold.Phone.Silverlight

{

public class FadableToggleButton : ToggleButton

 {

public static readonly DependencyProperty CheckedContentProperty =

DependencyProperty.Register("CheckedContent",

typeof(object),

typeof(FadableToggleButton),

614	

	

	 	 	

	 	 	 	 	

	 	 	 	 	 	

	

	 	 	

	 	

	 	 	

	 	

	 	

	 	

	 	 	 	

	 	

	

	 	 	 	

	 	 	

new PropertyMetadata(null));

public FadableToggleButton()

{

this.DefaultStyleKey = typeof(FadableToggleButton);

}

public object CheckedContent

{

set { SetValue(CheckedContentProperty, value); }

get { return (object)GetValue(CheckedContentProperty); }

}

 }

}

This	is	the	only	C#	code	required	to	implement	this	control!	There’s	not	even	a	property

changed	handler	for	this	new	CheckedContent	property.	It’s	just	a	DependencyProperty

definition	and	a	CLR	property	definition.	Everything	else	is	XAML.	

But	notice	the	constructor.	If	this	code	file	were	a	partial class	definition	partnered	with	a	

XAML	file,	you’d	see	a	call	to	InitializeComponent	in	the	constructor.	Instead,	there’s	the	

following:	

this.DefaultStyleKey = typeof(FadableToggleButton);

This	statement	indicates	that	this	class	has	a	default	Style definition,	and	the	TargetType	of	this	

Style	definition	is	FadableToggleButton.	To	apply	a	default	Style	to	instances	of	this	class,	

Silverlight	needs	to	find	that	Style	definition.	Where	does	it	search?	

Silverlight	looks	in	a	very	special	XAML	file	in	the	library.	This	XAML	file	is	always	named	

generic.xaml	and	it	is	always	located	in	a	directory	named	Themes	of	the	DLL	project.	This	is	

how	a	control	gets	a	default	theme	style	and	template.	

This	generic.xaml	file	has	a	root	element	of	ResourceDictionary.	However	the	file	is	special	in	

another	way:	The	contents	are	regarded	as	resources	but	the	Style	elements	don’t	require	

x:Key	or	x:Name	attributes	because	they	are	referenced	via	the	TargetType.	

Here’s	the	portion	of	the	generic.xaml	file	in	the	Themes	directory	of	Petzold.Phone.Silverlight	

that	contains	the	default	Style	definition	of	the	FadableToggleButton	class:	

Silverlight Project: Petzold.Phone.Silverlight File: Themes/generic.xaml (excerpt)

<ResourceDictionary

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

xmlns:local="clr-namespace:Petzold.Phone.Silverlight">

<Style TargetType="local:FadableToggleButton">

<Setter Property="Template">

615	

	

<Setter.Value>

<ControlTemplate TargetType="local:FadableToggleButton">

<Grid>

<VisualStateManager.VisualStateGroups>

<VisualStateGroup x:Name="CommonStates">

<VisualState x:Name="Normal" />

<VisualState x:Name="MouseOver" />

<VisualState x:Name="Pressed" />

<VisualState x:Name="Disabled">

<Storyboard>

<DoubleAnimation Storyboard.TargetName="disableRect"

 Storyboard.TargetProperty="Opacity"

 To="0.6" Duration="0:0:0" />

</Storyboard>

</VisualState>

</VisualStateGroup>

<VisualStateGroup x:Name="CheckStates">

<VisualState x:Name="Checked">

<Storyboard>

<DoubleAnimation Storyboard.TargetName="uncheckedContent"

Storyboard.TargetProperty="Opacity"

To="0" Duration="0:0:0.5" />

<DoubleAnimation Storyboard.TargetName="checkedContent"

 Storyboard.TargetProperty="Opacity"

To="1" Duration="0:0:0.5" />

</Storyboard>

</VisualState>

<VisualState x:Name="Unchecked">

<Storyboard>

<DoubleAnimation Storyboard.TargetName="uncheckedContent"

Storyboard.TargetProperty="Opacity"

Duration="0:0:0.5" />

<DoubleAnimation Storyboard.TargetName="checkedContent"

Storyboard.TargetProperty="Opacity"

Duration="0:0:0.5" />

</Storyboard>

</VisualState>

</VisualStateGroup>

</VisualStateManager.VisualStateGroups>

<Border BorderBrush="{StaticResource PhoneForegroundBrush}"

 BorderThickness="{StaticResource PhoneBorderThickness}"

 Background="{TemplateBinding Background}">

<Grid Margin="{TemplateBinding Padding}">

<ContentPresenter

 Name="uncheckedContent"

Content="{TemplateBinding Content}"

ContentTemplate="{TemplateBinding ContentTemplate}"

HorizontalAlignment="{TemplateBinding

 HorizontalContentAlignment}"

VerticalAlignment="{TemplateBinding

616	

	

	 	

	 	 	

	 	 	

	 	

	

	 	 	

	 	 	 	

	 	 	 	

	 	 	

	

	 	 	 	

	

	 	 	 	

	 	 	

	 	 	

	 	 	

	 	 	 	 	

	 	

 VerticalContentAlignment}" />

<ContentPresenter

 Name="checkedContent"

Opacity="0"

Content="{TemplateBinding CheckedContent}"

ContentTemplate="{TemplateBinding ContentTemplate}"

HorizontalAlignment="{TemplateBinding

 HorizontalContentAlignment}"

VerticalAlignment="{TemplateBinding

VerticalContentAlignment}" />

</Grid>

</Border>

<Rectangle Name="disableRect"

 Fill="{StaticResource PhoneBackgroundBrush}"

 Opacity="0" />

</Grid>

</ControlTemplate>

</Setter.Value>

</Setter>

</Style>

…

</ResourceDictionary>

The	TargetType	for	the	Style	is	FadableToggleButton,	and	that’s	enough	to	allow	Silverlight	to	

find	this	Style definition	that	becomes	the	default	theme	for	the	FadableToggleButton.	Within	

the	Border	is	a	singlecell	Grid	with	two	ContentPresenter	elements,	one	with	a	

TemplateBinding	referencing	the	normal	Content property,	the	other	referencing	the	

CheckedContent	property.	The	ContentPresenter	referencing	the	CheckedContent	property	has	

an	initial	Opacity of	zero.	The	animations	for	the	Checked	and	Unchecked	states	target	the	

Opacity property	of	the	ContentPresenter	so	that	one	fades	out	as	the	other	fades	in.	

Although	the	Content properties	of	the	two	ContentPresenter	elements	are	bound	to	two	

different	properties	of	the	FadableToggleButton,	the	ContentTemplate	properties	of	both	are	

bound	to	the	same	ContentTemplate	property	originally	defined	by	ContentControl.	If	you	set	

a	DataTemplate	to	the	ContentTemplate	property	of	FadableToggleButton,	then	that	same	

DataTemplate must	apply	to	both	the	Content	property	and	the	CheckedContent	property.	In	

other	words,	this	template	implicitly	assumes	that	the	Content	property	and	CheckedContent

property	are	of	the	same	types.	

To	test	out	this	new	control,	I	created	a	FadableToggleDemo	program.	The	project	contains	a	

reference	to	the	Petzold.Phone.Silverlight	library	and	an	XML	namespace	declaration	for	the	

library	in	MainPage.xaml.	I	added	two	bitmaps	of	the	same	size	to	an	Images	directory	in	the	

project.	These	bitmaps	are	referenced	by	Image	elements	set	to	the	Content	and	

CheckedContent	properties	of	the	button:	

617

	

	 	 	

 	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<petzold:FadableToggleButton HorizontalAlignment="Center"

 VerticalAlignment="Center">

<petzold:FadableToggleButton.Content>

<Image Source="Images/MunchScream.jpg"

 Stretch="None" />

</petzold:FadableToggleButton.Content>

<petzold:FadableToggleButton.CheckedContent>

<Image Source="Images/BotticelliVenus.jpg"

 Stretch="None" />

</petzold:FadableToggleButton.CheckedContent>

</petzold:FadableToggleButton>

</Grid>

The	Content	property	is	set	to	an	image	from	Edvard	Munch’s	painting	The Scream:	

618	

	

	

	 	 	

	 	 	

	 	 	

	 	 	 	 	

	

	 	 	 	 	

	

The	CheckedContent	property	uses	Botticelli’s	Birth of Venus:	

Variations
on
the
Slider

As	you	might	expect,	the	Slider	has	one	of	the	more	complex	templates	in	all	of	standard	

Silverlight,	and	for	that	reason,	it’s	important	to	get	familiar	with	it—particularly	if	you’re	not	

a	big	fan	of	the	default	Slider	template	implemented	in	Windows	Phone	7.	

At	first,	a	Slider	does	not	seem	to	fit	into	the	scheme	of	templates,	primarily	because	it	

contains	moving	parts.	How	does	this	work	exactly?	

If	you	look	at	the	documentation	of	Slider,	you’ll	see	the	customary	

TemplateVisualStateAttribute tags,	but	also	a	collection	of	TemplatePartAttribute	tags	

(rearranged	somewhat	here	form	their	order	in	the	documentation):	

[TemplateVisualStateAttribute(Name = "Normal", GroupName = "CommonStates")]

[TemplateVisualStateAttribute(Name = "MouseOver", GroupName = "CommonStates")]

[TemplateVisualStateAttribute(Name = "Disabled", GroupName = "CommonStates")]

[TemplateVisualStateAttribute(Name = "Focused", GroupName = "FocusStates")]

[TemplateVisualStateAttribute(Name = "Unfocused", GroupName = "FocusStates")]

[TemplatePartAttribute(Name = "HorizontalTemplate", Type = typeof(FrameworkElement))]

[TemplatePartAttribute(Name = "HorizontalTrackLargeChangeDecreaseRepeatButton",

 Type = typeof(RepeatButton))]

[TemplatePartAttribute(Name = "HorizontalTrackLargeChangeIncreaseRepeatButton",

 Type = typeof(RepeatButton))]

[TemplatePartAttribute(Name = "HorizontalThumb", Type = typeof(Thumb))]

619	

	

	 	 	

	 	 	

	 	 	

	

	 	 	 	 	 	

	

	 	 	 	

	 	 	 	 	

	 	 	

	

	 	

	 	 	 	 	 	

	 	 	

	

	 	 	

	 	

	 	 	 	

	 	 	

	

	 	

	 	

	

	 	 	 	

	 	 	 	 	

	 	

	

	 	 	

	 	

	

	

	 	 	

[TemplatePartAttribute(Name = "VerticalTemplate", Type = typeof(FrameworkElement))]

[TemplatePartAttribute(Name = "VerticalTrackLargeChangeDecreaseRepeatButton",

 Type = typeof(RepeatButton))]

[TemplatePartAttribute(Name = "VerticalTrackLargeChangeIncreaseRepeatButton",

 Type = typeof(RepeatButton))]

[TemplatePartAttribute(Name = "VerticalThumb", Type = typeof(Thumb))]

public class Slider : RangeBase

What	this	means	is	that	the	Slider	expects	its	template	to	contain	eight	elements	with	the	

names	of	“HorizontalTemplate”	and	so	forth.	These	are	referred	to	as	“parts”	of	the	template.	

The	“HorizontalTemplate”	and	“VerticalTemplate”	parts	need	only	be	of	type	

FrameworkElement	(or	derived	from	FrameworkElement)	but	other	parts	are	required	to	be	of	

type	RepeatButton	or	Thumb.	

The	RepeatButton	and	Thumb are	a	couple	of	controls	that	I	haven’t	yet	had	much	occasion	to	

use	in	this	book.	(They	are	both	found	in	the	System.Windows.Controls.Primitives	namespace,	

a	subtle	suggestion	that	the	controls	are	intended	to	be	used	in	building	other	controls.)	The	

RepeatButton	is	similar	to	a	regular	Button except	that	when	you	hold	your	finger	on	it,	it	fires	

repeated	Click	events.	It’s	perfect	for	a	ScrollBar	or	Slider	and	was	probably	invented	

specifically	for	that	purpose.	

The	Thumb is	a	rather	special	control	that	reports	how	the	user	is	trying	to	drag	it.	But	if	you	

can’t	quite	figure	out	where	the	Thumb	is	located	in	the	standard	Slider	on	Windows	Phone	7,	

that’s	because	it’s	been	pretty	well	hidden	in	the	theme	template.	One	of	my	goals	here	is	to	

restore	the	Thumb	to	the	Slider.	

A	control	with	parts	(such	as	the	Slider)	overrides	the	ApplyTemplate	method	to	be	notified	

when	a	template	has	been	set	to	its	Template	property.	It	then	uses	GetTemplateChild	to	find	

the	elements	with	these	particular	names.	It	can	attach	event	handlers	to	these	elements,	and	

otherwise	manipulate	these	elements	when	the	control	is	in	use.	(You’ll	see	this	process	from	

the	code	perspective	towards	the	end	of	this	chapter.)	

The	standard	Slider	supports	horizontal	and	vertical	orientations,	and	the	template	actually	

contains	two	separate	(and	fairly	independent)	templates	for	these	orientations.	These	two	

separate	templates	are	enclosed	in	elements	with	the	“HorizontalTemplate”	and	

“VerticalTemplate”	names.	If	the	Orientation	property	of	Slider	is	Horizontal,	then	the	Slider

sets	the	Visibility	property	of	the	“HorizontalTemplate”	element	to	Visible	and	the	Visibility

property	of	“VerticalTemplate”	element	to	Collapsed,	and	oppositely	for	the	Vertical

orientation.	

When	designing	a	new	template	for	the	Slider,	the	most	straightfoward	approach	is	to	use	a	

singlecell	Grid	to	enclose	the	two	templates.	A	nested	Grid	named	“HorizontalTemplate”	

contains	three	columns	with	the	two	RepeatButton	controls	and	a	Thumb.	Another	nested	

Grid	named	“VerticalTemplate”	has	three	rows.	

Here’s	is	what	I	think	of	as	a	“bare	bones”	template	for	Slider	defined	as	a	resource:	

620	

	

	

	 	

	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.Resources>

<ControlTemplate x:Key="bareBonesSliderTemplate"

 TargetType="Slider">

<Grid>

<Grid Name="HorizontalTemplate">

<Grid.ColumnDefinitions>

<ColumnDefinition Width="Auto" />

<ColumnDefinition Width="Auto" />

<ColumnDefinition Width="*" />

</Grid.ColumnDefinitions>

<RepeatButton Name="HorizontalTrackLargeChangeDecreaseRepeatButton"

 Grid.Column="0"

 Content="-" />

<Thumb Name="HorizontalThumb"

 Grid.Column="1" />

<RepeatButton Name="HorizontalTrackLargeChangeIncreaseRepeatButton"

 Grid.Column="2"

 Content="+" />

</Grid>

<Grid Name="VerticalTemplate">

<Grid.RowDefinitions>

<RowDefinition Height="*" />

<RowDefinition Height="Auto" />

<RowDefinition Height="Auto" />

</Grid.RowDefinitions>

<RepeatButton Name="VerticalTrackLargeChangeDecreaseRepeatButton"

 Grid.Row="0"

 Content="-" />

<Thumb Name="VerticalThumb"

 Grid.Row="1" />

<RepeatButton Name="VerticalTrackLargeChangeIncreaseRepeatButton"

 Grid.Row="2"

 Content="+" />

</Grid>

</Grid>

</ControlTemplate>

</phone:PhoneApplicationPage.Resources>

The	Slider	template	does	not	exactly	require	the	two	RepeatButton	controls	and	the	Thumb	to	

be	in	a	threerow	or	threecolumn	Grid,	but	it’s	certainly	the	easiest	solution.	Notice	that	I	

621	

	

	 	 	 	 	

	 	 	

	 	 	

	 	 	

	 	 	

	 	

	 	 	 	 	

	 	 	 	 	

	 	

	 	

	 	

	 	

rather	whimsically	assigned	the	Content	properties	of	the	RepeatButton controls	to	minus	

signs	and	plus	signs	depending	on	their	role.	

Let’s	focus	on	the	Horizontal	orientation:	The	RepeatButton	to	decrease	values	is	in	the	first	

Grid cell	with	a	width	of	Auto,	and	the	Thumb	is	in	the	second	Grid	cell,	also	with	a	Width	of	

Auto.	The	Thumb	itself	has	a	fixed	width,	but	the	Slider	logic	directly	changes	the	width	of	the	

decreasing	RepeatButton	to	reflect	the	Value	property	of	the	Slider.	When	Value	is	set	to	

Minimum,	this	RepeatButton	gets	a	width	of	zero.	When	Value	is	set	to	Maximum,	the	

RepeatButton	gets	a	width	based	on	the	entire	control	width	minus	the	Thumb	width.	

The	Slider	changes	the	Value	property	(and	consequently	the	relative	size	of	the	two	

RepeatButton controls)	when	the	user	presses	a	RepeatButton	or	physically	moves	the	Thumb.	

(I’ll	discuss	the	Thumb control	in	more	detail	soon.)	

The	BareBonesSlider	project	continues	by	instantiating	two	Slider	controls	in	its	content	area	

and	applying	the	template:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Grid.RowDefinitions>

<RowDefinition Height="Auto"/>

<RowDefinition Height="*" />

</Grid.RowDefinitions>

<Slider Grid.Row="0"

 Orientation="Horizontal"

 Template="{StaticResource bareBonesSliderTemplate}" />

<Slider Grid.Row="1"

 Orientation="Vertical"

 Template="{StaticResource bareBonesSliderTemplate}"

 HorizontalAlignment="Center" />

</Grid>

622	

	

	 	

	

	

	 	 	

	 	 	

	 	 	 	 	 	

	 	

	 	 	

	 	 	

	 	

Here’s	what	they	look	like	after	they’ve	been	moved	a	bit	from	their	initial	positions:	

The	RepeatButton	looks	just	like	Button	and	Thumb is	a	square	surrounded	by	a	transparent	

area.	

Now	that	we	know	how	to	create	a	custom	template	for	Slider,	can	we	pretty	this	up	a	bit?	

Yes,	and	the	key	involves	realizing	that	RepeatButton	and	Thumb	derive	from	Control,	which	

means	they	both	have	Template	properties,	and	within	the	Slider	template	you	can	define	new	

templates	for	RepeatButton	and	Thumb	specifically	for	use	in	the	Slider	template.	

Here’s	a	fancier	Slider	that	also	incorporates	template	bindings	for	the	Background	and	

Foreground	properties.	Those	properties	are	given	default	values	in	a	Style	that	also	

incorporates	the	ControlTemplate.	Shown	here	is	only	the	outer	Grid	of	the	ControlTemplate

object,	which	has	its	own	Resources	section	for	defining	a	very	simple	ControlTemplate	for	the	

RepeatButton and	rather	extensive	templates	for	the	horizontal	and	vertical	Thumb:	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.Resources>

<Style x:Key="alternativeSliderStyle" TargetType="Slider">

<Setter Property="Background"

 Value="{StaticResource PhoneBackgroundBrush}" />

<Setter Property="Foreground"

 Value="{StaticResource PhoneForegroundBrush}" />

<Setter Property="Template">

623	

	

<Setter.Value>

<ControlTemplate TargetType="Slider">

<Grid Background="{TemplateBinding Background}">

<Grid.Resources>

<ControlTemplate x:Key="repeatButtonTemplate"

 TargetType="RepeatButton">

<Rectangle Fill="Transparent" />

</ControlTemplate>

<Style x:Key="horizontalThumbStyle"

 TargetType="Thumb">

<Setter Property="Width" Value="72" />

<Setter Property="Height" Value="72" />

<Setter Property="Template">

<Setter.Value>

<ControlTemplate TargetType="Thumb">

<Border Background="Transparent">

<Rectangle Margin="18 0"

 RadiusX="6"

 RadiusY="6"

 Stroke="{StaticResource

PhoneAccentBrush}"

 Fill="{TemplateBinding

 Foreground}" />

</Border>

</ControlTemplate>

</Setter.Value>

</Setter>

</Style>

<Style x:Key="verticalThumbStyle"

 TargetType="Thumb">

<Setter Property="Width" Value="72" />

<Setter Property="Height" Value="72" />

<Setter Property="Template">

<Setter.Value>

<ControlTemplate TargetType="Thumb">

<Border Background="Transparent">

<Rectangle Margin="0 18"

 RadiusX="6"

 RadiusY="6"

 Stroke="{StaticResource

PhoneAccentBrush}"

 Fill="{TemplateBinding

 Foreground}" />

</Border>

</ControlTemplate>

</Setter.Value>

</Setter>

</Style>

</Grid.Resources>

…

624	

	

	 	 	

	 	

	 	

	 	 	

	 	

	 	 	 	 	

	

</Grid>

</ControlTemplate>

</Setter.Value>

</Setter>

</Style>

</phone:PhoneApplicationPage.Resources>

The	RepeatButton	template	is	just	a	transparent	Rectangle.	(You	want	the	Rectangle	to	have	a	

transparent	Fill	rather	than	a	null	Fill	so	it	can	receive	touch	input.)	For	the	Thumb	styles,	

however,	I	needed	to	redefine	Width	and	Height	properties.	In	the	theme	style,	they’re	set	at	

48,	which	seemed	a	little	low	to	me.	I	provided	a	Border	with	a	transparent	background	for	a	

touch	target	of	the	larger	size,	but	the	visual	part	is	a	little	smaller	to	look	more	like	a	

traditional	Slider	thumb.	

The	two	Grid elements	for	the	horizontal	and	vertical	orientations	each	begins	with	a	

Rectangle	that	provides	a	kind	of	visual	track.	Each	RepeatButton	and	Thumb	references	the	

Style	for	that	control	defined	earlier:	

Silverlight Project: File: (excerpt)

<Grid Name="HorizontalTemplate">

<Grid.ColumnDefinitions>

<ColumnDefinition Width="Auto" />

<ColumnDefinition Width="Auto" />

<ColumnDefinition Width="*" />

</Grid.ColumnDefinitions>

<Rectangle Grid.Column="0" Grid.ColumnSpan="3"

 Height="8"

 Margin="12 0"

 Stroke="{TemplateBinding Foreground}"

 Fill="{StaticResource PhoneAccentBrush}" />

<RepeatButton Name="HorizontalTrackLargeChangeDecreaseRepeatButton"

 Grid.Column="0"

 Template="{StaticResource repeatButtonTemplate}" />

<Thumb Name="HorizontalThumb"

 Grid.Column="1"

 Style="{StaticResource horizontalThumbStyle}" />

<RepeatButton Name="HorizontalTrackLargeChangeIncreaseRepeatButton"

 Grid.Column="2"

 Template="{StaticResource repeatButtonTemplate}" />

</Grid>

<Grid Name="VerticalTemplate">

<Grid.RowDefinitions>

<RowDefinition Height="*" />

<RowDefinition Height="Auto" />

625	

	

	

	 	

<RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

<Rectangle Grid.Row="0" Grid.RowSpan="3"

 Width="8"

 Margin="0 12"

 Stroke="{TemplateBinding Foreground}"

 Fill="{StaticResource PhoneAccentBrush}" />

<RepeatButton Name="VerticalTrackLargeChangeDecreaseRepeatButton"

 Grid.Row="0"

 Template="{StaticResource repeatButtonTemplate}" />

<Thumb Name="VerticalThumb"

 Grid.Row="1"

 Style="{StaticResource verticalThumbStyle}" />

<RepeatButton Name="VerticalTrackLargeChangeIncreaseRepeatButton"

 Grid.Row="2"

 Template="{StaticResource repeatButtonTemplate}" />

</Grid>

The	content	area	of	the	program	looks	pretty	much	like	the	previous	program	except	that	the	

Slider	controls	reference	this	new	style:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Grid.RowDefinitions>

<RowDefinition Height="Auto"/>

<RowDefinition Height="*" />

</Grid.RowDefinitions>

<Slider Grid.Row="0"

 Orientation="Horizontal"

 Style="{StaticResource alternativeSliderStyle}" />

<Slider Grid.Row="1"

 Orientation="Vertical"

 Style="{StaticResource alternativeSliderStyle}"

 HorizontalAlignment="Center" />

</Grid>

626	

	

	

	

	 	

	 	

	 	 	 	 	

	

	 	 	 	 	

	

And	here	they	are:	

I	decided	to	move	this	Style	and	ControlTemplate	to	Petzold.Phone.Silverlight	as	the	default	

Style	for	a	class	named	AltSlider.	The	class	has	no	additional	properties	so	the	code	file	needs	

only	identify	the	class	that	AltSlider	derives	from	and	what	class	should	be	used	for	locating	

the	default	Style:	

Silverlight Project: Petzold.Phone.Silverlight File: AltSlider.cs

using System.Windows.Controls;

namespace Petzold.Phone.Silverlight

{

public class AltSlider : Slider

 {

public AltSlider()

{

this.DefaultStyleKey = typeof(AltSlider);

}

 }

}

This	default	Style	(including	the	ControlTemplate)	is	in	generic.xaml.	I	won’t	show	the	whole	

thing	here	because	it	mostly	repeats	the	Style definition	from	the	AlternativeSlider	project:	

627	

	

	

	

Silverlight Project: Petzold.Phone.Silverlight File: Themes/generic.xaml (excerpt)

<ResourceDictionary

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:local="clr-namespace:Petzold.Phone.Silverlight">

 …

<Style TargetType="local:AltSlider">

<Setter Property="Background"

 Value="{StaticResource PhoneBackgroundBrush}" />

<Setter Property="Foreground"

 Value="{StaticResource PhoneForegroundBrush}" />

<Setter Property="Template">

<Setter.Value>

<ControlTemplate TargetType="local:AltSlider">

 …

</ControlTemplate>

</Setter.Value>

</Setter>

</Style>

…

</ResourceDictionary>

Of	course,	it’s	now	necessary	to	test	it.	The	AltSliderDemo	project	has	a	reference	to	the	

Petzold.Phone.Silverlight	project,	and	an	XML	namespace	declaration	for	it.	The	content	area	

is	similar	to	the	past	two	programs:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Grid.RowDefinitions>

<RowDefinition Height="Auto"/>

<RowDefinition Height="*" />

</Grid.RowDefinitions>

<petzold:AltSlider Grid.Row="0"

 Orientation="Horizontal"

 Style="{StaticResource altSliderStyle}"/>

<petzold:AltSlider Grid.Row="1"

 Orientation="Vertical"

 HorizontalAlignment="Center"

 Style="{StaticResource altSliderStyle}" />

</Grid>

628	

	

	 	

	 	

	 	 	 	 	

	 	

	 	 	

	

	 	

	 	 	

	

You’ll	notice	these	AltSlider	controls	have	their	Style	properties	set.	What	is	that?	That	is	a	

reference	to	a	Style defined	in	the	Resources collection	of	the	page:	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.Resources>

<Style x:Key="altSliderStyle"

 TargetType="petzold:AltSlider">

<Setter Property="Margin" Value="12" />

<Setter Property="Background" Value="{StaticResource PhoneChromeBrush}" />

</Style>

</phone:PhoneApplicationPage.Resources>

The	only	purpose	of	this	Style	is	to	demonstrate	that	defining	a	default	Style	for	the	AltSlider

class	does	not	negate	the	ability	to	set	another	Style	later	on,	even	one	that	overrides	one	of	

the	properties	in	the	original	Style.	Here’s	the	program	running:	

The
Ever-Handy
Thumb

Where	would	the	human	race	be	without	thumbs?	

Several	times	in	this	book	I’ve	wanted	to	use	the	Thumb	control.	The	most	recent	occasion	

was	the	SplineKeyFrameExperiment	project	in	the	previous	chapter.	Two	chapters	earlier,	I	

629	

	

	 	 	

	 	

	 	 	

	 	

	 	 	 	

	

	 	 	

	

	 	 	 	 	

	

	 	 	

	

even	created	a	PointDragger control	in	the	CubicBezier	program	to	compensate	for	the	lack	

of	the	Thumb	control.	

Thumb	is	not	only	a	component	of	the	Slider	template:	It	can	also	be	used	as	a	general

purpose	manipulable	control	for	dragging	with	your	finger	around	the	screen.	The	problem	is	

this:	With	its	default	template,	the	Thumb is	ugly	enough	to	be	considered	“unusable.”	It	really	

needs	a	custom	template.	

Thumb	derives	from	Control,	defines	an	IsDragging	method,	and	three	events:	DragStarted,	

DragDelta,	and	DragCompleted.	A	CancelDrag	method	lets	you	abort	the	process	midway	

through.		

The	most	important	event	is	DragDelta,	which	comes	with	event	arguments	named	

HorizontalChange	and	VerticalChange,	so	you	can	think	of	the	Thumb	as	a	highlevel	interface	

to	the	Manipulation events—or	at	least	when	you’re	working	solely	with	translation.	

Here’s	the	content	area	of	the	ThumbBezier	program,	which	is	similar	to	the	CubicBezier	

program	in	Chapter	13	except	that	it	positions	four	Thumb	controls	at	the	four	points	using	

TranslateTransform.	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Path Stroke="{StaticResource PhoneForegroundBrush}"

 StrokeThickness="2">

<Path.Data>

<PathGeometry>

<PathFigure x:Name="pathFig"

 StartPoint="100 100">

<BezierSegment x:Name="pathSeg"

 Point1="300 100"

 Point2="300 400"

 Point3="100 400" />

</PathFigure>

</PathGeometry>

</Path.Data>

</Path>

<Polyline Name="ctrl1Line"

 Stroke="{StaticResource PhoneForegroundBrush}"

 StrokeDashArray="2 2"

 Points="100 100, 300 100" />

<Polyline Name="ctrl2Line"

 Stroke="{StaticResource PhoneForegroundBrush}"

 StrokeDashArray="2 2"

 Points="300 400, 100 400" />

<Thumb Name="pt0Thumb"

 Style="{StaticResource thumbStyle}"

630	

	

	 	 	 	

	 	 	

 DragDelta="OnThumbDragDelta">

<Thumb.RenderTransform>

<TranslateTransform X="100" Y="100" />

</Thumb.RenderTransform>

</Thumb>

<Thumb Name="pt1Thumb"

 Style="{StaticResource thumbStyle}"

 DragDelta="OnThumbDragDelta">

<Thumb.RenderTransform>

<TranslateTransform X="300" Y="100" />

</Thumb.RenderTransform>

</Thumb>

<Thumb Name="pt2Thumb"

 Style="{StaticResource thumbStyle}"

 DragDelta="OnThumbDragDelta">

<Thumb.RenderTransform>

<TranslateTransform X="300" Y="400" />

</Thumb.RenderTransform>

</Thumb>

<Thumb Name="pt3Thumb"

 Style="{StaticResource thumbStyle}"

 DragDelta="OnThumbDragDelta">

<Thumb.RenderTransform>

<TranslateTransform X="100" Y="400" />

</Thumb.RenderTransform>

</Thumb>

</Grid>

All	four	Thumb	controls	share	the	same	DragDelta event	handler,	which	is	pretty	much	the	

only	responsibility	of	the	codebehind	file.	You’ll	need	a	using	directive	for	the	

System.Windows.Control.Primitives	namespace	for	the	Thumb	and	its	event	arguments.	

Silverlight Project: File: (excerpt)

void OnThumbDragDelta(object sender, DragDeltaEventArgs args)

{

Thumb thumb = sender as Thumb;

TranslateTransform translate = thumb.RenderTransform as TranslateTransform;

 translate.X += args.HorizontalChange;

 translate.Y += args.VerticalChange;

if (thumb == pt0Thumb)

 {

pathFig.StartPoint =

 Move(pathFig.StartPoint, args.HorizontalChange, args.VerticalChange);

ctrl1Line.Points[0] =

 Move(ctrl1Line.Points[0], args.HorizontalChange, args.VerticalChange);

 }

else if (thumb == pt1Thumb)

631

	

	 	 	

	 	 	

	

 {

pathSeg.Point1 =

 Move(pathSeg.Point1, args.HorizontalChange, args.VerticalChange);

ctrl1Line.Points[1] =

 Move(ctrl1Line.Points[1], args.HorizontalChange, args.VerticalChange);

 }

else if (thumb == pt2Thumb)

 {

pathSeg.Point2 =

 Move(pathSeg.Point2, args.HorizontalChange, args.VerticalChange);

ctrl2Line.Points[0] =

 Move(ctrl2Line.Points[0], args.HorizontalChange, args.VerticalChange);

 }

else if (thumb == pt3Thumb)

 {

pathSeg.Point3 =

 Move(pathSeg.Point3, args.HorizontalChange, args.VerticalChange);

ctrl2Line.Points[1] =

 Move(ctrl2Line.Points[1], args.HorizontalChange, args.VerticalChange);

 }

}

Point Move(Point point, double horzChange, double vertChange)

{

return new Point(point.X + horzChange, point.Y + vertChange);

}

In	a	Style	and	ControlTemplate	defined	in	the	Resources	collection,	the	Thumb	is	given	an	

appearance	much	like	the	translucent	round	elements	I	used	in	the	earlier	program.	The	only	

visual	element	of	the	ControlTemplate	is	a	Path	with	an	EllipseGeometry:	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.Resources>

<Style x:Key="thumbStyle" TargetType="Thumb">

<Setter Property="HorizontalAlignment" Value="Left" />

<Setter Property="VerticalAlignment" Value="Top" />

<Setter Property="Template">

<Setter.Value>

<ControlTemplate TargetType="Thumb">

<Path Name="path"

 Fill="{StaticResource PhoneAccentBrush}"

 Opacity="0.5">

<Path.RenderTransform>

<ScaleTransform x:Name="scale" />

</Path.RenderTransform>

<Path.Data>

<EllipseGeometry x:Name="ellipseGeometry"

 RadiusX="48" RadiusY="48" />

</Path.Data>

632

	

	

	 	 	 	

<VisualStateManager.VisualStateGroups>

<VisualStateGroup x:Name="CommonStates">

<VisualState x:Name="Normal">

<Storyboard>

<DoubleAnimation

 Storyboard.TargetName="path"

Storyboard.TargetProperty="Opacity"

Duration="0:0:0.25" />

<DoubleAnimation

 Storyboard.TargetName="scale"

Storyboard.TargetProperty="ScaleX"

Duration="0:0:0.25" />

<DoubleAnimation

 Storyboard.TargetName="scale"

Storyboard.TargetProperty="ScaleY"

Duration="0:0:0.25" />

</Storyboard>

</VisualState>

<VisualState x:Name="MouseOver" />

<VisualState x:Name="Disabled" />

<VisualState x:Name="Pressed">

<Storyboard>

<DoubleAnimation

 Storyboard.TargetName="path"

Storyboard.TargetProperty="Opacity"

To="0.75" Duration="0:0:0.25" />

<DoubleAnimation

Storyboard.TargetName="scale"

Storyboard.TargetProperty="ScaleX"

To="1.25" Duration="0:0:0.25" />

<DoubleAnimation

 Storyboard.TargetName="scale"

Storyboard.TargetProperty="ScaleY"

To="1.25" Duration="0:0:0.25" />

</Storyboard>

</VisualState>

</VisualStateGroup>

</VisualStateManager.VisualStateGroups>

</Path>

</ControlTemplate>

</Setter.Value>

</Setter>

</Style>

</phone:PhoneApplicationPage.Resources>

The	Thumb has	a	Pressed	visual	state,	so	this	suggests	that	a	feature	can	be	added	not	present	

in	the	earlier	programs:	The	Thumb can	indicate	that	it’s	pressed	and	being	dragged	by	

633	

	

	

	

	 	 	 	

	 	

	 		

	 	

	

	 	 	

	 	

	 	

	

	 	 	

	 	

	 	

	 	 	 	

	 	

	 	

	 	

	

	

	

growing	a	bit	and	by	changing	color.	A	few	animations	are	all	that’s	necessary	to	add	this	

feature	to	the	template.	

Custom
Controls

As	you	know,	if	you’re	creating	controls	that	need	only	be	used	for	special	purposes	in	your	

own	applications,	the	easiest	approach	is	UserControl.	Simply	define	a	visual	tree	for	the	

control	in	the	XAML	file.	

You	can	also	take	a	similar	approach	with	ContentControl,	except	that	the	XAML	file	would	

contain	a	Style	and	ControlTemplate	definition.	The	advantage	of	this	approach	is	that	you	

retain	use	of	the	Content	property	for	the	control’s	own	purposes.	

You	can	also	derive	from	Control.	This	approach	makes	sense	if	the	derived	class	is	in	a	library,	

and	you	want	the	control	to	have	a	replaceable	template.	The	default	theme	Style	and	

ControlTemplate	are	in	the	library’s	generic.xaml	file.	

The	Petzold.Phone.Silverlight	library	has	an	example	of	such	a	control	named	XYSlider.	This	

control	is	intended	to	let	the	user	move	a	Thumb	around	a	twodimensional	surface;	the	

control	reports	a	location	in	a	property	name	Value	of	type	Point,	but	the	two	coordinates	are	

normalized	between	0	and	1	relative	to	the	upperleft	corner.	This	normalization	relieves	the	

control	of	defining	Minimum	and	Maximum	values	like	a	regular	Slider.	

Besides	a	Value	property,	the	XYSlider	class	also	defines	a	PlaneBackground	property	of	type	

Brush.	This	is	the	surface	on	which	the	Thumb	moves,	and	you’ll	see	shortly	why	it	must	be	

distinguished	from	the	regular	Background	property	of	Control.	

As	the	class	attributes	indicate,	the	class	expects	the	template	to	have	two	elements:	a	Canvas

named	“PlanePart”	and	a	Thumb	named	“ThumbPart”:	

Silverlight Project: File: (excerpt)

[TemplatePartAttribute(Name = "PlanePart", Type = typeof(Canvas))]

[TemplatePartAttribute(Name = "ThumbPart", Type = typeof(Thumb))]

public class XYSlider : Control

{

 Canvas planePart;

 Thumb thumbPart;

 Point absoluteThumbPoint;

public event RoutedPropertyChangedEventHandler<Point> ValueChanged;

public static readonly DependencyProperty PlaneBackgroundProperty =

DependencyProperty.Register("PlaneBackground",

typeof(Brush),

typeof(XYSlider),

new PropertyMetadata(new SolidColorBrush(Colors.Gray)));

634	

	

	 	

	 	 	 	

	

	 	 	

	

public static readonly DependencyProperty ValueProperty =

DependencyProperty.Register("Value",

typeof(Point),

typeof(XYSlider),

new PropertyMetadata(new Point(0.5, 0.5), OnValueChanged));

public XYSlider()

 {

this.DefaultStyleKey = typeof(XYSlider);

 }

public Brush PlaneBackground

 {

set { SetValue(PlaneBackgroundProperty, value); }

get { return (Brush)GetValue(PlaneBackgroundProperty); }

 }

public Point Value

 {

set { SetValue(ValueProperty, value); }

get { return (Point)GetValue(ValueProperty); }

 }

 …

}

A	Control derivative	is	informed	that	its	template	has	been	built	by	a	call	to	OnApplyTemplate.	

This	is	an	appropriate	time	for	the	class	to	call	GetTemplateChild	with	the	names	indicated	in	

the	attributes.	It	is	considered	proper	behavior	for	the	class	to	quietly	accept	the	possibility	

that	some	parts	might	be	missing,	even	if	those	parts	are	essential	for	the	proper	functioning	

of	the	control:	

Silverlight Project: File: (excerpt)

public override void OnApplyTemplate()

{

if (planePart != null)

{

planePart.SizeChanged -= OnPlaneSizeChanged;

 }

if (thumbPart != null)

{

thumbPart.DragDelta -= OnThumbDragDelta;

 }

 planePart = GetTemplateChild("PlanePart") as Canvas;

 thumbPart = GetTemplateChild("ThumbPart") as Thumb;

if (planePart != null && thumbPart != null)

635	

	

	

	 	

	

	 	

 {

planePart.SizeChanged += OnPlaneSizeChanged;

thumbPart.DragStarted += OnThumbDragStarted;

thumbPart.DragDelta += OnThumbDragDelta;

ScaleValueToPlane(this.Value);

 }

base.OnApplyTemplate();

}

If	the	Canvas	and	Thumb	are	present,	a	handler	is	installed	for	the	SizeChanged	event	of	the	

Canvas	and	the	DragStarted	and	DragDelta	events	of	the	Thumb.	

The	SizeChanged	handler	updates	the	location	of	the	Thumb	relative	to	the	Canvas;	the	

DragDelta	handler	updates	the	Value	property	of	XYSlider:	

Silverlight Project: File: (excerpt)

void OnPlaneSizeChanged(object sender, SizeChangedEventArgs args)

{

 ScaleValueToPlane(this.Value);

}

void OnThumbDragStarted(object sender, DragStartedEventArgs args)

{

 absoluteThumbPoint = new Point(Canvas.GetLeft(thumbPart),

Canvas.GetTop(thumbPart));

}

void OnThumbDragDelta(object sender, DragDeltaEventArgs args)

{

 absoluteThumbPoint.X += args.HorizontalChange;

 absoluteThumbPoint.Y += args.VerticalChange;

 Value = new Point(Math.Max(0,

Math.Min(1, absoluteThumbPoint.X / planePart.ActualWidth)),

Math.Max(0,

Math.Min(1, absoluteThumbPoint.Y / planePart.ActualHeight)));

}

void ScaleValueToPlane(Point point)

{

if (planePart != null && thumbPart != null)

{

Canvas.SetLeft(thumbPart, planePart.ActualWidth * point.X);

Canvas.SetTop(thumbPart, planePart.ActualHeight * point.Y);

 }

}

636

	

	 	 	 	

	

	 	 	

The	propertychanged	handler	for	Value	also	updates	the	location	of	the	Thumb	and	fires	the	

ValueChanged	event:	

Silverlight Project: File: (excerpt)

static void OnValueChanged(DependencyObject obj,

DependencyPropertyChangedEventArgs args)

{

 (obj as XYSlider).OnValueChanged((Point)args.OldValue, (Point)args.NewValue);

}

protected virtual void OnValueChanged(Point oldValue, Point newValue)

{

if (newValue.X < 0 || newValue.X > 1 || newValue.Y < 0 || newValue.Y > 1)

throw new ArgumentOutOfRangeException("Value",

"Value property must be Point with coordinates between 0 and 1");

 ScaleValueToPlane(newValue);

if (ValueChanged != null)

ValueChanged(this,

new RoutedPropertyChangedEventArgs<Point>(oldValue, newValue));

}

The	default	Style	and	ControlTemplate are	in	the	generic.xaml	file:	

Silverlight Project: Petzold.Phone.Sivlerlight File: Themes/generic.xaml (excerpt)

<Style TargetType="local:XYSlider">

<Setter Property="Template">

<Setter.Value>

<ControlTemplate TargetType="local:XYSlider">

<Border Background="{TemplateBinding Background}"

 BorderBrush="{TemplateBinding BorderBrush}"

 BorderThickness="{TemplateBinding BorderThickness}">

<Canvas Name="PlanePart"

 Background="{TemplateBinding PlaneBackground}"

 Margin="48">

<Thumb Name="ThumbPart">

<Thumb.Style>

<Style TargetType="Thumb">

<Setter Property="Width" Value="96" />

<Setter Property="Height" Value="96" />

<Setter Property="Template">

<Setter.Value>

<ControlTemplate TargetType="Thumb">

<Path Name="path"

 Stroke="{StaticResource PhoneForegroundBrush}"

 StrokeThickness="{StaticResource

 PhoneStrokeThickness}"

637	

	

	 	 	

	 	

	

	 	

	

	 	

	 	 	 	

 Fill="Transparent">

<Path.Data>

<GeometryGroup FillRule="Nonzero">

<EllipseGeometry RadiusX="48" RadiusY="48" />

<EllipseGeometry RadiusX="6" RadiusY="6" />

<LineGeometry StartPoint="-48 0" EndPoint="-6 0" />

<LineGeometry StartPoint="48 0" EndPoint="6 0" />

<LineGeometry StartPoint="0 -48" EndPoint="0 -6" />

<LineGeometry StartPoint="0 48" EndPoint="0 6" />

</GeometryGroup>

</Path.Data>

</Path>

</ControlTemplate>

</Setter.Value>

</Setter>

</Style>

</Thumb.Style>

</Thumb>

</Canvas>

</Border>

</ControlTemplate>

</Setter.Value>

</Setter>

</Style>

A	Border	surrounds	the	whole	control,	and	the	Canvas named	“PlanePart”	is	given	a	Margin

that	just	so	happens	to	be	half	the	size	of	the	Thumb.	This	allows	the	center	of	the	Thumb	to	

indicate	a	point	on	the	plane	while	still	remaining	entirely	within	the	control.	Within	the	

ControlTemplate	for	the	Control	is	another	ControlTemplate	for	the	Thumb	that	forms	a	kind	

of	bull’s	eye	pattern.	

The	program	is	tested	in	a	project	named	WorldMap.	The	content	area	contains	an	XYSlider

with	the	PlaneBackground	property	set	to	an	ImageBrush based	on	a	map	of	the	world:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Grid.RowDefinitions>

<RowDefinition Height="*" />

<RowDefinition Height="Auto" />

</Grid.RowDefinitions>

<petzold:XYSlider Name="xySlider"

 Grid.Row="0"

 ValueChanged="OnXYSliderValueChanged">

<petzold:XYSlider.PlaneBackground>

<!-- Image courtesy of NASA/JPL-Caltech (http://maps.jpl.nasa.gov). -->

<ImageBrush ImageSource="Images/ear0xuu2.jpg" />

</petzold:XYSlider.PlaneBackground>

</petzold:XYSlider>

638

	

	 	 	 	

	 	

	

	

<TextBlock Name="txtblk"

 Grid.Row="1"

 HorizontalAlignment="Center" />

</Grid>

The	codebehind	file	is	devoted	to	handling	the	ValueChanged	event	from	the	XYSlider	and	

converting	the	normalized	Point	to	longitude	and	latitude:	

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage

{

 public MainPage()

 {

InitializeComponent();

DisplayCoordinates(xySlider.Value);

}

 void OnXYSliderValueChanged(object sender,

RoutedPropertyChangedEventArgs<Point> args)

 {

DisplayCoordinates(args.NewValue);

 }

 void DisplayCoordinates(Point point)

 {

double longitude = 360 * point.X - 180;

double latitude = 90 - 180 * point.Y;

txtblk.Text = String.Format("Longitude: {0:F0} Latitude: {1:F0}",

longitude, latitude);

}

}

And	here	it	is:	

639	

	

	 	 	 	

	 	 	 	 	

	 	 	 	

As	you	move	the	Thumb	with	your	finger,	the	longitude	and	latitude	values	displayed	at	the	

bottom	are	updated.	It’s	easy	to	imagine	the	WorldMap	program	being	enhanced	to	obtain	

the	phone’s	location	and	using	that	to	initialize	the	position	of	the	Thumb.	

640	

	

	 	 	

	 	 	

	

	

	 	

	 	 	 	

	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

	

	

	 	

	 	

	

	

	 	 	

	 	

	 	 	

	 	 	

	 	 	

	 	 	

	

	

Chapter	17	

Items Controls
There	is	still	one	major	category	of	controls	that	I	haven’t	discussed	yet,	and	these	are	the	

derivatives	of	Control	that	begin	with	ItemsControl.	This	class	hierarchy	is	complete	beginning	

with	that	class:	

Object

DependencyObject	(abstract)	

UIElement	(abstract)	

FrameworkElement	(abstract)	

Control	(abstract)	

ItemsControl

Selector	(abstract)	

ListBox

ComboBox

TemplatedItemsControl	(generic)	

Panorama

Pivot

PivotHeadersControl

MapItemsControl

ItemsControl	and	its	derivatives	display	collections	of	items.	In	addition,	Selector	and	its	

derivatives	implement	properties	and	logic	that	allow	the	user	to	select	one	or	more	items	

from	the	collection.	(I’ll	discuss	the	classes	that	derive	from	TemplatedItemsControl	in	the	next	

chapter.)		

Perhaps	the	most	famous	of	these	controls	is	ListBox,	which	has	been	in	Windowsbased	

environments	for	25	years.	The	archetypal	ListBox	is	a	scrollable	vertical	list	of	items	that	you	

can	navigate	with	the	keyboard	and	mouse.	(On	Windows	Phone	7	you	use	your	fingers.)	One	

(or	optionally,	more	than	one	item)	can	be	selected,	visually	indicated	by	highlighting	and	

made	available	by	the	control.	The	ComboBox	came	a	little	later	than	the	ListBox,	so	named	

because	it	combined	a	textediting	field	and	a	dropdown	ListBox.	

What	might	not	be	as	familiar	to	veteran	Windows	programmers	is	ItemsControl.	ItemsControl

often	looks	a	lot	like	a	ListBox,	but	it	does	not	implement	any	selection	logic.	(It	doesn’t	even	

implement	its	own	scrolling,	but	that’s	easy	to	add.)	The	ItemsControl is	simply	for	

presentation	purposes.	Although	ItemsControl	is	not	ListBox,	it	still	has	an	enormous	value	in	

Silverlight	programming,	and	it	is	also	useful	if	you’d	prefer	to	implement	your	own	selection	

logic.	

641	

	

	

	 	 	 	

	

	 	

	 		

	 	

	

	

	 	

	 	

	 	

I’ll	generally	refer	to	ItemsControl	and	its	derivatives	as	items controls—two	words	just	like	the	

name	of	this	chapter.	I	have	delayed	discussing	this	family	of	controls	until	now	because,	in	a	

very	real	sense,	ItemsControl	and	DataTemplate were	made	for	each	other.	You’ll	almost	

always	define	a	DataTemplate	for	rendering	the	items	in	these	controls.	

Items
Controls
and
Visual
Trees

There	are	three	basic	ways	to	get	items	into	an	items	control:	code,	XAML,	and	a	data	binding.	

The	code	method	is	demonstrated	by	the	ItemsControlsFromCode	project.	The	program	is	

intended	to	be	displayed	in	a	landscape	orientation.	It	instantiates	an	ItemsControl,	a	ListBox,	

and	a	ComboBox	in	three	columns	of	the	content	Grid:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Grid.ColumnDefinitions>

<ColumnDefinition Width="*" />

<ColumnDefinition Width="*" />

<ColumnDefinition Width="*" />

</Grid.ColumnDefinitions>

<ItemsControl Name="itemsControl" Grid.Column="0" />

<ListBox Name="listBox" Grid.Column="1" />

<ComboBox Name="comboBox" Grid.Column="2"

 VerticalAlignment="Top"

 Foreground="Black" />

</Grid>

I’ve	added	a	couple	property	settings	to	the	ComboBox.	Aligning	the	control	at	the	top	of	the	

cell	works	better	with	the	dropdown	feature.	I	also	discovered	that	the	default	template	for	

ComboBox	has	not	been	tweaked	for	the	phone,	so	setting	the	Foreground	property	was	

necessary	for	the	items	to	be	displayed.	

The	codebehind	file	fills	each	of	these	controls	with	FontFamily	objects:	

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage

{

 public MainPage()

 {

InitializeComponent();

FillItUp(itemsControl);

642	

	

	 	 	 	 	

	 	

	 	

	 	 	

	 	

	

	 	

	 	 	 	

	

	 	 	 	

FillItUp(listBox);

FillItUp(comboBox);

 }

 void FillItUp(ItemsControl itemsControl)

 {

string[] fontFamilies =

{

"Arial", "Arial Black", "Calibri", "Comic Sans MS",

"Courier New", "Georgia", "Lucida Sans Unicode",

"Portable User Interface", "Segoe WP", "Segoe WP Black",

"Segoe WP Bold", "Segoe WP Light", "Segoe WP Semibold",

"Segoe WP SemiLight", "Tahoma", "Times New Roman",

"Trebuchet MS", "Verdana", "Webdings"

};

foreach (string fontFamily in fontFamilies)

 itemsControl.Items.Add(new FontFamily(fontFamily));

 }

}

The	Items	property	defined	by	ItemsControl	is	of	type	ItemCollection and	you	can	put	pretty	

much	anything	in	there	that	you	want.	If	an	object	you	put	in	the	collection	derives	from	

FrameworkElement	(such	as	a	Button)	then	the	element	displays	itself.	Otherwise,	the	item’s	

ToString method	is	used.	Very	conveniently,	FontFamily	has	a	ToString	method	that	displays	

the	FontFamily	name:	

Perhaps	the	first	thing	you’ll	notice	about	this	program	is	that	the	ItemsControl	doesn’t	scroll.	

If	you	want	to	scroll	an	ItemsControl,	put	it	in	a	ScrollViewer.	

The	ListBox	incorporates	its	own	ScrollViewer.	You	use	your	fingers	to	both	scroll	and	select	an	

item,	which	is	highlighted	with	the	accent	color,	as	Tahoma	is	highlighted	here.	

643	

	

	 	 	

	

	

	 	

	

	

	 	 	

	 	 	

	

	 	

	 	

	 	 	

	 	

	 	

	 	 	 	

	

The	ComboBox	doesn’t	open	until	you	touch	anywhere	in	the	control,	and	then	the	list	

appears:	

You	see	now	why	I	set	the	Foreground	property	to	Black.	At	first	I	set	it	to	the	

PhoneBackgroundBrush	resource	but	then	I	discovered	that	the	ComboBox	uses	these	same	

colors	even	with	the	Light	theme.	

Because	ComboBox	badly	needs	a	ControlTemplate	to	fit	in	with	the	Windows	Phone	7	

aesthetics,	I	won’t	be	describing	the	control	in	this	book.	

Much	of	this	chapter	involves	defining	templates	for	items	controls,	so	it	will	be	helpful	to	

look	at	the	visual	trees	of	these	three	controls	to	get	a	sense	of	their	internal	architecture.	

The	ItemsControlsVisualTrees	project	is	very	similar	to	the	ItemsControlsFromCode	project	

except	that	it	replaces	the	ComboBox	with	another	ItemsControl	(but	this	one	in	a	

ScrollViewer)	and	also	includes	a	couple	buttons.	The	program	uses	that	second	ItemsControl

to	display	the	visual	trees	associated	with	the	first	ItemsControl	and	the	ListBox.	

Here’s	the	content	area	in	the	XAML	file.	To	provide	enough	horizontal	space	to	the	

ItemsControl used	for	displaying	the	visual	trees,	I’ve	reduced	the	width	of	the	first	two	

columns:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Grid.ColumnDefinitions>

<ColumnDefinition Width="*" />

<ColumnDefinition Width="*" />

<ColumnDefinition Width="2*" />

</Grid.ColumnDefinitions>

<Grid.RowDefinitions>

<RowDefinition Height="*" />

<RowDefinition Height="Auto" />

</Grid.RowDefinitions>

644	

	

	

	

	 	 	

	

<ItemsControl Name="itemsControl"

 Grid.Column="0" Grid.Row="0" />

<Button Content="Dump"

 Grid.Column="0" Grid.Row="1"

 Click="OnItemsControlDumpClick" />

<ListBox Name="listBox"

 Grid.Column="1" Grid.Row="0" />

<Button Content="Dump"

 Grid.Column="1" Grid.Row="1"

 Click="OnListBoxDumpClick" />

<ScrollViewer Grid.Column="2" Grid.Row="0" Grid.RowSpan="2">

<ItemsControl Name="dumpTreeItemsControl" />

</ScrollViewer>

</Grid>

The	codebehind	file	fills	the	first	two	controls	with	FontFamily	objects	again	just	as	in	the	first	

program:	

Silverlight Project: ItemsControlsVisualTrees File: MainPage.xaml.cs (excerpt)

public MainPage()

{

 InitializeComponent();

 FillItUp(itemsControl);

 FillItUp(listBox);

}

void FillItUp(ItemsControl itemsControl)

{

string[] fontFamilies =

{

"Arial", "Arial Black", "Calibri", "Comic Sans MS",

"Courier New", "Georgia", "Lucida Sans Unicode",

"Portable User Interface", "Segoe WP", "Segoe WP Black",

"Segoe WP Bold", "Segoe WP Light", "Segoe WP Semibold",

"Segoe WP SemiLight", "Tahoma", "Times New Roman",

"Trebuchet MS", "Verdana", "Webdings"

 };

foreach (string fontFamily in fontFamilies)

itemsControl.Items.Add(new FontFamily(fontFamily));

}

The	class	also	includes	handlers	for	the	Click	events	for	the	two	buttons	and	responds	by	

dumping	the	visual	tree	of	the	corresponding	items	control:	

645	

	

	

	

	

	 	

	

Silverlight Project: ItemsControlsVisualTrees File: MainPage.xaml.cs (excerpt)

void OnItemsControlDumpClick(object sender, RoutedEventArgs args)

{

 dumpTreeItemsControl.Items.Clear();

 DumpVisualTree(itemsControl, 0);

}

void OnListBoxDumpClick(object sender, RoutedEventArgs args)

{

 dumpTreeItemsControl.Items.Clear();

 DumpVisualTree(listBox, 0);

}

void DumpVisualTree(DependencyObject parent, int indent)

{

TextBlock txtblk = new TextBlock();

 txtblk.Text = String.Format("{0}{1}", new string(' ', 4 * indent),

parent.GetType().Name);

 dumpTreeItemsControl.Items.Add(txtblk);

int numChildren = VisualTreeHelper.GetChildrenCount(parent);

for (int childIndex = 0; childIndex < numChildren; childIndex++)

 {

DependencyObject child = VisualTreeHelper.GetChild(parent, childIndex);

DumpVisualTree(child, indent + 1);

 }

}

Here’s	the	program	displaying	the	visual	tree	for	the	ItemsControl:	

The	entire	visual	tree	for	an	items	control	potentially	incorporates	several	templates.	This	can	

be	somewhat	confusing,	so	perhaps	a	little	review	will	help:	

646	

	

	

	 	 	 	

	

	

	

	 	

	

	 	 	

	 	

	 	 	

	

	 	 	

	 	 	

	

	 	

	

	 	

	 	

	 	 	

	 	

	 	 	 	

	

	

In	some	controls,	such	as	Slider,	the	ControlTemplate	defines	the	appearance	of	the	entire	

control.	The	theme	style	for	Slider	defines	a	default	ControlTemplate	and	you	can	define	your	

own.	That	ControlTemplate	might	include	other	ControlTemplate	definitions	for	the	

ToggleButton	and	Thumb	that	make	up	the	Slider.	

In	ContentControl	derivatives	like	Button,	potentially	two	templates	are	present:	a	

ControlTemplate	defining	the	control’s	chrome,	and	a	DataTemplate	describing	how	the	

object	set	to	the	Content	property	is	rendered	in	the	control.	

In	ItemsControl	derivatives,	three	types	of	templates	are	involved:	A	ControlTemplate	for	the	

control’s	chrome,	an	ItemsPanelTemplate	for	the	panel	it	uses	to	host	the	items,	and	a	

DataTemplate that	is	applied	to	each	item.	

The	visual	tree	for	ItemsControl	begins	with	the	ControlTemplate	for	the	control,	and	the	

default	ControlTemplate	for	ItemsControl	is	simply	an	ItemsPresenter.	This	is	a	rather	

mysterious	class	that	defines	no	public	properties	on	its	own.	The	ItemsPresenter	is	sometimes	

treated	as	a	“placeholder”	in	a	custom	ControlTemplate	for	an	items	control.	

The	ItemsPresenter	always	uses	a	Panel	derivative	to	display	the	items	in	the	items	control.	In	

the	default	ItemsControl	this	is	a	StackPanel	with	a	vertical	orientation.	This	panel	is	

replaceable	by	setting	the	ItemsPanel	property	defined	by	ItemsControl	with	an	

ItemsPanelTemplate.	You’ll	see	how	to	do	this	later	in	this	chapter.	

Following	that	are	identical	snippets	of	visual	tree	for	each	item	in	the	collection	beginning	

with	a	familiar	element	named	ContentPresenter.	As	you’ll	recall	from	the	last	chapter,	the	

ContentPresenter	is	the	core	of	a	ContentControl.	This	is	the	element	responsible	for	hosting	a	

FrameworkElement derivative,	or	converting	a	nonFrameworkElement derivative	to	text	using	

its	TextString	method,	or	hosting	an	object	using	a	visual	tree	based	on	a	DataTemplate	set	to	

its	ContentTemplate	property.	The	ContentPresenter	has	the	same	role	here	but	for	each	item	

individually.	

In	the	ItemsControl	being	analyzed	in	this	program,	each	item	is	displayed	with	a	TextBlock

within	a	singlecell	Grid.	

647	

	

	 	

	

	 	 	 	 	 	 	

	 	

	

	 	

	 	 	

	 	 	

	 	 	

	

	 	 	

	

	

	

	

	 	 	

	 	

	 	

	 	 	

	 	

	 	 	

	 	

	 	

	

	 	 	

	

The	visual	tree	for	the	ListBox	is	much	more	elaborate:	

The	visual	tree	begins	with	the	default	ControlTemplate	for	the	ListBox.	This	tree	begins	with	a	

ScrollViewer,	which	itself	is	a	control	so	it	has	its	own	default	ControlTemplate	and	its	own	

visual	tree	starting	with	a	Border	and	ending	with	the	ScrollContentPresenter,	which	functions	

as	the	ScrollViewer	engine.	ScrollViewer	is	derived	from	ContentControl	and	within	the	

ControlTemplate	for	ListBox,	the	Content	of	ScrollViewer	is	set	to	an	ItemsPresenter,	the	same	

class	that	forms	the	entire	default	ControlTemplate	of	ItemsControl.	

In	the	ItemsControl	visual	tree,	the	ItemsPresenter	hosted	a	StackPanel;	in	the	ListBox	the	

ItemsPresenter	hosts	a	VirtualizingStackPanel.	Let	me	come	back	to	that.	

In	the	ItemsControl visual	tree,	each	item	is	a	ContentPresenter,	a	class	familiar	from	the	

previous	chapter.	Here,	each	item	is	a	ListBoxItem,	which	itself	derives	from	ContentControl,	

and	which	has	its	own	template,	and	its	own	ContentPresenter.	

Why	the	difference?	Why	does	ListBox	need	a	special	class	named	ListBoxItem	to	host	each	

item	but	ItemsControl	does	not?		

The	answer	is	simple:	Selection.	Somebody	has	to	handle	the	special	display	of	a	selected	item	

in	the	ListBox	and	the	ComboBox,	and	so	there	are	classes	for	this	purpose	named	ListBoxItem

and	ComboBoxItem (which	derives	from	ListBoxItem).	ListBoxItem	derives	from	

ContentControl—as	you	can	see	from	the	visual	tree,	it	includes	a	ContentControl	in	its	

template,	just	like	Button—but	also	defines	an	IsSelected	property.	The	ListBox	knows	that	its	

items	are	hosted	by	ListBoxItem	controls	so	it	is	able	to	set	that	IsSelected property	on	the	

selected	item,	which	the	ListBoxItem	template	uses	to	highlight	the	item.	

In	the	lingo	of	items	controls,	ListBoxItem	is	known	as	the	container for	items	in	the	ListBox.	

These	ListBoxItem	containers	are	automatically	created	when	the	program	adds	items	to	the	

ListBox.	The	public	interface	to	create	and	manage	these	containers	is	defined	by	

ItemsControl,	such	as	the	ItemContainerGenerator	property	and	several	overridable	methods	

for	defining	an	alternative	container	class.	But	the	subject	of	containers	is	beyond	the	scope	

of	this	book.	

648	

	

	 	 	 	

	 	 	 	

	 	 	

	 	 	

	

	 	 	

	 	 	

	 	

	

	 	 	 	 	

	

	 	

	 	

	 	 	 	 	 	

	 	 	

	 	 	

	 	 	

	 	 	 	

	 	 	

	 	

	 	 	

	 	

	

However,	you	may	want	to	define	a	different	ControlTemplate	for	ListBoxItem,	perhaps	to	

change	the	way	that	selected	items	are	highlighted,	but	you	might	feel	a	little	stymied	

because	the	ListBoxItem	instances	are	created	and	maintained	within	this	container	logic.	

Fortunately,	providing	a	custom	ControlTemplate	for	ListBoxItem	is	easier	than	you	might	

think:	ListBox	and	ComboBox	both	define	a	property	named	ItemContainerStyle	that	you	can	

set	to	a	Style	object	that	the	ListBox	applies	to	each	ListBoxItem	instance.	Of	course,	this	Style

might	include	a	Setter	for	the	Template	property.	This	is	the	easy	approach.	If	you	want	

ListBox to	use	a	custom	container	class	that	you	derive	from	ListBoxItem,	then	you	need	to	get	

involved	with	the	containergenerator	logic.	

As	you	start	looking	at	these	visual	trees—and	keep	in	mind	that	in	the	general	case	each	

item	will	get	its	own	visual	tree	defined	by	a	DataTemplate—you	may	start	worrying	about	

the	performance.	Don’t	let	the	DataTemplate	get	too	complex.	One	class	that	also	helps	

performance	is	VirtualizingStackPanel,	which	only	builds	a	visual	tree	for	an	object	when	that	

object	needs	to	be	displayed.	You	can	derive	your	own	virtualizing	panels	from	

VirtualizingPanel,	but	I’m	afraid	that	topic	is	also	beyond	the	scope	of	this	book.	

Customizing
Item
Displays

The	second	of	the	three	approacesh	to	filling	an	items	control	requires	explicitly	defining	the	

contents	in	XAML.	The	ItemsControlsFromXaml	project	uses	this	approach	to	fill	an	

ItemsControl	and	two	ListBox	controls.	The	Items property	defined	by	ItemsControl	is	the	

content	property	of	the	control,	so	in	XAML	all	you	need	to	do	is	put	a	bunch	of	objects	

between	the	begin	and	end	tags	of	the	particular	items	control.	

In	anticipation	of	formatting	some	strings	in	data	bindings,	a	StringFormatConverter	is	

included	in	the	Resources	collection	of	the	program’s	MainPage.xaml	file:	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.Resources>

<petzold:StringFormatConverter x:Name="stringFormat" />

</phone:PhoneApplicationPage.Resources>

The	content	area	contains	a	threecolumn	Grid:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Grid.ColumnDefinitions>

<ColumnDefinition Width="*" />

<ColumnDefinition Width="*" />

<ColumnDefinition Width="*" />

</Grid.ColumnDefinitions>

649	

	

	

	

	 	 	 	 	 	 	

	

	

	 	 	

	

 …

</Grid>

The	first	Grid	cell	contains	a	ScrollViewer	hosting	an	ItemsControl	which	contains	Color	objects	

for	all	the	colors	defined	in	Silverlight:	

Silverlight Project: File: (excerpt)

<ScrollViewer Grid.Column="0">

<ItemsControl>

<Color>AliceBlue</Color>

<Color>AntiqueWhite</Color>

<Color>Aqua</Color>

<Color>Aquamarine</Color>

<Color>Azure</Color>

…

<Color>Wheat</Color>

<Color>White</Color>

<Color>WhiteSmoke</Color>

<Color>Yellow</Color>

<Color>YellowGreen</Color>

</ItemsControl>

</ScrollViewer>

Based	on	your	experience	of	seeing	what	happens	when	you	put	a	Color	object	in	a	Button,	

you	can	probably	guess	the	result:	a	list	of	141	hexadecimal	color	values.	But	at	least	it	will	be	

scrollable.	

For	a	little	variety,	the	second	column	of	the	Grid	contains	a	ListBox	with	141	SolidColorBrush

objects:	

Silverlight Project: File: (excerpt)

<ListBox Grid.Column="1"

 DisplayMemberPath="Color">

<SolidColorBrush Color="AliceBlue" />

<SolidColorBrush Color="AntiqueWhite" />

<SolidColorBrush Color="Aqua" />

<SolidColorBrush Color="Aquamarine" />

<SolidColorBrush Color="Azure" />

 …

<SolidColorBrush Color="Wheat" />

<SolidColorBrush Color="White" />

<SolidColorBrush Color="WhiteSmoke" />

<SolidColorBrush Color="Yellow" />

<SolidColorBrush Color="YellowGreen" />

</ListBox>

650

	

	 	 	 	

	 	

	 	

	

	 	

	 	

	 	

	 	 	 	

	 	 	

	

	 	

Again,	from	your	experience	with	putting	a	SolidColorBrush	object	in	a	Button,	you	know	that	

this	will	be	even	worse:	All	you’ll	get	will	be	141	instances	of	a	text	string	with	the	fully

qualified	class	name	“System.Windows.Media.SolidColorBrush”.	

But	wait:	Look	at	that	property	setting	on	the	ListBox:	

DisplayMemberPath="Color"

This	property	is	defined	by	ItemsControl,	and	it	allows	you	to	specify	one	property	of	the	

items	in	the	items	control	that	you	want	used	for	display	purposes.	(Of	course,	it	helps	if	all	

the	items	are	of	the	same	type,	which	is	not	otherwise	a	requirement.)	With	this	property	

setting,	ListBox will	not	display	the	SolidColorBrush object	but	will	instead	display	the	Color

property	of	each	SolidColorBrush,	and	the	same	hexadecimal	values	as	the	ItemsControl.	

The	third	column	is	a	ListBox	done	right.	It	has	the	same	141	SolidColorBrush items	as	the	first	

ListBox	but	it	also	has	a	DataTemplate	set	to	its	ItemTemplate	property	that	allows	it	to	format	

the	display	of	the	items:	

Silverlight Project: File: (excerpt)

<ListBox Grid.Column="2">

<ListBox.ItemTemplate>

<DataTemplate>

<StackPanel Orientation="Horizontal">

<Rectangle Width="48" Height="36"

 Margin="2"

 Fill="{Binding}" />

<StackPanel Orientation="Horizontal"

 VerticalAlignment="Center">

<TextBlock Text="{Binding Color.R,

Converter={StaticResource stringFormat},

ConverterParameter=' {0:X2}'}" />

<TextBlock Text="{Binding Color.G,

Converter={StaticResource stringFormat},

ConverterParameter='-{0:X2}'}" />

<TextBlock Text="{Binding Color.B,

Converter={StaticResource stringFormat},

ConverterParameter='-{0:X2}'}" />

</StackPanel>

</StackPanel>

</DataTemplate>

</ListBox.ItemTemplate>

<SolidColorBrush Color="AliceBlue" />

<SolidColorBrush Color="AntiqueWhite" />

<SolidColorBrush Color="Aqua" />

<SolidColorBrush Color="Aquamarine" />

<SolidColorBrush Color="Azure" />

 …

<SolidColorBrush Color="Wheat" />

651	

	

	

	 	 	

	 	 	

	

	 	 	 	 	 	

	 	 	

	 	 	

	 	 	

	 	

	 	 	 	

	 	 	 	

	

	

<SolidColorBrush Color="White" />

<SolidColorBrush Color="WhiteSmoke" />

<SolidColorBrush Color="Yellow" />

<SolidColorBrush Color="YellowGreen" />

</ListBox>

In	this	DataTemplate,	a	Rectangle	has	its	Fill	property	set	to	an	empty	Binding:	

Fill="{Binding}"

This	means	that	Fill	is	set	to	the	particular	item	in	the	ListBox,	which	is	of	type	SolidColorBrush.	

The	three	TextBlock	elements	have	bindings	that	reference	the	R,	G,	and	B	properties	of	the	

Color	property	of	the	brush.	Although	this	ListBox still	displays	hexadecimal	numbers,	it	at	

least	displays	them	with	a	modicum	of	class:	

Defining	a	list	of	items	for	an	items	control	entirely	in	XAML	is	fine	for	a	small	number	of	fixed	

items;	the	only	reason	I	used	this	technique	with	the	141	Color values	is	because	you	can’t	

generate	them	in	Silverlight	code	by	performing	reflection	on	the	Colors	class.	(The	Colors

class	in	Silverlight	only	defines	15	of	these	colors,	so	I	wrote	a	WPF	program	instead	that	

generated	the	markup	that	I	then	pasted	into	the	Silverlight	XAML	file.)	

If	the	items	you	want	to	put	into	an	ItemsControl	or	ListBox	in	XAML	are	just	text	strings,	you	

need	to	force	the	XAML	parser	to	differentiate	them.	Perhaps	the	easiest	solution	is	to	define	

an	XML	namespace	declaration	for	the	System	namespace:	

xmlns:system="clr-namespace:System;assembly=mscorlib"

You	can	then	explicitly	delimit	the	items	with	String	tags:	

<ItemsControl>

<system:String>Item Number 1</system:String>

<system:String>Item Number 2</system:String>

<system:String>Item Number 3</system:String>

<system:String>Item Number 4</system:String>

…

</ItemsControl>

652	

	

	 	 	 	

	 	

	

	 	

	

	

	

	

	 	

	 	 	

	 	

	 	 	

	 	

	

 	

	 	

	 	

	 	 	 	 	

	 	 	

	

	 	 	

	 	

	 	 	

	 		

In	a	similar	way,	you	can	explicitly	fill	an	ItemsControl	with	numbers	using	system:Double	tags.	

If	you’re	using	a	ListBox	rather	than	ItemsControl,	you	can	separate	string	items	with	

ListBoxItem	tags:	

<ListBox>

<ListBoxItem>Item Number 1</ListBoxItem>

<ListBoxItem>Item Number 1</ListBoxItem>

<ListBoxItem>Item Number 1</ListBoxItem>

</ListBox>

Earlier	I	said	that	ListBox	automatically	generates	ListBoxItem	objects	as	containers.	Won’t	this	

markup	cause	ListBox	to	wrap	these	ListBoxItem	objects	in	additional	ListBoxItem	objects?	

Actually,	no.	Specifically	to	prevent	this	problem,	ItemsControl	defines	a	virtual	method	

named	IsItemItsOwnContainerOverride.	

In	the	previous	chapter	I	showed	you	a	little	chart	that	I	hoped	helped	differentiate	the	two	

types	of	templates	you	can	apply	to	a	ContentControl	derivative:	

Property Property Type Purpose

Template ControlTemplate customizes	display	of	control	“chrome”	

ContentTemplate DataTemplate customizes	display	of	content	

For	an	items	control,	there	are	three	types	of	templates	you	can	use,	and	another	is	indirectly	

available	for	ListBox	and	ComboBox.	These	are	listed	as	you	might	encounter	them	from	the	

top	of	the	visual	tree	to	the	bottom	

Property Property Type Purpose

Template ControlTemplate customizes	display	of	control	“chrome”	

ItemsPanel ItemsPanelTemplate specifies	Panel	used	to	list	items	

ItemContainerStyle Style style	of	ListBoxItem	or	ComboBoxItem

ItemTemplate DataTemplate customizes	display	of	item	itself	

ListBox
Selection

Selector	(the	class	from	which	ListBox	and	ComboBox	derives)	defines	a	SelectedIndex	property	

that	indicates	the	index	of	the	selected	item,	or	the	value	is	–1	if	no	item	is	currently	selected.	

Selector	also	defines	a	SelectedItem	property,	which	is	the	item	itself,	or	null	if	there’s	no	

selected	item.	If	SelectedIndex	is	not	equal	to	–1,	SelectedItem	is	the	same	as	the	object	

returned	from	the	Items	property	when	indexed	by	SelectedIndex.	

A	SelectionChanged	event	is	fired	when	the	selection	changes.	This	event	implies	that	

SelectedItem	is	a	good	choice	for	a	binding	source.	SelectedItem	is	backed	by	a	dependency	

property,	so	it	can	also	serve	as	a	binding	target.	

653	

	

	 	

	 	 	 	

	 	

	 	

	

	

	 	 	 	

	

If	a	ListBox does	not	have	its	SelectedIndex	or	SelectedItem	properties	explicitly	set,	and	the	

user	has	not	yet	touched	the	ListBox,	SelectedIndex	will	be	–1	and	SelectedItem	will	be	null.	It’s	

helpful	to	prepare	for	these	eventualities.	

The	ListBoxSelection	program	allows	a	user	to	pick	a	Color	and	a	FontFamily	from	two	ListBox

controls	and	displays	some	text	using	those	selections.	The	Resources	collection	contains	a	

standard	binding	converter	and	a	Style	for	the	ListBox:	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.Resources>

<petzold:StringFormatConverter x:Name="stringFormat" />

<Style x:Key="listBoxStyle"

 TargetType="ListBox">

<Setter Property="BorderBrush"

 Value="{StaticResource PhoneForegroundBrush}" />

<Setter Property="BorderThickness"

 Value="{StaticResource PhoneBorderThickness}" />

<Setter Property="HorizontalAlignment" Value="Center" />

<Setter Property="Margin" Value="3" />

<Setter Property="Padding" Value="3" />

</Style>

</phone:PhoneApplicationPage.Resources>

All	three	elements	are	in	a	threerow	Grid:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Grid.RowDefinitions>

<RowDefinition Height="*" />

<RowDefinition Height="*" />

<RowDefinition Height="Auto" />

</Grid.RowDefinitions>

…

</Grid>

The	first	ListBox	contains	a	list	of	SolidColorBrush objects	with	the	same	DataTemplate	used	in	

the	previous	program	to	format	the	items:	

Silverlight Project: File: (excerpt)

<ListBox Name="brushListBox"

 Grid.Row="0"

654	

	

	 	 	

	

	 	 	

	 	 	 	

	 	 	

	 	

	 	 	 	 	

	 	

	

	

 SelectedIndex="0"

 Style="{StaticResource listBoxStyle}">

<ListBox.ItemTemplate>

<DataTemplate>

<StackPanel Orientation="Horizontal">

<Rectangle Width="48" Height="36"

 Margin="2"

 Fill="{Binding}" />

<StackPanel Orientation="Horizontal"

 VerticalAlignment="Center">

<TextBlock Text="{Binding Color.R,

 Converter={StaticResource stringFormat},

 ConverterParameter=' {0:X2}'}" />

<TextBlock Text="{Binding Color.G,

 Converter={StaticResource stringFormat},

 ConverterParameter='-{0:X2}'}" />

<TextBlock Text="{Binding Color.B,

 Converter={StaticResource stringFormat},

 ConverterParameter='-{0:X2}'}" />

</StackPanel>

</StackPanel>

</DataTemplate>

</ListBox.ItemTemplate>

<SolidColorBrush Color="AliceBlue" />

<SolidColorBrush Color="AntiqueWhite" />

<SolidColorBrush Color="Aqua" />

<SolidColorBrush Color="Aquamarine" />

<SolidColorBrush Color="Azure" />

 …

<SolidColorBrush Color="Wheat" />

<SolidColorBrush Color="White" />

<SolidColorBrush Color="WhiteSmoke" />

<SolidColorBrush Color="Yellow" />

<SolidColorBrush Color="YellowGreen" />

</ListBox>

Notice	that	SelectedIndex	is	explicitly	set	to	0	so	that	the	ListBox	will	have	a	valid	SelectedItem

at	startup.	

The	second	ListBox displays	font	families.	I	would	have	preferred	using	actual	FontFamily

objects	but	they	cannot	be	created	in	XAML	because	FontFamily does	not	have	a	

parameterless	constructor.	Instead,	I	stored	the	names	as	strings.	SelectedIndex	is	initialized	at	

5,	a	number	I	chose	pretty	much	at	random.	

When	you	see	a	ListBox displaying	font	families,	do	you	expect	the	names	to	be	displayed	in	

the	actual	fonts?	That’s	easy	to	implement	with	DataTemplate.	Just	bind	both	the	Text	and	the	

FontFamily	properties	of	a	TextBlock	to	the	items	in	the	ListBox:	

655

	

	

	 	

	 	 	

	

Silverlight Project: File: (excerpt)

<ListBox Name="fontFamilyListBox"

 Grid.Row="1"

 SelectedIndex="5"

 Style="{StaticResource listBoxStyle}">

<ListBox.ItemTemplate>

<DataTemplate>

<TextBlock Text="{Binding}"

 FontFamily="{Binding}" />

</DataTemplate>

</ListBox.ItemTemplate>

<system:String>Arial</system:String>

<system:String>Arial Black</system:String>

<system:String>Calibri</system:String>

<system:String>Comic Sans MS</system:String>

<system:String>Courier New</system:String>

<system:String>Georgia</system:String>

<system:String>Lucida Sans Unicode</system:String>

<system:String>Portable User Interface</system:String>

<system:String>Segoe WP</system:String>

<system:String>Segoe WP Black</system:String>

<system:String>Segoe WP Bold</system:String>

<system:String>Segoe WP Light</system:String>

<system:String>Segoe WP Semibold</system:String>

<system:String>Segoe WP SemiLight</system:String>

<system:String>Tahoma</system:String>

<system:String>Times New Roman</system:String>

<system:String>Trebuchet MS</system:String>

<system:String>Verdana</system:String>

<system:String>Webdings</system:String>

</ListBox>

Because	the	items	in	the	ListBox	are	strings	rather	than	FontFamily	objects,	I	wasn’t	sure	the	

binding	to	FontFamily in	the	template	would	work,	but	it	did.	

The	XAML	file	concludes	with	a	TextBlock not	in	any	template	at	all.	Two	of	its	properties	are	

binding	targets	referencing	the	two	ListBox	controls:	

Silverlight Project: File: (excerpt)

<TextBlock Grid.Row="2"

 Text="Sample Text"

 FontSize="{StaticResource PhoneFontSizeExtraLarge}"

 HorizontalAlignment="Center"

 Margin="12"

 Foreground="{Binding ElementName=brushListBox,

 Path=SelectedItem}"

656	

	

	 	 	 	

	 	

	

	

	 	 	

	 	

	

	 	 	 	 	

	 	

	 	

	 	

	 	 	 	 	 	 	

	 	 	 	

	 	 	 	

	

 FontFamily="{Binding ElementName=fontFamilyListBox,

 Path=SelectedItem}" />

When	I	was	first	developing	this	program,	it	seemed	like	the	FontFamily binding	in	the	

DataTemplate was	working	fine	but	the	FontFamily	binding	on	the	bottom	TextBlock	was	

causing	a	nasty	runtime	exception.	I	wrote	a	StringToFontFamilyConverter	(which	is	still	in	the	

Petzold.Phone.Silverlight	library)	but	the	problem	really	seemed	to	be	related	to	a	

SelectedItem	value	of	null	from	the	ListBox.	Once	I	fixed	that	problem	by	explicitly	initializing	

SelectedIndex,	the	binding	problem	disappeared.	

As	you	play	with	this	program	you’ll	see	that	the	TextBlock	changes	height	somewhat	as	the	

FontFamily	changes.	This	has	a	ripple	effect	by	causing	changes	to	the	two	ListBox	heights.	A	

ListBox	can	also	be	susceptible	to	changes	in	width.	If	HorizontalAlignment	is	not	Stretch,	a	

ListBox	will	be	only	as	wide	as	it	needs	to	be,	but	because	a	ListBox	uses	a	

VirtualizingStackPanel by	default,	visual	trees	for	items	are	created	only	as	they	are	needed	to	

be	displayed.	The	ListBox	might	not	know	the	width	of	its	widest	item	at	all	times.	It	can	be	

very	disconcerting	to	see	a	ListBox	change	width	as	you	scroll	through	the	items!	

For	these	reasons,	a	ListBox	is	often	given	an	explicit	width	and	height,	or	a	specific	width	and	

height	is	imposed	through	a	Grid.	

657

	

	 	

	

	 	 	 	 	

	 	

	 	

	 	

	 	 	 	

	 	

	

	

	 	

	 	 	 	 	

	 	

	 	

	 	

	 	 	

	

	

	

Binding
to
ItemsSource
You’ve	seen	how	to	fill	an	items	control	through	code	or	with	a	list	in	XAML.	You	can	also	set	

the	items	using	the	ItemsSource	property	defined	by	ItemsControl.	The	ItemsSource	property	

is	of	type	IEnumerable so	you	can	pretty	much	use	any	collection	type,	including	a	simple	

array.	However,	if	you’re	dealing	with	a	collection	where	items	can	be	added	or	removed	

dynamically,	then	it	is	very	common	to	use	the	ObservableCollection	class,	which	implements	

the	INotifyCollectionChanged	interface.	The	items	control	installs	a	handler	for	this	event	to	be	

notified	when	the	collection	changes	and	then	updates	itself	accordingly.	

When	working	with	data	it	is	often	necessary	to	provide	a	software	layer	between	the	actual	

objects	you	want	to	display	and	the	user	interface	elements	that	display	them.	A	plunge	into	

the	murky	depths	of	modelview	architectures	is	rather	beyond	the	focus	of	this	book.	Instead	

I’ll	take	a	more	relaxed	approach	and	discuss	simple	intermediary	classes	sometimes	referred	

to	as	presenters.	

Let’s	create	a	ColorPresenter	class	that	can	fill	up	a	ListBox	with	the	140	standard	colors	

(excluding	Transparent)	by	a	single	binding	to	ItemsSource	and	at	the	same	time	provide	

properties	that	allows	displaying	these	colors	in	a	more	userfriendly	manner.	

It	remains	a	mystery	why	the	Colors class	in	Silverlight	defines	only	15	static	properties	of	type	

Color	instead	of	141.	That	makes	the	ColorPresenter	class	rather	awkward.	I	already	had	a	WPF	

program	that	used	reflection	on	the	WPF	Colors	class,	so	I	adapted	that	to	generate	the	color	

names	and	values	that	I	pulled	into	this	class.	Here	they	are	in	two	static	arrays	in	the	

ColorPresenter	class	in	the	Petzold.Phone.Silverlight	library:	

Silverlight Project: Petzold.Phone.Silverlight File: ColorPresenter.cs

using System;

using System.Text;

using System.Windows.Media;

namespace Petzold.Phone.Silverlight

{

public class ColorPresenter

 {

static string[] colorNames =

{

"AliceBlue", "AntiqueWhite", "Aqua", "Aquamarine", "Azure",

"Beige", "Bisque", "Black", "BlanchedAlmond", "Blue", "BlueViolet",

"Brown", "BurlyWood", "CadetBlue", "Chartreuse", "Chocolate",

"Coral", "CornflowerBlue", "Cornsilk", "Crimson", "Cyan",

"DarkBlue", "DarkCyan", "DarkGoldenrod", "DarkGray", "DarkGreen",

"DarkKhaki", "DarkMagenta", "DarkOliveGreen", "DarkOrange",

"DarkOrchid", "DarkRed", "DarkSalmon", "DarkSeaGreen",

"DarkSlateBlue", "DarkSlateGray", "DarkTurquoise", "DarkViolet",

"DeepPink", "DeepSkyBlue", "DimGray", "DodgerBlue", "Firebrick",

658	

	

"FloralWhite", "ForestGreen", "Fuchsia", "Gainsboro", "GhostWhite",

"Gold", "Goldenrod", "Gray", "Green", "GreenYellow", "Honeydew",

"HotPink", "IndianRed", "Indigo", "Ivory", "Khaki", "Lavender",

"LavenderBlush", "LawnGreen", "LemonChiffon", "LightBlue",

"LightCoral", "LightCyan", "LightGoldenrodYellow", "LightGray",

"LightGreen", "LightPink", "LightSalmon", "LightSeaGreen",

"LightSkyBlue", "LightSlateGray", "LightSteelBlue", "LightYellow",

"Lime", "LimeGreen", "Linen", "Magenta", "Maroon",

"MediumAquamarine", "MediumBlue", "MediumOrchid", "MediumPurple",

"MediumSeaGreen", "MediumSlateBlue", "MediumSpringGreen",

"MediumTurquoise", "MediumVioletRed", "MidnightBlue", "MintCream",

"MistyRose", "Moccasin", "NavajoWhite", "Navy", "OldLace", "Olive",

"OliveDrab", "Orange", "OrangeRed", "Orchid", "PaleGoldenrod",

"PaleGreen", "PaleTurquoise", "PaleVioletRed", "PapayaWhip",

"PeachPuff", "Peru", "Pink", "Plum", "PowderBlue", "Purple", "Red",

"RosyBrown", "RoyalBlue", "SaddleBrown", "Salmon", "SandyBrown",

"SeaGreen", "SeaShell", "Sienna", "Silver", "SkyBlue", "SlateBlue",

"SlateGray", "Snow", "SpringGreen", "SteelBlue", "Tan", "Teal",

"Thistle", "Tomato", "Turquoise", "Violet", "Wheat", "White",

"WhiteSmoke", "Yellow", "YellowGreen"

};

static uint[] uintColors =

{

 0xFFF0F8FF, 0xFFFAEBD7, 0xFF00FFFF, 0xFF7FFFD4, 0xFFF0FFFF,

 0xFFF5F5DC, 0xFFFFE4C4, 0xFF000000, 0xFFFFEBCD, 0xFF0000FF,

 0xFF8A2BE2, 0xFFA52A2A, 0xFFDEB887, 0xFF5F9EA0, 0xFF7FFF00,

 0xFFD2691E, 0xFFFF7F50, 0xFF6495ED, 0xFFFFF8DC, 0xFFDC143C,

 0xFF00FFFF, 0xFF00008B, 0xFF008B8B, 0xFFB8860B, 0xFFA9A9A9,

 0xFF006400, 0xFFBDB76B, 0xFF8B008B, 0xFF556B2F, 0xFFFF8C00,

 0xFF9932CC, 0xFF8B0000, 0xFFE9967A, 0xFF8FBC8F, 0xFF483D8B,

 0xFF2F4F4F, 0xFF00CED1, 0xFF9400D3, 0xFFFF1493, 0xFF00BFFF,

 0xFF696969, 0xFF1E90FF, 0xFFB22222, 0xFFFFFAF0, 0xFF228B22,

 0xFFFF00FF, 0xFFDCDCDC, 0xFFF8F8FF, 0xFFFFD700, 0xFFDAA520,

 0xFF808080, 0xFF008000, 0xFFADFF2F, 0xFFF0FFF0, 0xFFFF69B4,

 0xFFCD5C5C, 0xFF4B0082, 0xFFFFFFF0, 0xFFF0E68C, 0xFFE6E6FA,

 0xFFFFF0F5, 0xFF7CFC00, 0xFFFFFACD, 0xFFADD8E6, 0xFFF08080,

 0xFFE0FFFF, 0xFFFAFAD2, 0xFFD3D3D3, 0xFF90EE90, 0xFFFFB6C1,

 0xFFFFA07A, 0xFF20B2AA, 0xFF87CEFA, 0xFF778899, 0xFFB0C4DE,

 0xFFFFFFE0, 0xFF00FF00, 0xFF32CD32, 0xFFFAF0E6, 0xFFFF00FF,

 0xFF800000, 0xFF66CDAA, 0xFF0000CD, 0xFFBA55D3, 0xFF9370DB,

 0xFF3CB371, 0xFF7B68EE, 0xFF00FA9A, 0xFF48D1CC, 0xFFC71585,

 0xFF191970, 0xFFF5FFFA, 0xFFFFE4E1, 0xFFFFE4B5, 0xFFFFDEAD,

 0xFF000080, 0xFFFDF5E6, 0xFF808000, 0xFF6B8E23, 0xFFFFA500,

 0xFFFF4500, 0xFFDA70D6, 0xFFEEE8AA, 0xFF98FB98, 0xFFAFEEEE,

 0xFFDB7093, 0xFFFFEFD5, 0xFFFFDAB9, 0xFFCD853F, 0xFFFFC0CB,

 0xFFDDA0DD, 0xFFB0E0E6, 0xFF800080, 0xFFFF0000, 0xFFBC8F8F,

 0xFF4169E1, 0xFF8B4513, 0xFFFA8072, 0xFFF4A460, 0xFF2E8B57,

 0xFFFFF5EE, 0xFFA0522D, 0xFFC0C0C0, 0xFF87CEEB, 0xFF6A5ACD,

 0xFF708090, 0xFFFFFAFA, 0xFF00FF7F, 0xFF4682B4, 0xFFD2B48C,

 0xFF008080, 0xFFD8BFD8, 0xFFFF6347, 0xFF40E0D0, 0xFFEE82EE,

 0xFFF5DEB3, 0xFFFFFFFF, 0xFFF5F5F5, 0xFFFFFF00, 0xFF9ACD32

};

// Static constructor

659	

	

static ColorPresenter()

{

 Colors = new ColorPresenter[140];

for (int i = 0; i < 140; i++)

 {

// Break down the color into components

byte A = (byte)((uintColors[i] & 0xFF000000) >> 24);

byte R = (byte)((uintColors[i] & 0x00FF0000) >> 16);

byte G = (byte)((uintColors[i] & 0x0000FF00) >> 8);

byte B = (byte)((uintColors[i] & 0x000000FF) >> 0);

// Create a display name for the color

StringBuilder builder = new StringBuilder();

foreach (char ch in colorNames[i])

 {

if (builder.Length == 0 || Char.IsLower(ch))

 builder.Append(ch);

else

 {

 builder.Append(' ');

 builder.Append(ch);

}

 }

// Create a ColorPresenter for each color

ColorPresenter clrPresenter = new ColorPresenter();

 clrPresenter.Color = Color.FromArgb(A, R, G, B);

 clrPresenter.Name = colorNames[i];

 clrPresenter.DisplayName = builder.ToString();

 clrPresenter.Brush = new SolidColorBrush(clrPresenter.Color);

// Add it to the static array

 Colors[i] = clrPresenter;

 }

}

public static ColorPresenter[] Colors { protected set; get; }

public Color Color { protected set; get; }

public string Name { protected set; get; }

public string DisplayName { protected set; get; }

public Brush Brush { protected set; get; }

public override string ToString()

{

return Name;

}

 }

}

660	

	

	 	 	 	

	 	 	

	

	 	 	

	

	 	

	 	 	 	

	

	 	 	 	

	 	 	

	 	 	

	 	

	 	 	 	

	 	 	

	 	

	

Towards	the	bottom	you’ll	see	the	public	instance	properties	that	ColorPresenter	exposes:	

Color	of	type	Color,	Brush	of	type	Brush,	but	also	Name	of	type	string,	and	DisplayName.	The	

DisplayName property	converts	the	singleword	camelcased	standard	names	to	multiple	

words.	For	example	“AliceBlue”	becomes	“Alice	Blue”.	

ColorPresenter	also	exposes	a	public	static	property	named	Colors.	This	is	an	array	of	all	140	

ColorPresenter	objects.	This	array	and	all	its	contents	are	created	in	the	class’s	static	

constructor.	

If	you	were	using	ColorPresenter	solely	in	code,	you	wouldn’t	need	to	create	any	additional	

instances	of	the	class.	You	could	simply	access	the	static	ColorPresenter.Colors	property	to	get	

all	140	ColorPresenter	objects.	

However,	Silverlight	doesn’t	provide	a	way	to	access	a	static	property	in	XAML	without	

instantiating	the	class	containing	that	property,	so	the	ColorPresenterDemo	project	includes	

the	ColorPresenter	class	in	its	Resources	collection:	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.Resources>

<petzold:ColorPresenter x:Key="colorPresenter" />

<petzold:StringFormatConverter x:Key="stringFormat" />

</phone:PhoneApplicationPage.Resources>

The	instance	of	ColorPresenter	created	in	the	XAML	file	will	not	have	any	useful	instance	

properties,	but	the	program	only	needs	the	static	Colors	property.	

The	content	Grid	has	just	two	rows:	one	for	the	ListBox	and	one	for	a	TextBlock	with	bindings	

to	the	ListBox.	Notice	the	ItemsSource	property	of	the	ListBox	bound	to	the	Colors	property	of	

the	ColorPresenter	resource.	With	this	binding,	the	ListBox	is	filled	with	140	objects	of	type	

ColorPresenter	so	the	DataTemplate	can	have	bindings	to	the	DisplayName	and	Color

properties	of	that	class:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Grid.RowDefinitions>

<RowDefinition Height="*" />

<RowDefinition Height="Auto" />

</Grid.RowDefinitions>

<ListBox Grid.Row="0"

 Name="listBox"

 ItemsSource="{Binding Source={StaticResource colorPresenter},

 Path=Colors}">

<ListBox.ItemTemplate>

661	

	

	 	 	

	 	

<DataTemplate>

<Grid>

<Grid.ColumnDefinitions>

<ColumnDefinition Width="Auto" />

<ColumnDefinition Width="Auto" />

</Grid.ColumnDefinitions>

<Rectangle Grid.Column="0"

 Fill="{Binding Brush}"

 Width="72" Height="48"

 Margin="2 2 6 2" />

<StackPanel Grid.Column="1"

 Orientation="Horizontal"

 VerticalAlignment="Center">

<TextBlock Text="{Binding DisplayName}" />

<TextBlock Text="{Binding Color.R,

 Converter={StaticResource stringFormat},

 ConverterParameter=' ({0:X2}'}" />

<TextBlock Text="{Binding Color.G,

 Converter={StaticResource stringFormat},

 ConverterParameter='-{0:X2}'}" />

<TextBlock Text="{Binding Color.B,

 Converter={StaticResource stringFormat},

 ConverterParameter='-{0:X2})'}" />

</StackPanel>

</Grid>

</DataTemplate>

</ListBox.ItemTemplate>

</ListBox>

<TextBlock Grid.Row="1"

 FontSize="{StaticResource PhoneFontSizeExtraLarge}"

 HorizontalAlignment="Center"

 Margin="12"

Text="{Binding ElementName=listBox,

 Path=SelectedItem.DisplayName}"

 Foreground="{Binding ElementName=listBox,

Path=SelectedItem.Brush}" />

</Grid>

The	SelectedItem	property	is	also	of	type	ColorPresenter,	so	the	TextBlock	can	reference	

properties	of	ColorPresenter	for	the	bindings	to	Text	and	Foreground:	

662	

	

	

	

	 	 	

	 	 	 	 	 	 	

	

	 	

	 	 		

	 	 	 	 	

	 	 	

	 	 	 	

	 	

	

	 	

	 	 	 	

	

	 	 	 	 	 	

Putting	these	color	names	in	your	colorselection	user	interface	is	something	you	might	

consider.	Familiarity	with	these	names	goes	beyond	programmers	to	anyone	who’s	worked	

with	colors	in	HTML,	so	the	more	sophisticated	users	of	your	application	might	have	a	very	

positive	response	to	seeing	these	actual	names	on	the	screen.	

Databases
and
Business
Objects

Using	a	ListBox	to	display	Color	objects	or	FontFamily	objects	is	fine	for	some	special	

applications,	but	what	are	you	going	to	put	in	your items	control?	

In	general,	you’ll	be	filling	an	ItemsControl	or	ListBox	with	those	vague	but	ubiquitous	entities	

known	as	business objects.	

For	example,	if	you’re	creating	an	application	that	lets	a	user	pick	a	hotel,	it’s	likely	you’ll	have	

a	class	named	Hotel,	and	objects	of	Hotel	will	go	into	your	ListBox.	As	a	business	object,	Hotel

is	not	going	to	derive	from	FrameworkElement.	But	it	is	very	likely	that	Hotel	will	implement	

INotifyPropertyChanged	so	it	can	dynamically	indicate	a	room	rate	that’s	just	been	reduced.	

Another	business	object	will	maintain	a	collection	of	Hotel	objects,	probably	using	

ObservableCollection	and	implementing	INotifyCollectionChanged to	dynamically	indicate	

changes	when	a	new	hotel	opens	its	doors.	

To	get	at	least	a	little	closer	to	a	reallife	example,	I’m	going	to	spend	the	remainder	of	the	

chapter	focusing	on	programs	that	use	a	database	of	high	school	students.	In	these	examples,	

the	database	is	downloaded	from	a	directory	on	my	web	site,	but	because	I	want	to	focus	

663	

	

	 	 	

	

	 	 	

	 	

	 	

	 	

	 	 	 	

	

	

	

	

solely	on	the	presentation	of	this	data	in	this	chapter,	changes	to	properties	of	the	Student

class	will	be	simulated	locally.		

The	http://www.charlespetzold.com/Students	directory	of	my	Web	site	contains	a	file	named	

students.xml	that	contains	data	on	69	students.	The	directory	also	contains	lovely	blackand

white	photographs	of	all	these	students.	These	photographs	are	from	high	school	yearbooks	

from	El	Paso,	Texas	for	the	years	1912	through	1914.	The	yearbooks	are	in	the	public	domain	

and	were	graciously	digitized	by	the	El	Paso	Public	Library	and	available	on	their	Web	site	at	

http://www.elpasotexas.gov/library/ourlibraries/main_library/yearbooks/yearbooks.asp.	

Among	the	source	code	for	Chapter	17	is	a	library	project	named	ElPasoHighSchool	that	

contains	several	classes	to	read	the	XML	file	from	my	Web	site	and	deserialize	it	into	.NET	

objects.	

Here’s	the	Student	class.	It	implements	INotifyPropertyChanged	and	has	several	properties	

pertaining	to	the	student,	including	name,	sex,	a	filename	referencing	the	photograph,	and	a	

grade	point	average:	

Silverlight Project: File:

using System;

using System.ComponentModel;

namespace ElPasoHighSchool

{

public class Student : INotifyPropertyChanged

 {

public event PropertyChangedEventHandler PropertyChanged;

string fullName;

string firstName;

string middleName;

string lastName;

string sex;

string photoFilename;

decimal gradePointAverage;

public string FullName

{

set

 {

if (fullName != value)

{

 fullName = value;

 OnPropertyChanged("FullName");

 }

 }

get

 {

return fullName;

664	

	

 }

}

public string FirstName

{

set

 {

if (firstName != value)

{

 firstName = value;

 OnPropertyChanged("FirstName");

}

 }

get

 {

return firstName;

 }

}

public string MiddleName

{

set

 {

if (middleName != value)

{

 middleName = value;

 OnPropertyChanged("MiddleName");

 }

 }

get

 {

return middleName;

 }

}

public string LastName

{

set

 {

if (lastName != value)

{

 lastName = value;

 OnPropertyChanged("LastName");

 }

 }

get

 {

return lastName;

 }

}

public string Sex

{

set

 {

665

	

if (sex != value)

{

 sex = value;

 OnPropertyChanged("Sex");

 }

 }

get

 {

return sex;

 }

}

public string PhotoFilename

{

set

 {

if (photoFilename != value)

{

 photoFilename = value;

 OnPropertyChanged("PhotoFilename");

 }

 }

get

 {

return photoFilename;

 }

}

public decimal GradePointAverage

{

set

 {

if (gradePointAverage != value)

{

 gradePointAverage = value;

 OnPropertyChanged("GradePointAverage");

 }

 }

get

 {

return gradePointAverage;

 }

}

protected virtual void OnPropertyChanged(string propChanged)

{

if (PropertyChanged != null)

 PropertyChanged(this, new PropertyChangedEventArgs(propChanged));

}

 }

}

666	

	

	 	 	

	

There	will	be	one	instance	of	the	Student class	for	each	student.	Changes	to	any	of	these	

properties	cause	a	PropertyChanged	event	to	fire.	Thus,	this	class	is	suitable	as	a	source	for	

data	bindings.	

The	StudentBody	class	also	implements	INotifyPropertyChanged:	

Silverlight Project: ElPasoHighSchool File: StudentBody.cs

using System;

using System.Collections.ObjectModel;

using System.ComponentModel;

using System.Xml.Serialization;

namespace ElPasoHighSchool

{

public class StudentBody : INotifyPropertyChanged

 {

public event PropertyChangedEventHandler PropertyChanged;

string school;

ObservableCollection<Student> students =

new ObservableCollection<Student>();

public string School

{

set

 {

if (school != value)

{

 school = value;

 OnPropertyChanged("School");

}

 }

get

 {

return school;

 }

}

public ObservableCollection<Student> Students

{

set

 {

if (students != value)

{

 students = value;

 OnPropertyChanged("Students");

 }

 }

get

 {

return students;

 }

667	

	

	 	 	

	 	 	

	 	 	

	 	

	

	 	 	 	

}

protected virtual void OnPropertyChanged(string propChanged)

{

if (PropertyChanged != null)

 PropertyChanged(this, new PropertyChangedEventArgs(propChanged));

}

 }

}

This	class	contains	a	property	indicating	the	name	of	the	school	and	an	ObservableCollection

of	type	Student	to	store	all	the	Student	objects.	ObservableCollection	is	a	very	popular	

collection	class	in	Silverlight	because	it	implements	the	INotifyCollectionChanged	interface,	

which	means	that	it	fires	a	CollectionChanged	event	whenever	an	item	is	added	to	or	removed	

from	the	collection.	

Before	continuing,	let’s	take	a	look	at	an	excerpt	of	the	student.xml	file,	which	resides	on	my	

Web	site:	

File: http://www.charlespetzold.com/Students/students.xml (excerpt)

<?xml version="1.0" encoding="utf-8"?>

<StudentBody xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <School>El Paso High School</School>

 <Students>

 <Student>

 <FullName>Adkins Bowden</FullName>

 <FirstName>Adkins</FirstName>

 <MiddleName />

 <LastName>Bowden</LastName>

 <Sex>Male</Sex>

 <PhotoFilename>

 http://www.charlespetzold.com/Students/AdkinsBowden.png

 </PhotoFilename>

 <GradePointAverage>2.71</GradePointAverage>

 </Student>

 <Student>

 <FullName>Alfred Black</FullName>

 <FirstName>Alfred</FirstName>

 <MiddleName />

 <LastName>Black</LastName>

 <Sex>Male</Sex>

 <PhotoFilename>

 http://www.charlespetzold.com/Students/AlfredBlack.png

 </PhotoFilename>

 <GradePointAverage>2.87</GradePointAverage>

 </Student>

 …

 <Student>

668	

	

	 	

	 	 	

	 	 	 	

	

 <FullName>William Sheley Warnock</FullName>

 <FirstName>William</FirstName>

 <MiddleName>Sheley</MiddleName>

 <LastName>Warnock</LastName>

 <Sex>Male</Sex>

 <PhotoFilename>

 http://www.charlespetzold.com/Students/WilliamSheleyWarnock.png

 </PhotoFilename>

 <GradePointAverage>1.82</GradePointAverage>

 </Student>

 </Students>

</StudentBody>

As	you	can	see,	the	element	tags	correspond	to	properties	in	the	Student	and	StudentBody

classes.	I	created	this	file	using	XML	serialization	with	the	XmlSerializer	class,	and	XML	

deserialization	can	convert	it	back	into	Student	and	StudentBody	objects.	That	is	the	function	

of	the	StudentBodyPresenter	class,	which	again	implements	INotifyPropertyChanged:	

Silverlight Project: ElPasoHighSchool File: StudentBodyPresenter.cs

using System;

using System.ComponentModel;

using System.IO;

using System.Net;

using System.Windows.Threading;

using System.Xml.Serialization;

namespace ElPasoHighSchool

{

public class StudentBodyPresenter : INotifyPropertyChanged

 {

public event PropertyChangedEventHandler PropertyChanged;

StudentBody studentBody;

Random rand = new Random();

public StudentBodyPresenter()

{

Uri uri =

new Uri("http://www.charlespetzold.com/Students/students.xml");

WebClient webClient = new WebClient();

 webClient.DownloadStringCompleted += OnDownloadStringCompleted;

 webClient.DownloadStringAsync(uri);

}

void OnDownloadStringCompleted(object sender,

DownloadStringCompletedEventArgs args)

{

StringReader reader = new StringReader(args.Result);

XmlSerializer xml = new XmlSerializer(typeof(StudentBody));

 StudentBody = xml.Deserialize(reader) as StudentBody;

669

	

	

	

	 	

	 	 	

	 	 	 	

	 	

	 	 	

DispatcherTimer tmr = new DispatcherTimer();

 tmr.Tick += TimerOnTick;

 tmr.Interval = TimeSpan.FromMilliseconds(100);

 tmr.Start();

}

public StudentBody StudentBody

{

protected set

 {

if (studentBody != value)

{

 studentBody = value;

 OnPropertyChanged("StudentBody");

 }

 }

get

 {

return studentBody;

 }

}

protected virtual void OnPropertyChanged(string propChanged)

{

if (PropertyChanged != null)

 PropertyChanged(this, new PropertyChangedEventArgs(propChanged));

}

void TimerOnTick(object sender, EventArgs args)

{

int index = rand.Next(studentBody.Students.Count);

Student student = studentBody.Students[index];

double factor = 1 + (rand.NextDouble() - 0.5) / 5;

 student.GradePointAverage =

Math.Max(0, Math.Min(5, Decimal.Round((decimal)factor *

 student.GradePointAverage, 2)));

}

 }

}

The	constructor	of	the	StudentBodyPresenter	class	uses	WebClient	to	access	the	students.xml	

file.	As	you’ll	recall,	WebClient	performs	asynchronous	web	accesses,	so	it	needs	a	callback	to	

signal	the	program	when	it’s	completed.	The	Deserialize method	of	the	XmlSerializer	class	

then	converts	the	XML	text	file	into	an	actual	StudentBody object,	which	is	available	as	a	

public	property	to	this	class.	When	the	OnDownloadStringCompleted	callback	sets	that	

StudentBody	property,	the	class	fires	its	first	and	only	PropertyChanged	event.	

The	OnDownloadStringCompleted	callback	also	starts	up	a	DispatcherTimer	that	simulates	

changes	to	the	data.	Ten	times	a	second,	the	GradePointAverage	property	of	one	of	the	

670	

	

	 	 	

	 	

	 	 	

	 	

	

	 	

	

	

	

	

students	changes,	causing	the	particular	Student class	to	fire	a	PropertyChanged	event.	We	

hope	very	much	to	witness	those	dynamic	changes	on	screen.	

You	can	begin	experimenting	with	this	database	by	opening	up	a	new	Silverlight	project,	

making	a	reference	to	the	ElPasoHighSchool.dll	library,	and	putting	an	XML	namespace	

declaration	in	the	MainPage.xaml	file:	

xmlns:elpaso="clr-namespace:ElPasoHighSchool;assembly=ElPasoHighSchool"

You	then	instantiate	this	the	StudentBodyPresenter	class	in	the	Resources	collection:	

<phone:PhoneApplicationPage.Resources>

<elpaso:StudentBodyPresenter x:Key="studentBodyPresenter" />

</phone:PhoneApplicationPage.Resources>

You	can	then	put	a	TextBlock	in	the	content	area	with	a	binding	to	that	resource:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<TextBlock HorizontalAlignment="Center"

 VerticalAlignment="Center"

 Text="{Binding Source={StaticResource studentBodyPresenter},

 Path=StudentBody.School}" />

</Grid>

The	screen	indicates	that	the	program	is	successfully	downloading	and	deserializing	the	

students.xml	file:	

671	

	

	 	

	

	 	

	 	

Changing	the	binding	path	from	StudentBody.School	to	StudentBody.Students	indicates	an	

ObservableCollection:	

It’s	possible	to	access	the	Count	property	of	the	ObservableCollection:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<TextBlock HorizontalAlignment="Center"

 VerticalAlignment="Center"

 Text="{Binding Source={StaticResource studentBodyPresenter},

 Path=StudentBody.Students.Count}" />

</Grid>

And	the	Students	collection	can	be	indexed:	

<TextBlock HorizontalAlignment="Center"

 VerticalAlignment="Center"

 Text="{Binding Source={StaticResource studentBodyPresenter},

 Path=StudentBody.Students[23]}" />

672	

	

	

	

	 	 	

	

	

This	shows	us	that	the	Students	collection	contains	objects	of	type	Student:	

To	avoid	making	this	binding	even	longer,	let’s	split	it	up	by	setting	a	DataContext	on	the	

content	Grid.	The	DataContext	is	inherited	through	the	visual	tree	and	simplifies	the	binding	

on	the	TextBlock:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0"

 DataContext="{Binding Source={StaticResource studentBodyPresenter},

 Path=StudentBody}">

<TextBlock HorizontalAlignment="Center"

 VerticalAlignment="Center"

 Text="{Binding Path=Students[23].FullName}" />

</Grid>

673	

	

	

	 	 	

	 	

	

That	binding	references	a	particular	student’s	name:	

The	binding	can	be	simplified	even	more	by	eliminating	the	“Path=”	part:	

<TextBlock HorizontalAlignment="Center"

 VerticalAlignment="Center"

 Text="{Binding Students[23].FullName}" />

Now	let’s	replace	the	TextBlock	with	an	Image	element	referencing	the	PhotoFilename

property	of	the	Student	class:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0"

 DataContext="{Binding Source={StaticResource studentBodyPresenter},

 Path=StudentBody}">

<Image HorizontalAlignment="Center"

 VerticalAlignment="Center"

 Stretch="None"

 Source="{Binding Students[23].PhotoFilename}" />

</Grid>

674	

	

	 	 	

	

	 	

	

	 	

	 	 	 	 	 	

	 	

	 	 	

	 	

And	we	get	the	photo	successfully	downloaded	and	displayed:	

Now	it’s	time	to	stop	fooling	around	and	put	an	actual	ListBox	in	there:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0"

 DataContext="{Binding Source={StaticResource studentBodyPresenter},

 Path=StudentBody}">

<ListBox ItemsSource="{Binding Students}" />

</Grid>

The	Students	property	is	of	type	ObservableCollection,	which	of	course	implements	

IEnumerable,	which	is	all	that	ListBox	really	requires	for	its	ItemsSource.	But	ListBox	also	

determines	if	the	object	bound	to	ItemsSource	can	do	a	little	more,	for	example,	if	it	

implements	INotifyCollectionChanged,	which	ObservableCollection	does.	So	if	somehow	a	new	

Student	were	added	to	the	collection,	or	other	students	were	removed	from	the	collection	as	

they	graduated,	the	ListBox	would	know	about	that	and	change	the	items	it	was	displaying.	

675	

	

	 	

	

	 	 	 	

	 	

	

	

At	the	moment,	the	ListBox	doesn’t	seem	to	be	overjoyed	with	this	data:	

Whenever	you	see	a	ListBox	or	ItemsControl	with	a	bunch	of	identical	class	names	listed,	don’t	

despair.	You	should	instead	rejoice!	Such	a	display	shows	that	the	ListBox	has	been	

successfully	filled	with	items	of	the	same	type,	and	all	it	needs	to	display	something	

meaningful	is	a	DataTemplate	or	(if	we’re	lazy)	a	DisplayMemberPath	setting;	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0"

 DataContext="{Binding Source={StaticResource studentBodyPresenter},

 Path=StudentBody}">

<ListBox ItemsSource="{Binding Students}"

 DisplayMemberPath="FullName" />

</Grid>

676	

	

	

	

	 	 	

	 	 	 	

	 	 	

	 	 	 	 	

Here	it	is:	

Let’s	leave	the	ListBox	like	that	for	now,	and	instead	focus	on	displaying	the	selected	item	

from	the	ListBox.	

By	adding	another	row	to	the	Grid,	we	can	put	a	TextBlock down	at	the	bottom	of	the	display:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0"

 DataContext="{Binding Source={StaticResource studentBodyPresenter},

 Path=StudentBody}">

<Grid.RowDefinitions>

<RowDefinition Height="*" />

<RowDefinition Height="Auto" />

</Grid.RowDefinitions>

<ListBox Grid.Row="0"

 Name="listBox"

 ItemsSource="{Binding Students}"

 DisplayMemberPath="FullName" />

<TextBlock Grid.Row="1"

 FontSize="{StaticResource PhoneFontSizeLarge}"

 HorizontalAlignment="Center"

Text="{Binding ElementName=listBox,

 Path=SelectedItem.FullName}" />

</Grid>

Notice	the	binding	on	the	TextBlock.	The	SelectedItem	property	of	the	ListBox	is	of	type	

Student,	so	the	binding	path	can	reference	a	property	of	Student,	such	as	FullName.	Now	

677	

	

	 	

	

	

	 	

when	an	item	is	selected	from	the	ListBox,	the	TextBlock	displays	the	item’s	FullName

property:	

Or,	replace	the	TextBlock	with	an	Image	element:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0"

 DataContext="{Binding Source={StaticResource studentBodyPresenter},

 Path=StudentBody}">

<Grid.RowDefinitions>

<RowDefinition Height="*" />

<RowDefinition Height="Auto" />

</Grid.RowDefinitions>

<ListBox Grid.Row="0"

 Name="listBox"

 ItemsSource="{Binding Students}"

 DisplayMemberPath="FullName" />

<Image Grid.Row="1"

 HorizontalAlignment="Center"

 Stretch="None"

 Source="{Binding ElementName=listBox,

Path=SelectedItem.PhotoFilename}" />

</Grid>

678	

	

	 	 	 	

	

	 	

	 	

You	can	now	go	through	the	ListBox	and	select	an	item	to	view	that	student’s	picture:	

To	view	multiple	properties	of	the	selected	item,	you	might	want	to	put	another	DataContext

definition	on	a	Border:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0"

 DataContext="{Binding Source={StaticResource studentBodyPresenter},

 Path=StudentBody}">

<Grid.RowDefinitions>

<RowDefinition Height="*" />

<RowDefinition Height="Auto" />

</Grid.RowDefinitions>

<ListBox Grid.Row="0"

 Name="listBox"

 ItemsSource="{Binding Students}"

 DisplayMemberPath="FullName" />

<Border Grid.Row="1"

 BorderBrush="{StaticResource PhoneForegroundBrush}"

 BorderThickness="{StaticResource PhoneBorderThickness}"

 HorizontalAlignment="Center"

 DataContext="{Binding ElementName=listBox,

 Path=SelectedItem}">

</Border>

</Grid>

679	

	

	

	 	 	 	

	 	 	

	 	

	

Within	this	Border	can	go	a	panel	and	elements	with	bindings	that	reference	properties	of	the	

Student	class.	This	is	what	I’ve	done	in	the	StudentBodyListBox	program.	The	XAML	file	

contains	an	XML	namespace	declaration	for	the	ElPasoHighSchool	library:	

xmlns:elpaso="clr-namespace:ElPasoHighSchool;assembly=ElPasoHighSchool"

The	Resources collection	instantiates	the	StudentBodyPresenter	class:	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.Resources>

<elpaso:StudentBodyPresenter x:Key="studentBodyPresenter" />

</phone:PhoneApplicationPage.Resources>

Here’s	the	content	area:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0"

 DataContext="{Binding Source={StaticResource studentBodyPresenter},

 Path=StudentBody}">

 <Grid.RowDefinitions>

<RowDefinition Height="Auto" />

<RowDefinition Height="*" />

<RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

 <TextBlock Grid.Row="0"

 Text="{Binding School}"

 FontSize="{StaticResource PhoneFontSizeLarge}"

 HorizontalAlignment="Center"

 TextDecorations="Underline" />

 <ListBox Grid.Row="1"

 Name="listBox"

 ItemsSource="{Binding Students}"

 DisplayMemberPath="FullName" />

 <Border Grid.Row="2"

 BorderBrush="{StaticResource PhoneForegroundBrush}"

 BorderThickness="{StaticResource PhoneBorderThickness}"

 HorizontalAlignment="Center"

 DataContext="{Binding ElementName=listBox,

Path=SelectedItem}">

<Grid>

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

680	

	

	

	

	 	 	 	 	

	 	 	

	

 <TextBlock Grid.Row="0"

 Text="{Binding FullName}"

 TextAlignment="Center" />

 <Image Grid.Row="1"

 Width="225"

 Height="300"

 Margin="24 6"

 Source="{Binding PhotoFilename}" />

 <StackPanel Grid.Row="2"

 Orientation="Horizontal"

 HorizontalAlignment="Center">

 <TextBlock Text="GPA=" />

 <TextBlock Text="{Binding GradePointAverage}" />

 </StackPanel>

</Grid>

 </Border>

</Grid>

Within	the	Border	is	a	Grid	with	three	rows,	containing	a	TextBlock	with	a	binding	to	the	

FullName	property,	an	Image	element,	and	a	StackPanel	to	display	the	grade	point	average.	

Notice	I’ve	given	the	Image element	a	specific	size	based	on	my	knowledge	of	the	size	of	the	

images.	This	avoids	a	change	in	size	of	the	Image	element	after	it’s	able	to	download	the	

photo.	

681

	

	 	

	 	 	 	

	 	 	 	

	 	

	 	

	 	

	

You	can	now	scroll	through	the	ListBox	and	look	at	each	student	in	detail	

Wait	a	little	while	and	you	should	be	able	to	see	a	change	in	the	grade	point	average.	That’s	

the	beauty	of	INotifyPropertyChanged and	dependency	properties	at	work.	

Fun
with
DataTemplates
For	the	remainder	of	this	chapter,	I	want	to	switch	from	the	ListBox	to	the	ItemsControl	to	

focus	solely	on	presentation	and	navigation	rather	than	selection.	To	play	along,	you	can	

create	a	new	project,	set	a	reference	to	the	ElPasoHighSchool	library,	and	in	the	XAML	file	add	

an	XML	namespace	declaration	for	that	library	and	instantiate	the	StudentBodyPresenter	class	

in	the	Resources collection	as	in	the	previous	program.	Here’s	an	ItemsControl	in	a	

ScrollViewer	that	fills	up	the	whole	content	Grid:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0"

 DataContext="{Binding Source={StaticResource studentBodyPresenter},

 Path=StudentBody}">

<ScrollViewer>

<ItemsControl ItemsSource="{Binding Students}"

 DisplayMemberPath="FullName" />

</ScrollViewer>

</Grid>

682	

	

	 	

	

	

The	ScrollViewer	allows	the	contents	to	be	scroll:	

Replace	the	DisplayMemberPath	with	a	DataTemplate	to	provide	more	extensive	information,	

nicely	formatted:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<ScrollViewer>

<ItemsControl ItemsSource="{Binding Students}">

<ItemsControl.ItemTemplate>

<DataTemplate>

<Border BorderBrush="{StaticResource PhoneAccentBrush}"

 BorderThickness="1"

 CornerRadius="12"

 Margin="2">

<Grid>

<Grid.RowDefinitions>

<RowDefinition Height="*" />

<RowDefinition Height="*" />

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>

<ColumnDefinition Width="Auto" />

<ColumnDefinition Width="*" />

</Grid.ColumnDefinitions>

<Image Grid.Row="0" Grid.Column="0" Grid.RowSpan="2"

 Source="{Binding PhotoFilename}"

 Height="120"

 Width="90"

683	

	

	 	 	 	

	 	 	 	

	 	

	

 Margin="6" />

<StackPanel Grid.Row="0" Grid.Column="1"

 Orientation="Horizontal"

 VerticalAlignment="Center">

<TextBlock Text="{Binding LastName}" />

<TextBlock Text=", " />

<TextBlock Text="{Binding FirstName}" />

<TextBlock Text=", " />

<TextBlock Text="{Binding MiddleName}" />

</StackPanel>

<StackPanel Grid.Row="1" Grid.Column="1"

 Orientation="Horizontal"

 VerticalAlignment="Center">

<TextBlock Text="Grade Point Average = " />

<TextBlock Text="{Binding GradePointAverage}" />

</StackPanel>

</Grid>

</Border>

</DataTemplate>

</ItemsControl.ItemTemplate>

</ItemsControl>

</ScrollViewer>

</Grid>

In	this	template,	the	height	of	the	individual	items	is	governed	by	the	explicit	Height	setting	

on	the	Image element.	To	prevent	the	text	from	moving	to	the	right	as	the	photos	are	being	

loaded,	an	explicit	Width	setting	is	also	provided.	Here’s	the	result:	

684

	

	 	 	 	

	

	

	 	 	 	 	

	

	 	

	

	

	

	

	 	 	

	 	

	 	 	 	 	 	 	 	 	

	

	 	 	 	

	

	 	

	 	 	

	 	 	 	

	 	 	

	

Sorting

In	earlier	displays	of	these	students,	I	used	the	property	of	Student	called	FullName	to	display	

the	student’s	name.	You	may	have	noticed	that	the	students.xml	file	was	actually	sorted	by	

this	property,	and	that’s	the	order	in	which	the	students	appeared	on	the	screen.	Popular	

email	programs	display	your	contacts	sorted	by	first	name,	so	I	figured	it	wasn’t	entirely	a	bad	

thing.	

But	in	the	most	recent	DataTemplate,	I	switched	to	using	the	LastName,	FirstName,	and	

MiddleName	properties,	and	the	unsorted	display	now	looks	very	strange	and	just	plain	

wrong.	

How	can	this	be	fixed?		

One	approach	is	through	code.	It’s	possible	for	the	StudentBodyPresenter	class	to	resort	the	

data	after	it’s	been	downloaded.	But	you	might	prefer	a	more	flexible	approach.	Perhaps	your	

application	needs	to	display	data	using	different	sort	criteria	at	different	times.	

You	can	do	that—and	you	can	do	it	entirely	in	XAML—using	a	class	called	

CollectionViewSource	defined	in	the	System.Windows.Data	namespace.	You’ll	use	this	class	in	

conjunction	with	a	SortDescription	class	defined	in	the	System.ComponentModel	namespace.	

Besides	the	reference	and	XML	namespace	declaration	for	the	ElPasoHighSchool	library,	you’ll	

need	an	XML	namespace	declaration	for	System.ComponentModel:	

xmlns:componentmodel="clr-namespace:System.ComponentModel;assembly=System.Windows"

The	whole	CollectionViewSource	can	go	in	the	Resources	collection:	

<phone:PhoneApplicationPage.Resources>

<elpaso:StudentBodyPresenter x:Key="studentBodyPresenter" />

<CollectionViewSource x:Key="sortedStudents"

 Source="{Binding Source={StaticResource studentBodyPresenter},

 Path=StudentBody.Students}">

<CollectionViewSource.SortDescriptions>

<componentmodel:SortDescription PropertyName="LastName"

 Direction="Ascending" />

</CollectionViewSource.SortDescriptions>

</CollectionViewSource>

</phone:PhoneApplicationPage.Resources>

Notice	how	the	Source	property	of	the	CollectionViewSource now	references	the	Students

property	of	the	StudentBody	property	of	the	StudentBodyPresenter.	This	Students	property	is	

of	type	ObservableCollection<Student>.	The	Source	of	CollectionViewSource	must	be	a	

collection.	

685	

	

	 	

	 	 	

	

	 	 	

	 	 	 	

	

	 	 	 	

The	SortDescription	object	indicates	that	we	want	to	sort	by	the	LastName	property	in	an	

ascending	order.	Since	this	LastName	property	is	of	type	string,	no	additional	code	need	be	

provided	to	support	sorting.	

The	Binding	can	now	be	removed	from	the	DataContext	of	the	Grid,	and	the	Source	property	

of	ItemsControl	can	now	reference	the	CollectionViewSource	resource:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<ScrollViewer>

<ItemsControl ItemsSource="{Binding Source={StaticResource sortedStudents}}">

…

</ItemsControl>

</ScrollViewer>

</Grid>

And	now	the	display	looks	more	alphabetically	comforting:	

You	can	have	multiple	SortDescription	objects	in	CollectionViewSource.	Try	this:	

<CollectionViewSource x:Key="sortedStudents"

 Source="{Binding Source={StaticResource studentBodyPresenter},

 Path=StudentBody.Students}">

<CollectionViewSource.SortDescriptions>

<componentmodel:SortDescription PropertyName="Sex"

 Direction="Ascending" />

<componentmodel:SortDescription PropertyName="LastName"

 Direction="Ascending" />

</CollectionViewSource.SortDescriptions>

</CollectionViewSource>

686	

	

	 		

	 	 	

	 	

	 	

	 	 	

	 	

	

	 	

	

	

	

Now	all	the	women	are	first,	followed	by	the	men.	

Or	alternatively,	perhaps	you	want	to	display	the	names	of	the	male	students	in	PowderBlue

and	the	female	students	in	Pink.	It’s	a	rather	antiquated	convention,	to	be	sure,	but	we	are	

dealing	with	students	who	attended	high	school	nearly	100	years	ago!	Regardless	of	the	

propriety	of	pink	and	blue,	how	would	you	do	it?	

Fortunately,	the	Student	class	has	a	property	named	Sex,	which	is	set	to	a	text	string,	either	

“Male”	or	“Female.”	Since	we’re	dealing	with	data	bindings	in	the	DataTemplate,	the	obvious	

solution	is	a	data	converter,	and	fortunately	the	Petzold.Phone.Silverlight	library	has	one	that	

seems	ideal:	

Silverlight Project: Petzold.Phone.Silverlight File: SexToBrushConverter.cs

using System;

using System.Globalization;

using System.Windows.Data;

using System.Windows.Media;

namespace Petzold.Phone.Silverlight

{

public class SexToBrushConverter : IValueConverter

 {

public Brush MaleBrush { get; set; }

public Brush FemaleBrush { get; set; }

public object Convert(object value, Type targetType,

object parameter, CultureInfo culture)

{

string sex = value as string;

switch (sex)

 {

case "Male": return MaleBrush;

case "Female": return FemaleBrush;

 }

return null;

}

public object ConvertBack(object value, Type targetType,

object parameter, CultureInfo culture)

{

return null;

}

 }

}

Like	all	data	converters,	it	derives	from	IValueConverter	and	has	two	methods	named	Convert

and	ConvertBack.	This	converter	also	defines	two	properties	named	MaleBrush	and	

687	

	

	

	 	 	

	 	 	 	

	 	

	 	

	 	 	

	 	

	 	 	

	 	 	

	 	

	 	 	

	

FemaleBrush.	These	properties	let	us	avoid	hardcoding	brushes	in	the	code.	The	Convert

method	is	the	only	one	that’s	implemented:	If	the	value	coming	in	is	“Male”	it	returns	

MaleBrush	and	if	“Female”	it	returns	FemaleBrush.	

Let’s	put	everything	into	one	project.	The	StudentBodyItemsControl	project	has	a	reference	to	

the	Petzold.Phone.Silverlight	library	as	well	as	ElPasoHighSchool.	The	Resources	section	

instantiates	the	StudentBodyPresenter,	the	CollectionViewSource	for	sorting,	and	the	

SexToBrushConverter:	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.Resources>

<elpaso:StudentBodyPresenter x:Key="studentBodyPresenter" />

<CollectionViewSource x:Key="sortedStudents"

 Source="{Binding Source={StaticResource

studentBodyPresenter},

 Path=StudentBody.Students}">

<CollectionViewSource.SortDescriptions>

<componentmodel:SortDescription PropertyName="LastName"

 Direction="Ascending" />

</CollectionViewSource.SortDescriptions>

</CollectionViewSource>

<petzold:SexToBrushConverter x:Key="sexToBrushConverter"

 FemaleBrush="Pink"

 MaleBrush="PowderBlue" />

</phone:PhoneApplicationPage.Resources>

In	the	markup	below	I	use	five	TextBlock	elements	to	display	the	student’s	name—LastName,	

FirstName,	and	MiddleName	with	a	comma	and	a	space—and	at	least	four	of	them	need	

bindings	targeting	the	Foreground	property	from	the	Sex	property	of	the	Student	object,	

using	this	SexToBrushConverter.	This	same	binding	needs	to	be	repeated	four	times.	

Or,	perhaps	we	can	simplify	the	markup	just	a	bit	by	enclosing	all	five	TextBlock	elements	in	a	

ContentControl.	If	the	Foreground	property	on	the	ContentControl	is	set	with	a	single	binding,	

then	the	same	property	will	be	applied	to	each	TextBlock	based	on	property	inheritance.	

That’s	what’s	done	in	the	following	DataTemplate,	which	is	otherwise	the	same	as	the	one	you	

just	saw:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <ScrollViewer>

<ItemsControl ItemsSource="{Binding

 Source={StaticResource sortedStudents}}">

<ItemsControl.ItemTemplate>

688	

	

 <DataTemplate>

<Border BorderBrush="{StaticResource PhoneAccentBrush}"

 BorderThickness="1"

 CornerRadius="12"

 Margin="2">

 <Grid>

<Grid.RowDefinitions>

<RowDefinition Height="*" />

 <RowDefinition Height="*" />

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>

<ColumnDefinition Width="Auto" />

 <ColumnDefinition Width="*" />

</Grid.ColumnDefinitions>

<Image Grid.Row="0" Grid.Column="0" Grid.RowSpan="2"

 Source="{Binding PhotoFilename}"

 Height="120"

 Width="90"

 Margin="6" />

<ContentControl Grid.Row="0" Grid.Column="1"

 HorizontalAlignment="Left"

 VerticalAlignment="Center"

 Foreground="{Binding Sex,

 Converter={StaticResource sexToBrushConverter}}">

 <StackPanel Orientation="Horizontal">

<TextBlock Text="{Binding LastName}" />

<TextBlock Text=", " />

<TextBlock Text="{Binding FirstName}" />

<TextBlock Text=", " />

<TextBlock Text="{Binding MiddleName}" />

</StackPanel>

</ContentControl>

<StackPanel Grid.Row="1" Grid.Column="1"

 Orientation="Horizontal"

 VerticalAlignment="Center">

<TextBlock Text="Grade Point Average = " />

<TextBlock Text="{Binding GradePointAverage}" />

</StackPanel>

</Grid>

</Border>

</DataTemplate>

</ItemsControl.ItemTemplate>

</ItemsControl>

</ScrollViewer>

</Grid>

689

	

	

	

	 	 	

	 	

	

	

	 	

	 	

	 	 	

	 	 	 	 	 	

	 	 	 	

	 	 	

	 	 	 	 	

	 	

	

	 	 	 	

	

Adding	the	color	is	worth	the	effort,	I	think:	

Changing
the
Panel

Internally,	an	ItemsControl	uses	an	ItemsPresenter	to	display	all	the	items,	as	you	saw	earlier	in	

this	chapter	when	looking	at	visual	trees.	One	of	the	essential	elements	used	to	display	the	

items	is	a	panel	of	some	sort.	By	default,	this	is	a	StackPanel	(or,	with	ListBox,	a	

VirtualizingStackPanel)	with	a	vertical	orientation.	A	vertical	StackPanel	is	such	a	natural	

choice	for	this	job	that	you	may	not	think	about	replacing	it.	

But	you	can	replace	it.	It’s	another	template—but	usually	an	extremely	simple	template—that	

you	set	to	the	ItemsPanel	property	defined	by	ItemsControl.	

The	HorizontalItemsControl	project	is	much	like	the	previous	project.	It	has	references	and	

namespace	declarations	for	Petzold.Silverlight.Phone	and	ElPasoHighSchool,	and	an	identical	

Resources	collection.	The	big	difference	is	the	use	of	a	StackPanel	with	a	horizontal	orientation	

in	the	ItemsControl.	The	program	also	defines	a	rather	different	DataTemplate	for	each	

student	and	relies	on	a	landscape	orientation	of	the	phone.	

Because	the	ItemsControl	is	now	displaying	its	items	horizontally	rather	than	vertically,	the	

default	behavior	of	ScrollViewer	is	all	wrong.	The	ScrollViewer must	be	enabled	for	horizontal	

scrolling:	

690	

	

	

 Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<ScrollViewer VerticalAlignment="Center"

 HorizontalScrollBarVisibility="Auto"

 VerticalScrollBarVisibility="Disabled">

<ItemsControl ItemsSource="{Binding

 Source={StaticResource sortedStudents}}">

<ItemsControl.ItemTemplate>

<DataTemplate>

<Border BorderBrush="{StaticResource PhoneAccentBrush}"

 BorderThickness="1"

 CornerRadius="12"

 Margin="2">

<Grid>

<Grid.RowDefinitions>

<RowDefinition Height="Auto" />

<RowDefinition Height="Auto" />

<RowDefinition Height="Auto" />

</Grid.RowDefinitions>

<ContentControl Grid.Row="0"

 HorizontalAlignment="Center"

 Foreground="{Binding Sex,

 Converter={StaticResource sexToBrushConverter}}">

<StackPanel Orientation="Horizontal">

<TextBlock Text="{Binding LastName}" />

<TextBlock Text=", " />

<TextBlock Text="{Binding FirstName}" />

<TextBlock Text=", " />

<TextBlock Text="{Binding MiddleName}" />

</StackPanel>

</ContentControl>

<Image Grid.Row="1"

 Source="{Binding PhotoFilename}"

 Height="240"

 Width="180"

 Margin="6" />

<StackPanel Grid.Row="2"

 Orientation="Horizontal"

 HorizontalAlignment="Center">

<TextBlock Text="GPA=" />

<TextBlock Text="{Binding GradePointAverage}" />

</StackPanel>

</Grid>

</Border>

</DataTemplate>

</ItemsControl.ItemTemplate>

691	

	

	

	 	 	

	

	 	 	 	

	 	 	 	 	

		

	 	 	

	

	 	 	 	 	 	

	

	 	 	 	

	 	 	 	

	

	 	 	 	

	 	

<ItemsControl.ItemsPanel>

<ItemsPanelTemplate>

<StackPanel Orientation="Horizontal" />

</ItemsPanelTemplate>

</ItemsControl.ItemsPanel>

</ItemsControl>

</ScrollViewer>

</Grid>

Towards	the	bottom	of	the	ItemsControl	markup	you’ll	see	the	ItemsPanel	property	set	to	an	

object	of	type	ItemsPanelTemplate,	which	then	encloses	the	Panel	derivative	you	want	to	use.	

Not	every	type	of	panel	is	suitable	for	an	items	control.	Generally	you’ll	want	to	use	a	panel	

that	organizes	its	children	based	on	their	order	in	its	Children collection	and	not	based	on	

attached	properties.	

It	is	very	common	for	programmers	to	create	custom	panels	specifically	for	a	ListBox	or	

ItemsControl.	Sometimes	these	panels	take	the	form	of	circular	organizations	of	children,	or	

carousels.	Toward	the	end	of	this	chapter	I’ll	show	you	an	example	of	a	custom	panel	to	

display	these	students.	

The
DataTemplate
Bar
Chart

With	a	combination	of	a	DataTemplate	and	an	ItemsPanelTemplate,	you	can	make	a	ListBox	or	

ItemsControl	look	like	no	other	ListBox	or	ItemsControl	you’ve	ever	seen.	

Let’s	create	a	new	project,	and	include	references	and	XML	namespace	declarations	for	both	

the	Petzold.Phone.Silverlight	and	ElPasoHighSchool	libraries.	Set	properties	in	the	root	tag	of	

MainPage.xaml	for	landscape.	Put	the	StudentBodyPresenter	in	the	Resources	collection.	

692	

	

	 	 	 	

	

	 	 	 	 	

	 	 	

	

	

	 	

Here’s	an	ItemsControl	with	no	ScrollViewer.	The	ItemsSource	is	the	Students property	of	the	

StudentBodyPresenter	instance.	The	ItemsPanelTemplate	is	set	to	a	UniformStack	with	a	

Horizontal	orientation:	

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0"

 DataContext="{Binding Source={StaticResource studentBodyPresenter},

 Path=StudentBody}">

<ItemsControl ItemsSource="{Binding Students}"

 VerticalAlignment="Bottom">

<ItemsControl.ItemsPanel>

<ItemsPanelTemplate>

<petzold:UniformStack Orientation="Horizontal" />

</ItemsPanelTemplate>

</ItemsControl.ItemsPanel>

</ItemsControl>

</Grid>

With	no	DataTemplate	the	ItemsControl	displays	the	fullyqualified	class	name	as	a	string:	

“ElPasoHighSchool.Student.”	But	with	a	UniformStack	panel,	every	item	gets	the	same	amount	

of	space	so	only	the	first	“E”	is	visible:	

This	doesn’t	seem	very	promising,	but	let’s	set	the	DataTemplate	to	a	Rectangle	whose	Height

property	is	bound	to	the	GradePointAverage	property:	

<ItemsControl ItemsSource="{Binding Students}"

 VerticalAlignment="Bottom">

<ItemsControl.ItemTemplate>

<DataTemplate>

<Rectangle Fill="{StaticResource PhoneAccentBrush}"

 Height="{Binding GradePointAverage}"

 VerticalAlignment="Bottom"

 Margin="1 0" />

</DataTemplate>

</ItemsControl.ItemTemplate>

<ItemsControl.ItemsPanel>

<ItemsPanelTemplate>

693	

	

	 	

	 	

	

	 	 	

	 	

	 	

	 	 	

<petzold:UniformStack Orientation="Horizontal" />

</ItemsPanelTemplate>

</ItemsControl.ItemsPanel>

</ItemsControl>

Notice	how	the	ItemsControl	itself	is	aligned	at	the	bottom	of	the	display,	and	each	Rectangle

is	aligned	at	the	bottom	of	the	ItemsControl.	The	result	is	a	bar	chart:	

Of	course,	the	values	of	the	GradePointAverage	property	only	range	between	0	and	5,	so	the	

bars	are	rather	tiny.	How	can	that	problem	be	solved?	

You	might	think	about	applying	a	ScaleTransform	to	the	Rectangle	with	a	constant	vertical	

scaling	factor	of,	say,	50.	That	was	my	first	choice	as	well,	but	the	results	were	unsatisfactory.	It	

seemed	as	if	the	heights	of	the	rectangles	were	being	rounded	to	the	nearest	pixel	before	

being	scaled.	So	I	abandoned	that	approach	and	wrote	a	new	data	converter:	

Silverlight Project: Petzold.Phone.Silverlight File: MultiplyConverter.cs

using System;

using System.Globalization;

using System.Windows.Data;

namespace Petzold.Phone.Silverlight

{

public class MultiplyConverter : IValueConverter

 {

public object Convert(object value, Type targetType,

object parameter, CultureInfo culture)

{

double multiplier;

if (value is IConvertible &&

 parameter is string &&

Double.TryParse(parameter as string, out multiplier))

 {

return (value as IConvertible).ToDouble(culture) * multiplier;

 }

694	

	

	 	 	

	 	

	

return value;

}

public object ConvertBack(object value, Type targetType,

object parameter, CultureInfo culture)

{

double divider;

if (value is IConvertible &&

 parameter is string &&

Double.TryParse(parameter as string, out divider))

 {

return (value as IConvertible).ToDouble(culture) / divider;

 }

return value;

}

 }

}

This	converter	multiplies	the	binding	source	by	a	factor	provided	as	the	converter	parameter.	

Define	one	of	these	in	the	Resources	collection:	

<phone:PhoneApplicationPage.Resources>

<elpaso:StudentBodyPresenter x:Key="studentBodyPresenter" />

<petzold:MultiplyConverter x:Key="multiply" />

</phone:PhoneApplicationPage.Resources>

Now	reference	the	converter	in	the	binding	to	multiply	each	value	by	50:	

<DataTemplate>

<Rectangle Fill="{StaticResource PhoneAccentBrush}"

 Height="{Binding GradePointAverage,

 Converter={StaticResource multiply},

 ConverterParameter=50}"

 VerticalAlignment="Bottom"

 Margin="1 0" />

</DataTemplate>

And	now	it	looks	like	a	real	bar	chart:	

695	

	

	

	

	

	

	

	

	

	 	

	

	 	

	

What’s	more,	as	the	GradePointAverage	values	dynamically	change,	the	bars	on	the	bar	chart	

bounce	up	and	down.	

Do	you	remember	the	ValueToBrushConverter	in	the	Petzold.Phone.Silverlight	library?	That	

converter	allows	us	to	colorcode	the	bars	so	we’re	alerted	to	any	student	whose	grade	point	

average	dips	below	1	(for	example).	Here’s	the	converter	as	it	would	appear	in	the	Resources

collection:	

<petzold:ValueToBrushConverter x:Key="valueToBrush"

 Criterion="1"

 GreaterThanBrush="{StaticResource PhoneAccentBrush}"

 EqualToBrush="{StaticResource PhoneAccentBrush}"

 LessThanBrush="Red" />

Here’s	the	new	DataTemplate:	

<DataTemplate>

<Rectangle Fill="{Binding GradePointAverage,

Converter={StaticResource valueToBrush}}"

Height="{Binding GradePointAverage,

Converter={StaticResource multiply},

ConverterParameter=50}"

VerticalAlignment="Bottom"

Margin="1 0" />

</DataTemplate>

As	the	teacher	of	these	students,	you’ll	be	glad	you	implemented	this	feature	because	very	

soon	you’ll	see	that	a	few	students	are	in	danger	of	failing:	

Is	there	a	way	to	determine	which	students	these	are?	

The	GpaBarChart	project	shows	one	approach.	It	has	the	StudentBodyPresenter	and	two	

converters	I	mentioned	defined	as	resources:	

696	

	

	

	 	

	 	 	

	 	 	 	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.Resources>

<elpaso:StudentBodyPresenter x:Key="studentBodyPresenter" />

<petzold:MultiplyConverter x:Key="multiply" />

<petzold:ValueToBrushConverter x:Key="valueToBrush"

 Criterion="1"

 GreaterThanBrush="{StaticResource PhoneAccentBrush}"

 EqualToBrush="{StaticResource PhoneAccentBrush}"

 LessThanBrush="Red" />

</phone:PhoneApplicationPage.Resources>

Most	of	the	content	area	you’ve	already	seen	but	I	also	added	a	Border with	the	name	

“studentDisplay”	floating	near	the	top.	This	Border	includes	a	couple	TextBlock	elements	with	

their	Text	properties	bound	to	the	properties	FullName	and	GradePointAverage	under	the	

assumption	that	the	DataContext	of	this	Border	is	an	object	of	type	Student.	That’s	not	

normally	the	case,	so	the	Border	has	its	Visibility	property	initialized	to	Collapsed:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0"

 DataContext="{Binding Source={StaticResource studentBodyPresenter},

 Path=StudentBody}">

<Border x:Name="studentDisplay"

 BorderBrush="{StaticResource PhoneForegroundBrush}"

 BorderThickness="{StaticResource PhoneBorderThickness}"

 HorizontalAlignment="Center"

 VerticalAlignment="Top"

 Margin="24"

 Padding="12"

 CornerRadius="24"

 Visibility="Collapsed">

<StackPanel>

<TextBlock Text="{Binding FullName}"

 HorizontalAlignment="Center" />

<StackPanel Orientation="Horizontal">

<TextBlock Text="GPA = " />

<TextBlock Text="{Binding GradePointAverage}" />

</StackPanel>

</StackPanel>

</Border>

<ItemsControl ItemsSource="{Binding Students}"

 VerticalAlignment="Bottom">

<ItemsControl.ItemTemplate>

<DataTemplate>

<Rectangle Fill="{Binding GradePointAverage,

697	

	

	

	 	 	

	 	

	 	 	 	 	 	 	 	

	 	

 Converter={StaticResource valueToBrush}}"

 Height="{Binding GradePointAverage,

 Converter={StaticResource multiply},

 ConverterParameter=50}"

 VerticalAlignment="Bottom"

 Margin="1 0" />

</DataTemplate>

</ItemsControl.ItemTemplate>

<ItemsControl.ItemsPanel>

<ItemsPanelTemplate>

<petzold:UniformStack Orientation="Horizontal" />

</ItemsPanelTemplate>

</ItemsControl.ItemsPanel>

</ItemsControl>

</Grid>

The	codebehind	file	fills	in	the	missing	logic.	The	page	processes	the	Touch.FrameReported

event.	When	the	element	directly	behind	the	primary	touch	point	is	a	Rectangle,	the	event	

handler	obtains	the	DataContext	of	that	Rectangle.	That	is	an	object	of	type	Student.	That	

object	is	then	set	to	the	DataContext	of	the	Border.	The	TouchAction property	is	used	to	turn	

the	Visibility on	and	off:	

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage

{

public MainPage()

 {

InitializeComponent();

Touch.FrameReported += OnTouchFrameReported;

 }

void OnTouchFrameReported(object sender, TouchFrameEventArgs args)

 {

TouchPoint touchPoint = args.GetPrimaryTouchPoint(this);

if (touchPoint != null && touchPoint.Action == TouchAction.Down)

 args.SuspendMousePromotionUntilTouchUp();

if (touchPoint != null && touchPoint.TouchDevice.DirectlyOver is Rectangle)

{

Rectangle rectangle =

(touchPoint.TouchDevice.DirectlyOver as Rectangle);

// This DataContext is an object of type Student

object dataContext = rectangle.DataContext;

 studentDisplay.DataContext = dataContext;

if (touchPoint.Action == TouchAction.Down)

698

	

	

	

	 	 	 	

	

	 	 	 	 	 	

	

	 	

	

	 	 	 	 	

	

	

	 	 	

	

	 	

	 	 	 	

	 	

	 	 	

	 	

	 	 	

 studentDisplay.Visibility = Visibility.Visible;

else if (touchPoint.Action == TouchAction.Up)

 studentDisplay.Visibility = Visibility.Collapsed;

}

 }

}

As	you	run	your	fingers	across	the	bars,	you	can	see	the	student	that	each	bar	represents:	

A
Card
File
Metaphor

With	the	previous	GpiBarChart	program,	in	a	sense	we’ve	managed	to	fit	all	the	students	onto	

a	single	screen,	but	the	information	is	limited.	Is	there	a	way	to	get	more	information	on	the	

screen?	One	popular	metaphor	for	displaying	data	is	the	card	file.	Normally	only	part	of	each	

card	is	visible	but	such	a	program	also	includes	a	facility	for	viewing	an	entire	card.	

In	preparation	for	this	job,	I	created	a	new	panel	in	the	Petzold.Phone.Silverlight	library.	In	

some	ways	this	panel	is	similar	to	the	UniformStack	panel	that	I	described	in	Chapter	9.	Like	

UniformStack,	this	new	panel	gives	all	of	its	children	an	equal	amount	of	space.	But	unlike	

UniformStack,	this	new	panel	actually	overlaps	its	children	if	necessary	to	fit	them	all	in	the	

available	space.	For	that	reason,	it’s	called	OverlapPanel.	

OverlapPanel	defines	an	Orientation	property	and	arranges	its	children	either	horizontally	or	

vertically.	If	OverlapPanel	is	arranging	its	children	horizontally,	each	child	is	positioned	slightly	

to	the	right	of	the	child	before	it,	leaving	the	leftmost	sliver	of	the	previous	child	visible.	For	a	

vertical	orientation,	the	top	of	each	child	is	visible.	

If	there	are	very	many	children,	then	that	visible	sliver	will	become	very	small.	To	make	

OverlapPanel more	useful,	it	should	be	possible	to	specify	that	the	sliver	be	at	least	a	

minimum	height	or	width,	even	if	that	causes	the	contents	of	the	panel	to	overrun	the	

available	space.	In	possibly	going	beyond	the	space	available	for	it,	the	OverlapPanel	behaves	

much	like	a	regular	StackPanel.	A	ScrollViewer	will	be	necessary	to	view	all	the	items.	

699

	

	 	

	 	

	

	 	 	

	

OverlapPanel	defines	two	properties,	Orientation	and	MinimumOverlap:	

Silverlight Project: Petzold.Phone.Silverlight File: OverlapPanel.cs (excerpt)

public class OverlapPanel : Panel

{

Size maxChildSize = new Size();

 public static readonly DependencyProperty OrientationProperty =

DependencyProperty.Register("Orientation",

 typeof(Orientation),

 typeof(OverlapPanel),

 new PropertyMetadata(Orientation.Horizontal, OnAffectsMeasure));

 public static readonly DependencyProperty MinimumOverlapProperty =

DependencyProperty.Register("MinimumOverlap",

 typeof(double),

 typeof(OverlapPanel),

 new PropertyMetadata(0.0, OnAffectsMeasure));

 public Orientation Orientation

 {

set { SetValue(OrientationProperty, value); }

get { return (Orientation)GetValue(OrientationProperty); }

 }

 public double MinimumOverlap

 {

set { SetValue(MinimumOverlapProperty, value); }

get { return (double)GetValue(MinimumOverlapProperty); }

 }

 static void OnAffectsMeasure(DependencyObject obj,

DependencyPropertyChangedEventArgs args)

 {

(obj as OverlapPanel).InvalidateMeasure();

 }

 …

}

Changes	to	either	of	these	two	properties	causes	a	call	to	InvalidateMeasure,	which	initiates	a	

new	layout	pass.	

The	MeasureOverride	method	first	enumerates	through	all	its	children	to	obtain	the	maximum	

child	size.	Of	course,	when	you	use	OverlapPanel	with	an	ItemsControl	or	ListBox,	all	the	

children	will	probably	have	the	same	size.	

700	

	

	

Silverlight Project: Petzold.Phone.Silverlight File: OverlapPanel.cs (excerpt)

protected override Size MeasureOverride(Size availableSize)

{

if (Children.Count == 0)

return new Size(0, 0);

 maxChildSize = new Size();

foreach (UIElement child in Children)

 {

if (Orientation == Orientation.Horizontal)

 child.Measure(new Size(Double.PositiveInfinity, availableSize.Height));

else

 child.Measure(new Size(availableSize.Width, Double.PositiveInfinity));

maxChildSize.Width = Math.Max(maxChildSize.Width,

 child.DesiredSize.Width);

maxChildSize.Height = Math.Max(maxChildSize.Height,

child.DesiredSize.Height);

 }

if (Orientation == Orientation.Horizontal)

 {

double maxTotalWidth = maxChildSize.Width * Children.Count;

double minTotalWidth = maxChildSize.Width +

 MinimumOverlap * (Children.Count - 1);

if (Double.IsPositiveInfinity(availableSize.Width))

return new Size(minTotalWidth, maxChildSize.Height);

if (maxTotalWidth < availableSize.Width)

return new Size(maxTotalWidth, maxChildSize.Height);

else if (minTotalWidth < availableSize.Width)

return new Size(availableSize.Width, maxChildSize.Height);

return new Size(minTotalWidth, maxChildSize.Height);

 }

// Orientation = Vertical

double maxTotalHeight = maxChildSize.Height * Children.Count;

double minTotalHeight = maxChildSize.Height +

 MinimumOverlap * (Children.Count - 1);

if (Double.IsPositiveInfinity(availableSize.Height))

return new Size(maxChildSize.Width, minTotalHeight);

if (maxTotalHeight < availableSize.Height)

return new Size(maxChildSize.Width, maxTotalHeight);

else if (minTotalHeight < availableSize.Height)

701	

	

	 	 	 	 	

	 	 	 	

	

	

	

	 	

	

	

	

	 	

	 	

return new Size(maxChildSize.Width, availableSize.Height);

return new Size(maxChildSize.Width, minTotalHeight);

}

The	method	then	splits	into	two	different	sections	depending	on	the	Orientation	property.	For	

example,	for	the	vertical	orientation	(which	I’ll	be	using	in	the	example	below),	the	method	

calculates	a	maxTotalHeight,	when	all	the	children	are	sidebyside	without	overlap,	and	a	

minTotalHeight,	when	the	children	are	overlapped	to	the	maximum	extent.	If	the	available	

height	is	not	infinite	(a	possibility	handled	separately),	then	the	available	height	is	either	

greater	than	maxTotalHeight	or	between	minTotalHeight	and	maxTotalHeight,	or	less	than	

minTotalHeight.	If	all	the	children	can	fit	sidebyside	in	the	available	space,	then	that’s	the	

space	requested.	But	the	method	never	requests	less	height	than	it	needs	to	display	all	the	

children.	

The	ArrangeOverride	method	is	somewhat	simpler.	The	increment	value	is	the	width	or	height	

of	the	sliver	of	each	child	that	will	always	be	visible:	

Silverlight Project: Petzold.Phone.Silverlight File: OverlapPanel.cs (excerpt)

protected override Size ArrangeOverride(Size finalSize)

{

if (Children.Count == 0)

return finalSize;

double increment = 0;

if (Orientation == Orientation.Horizontal)

increment = Math.Max(MinimumOverlap,

 (finalSize.Width - maxChildSize.Width) / (Children.Count - 1));

else

increment = Math.Max(MinimumOverlap,

 (finalSize.Height - maxChildSize.Height) / (Children.Count - 1));

Point ptChild = new Point();

foreach (UIElement child in Children)

 {

child.Arrange(new Rect(ptChild, maxChildSize));

if (Orientation == Orientation.Horizontal)

 ptChild.X += increment;

else

 ptChild.Y += increment;

 }

return finalSize;

}

702	

	

	 	

	 	

	

	

	

	 	 	

	

	 	

	

	 	

	

The	StudentCardFile	project	has	references	to	the	Petzold.Phone.Silverlight	and	

ElPasoHighSchool	libraries.	The	MainPage.xaml	file	includes	the	StudentBodyPresenter	in	the	

Resources	collection:	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.Resources>

<elpaso:StudentBodyPresenter x:Key="studentBodyPresenter" />

</phone:PhoneApplicationPage.Resources>

The	content	area	is	rather	simple,	containing	only	a	ScrollViewer	and	an	ItemsControl.	The	

ItemsPanel	property	of	the	ItemsControl	references	the	OverlapPanel	with	two	properties	set:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0"

 DataContext="{Binding Source={StaticResource studentBodyPresenter},

 Path=StudentBody}">

<ScrollViewer>

<ItemsControl ItemsSource="{Binding Students}">

<ItemsControl.ItemTemplate>

<DataTemplate>

<local:StudentCard />

</DataTemplate>

</ItemsControl.ItemTemplate>

<ItemsControl.ItemsPanel>

<ItemsPanelTemplate>

<petzold:OverlapPanel Orientation="Vertical"

 MinimumOverlap="24" />

</ItemsPanelTemplate>

</ItemsControl.ItemsPanel>

</ItemsControl>

</ScrollViewer>

</Grid>

The	simplicity	of	the	markup	here	is	mostly	a	result	of	the	DataTemplate	property	of	the	

ItemsControl being	set	to	another	control	named	StudentCard.	

StudentCard	derives	from	UserControl.	Deriving	from	UserControl	is	a	common	technique	for	

creating	a	control	to	serve	as	a	DataTemplate.	If	you	ignore	the	ellipses	(…)	below,	this	is	a	

very	straightforward	assemblage	of	a	TextBlock	and	Image elements,	with	a	collapsed	

Rectangle	used	as	a	dividing	line:	

703	

	

	

 Silverlight Project: File: (excerpt)

<UserControl x:Class="StudentCardFile.StudentCard"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 FontFamily="{StaticResource PhoneFontFamilyNormal}"

 FontSize="{StaticResource PhoneFontSizeNormal}"

 Foreground="{StaticResource PhoneForegroundBrush}"

 Width="240" Height="240">

 …

<Border BorderBrush="{StaticResource PhoneAccentBrush}"

 BorderThickness="1"

 Background="{StaticResource PhoneChromeBrush}"

 CornerRadius="12"

 Padding="6 0">

…

<Grid>

<Grid.RowDefinitions>

<RowDefinition Height="Auto" />

<RowDefinition Height="Auto" />

<RowDefinition Height="*" />

<RowDefinition Height="Auto" />

</Grid.RowDefinitions>

<TextBlock Grid.Row="0"

 Text="{Binding FullName}" />

<Rectangle Grid.Row="1"

 Fill="{StaticResource PhoneAccentBrush}"

 Height="1"

 Margin="0 0 0 4" />

<Image Grid.Row="2"

 Source="{Binding PhotoFilename}" />

<StackPanel Grid.Row="3"

 Orientation="Horizontal"

 HorizontalAlignment="Center">

<TextBlock Text="GPA = " />

<TextBlock Text="{Binding GradePointAverage}" />

</StackPanel>

</Grid>

</Border>

</UserControl>

704	

	

	 	

	 	 	

	

	 	 	

	 	 	 		

The	cards	are	listed	down	the	left	side	of	the	display	but	only	the	top	of	each	card	is	visible.	

Conveniently,	the	top	of	each	card	is	a	TextBlock	displaying	the	student’s	name:	

I	set	MinimumOverlap	to	a	value	sufficient	to	display	this	TextBlock.	As	you	scroll	down	to	the	

bottom,	you’ll	see	that	the	bottom	card	is	entirely	visible:	

705	

	

	

	 	 	

	 	 	 	 	

	 	

	

	

	 	

	 	 	 	

	

	 	 	 	

	 	

	

	 	

	

That’s	great	if	you	want	to	look	at	the	very	last	card,	but	rather	deficient	otherwise.	What	we	

need	is	a	way	to	selectively	bring	a	particular	card	into	view.	One	approach	might	be	to	

change	the	Canvas.ZIndex	attached	property	of	a	particular	card.	Or,	the	whole	deck	of	cards	

might	be	reordered	to	move	a	particular	card	to	the	topmost	position.	

I	decided	I	wanted	a	selected	card	to	slide	out	of	the	deck	when	it’s	touched,	and	then	slide	

back	when	the	card	is	touched	again,	or	when	another	card	is	touched.	

As	you	start	integrating	other	code	with	ScrollViewer,	you’ll	discover	that	ScrollViewer	tends	to	

hog	the	Manipulation	events.	Obviously	ScrollViewer	needs	these	Manipulation	events	for	its	

own	scrolling	logic.	But	that	makes	it	difficult	for	visual	descendents	of	the	ScrollViewer	(such	

as	these	StudentCard	elements)	to	process	Manipulation events	of	their	own	for	sliding	in	and	

out	of	the	deck	

For	that	reason,	I	decided	that	StudentCard	would	install	a	handler	for	the	lowlevel	

Touch.FrameReported	event,	and	to	use	that	to	toggle	a	dependency	property	named	IsOpen.	

Here’s	that	property	in	the	StudentCard	codebehind	file:	

Silverlight Project: File: (excerpt)

public partial class StudentCard : UserControl

{

…

 public static readonly DependencyProperty IsOpenProperty =

DependencyProperty.Register("IsOpen",

706	

	

	 	 	 		

	 	 	

	 	 	 	

	

	 	

	 	

	 	 	 	

 typeof(bool),

 typeof(StudentCard),

 new PropertyMetadata(false, OnIsOpenChanged));

 …

 bool IsOpen

{

set { SetValue(IsOpenProperty, value); }

get { return (bool)GetValue(IsOpenProperty); }

 }

 …

}

I’ll	show	you	the	propertychanged	handler	for	IsOpen	shortly.	

When	you	touch	one	instance	of	StudentCard,	it	is	supposed	to	slide	out	of	the	deck,	but	if	

another	card	is	currently	exposed,	that	card	should	slide	back	into	the	deck.	If	the	CardFile

class	is	to	handle	this	logic	on	its	own,	each	instance	of	CardFile	needs	access	to	all	the	other	

instances.	For	that	reason,	I	defined	a	static	field	of	type	List	to	maintain	these	instances:	

Silverlight Project: File: (excerpt)

public partial class StudentCard : UserControl

{

 static List<StudentCard> studentCards = new List<StudentCard>();

…

 public StudentCard()

 {

InitializeComponent();

studentCards.Add(this);

 }

 …

}

Each	new	instance	simply	adds	itself	to	the	collection.	

It	also	became	apparent	to	me	that	each	individual	StudentCard instance	does	not	need	its	

own	handler	for	the	Touch.FrameReported	event.	All	instances	could	share	the	same	static	

handler	installed	in	the	static	constructor	and	referencing	static	fields:	

Silverlight Project: File: (excerpt)

public partial class StudentCard : UserControl

{

…

 static int contactTime;

 static Point contactPoint;

 …

 static StudentCard()

 {

707

	

	 	

	 	 	 	

	

	 	 	

	 	 	 	

	 	 	 	

	 	

Touch.FrameReported += OnTouchFrameReported;

 }

 …

 static void OnTouchFrameReported(object sender, TouchFrameEventArgs args)

 {

TouchPoint touchPoint = args.GetPrimaryTouchPoint(null);

if (touchPoint != null && touchPoint.Action == TouchAction.Down)

{

 contactPoint = touchPoint.Position;

 contactTime = args.Timestamp;

}

else if (touchPoint != null && touchPoint.Action == TouchAction.Up)

{

// Check if finger is directly over StudentCard or child

DependencyObject element = touchPoint.TouchDevice.DirectlyOver;

 while (element != null && !(element is StudentCard))

 element = VisualTreeHelper.GetParent(element);

 if (element == null)

 return;

// Get lift point and calculate difference

Point liftPoint = touchPoint.Position;

 double distance = Math.Sqrt(Math.Pow(contactPoint.X - liftPoint.X, 2) +

Math.Pow(contactPoint.Y - liftPoint.Y, 2));

// Qualify as a Tap if distance < 12 pixels within 1/4th second

 if (distance < 12 && args.Timestamp - contactTime < 250)

 {

// Enumerate StudentCard objects and set IsOpen property

 foreach (StudentCard studentCard in studentCards)

 studentCard.IsOpen =

(element == studentCard && !studentCard.IsOpen);

 }

}

 }

 …

}

With	a	little	experimentation,	I	determined	that	I	wanted	a	tap	to	qualify	as	a	touch	and	

release	with	¼	second	where	the	touch	point	moves	less	than	12	pixels.	That	seemed	to	be	

about	right	and	still	allow	flicks	to	be	recognized	by	the	ScrollViewer.	

At	the	bottom	of	this	method	a	foreach	loop	enumerates	through	all	the	StudentCard	objects	

and	sets	the	IsOpen	property	on	each	one.	IsOpen	is	always	set	to	false	if	the	StudentCard	is	

not	the	touched	element,	and	IsOpen is	also	set	to	false	if	IsOpen	is	currently	true.	Otherwise,	

if	the	StudentCard	object	is	the	touched	element,	and	IsOpen	is	currently	false,	then	it’s	set	to	

true.	Of	course,	as	a	dependency	property,	IsOpen	propertychanged	handlers	will	only	be	

called	if	the	property	is	truly	changing.	

708	

	

	 	 	

	

	

	 	 	 	

	 	 	 	

	 	 	 	 	

	

	 	

I	have	not	yet	shown	you	the	propertychanged	handler	for	the	IsOpen	property.	As	usual,	the	

static	version	calls	the	instance	version:	

Silverlight Project: File: (excerpt)

public partial class StudentCard : UserControl

{

…

 static void OnIsOpenChanged(DependencyObject obj,

DependencyPropertyChangedEventArgs args)

 {

(obj as StudentCard).OnIsOpenChanged(args);

 }

 …

 void OnIsOpenChanged(DependencyPropertyChangedEventArgs args)

{

VisualStateManager.GoToState(this, IsOpen ? "Open" : "Normal", false);

 }

}

The	instance	version	calls	VisualStateManager.GoToState.	Although	the	Visual	State	Manger	is	

most	frequently	used	in	connection	with	controls	and	controls	template,	you	can	also	use	it	

with	UserControl	derivatives	such	as	StudentCard.	Calling	GoToState	is	how	you	trigger	a	state	

change	from	code.	

In	the	XAML	file,	the	Visual	State	Manager	markup	must	appear	right	after	the	topmost	

element	in	the	visual	tree.	In	the	case	of	StudentCard.xaml,	that’s	the	Border	element.	Here’s	

the	rest	of	StudentCard.xaml	(with	some	repetition	from	the	previous	excerpt)	showing	the	

Visual	State	Manager	markup	targeting	a	TranslateTransform	set	on	the	control	itself:	

Silverlight Project: File: (excerpt)

<UserControl x:Class="StudentCardFile.StudentCard"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 FontFamily="{StaticResource PhoneFontFamilyNormal}"

 FontSize="{StaticResource PhoneFontSizeNormal}"

 Foreground="{StaticResource PhoneForegroundBrush}"

 Width="240" Height="240">

<UserControl.RenderTransform>

<TranslateTransform x:Name="translate" />

</UserControl.RenderTransform>

<Border BorderBrush="{StaticResource PhoneAccentBrush}"

 BorderThickness="1"

 Background="{StaticResource PhoneChromeBrush}"

 CornerRadius="12"

 Padding="6 0">

709	

	

	 	 	 	

	

<VisualStateManager.VisualStateGroups>

<VisualStateGroup x:Name="CommonStates">

<VisualState x:Name="Open">

<Storyboard>

<DoubleAnimation Storyboard.TargetName="translate"

 Storyboard.TargetProperty="X"

 To="220" Duration="0:0:1" />

</Storyboard>

</VisualState>

<VisualState x:Name="Normal">

<Storyboard>

<DoubleAnimation Storyboard.TargetName="translate"

 Storyboard.TargetProperty="X"

 Duration="0:0:1" />

</Storyboard>

</VisualState>

</VisualStateGroup>

</VisualStateManager.VisualStateGroups>

…

</Border>

</UserControl>

When	you	tap	one	of	the	items,	it	slides	out	to	reveal	the	full	card:	

710	

	

	

	 	 	

	 	 	

	 	

	 	 	 	

	

Throughout	this	chapter	I’ve	tried	to	do	several	different	types	of	jobs	entirely	in	XAML.	That’s	

not	always	possible;	very	often	code	is	required,	particularly	for	handling	touch	input.	

But	much	of	the	required	code	doesn’t	replace	the	XAML:	the	code	helps	support	the	markup.	

These	classes	take	the	form	of	binding	converters	and	custom	panels	that	are	referenced	

within	the	XAML	file.	In	general,	you	should	try	to	code	for	XAML	and	not	instead of	XAML,	

and	you’ll	be	a	happier	and	better	Silverlight	and	Windows	Phone	7	programmer.	

711	

	

	

	 	 	

	 	

	 	

	 	

	 	 	 	 	

	

	 	

	 	

	 	

	 	

	 	

	 	 	 	 	 	

	 	 	

	 	 	 	 	

	

	

	 	 	

	 	 	

	 	 	

	 	 	 	 	

	 	

	 	 	

Chapter	18	

Pivot and Panorama
Silverlight	applications	that	need	to	present	large	amounts	of	information	to	the	user	have	

traditionally	used	a	pageoriented	navigation	structure.	On	the	phone,	however,	a	division	of	

your	program	into	pages	might	not	be	the	best	approach.	The	phone’s	portrait	form	factor,	

the	ease	of	multitouch,	and	a	recent	emphasis	on	“fluid	user	interfaces”	all	suggest	other	

types	of	layout.	Two	such	alternatives	are	available	in	Windows	Phone	7	in	new	controls	

named	Pivot	and	Panorama.	

Both	Pivot	and	Panorama	are	in	the	Microsoft.Phone.Controls	library	and	any	program	that	

uses	these	controls	will	need	a	reference	to	that	DLL.	The	controls	are	defined	in	the	

Microsoft.Phone.Controls	namespace	with	subsidiary	components	in	

Microsoft.Phone.Controls.Primitives,	but	it’s	unlikely	you’ll	need	those	other	classes	unless	

you’re	customizing	the	controls.	

Conceptually,	Pivot	and	Panorama	are	very	similar.	Both	controls	provide	a	way	to	organize	

discrete	components	of	your	application	horizontally	in	a	virtual	space	that	can	be	several	

times	wider	than	the	actual	width	of	the	phone.	You	move	horizontally	through	the	control	

simply	by	sweeping	your	finger	across	the	screen.	Although	the	Pivot	and	Panorama	controls	

seem	to	be	designed	primarily	for	portrait	mode,	they	can	be	used	in	landscape	mode	as	well.	

Compare
and
Contrast

Both	Pivot	and	Panorama	derive	from	ItemsControl by	way	of	a	class	with	a	generic	

parameter:	

public class TemplatedItemsControl<T> : ItemsControl where T : new(), FrameworkElement

This	indicates	an	ItemsControl	that	is	intended	to	be	filled	with	objects	of	type	T.	Both	Pivot

and	Panorama	derive	from	TemplatedItemsControl	with	a	type	parameter	set	to	PivotItem	or	

PanoramaItem,	respectively:	

public class Pivot : TemplatedItemsControl<PivotItem>

public class Panorama : TemplatedItemsControl<PanoramaItem>

The	Pivot control	expects	to	contain	items	of	type	PivotItem	while	the	Panorama	control	

expects	to	contain	items	of	type	PanoramaItem.	Both	PivotItem	and	PanoramaItem	derive	

from	ContentControl.	If	you’re	filling	the	Items	collection	of	a	Pivot	or	Panorama	object	

explicitly	in	XAML	and	code,	you’ll	want	to	fill	it	with	PivotItem	or	PanoramaItem	items,	

because	there’s	a	crucial	Header	property	you	need	to	set	on	these	controls.	If	you	instead	use	

a	binding	on	the	ItemsSource property	defined	by	ItemsControl,	these	PivotItem	and	

712	

	

	 	

	

	 	 	 	 	

	

	 	 	 	

	 	 	 	 	

	 	

	 	

	 	

	

	 	 	

PanoramaItem	objects	are	created	for	you	behind	the	scenes,	and	you	set	the	Header

property	through	a	template.	(Don’t	worry:	I’ll	have	examples.)	

To	instantiate	these	controls	in	a	XAML	file	you’ll	need	an	XML	namespace	declaration	for	the	

Microsoft.Phone.Controls	library	and	namespace:	

xmlns:controls="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone.Controls"

Perhaps	the	best	way	to	explore	these	classes	is	to	experiment	with	an	actual	example.	The	

New	Project	dialog	in	Visual	Studio	allows	you	to	create	an	project	of	type	Windows	Phone	

Pivot	Application	or	Windows	Phone	Panorama	Application,	and	you	can	surely	experiment	

with	those.	For	the	demonstration	programs	in	this	chapter	I	took	a	different	approach.	

Here’s	a	MainPage.xaml	file	from	a	project	named	PivotDemonstration.	I	created	this	project	

normally,	that	is,	by	selecting	Windows	Phone	Application	from	the	New	Project	dialog	box.	

But	then	I	deleted	most	of	the	contents	of	MainPage.xaml	except	the	PhoneApplicationPage

tags.	I	added	the	XML	namespace	declaration	for	“controls”	(it’s	the	widest	one)	and	I	

replaced	the	contents	of	the	page	with	a	Pivot	and	four	nested	PivotItem	children:	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage

x:Class="PivotDemonstration.MainPage"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone"

 xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone"

 xmlns:controls="clr-

namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone.Controls"

 xmlns:system="clr-namespace:System;assembly=mscorlib"

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

 mc:Ignorable="d" d:DesignWidth="480" d:DesignHeight="768"

 FontFamily="{StaticResource PhoneFontFamilyNormal}"

 FontSize="{StaticResource PhoneFontSizeNormal}"

 Foreground="{StaticResource PhoneForegroundBrush}"

 SupportedOrientations="PortraitOrLandscape" Orientation="Portrait"

 shell:SystemTray.IsVisible="True">

 <controls:Pivot Title="PIVOT DEMONSTRATION">

<controls:PivotItem Header="ListBox">

 …

</controls:PivotItem>

<controls:PivotItem Header="Ellipse">

 …

</controls:PivotItem>

<controls:PivotItem Header="TextBlock">

 …

</controls:PivotItem>

713	

	

	 	 	 	

	 	 	 	

	 	

	 	 	 	

	

	 	 	

	 	

	 	

<controls:PivotItem Header="Animation">

 …

</controls:PivotItem>

</controls:Pivot>

</phone:PhoneApplicationPage>

The	Pivot	control’s	Title property	is	set	to	“PIVOT	DEMONSTRATION.”	By	default,	this	title	will	

appear	in	the	same	location	and	be	the	same	size	as	the	text	displayed	at	the	top	of	the	

normal	Windows	Phone	page.	(That’s	the	text	normally	displayed	by	the	TextBlock	with	the	

name	ApplicationTitle.)	Each	of	the	four	PivotItem	controls	has	a	Header	property	set;	this	text	

appears	in	the	same	location	and	is	the	same	size	as	the	customary	TextBlock	named	

PageTitle.

The	PivotItem	control	derives	from	ContentControl,	so	you	can	put	pretty	much	anything	in	

those	controls.	I	gave	the	first	PivotItem	a	ListBox	containing	all	the	fonts	available	to	

Windows	Phone	7	programs,	including	a	simple	DataTemplate:	

Silverlight Project: File: (excerpt)

<controls:PivotItem Header="ListBox">

<ListBox FontSize="{StaticResource PhoneFontSizeLarge}">

<ListBox.ItemTemplate>

<DataTemplate>

<TextBlock Text="{Binding}"

 FontFamily="{Binding}" />

</DataTemplate>

</ListBox.ItemTemplate>

<system:String>Arial</system:String>

<system:String>Arial Black</system:String>

<system:String>Calibri</system:String>

<system:String>Comic Sans MS</system:String>

<system:String>Courier New</system:String>

<system:String>Georgia</system:String>

<system:String>Lucida Sans Unicode</system:String>

<system:String>Portable User Interface</system:String>

<system:String>Segoe WP</system:String>

<system:String>Segoe WP Black</system:String>

<system:String>Segoe WP Bold</system:String>

<system:String>Segoe WP Light</system:String>

<system:String>Segoe WP Semibold</system:String>

<system:String>Segoe WP SemiLight</system:String>

<system:String>Tahoma</system:String>

<system:String>Times New Roman</system:String>

<system:String>Trebuchet MS</system:String>

<system:String>Verdana</system:String>

<system:String>Webdings</system:String>

</ListBox>

</controls:PivotItem>

714	

	

	 	 	 	 	 	

	

	

	 	 	

	 	

The	PivotItem	gives	the	ListBox	an	amount	of	space	equal	to	the	size	of	the	page	less	the	Title

text	and	the	Header	text:	

The	ListBox	is	vertically	scrollable,	of	course.	Notice	the	Header	text	of	the	second	PivotItem	in	

a	dimmed	state	next	to	the	first	one.	That	second	PivotItem	just	displays	an	Ellipse:	

Silverlight Project: File: (excerpt)

<controls:PivotItem Header="Ellipse">

<Ellipse>

<Ellipse.Fill>

<LinearGradientBrush>

<GradientStop Offset="0" Color="{StaticResource PhoneAccentColor}"

/>

<GradientStop Offset="0.5" Color="{StaticResource

PhoneBackgroundColor}" />

<GradientStop Offset="1" Color="{StaticResource

PhoneForegroundColor}" />

</LinearGradientBrush>

</Ellipse.Fill>

</Ellipse>

</controls:PivotItem>

715	

	

	

	

	 	 	 	

	 	

This	clearly	shows	exactly	how	large	an	area	the	PivotItem	is	offering	to	its	content:	

The	third	PivotItem	contains	a	ScrollViewer with	a	large	TextBlock	containing	the	opening	

paragraph	from	a	wellknown	novel:	

Silverlight Project: File: (excerpt)

<controls:PivotItem Header="TextBlock">

<ScrollViewer>

<!-- from http://www.gutenberg.org/files/7178/7178-8.txt -->

<TextBlock TextWrapping="Wrap">

 For a long time I used to go to bed early. Sometimes, when I had put out

 my candle, my eyes would close so quickly that I had not even time to

 say "I'm going to sleep." And half an hour later the thought that it was

 time to go to sleep would awaken me; I would try to put away the book

 which, I imagined, was still in my hands, and to blow out the light; I

 had been thinking all the time, while I was asleep, of what I had just

 been reading, but my thoughts had run into a channel of their own,

 until I myself seemed actually to have become the subject of my book:

 a church, a quartet, the rivalry between François I and Charles V. This

 impression would persist for some moments after I was awake; it did not

 disturb my mind, but it lay like scales upon my eyes and prevented them

 from registering the fact that the candle was no longer burning. Then

 it would begin to seem unintelligible, as the thoughts of a former

 existence must be to a reincarnate spirit; the subject of my book would

 separate itself from me, leaving me free to choose whether I would form

 part of it or no; and at the same time my sight would return and I

 would be astonished to find myself in a state of darkness, pleasant and

716	

	

	

	

	 	 	

 restful enough for the eyes, and even more, perhaps, for my mind, to

 which it appeared incomprehensible, without a cause, a matter dark

 indeed.

</TextBlock>

</ScrollViewer>

</controls:PivotItem>

Once	again,	there’s	no	issue	with	scrolling:	

The	final	PivotItem	contains	a	TextBlock with	several	animations	applied:	

Silverlight Project: File: (excerpt)

<controls:PivotItem Header="Animation">

 <TextBlock Text="Hello, Windows Phone 7!"

 HorizontalAlignment="Left"

 VerticalAlignment="Top"

 RenderTransformOrigin="0.5 0.5">

<TextBlock.RenderTransform>

<CompositeTransform x:Name="xform" />

</TextBlock.RenderTransform>

</TextBlock>

<controls:PivotItem.Triggers>

<EventTrigger>

<BeginStoryboard>

<Storyboard>

<DoubleAnimation Storyboard.TargetName="xform"

717

	

	

	

	 	 	 	

	 	

	 	

	

 Storyboard.TargetProperty="Rotation"

 From="0" To="360" Duration="0:0:3"

 RepeatBehavior="Forever" />

<DoubleAnimation Storyboard.TargetName="xform"

 Storyboard.TargetProperty="TranslateX"

 From="0" To="300" Duration="0:0:5"

 AutoReverse="True"

 RepeatBehavior="Forever" />

<DoubleAnimation Storyboard.TargetName="xform"

 Storyboard.TargetProperty="TranslateY"

 From="0" To="600" Duration="0:0:7"

 AutoReverse="True"

 RepeatBehavior="Forever" />

</Storyboard>

</BeginStoryboard>

</EventTrigger>

</controls:PivotItem.Triggers>

</controls:PivotItem>

The	animations	make	the	TextBlock	move	and	spin	around:	

Notice	the	header	of	the	first	PivotItem	to	the	right	of	the	active	one.	The	animations	are	

tailored	for	the	approximate	size	of	the	content	area	of	the	PivotItem	for	the	large	screen	in	

portrait	mode.	If	you	turn	the	phone	or	emulator	sideways,	the	TextBlock	will	drift	off	the	

screen	temporarily.	

718

	

	 	

	 	 	 	 	

	

	 	

	

	 	

	 	

The	PanoramaDemonstration	program	is	extremely	similar	to	PivotDemonstration.	For	the	

most	part,	every	place	in	the	MainPage.xaml	file	of	PivotDemonstration	where	the	word	

“Pivot”	occurs	is	replaced	with	the	word	“Panorama.”	Beyond	that,	the	only	other	difference	

was	the	change	in	the	Title property	to	lowercase:	

Silverlight Project: File: (excerpt)

<controls:Panorama Title="panorama demonstration">

<controls:PanoramaItem Header="ListBox">

…

</controls:PanoramaItem>

<controls:PanoramaItem Header="Ellipse">

…

</controls:PanoramaItem>

<controls:PanoramaItem Header="TextBlock">

…

</controls:PanoramaItem>

<controls:PanoramaItem Header="Animation">

…

</controls:PanoramaItem>

</controls:Panorama>

Although	Pivot	and	Panorama	are	conceptually	very	similar,	they	have	rather	different	

aesthetics.	The	next	several	screen	shots	show	the	two	controls	sidebyside	with	Pivot	on	the	

left	and	Panorama	on	the	right.	Notice	how	the	Title	is	handled	in	the	Panorama:	It’s	much	

larger	and	suggests	that	it	stretches	to	encompass	all	the	other	items:	

719	

	

	

	 	 	 	 	 	

	 	 	

	 	

	 	

	 	 	

	 	 	

	 	 	

	 	 	 	

	 	 	 	 	

Although	I	haven’t	done	so	here,	generally	you’ll	set	the	Background	property	of	the	

Panorama	control	to	an	ImageBrush with	a	wide	bitmap	that	spreads	out	behind	the	back.	

(On	the	phone,	look	at	the	Games,	Marketplace,	and	Pictures	applications	to	get	some	ideas.)	

As	a	result	of	the	large	Title,	the	Panorama	offers	less	vertical	space	for	the	content	of	each	

PanoramaItem.	Slightly	less	horizontal	space	is	available	as	well	because	the	next	item	to	the	

right	is	peaking	through	at	the	right	edge.	

You	can	navigate	forwards	or	backwards	through	the	Pivot	and	Panorama	just	by	sweeping	

your	finger	to	the	right	or	left.	With	Panorama,	sweeping	your	finger	along	the	Title	text	feels	

very	natural.	With	the	Pivot	(but	not	the	Panorama)	you	can	navigate	to	one	of	the	other	

items	by	tapping	its	Header	text:	

720	

	

	

	 	 	

	 		

	 	 	 	 	

	 	 	

	

	 	

	

Notice	how	the	Title	of	the	Panorama	has	also	shifted	to	visually	indicate	where	you	are	in	

terms	of	the	virtual	width	of	all	the	content.	

As	you	experiment	with	sweeping	your	finger	across	the	screen,	you’ll	discover	that	the	Pivot

and	Panorama	actually	behave	in	very	different	ways:	In	both	cases	the	Header	texts	are	

somewhat	visually	uncoupled	from	the	actual	items.	With	the	Pivot,	one	item	moves	

completely	off	the	screen	before	the	next	item	slides	in;	with	the	Panorama,	you	can	see	two	

items	simultaneously.	Here’s	a	view	in	progress	between	two	items:	

721	

	

	

	 	

	 	 	 	

	

	 	 	 	 	

	

	 	 	

	

	 	 	

	 	 	

	 	

The	Panorama	gives	a	much	better	sense	of	a	wide	virtual	screen	through	which	a	viewport	is	

visible,	particularly	when	used	with	a	wide	background	bitmap.	The	Pivot	seems	more	like	it’s	

occupying	just	the	screen	area	and	works	by	sliding	individual	items	in	and	out	of	view.	

The	Pivot control	defines	several	events	that	the	Panorama	control	does	not:	

LoadingPivotItem,	LoadedPivotItem,	UnloadingPivotItem,	UnloadedPivotItem.	These	events	

signal	when	one	item	slips	out	of	view	and	another	item	slips	in.	These	events	don’t	quite	

apply	to	the	more	fluid	nature	of	the	Panorama.	

Both	Pivot	and	Panorama	define	SelectionChanged	events,	as	well	as	SelectedIndex	and	

SelectedItem.	The	selection	is	considered	to	be	the	PivotItem	or	PanoramaItem	in	full	view,	

and	the	event	isn’t	fired	until	the	item	finishes	sliding	fully	into	place.	

722	

	

	

	 	 	

	 	 	 	 	 	 	

	 	

	 	 	 	

	

	

	 	

Both	Pivot	and	Panorama	define	TitleTemplate	and	HeaderTemplate	properties	of	type	

DataTemplate	so	if	you	use	bindings	to	set	the	content	of	the	control	you	can	define	a	visual	

tree	to	indicate	how	the	Title	property	and	Header	properties	use	the	data.		

The	HeaderTemplate	property	is	particularly	important	if	you	bind	the	ItemsSource	property	of	

Pivot	or	Panorama	to	a	collection,	in	which	case	you	aren’t	creating	the	PivotItem	or	

PanoramaItem	objects	explicitly.	You’ll	need	this	HeaderTemplate	for	a	binding	to	set	the	

Header	text,	but	the	template	can	consist	solely	of	a	TextBlock.	You’ll	see	an	example	later	in	

this	chapter.	

723	

	

	

	 	 	

	 	

	

	

	

If	you’re	feeling	particularly	adventurous,	you	can	also	define	a	whole	new	ControlTemplate

for	Pivot	or	Panorama.	The	Pivot	template	requires	a	PivotHeadersControl	(which	is	a	

TemplateItemsControl	of	type	PivotHeaderItem)	and	the	Panorama	template	requires	three	

PanningLayer	objects.	PanningLayer	derives	from	ContentControl,	and	the	

Microsoft.Phone.Controls.Primitives	namespace	includes	PanningBackgroundLayer	and	

PanningTitleLayer	classes	that	derive	from	PanningLayer.	

724	

	

	

	

	 	

	

	 	 	

	 	

	 	

	

	 	 	

	

	 	

	 	

	 	 	 	

	 	 	 	 	

	 	 	

In	the	final	view,	we’ve	circle	back	to	the	beginning.	But	in	the	Panorama	control	you	can	

simultaneously	see	three	PanoramaItem	children:	The	ListBox	is	in	full	view,	there’s	a	little	

sliver	of	the	Ellipse	at	the	right,	but	look	at	that	snippet	of	rotated	text	intersecting	the	“Comic	

Sans	MS”	item:	That’s	the	animation	to	the	left.	

Music
by
Composer

Once	I	started	thinking	about	it,	I	realized	that	the	Pivot	control	was	the	perfect	choice	for	

realizing	a	program	I	had	long	been	contemplating.	This	program	corrects	what	I	perceive	to	

be	a	major	deficiency	of	portable	music	players	such	as	the	Zune	and	Windows	Phone	7,	so	a	

little	explanation	is	necessary:	

As	you	may	know,	the	landscape	of	music	in	the	United	States	and	Europe	can	be	roughly	

divided	into	performercentric	music	and	composercentric	music.	The	performercentric	

tradition	has	close	ties	with	the	rise	and	evolution	of	recording	technologies	and	encompasses	

performers	from	(say)	Robert	Johnson	(1911–1938)	through	Lady	Gaga	(b.	1986).	Performer

centric	music	consists	predominantly	of	a	musical	form	known	as	the	song,	generally	several	

minutes	in	length,	with	a	vocalist	and	instrumental	accompaniment.	

The	composercentric	tradition	is	much	older,	stretching	from	(say)	Claudio	Monteverdi	

(1567–1643)	through	Jennifer	Higdon	(b.	1962),	and	encompasses	very	many	different	forms	

(for	example,	string	quartet,	piano	concerto,	symphony,	and	opera	as	well	as	songs)	of	widely	

varying	lengths,	styles,	and	instrumentation.	

725	

	

	 	

	 	 	

	 	 	

	 	 	

	 	

	 	 	 	

	 	

	 	 	 	

	

	 	

	 	 	

	

	 	 	 	 	

	

	

	 	

	 	

	

	 	

	 	

	 	 	 	 	 	 	

	 	 	 	

	

People	who	listen	to	composercentric	music	generally	prefer	to	organize	their	music	by	

composer,	and	then	within	composer	by	composition,	and	within	composition	by	performer.	

(As	with	the	performercentric	tradition,	the	word	artist is	satisfactory	for	referring	to	the	

person	or	people	playing	the	music.)	The	Zune	desktop	software	allows	you	to	enter	

composer	information	when	downloading	music	and	ripping	CDs,	but	that	information	is	not	

transferred	with	the	files	to	portable	devices	such	as	the	phone.	Even	if	composer	information	

was	included	in	the	music	files	transferred	to	the	phone,	it	is	not	available	through	the	public	

properties	of	the	classes	used	to	access	the	music.	

To	compensate	for	this	deficiency,	people	who	listen	to	composercentric	music	often	

incorporate	the	composer’s	name	in	the	album	title	followed	by	a	colon,	such	as:	

Mahler: Symphony No. 2

Many	CDs	of	music	in	the	composercentric	tradition	rip	with	album	titles	in	this	format.	For	

albums	that	have	music	of	more	than	one	composer,	I’ve	also	adopted	the	convention	of	

separating	the	composers’	names	with	commas:	

Adès, Schubert: Piano Quintets

Over	the	years	I’ve	ripped	about	600	of	my	CDs	to	the	PC,	and	most	of	them	are	identified	in	

this	way.	When	the	music	player	lists	the	albums	alphabetically	by	album	title,	the	music	is	

also	listed	alphabetically	by	composer,	so	that’s	a	big	help.	

But	I	wanted	more.	I	wanted	a	hierarchical	structure	based	around	the	composer.	I	wanted	to	

see	the	composers’	names	up	front	so	I	begin	by	selecting	Schubert	or	Debussy	or	Messiaen.	

So	I	decided	to	write	a	Windows	Phone	7	program	called	MusicByComposer	that	takes	this	

extra	step.	The	program	accesses	the	music	library	on	the	phone	and—under	the	assumption	

that	the	album	titles	begin	with	one	or	more	composer	names	followed	by	a	colon—extracts	

the	composers’	names	from	the	album	titles..	It	then	arranges	the	music	by	composer,	where	

each	composer	becomes	a	PivotItem.	The	content	of	that	PivotItem	is	a	ListBox	that	lists	all	the	

albums	containing	music	by	that	composer.	

726	

	

	

	

	 	 	

	 	 	

	 	 	 	 	

	 	

	 	 	 	 	 	 	 	

	 	 	

	

	

The	MusicByComposer	program	begins	with	a	screen	that	looks	something	like	this:	

You	should	recognize	this	as	a	standard	Pivot	control	where	each	PivotItem	is	a	composer.	On	

my	phone	the	first	PivotItem displays	albums	by	American	composer	John	Adams	(b.	1947).	

The	other	PivotItem headers	you	can	see	here	are	for	British	composer	Thomas	Adès	(b.	1971)	

and	German	composer	Johann	Sebastian	Bach	(1685–1750).	

If	none	of	your	music	has	a	colon	in	the	album	title,	all	your	albums	will	be	listed	under	a	

single	PivotItem	with	the	header	“Other”.	

The	PivotItem	for	each	composer	contains	a	ListBox where	each	item	includes	the	thumbnail	

album	art,	the	album	title	(without	the	composer	name)	using	the	phone’s	current	accent	

color,	and	the	artist	associated	with	the	album	in	the	foreground	color.	

727	

	

	

	

	 	 	 	 	

	 	 	

	 	

	 	 	

	 	 	 	 	

	 	

	 	 	 	

	 	

	

	 	 	 	 	

	

Tapping	any	album	brings	you	to	a	page	for	that	album:	

This	is	a	standard	PhoneApplicationPage	with	the	standard	two	TextBlock	items	for	the	

application	title	and	the	page	title,	but	as	you	can	see,	the	titles	are	the	same	size	and	in	the	

same	position	as	the	Pivot control	on	the	opening	page.	The	larger	album	art	is	shown	with	

the	full	album	name	and	artist.	Underneath	is	a	ScrollViewer	with	an	ItemsControl	with	all	the	

tracks	from	the	album.	This	screen	has	no	touch	interface	except	for	scrolling:	You	control	

everything	with	the	ApplicationBar	buttons:	go	to	the	previous	track,	play	and	pause,	and	go	

to	the	next	track.	The	currently	playing	track	is	indicated	with	the	accent	color	and	time	

progress.	

After	an	application	starts	playing	an	album,	it’s	normal	in	Windows	Phone	7	for	the	album	to	

play	all	the	way	through,	even	if	the	application	ends	or	the	phone’s	display	shuts	off.	The	

MusicByComposer	program	allows	you	to	navigate	to	other	albums,	but	it	will	only	shut	off	an	

existing	album	and	play	a	new	one	if	you	press	the	middle	button	to	pause	the	existing	album	

and	press	again	to	play	the	album	on	the	page.	

The
XNA
Connection

As	you’ll	recall	from	Chapter	4	and	Chapter	14,	a	Silverlight	program	can	get	access	to	the	

phone’s	photo	library	for	retrieving	photos	and	saving	them,	but	it	needs	to	use	an	XNA	class	

named	MediaLibrary	in	the	Microsoft.Xna.Framework.Media namespace.	You	need	that	same	

class—and	other	classes	in	that	namespace—for	accessing	and	playing	music	

728	

	

	 	

	

	 	 	 	 	 	 	

	

	

	

Any	program	that	uses	MediaLibrary needs	a	reference	to	the	Microsoft.Xna.Framework	DLL;	

The	MusicByComposer	program	also	needs	a	reference	to	Microsoft.Phone.Controls	for	the	

Pivot	control.	

When	you	use	XNA	services	to	play	music	from	a	Silverlight	application,	some	issues	are	

involved.	As	described	in	the	topic	in	the	XNA	documentation	entitled	“Enable	XNA	

Framework	Events	in	Windows	Phone	Applications,”	you	need	a	class	that	calls	the	XNA	static	

method	FrameworkDispatcher.Update	at	the	same	rate	as	the	video	refresh	rate,	thirty	times	

per	second.	The	following	class	in	the	MusicByComposer	project	is	basically	the	class	shown	in	

that	documentation	topic:	

 Silverlight Project: MusicByComposer File: XnaFrameworkDispatcherService.cs

using System;

using System.Windows;

using System.Windows.Threading;

using Microsoft.Xna.Framework;

namespace MusicByComposer

{

public class XnaFrameworkDispatcherService : IApplicationService

 {

DispatcherTimer timer;

public XnaFrameworkDispatcherService()

{

 timer = new DispatcherTimer();

 timer.Interval = TimeSpan.FromTicks(333333);

 timer.Tick += OnTimerTick;

FrameworkDispatcher.Update();

}

void OnTimerTick(object sender, EventArgs args)

{

FrameworkDispatcher.Update();

}

void IApplicationService.StartService(ApplicationServiceContext context)

{

 timer.Start();

}

void IApplicationService.StopService()

{

 timer.Stop();

}

 }

}

729	

	

	 	 	 	

	 	 	 	

	 	

	

	

	 	 	

	 	

	

	 	 	 	

	 	 	

	 	 	

	 	 	 	

You’ll	need	to	instantiate	that	class	in	the	ApplicationLifetimeObjects	section	of	the	App.xaml	

file.	Notice	the	XML	namespace	declaration	for	“local”:	

Silverlight Project: File:

<Application

x:Class="MusicByComposer.App"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone"

 xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone"

 xmlns:local="clr-namespace:MusicByComposer">

<!--Application Resources-->

<Application.Resources>

</Application.Resources>

<Application.ApplicationLifetimeObjects>

<!-- Required for playing music from a Silverlight app -->

<local:XnaFrameworkDispatcherService />

<!--Required object that handles lifetime events for the application-->

<shell:PhoneApplicationService

 Launching="Application_Launching" Closing="Application_Closing"

 Activated="Application_Activated"

Deactivated="Application_Deactivated"/>

</Application.ApplicationLifetimeObjects>

</Application>

For	testing	purposes,	the	phone	emulator	has	a	music	library	that	consists	of	a	single	album	

with	three	short	songs,	which	is	great	for	establishing	basic	album	retrieval	and	playing	logic,	

but	it	hardly	gives	the	program	a	real	workout.	

For	debugging	a	program	running	on	the	actual	phone	from	Visual	Studio,	you’ll	need	to	exit	

the	desktop	Zune	program	(because	it	wants	exclusive	access	to	the	music	library)	and	instead	

run	the	Connect	tool,	WPDTPTConnect32	on	32bit	Windows	or	WPDTPTConnect64	on	64bit	

Windows.	

I	also	discovered	another	problem.	When	the	program	was	deployed	to	the	phone	and	

running	apart	from	Visual	Studio,	the	program	would	report	that	the	music	library	on	the	

phone	had	no	music….	except	if	I	first	ran	an	XNA	program.	I	am	told	this	is	a	bug	in	the	initial	

release	of	Windows	Phone	7,	and	I	decided	to	work	around	this	bug	by	making	the	program	

accessible	from	the	Games	hub	on	the	phone.	To	do	this	I	set	the	following	attribute	in	the	

App	tag	of	the	WMAppManifest.xml	file:	

Genre="apps.games"

730	

	

	 	

	 	

	

	 	

	 	 	

	 	 	

	

	 	

	 	 	 	

	

	 	

	 	

	 	 	 	

	 	

	 	 	

	 	

	

	 	

	 	 	

	 	

	 	 	

	 	 	

	

	

	

	 	

I	also	gave	the	program	Background.png	and	ApplicationIcon.png	images	containing	a	

portrait	of	perhaps	the	most	famous	individual	in	the	composercentric	tradition.	

The
XNA
Music
Classes:
MediaLibrary

An	application	that	wants	to	play	music	under	Windows	Phone	7	uses	classes	from	the	

Microsoft.Xna.Framework.Media	namespace.	You’ll	first	need	to	access	the	music	from	the	

library,	and	for	that	you’ll	need	a	new	instance	of	MediaLibrary,	the	same	class	you	use	to	

access	the	photo	library.	

The	MediaLibrary class	defines	several	getonly	properties	that	let	you	access	the	music	library	

in	several	standard	ways.	These	properties	include:	

• Albums	of	type	AlbumCollection,	a	collection	of	Album	objects.	

• Songs	of	type	SongCollection,	a	collection	of	Song	objects.	

• Artists	of	type	ArtistCollection,	a	collection	of	Artist	objects.	

• Genres	of	type	GenreCollection,	a	collection	of	Genre	objects.	

Each	of	these	collections	contains	all	the	music	in	your	library	but	arranged	in	different	ways.	

(The	presence	of	a	property	called	Composer	of	type	ComposerCollection	would	have	

simplified	my	program	considerably.)	

For	my	purposes	I	found	the	Albums	property	of	MediaLibrary the	most	useful.	The	

AlbumCollection	class	is	a	collection	of	items	of	type	Album,	and	Album	has	the	following	get

only	properties	(among	others):	

• Name	of	type	string

• Artist	of	type	Artist

• Songs	of	type	SongCollection

• HasArt	of	type	bool

If	HasArt	is	true,	you	can	call	two	methods,	GetAlbumArt	and	GetThumbnail,	both	of	which	

return	Stream objects	to	access	a	bitmap	with	an	image	of	the	album	cover.	GetAlbumArt

returns	a	bitmap	of	about	200pixels	square	and	GetThumbnail	returns	a	bitmap	of	about	

100pixels	square.	

The	SongCollection	in	an	Album	instance	contains	all	the	tracks	on	the	album.	(In	the	

composercentric	tradition,	the	use	of	the	word	song	to	describe	these	album	tracks	doesn’t	

make	much	sense	if,	for	example,	a	track	is	actually	a	movement	of	a	symphony,	but	the	

731	

	

	

	 	 	

	 	

	 	

	 	 	

	

	

	

performercentric	prejudice	of	the	XNA	classes	is	something	we’re	forced	to	live	with.)	The	

Song	object	has	several	getonly	properties,	among	them:	

• Name	of	type	string

• Album	of	type	Album

• Artist	of	type	Artist

• Duration	of	type	TimeSpan.	

For	organizing	the	music	library	by	composer	and	for	data	binding	purposes,	I	realized	that	

I’d	need	a	couple	new	classes.	My	AlbumInfo	class	is	basically	a	wrapper	around	the	XNA	

Album	class:	

Silverlight Project: File:

using System;

using System.Windows.Media.Imaging;

using Microsoft.Xna.Framework.Media;

namespace MusicByComposer

{

public class AlbumInfo : IComparable<AlbumInfo>

{

BitmapImage albumArt;

BitmapImage thumbnailArt;

public AlbumInfo(string shortAlbumName, Album album)

{

this.ShortAlbumName = shortAlbumName;

this.Album = album;

}

public string ShortAlbumName { protected set; get; }

public Album Album { protected set; get; }

public BitmapSource AlbumArt

{

get

 {

if (albumArt == null && Album.HasArt)

 {

BitmapImage bitmapImage = new BitmapImage();

 bitmapImage.SetSource(Album.GetAlbumArt());

 albumArt = bitmapImage;

}

return albumArt;

 }

}

732	

	

	 	

	

	 	 	

	 	 	 	

	 	

	 	 	

	 	 	

	 	

	 	 	

	

public BitmapSource ThumbnailArt

{

get

 {

if (thumbnailArt == null && Album.HasArt)

{

BitmapImage bitmapImage = new BitmapImage();

 bitmapImage.SetSource(Album.GetThumbnail());

 thumbnailArt = bitmapImage;

 }

return thumbnailArt;

 }

}

public int CompareTo(AlbumInfo albumInfo)

{

return ShortAlbumName.CompareTo(albumInfo.ShortAlbumName);

}

 }

}

This	AlbumInfo	class	has	a	property	of	type	Album	and	adds	three	more	properties:	The	

ShortAlbumName	property	is	the	name	of	the	album	with	the	composer	or	composers	at	the	

beginning	stripped	off.	(For	example,	“Mahler:	Symphony	No.	2”	becomes	“Symphony	No.	2”.)	

This	property	is	used	in	the	CompareTo	method	at	the	bottom	for	sorting	purposes.	In	the	

first	of	the	two	screen	shots	of	MusicByComposer,	you’ll	notice	that	the	album	names	are	

sorted.	

The	GetAlbumArt	and	GetThumbnail	methods	of	Album	return	Stream	objects.	For	binding	

purposes,	I	expose	two	public	properties	of	type	BitmapImage	but	the	class	only	creates	these	

objects	when	the	properties	are	first	accessed,	and	then	caches	them	for	subsequent	accesses.	

The	next	class	is	ComposerInfo,	which	consists	of	the	composer’s	name	and	a	list	of	all	the	

AlbumInfo	objects	containing	music	by	that	composer:	

Silverlight Project: MusicByComposer File: ComposerInfo.cs

using System;

using System.Collections.Generic;

namespace MusicByComposer

{

public class ComposerInfo

 {

public ComposerInfo(string composer, List<AlbumInfo> albums)

{

 Composer = composer;

 albums.Sort();

 Albums = albums;

733	

	

	 	 	

	 	 	

	 	 	

	 	 	

	 	

}

public string Composer { protected set; get; }

public IList<AlbumInfo> Albums { protected set; get; }

 }

}

Notice	that	the	List	of	AlbumInfo	objects	is	sorted	in	the	constructor.	

The	MusicPresenter class	is	responsible	for	accessing	the	phone’s	music	library,	obtaining	all	

the	albums,	analyzing	the	album	titles	for	the	presence	of	composer	names,	and	creating	

objects	of	type	ComposerInfo	and	AlbumInfo.	It	does	the	main	work	in	its	instance	constructor	

by	storing	the	information	in	a	dictionary	with	composer	names	used	as	keys	that	reference	

items	of	the	type	List<AlbumInfo>:	

Silverlight Project: MusicByComposer File: MusicPresenter.cs

using System;

using System.Collections.Generic;

using Microsoft.Xna.Framework.Media;

namespace MusicByComposer

{

public class MusicPresenter

 {

// Static constructor

static MusicPresenter()

{

if (Current == null)

 Current = new MusicPresenter();

}

// Instance constructor

public MusicPresenter()

{

// Make this class a singleton

if (MusicPresenter.Current != null)

{

this.Composers = MusicPresenter.Current.Composers;

return;

}

MediaLibrary mediaLib = new MediaLibrary();

Dictionary<string, List<AlbumInfo>> albumsByComposer =

new Dictionary<string, List<AlbumInfo>>();

foreach (Album album in mediaLib.Albums)

 {

int indexOfColon = album.Name.IndexOf(':');

734	

	

// Check for pathological cases

if (indexOfColon != -1 &&

// Colon at beginning of album name

 (indexOfColon == 0 ||

// Colon at end of album name

 indexOfColon == album.Name.Length - 1 ||

// nothing before colon

 album.Name.Substring(0, indexOfColon).Trim().Length == 0 ||

// nothing after colon

 album.Name.Substring(indexOfColon + 1).Trim().Length == 0))

 {

 indexOfColon = -1;

 }

// Main logic for albums with composers

if (indexOfColon != -1)

 {

string[] albumComposers =

album.Name.Substring(0, indexOfColon).Split(',');

string shortAlbumName = album.Name.Substring(indexOfColon +

1).Trim();

bool atLeastOneEntry = false;

foreach (string composer in albumComposers)

 {

string trimmedComposer = composer.Trim();

if (trimmedComposer.Length > 0)

 {

atLeastOneEntry = true;

if (!albumsByComposer.ContainsKey(trimmedComposer))

 albumsByComposer.Add(trimmedComposer,

new List<AlbumInfo>());

albumsByComposer[trimmedComposer].Add(

new AlbumInfo(shortAlbumName,

album));

 }

 }

// Another pathological case: Just commas before colon

if (!atLeastOneEntry)

 {

 indexOfColon = -1;

 }

 }

// The "Other" category is for albums without composers

if (indexOfColon == -1)

 {

if (!albumsByComposer.ContainsKey("Other"))

 albumsByComposer.Add("Other", new List<AlbumInfo>());

 albumsByComposer["Other"].Add(new AlbumInfo(album.Name, album));

735	

	

	 	 	

	 	 	 	

	

	 	 	 	

	 	 	

	 	

	 	

	

	

	 	 	 	

	 	

	

	

	 	

	

 }

 }

 mediaLib.Dispose();

// Transfer Dictionary keys to List for sorting

List<string> composerList = new List<string>();

foreach (string composer in albumsByComposer.Keys)

 composerList.Add(composer);

 (composerList as List<string>).Sort();

// Construct Composers property

 Composers = new List<ComposerInfo>();

foreach (string composer in composerList)

 Composers.Add(new ComposerInfo(composer,

albumsByComposer[composer]));

 Current = this;

}

public static MusicPresenter Current { protected set; get; }

public IList<ComposerInfo> Composers { private set; get; }

}

}

Only	one	instance	of	this	class	is	required	by	the	program.	The	music	library	will	not	change	

while	the	program	is	running,	so	there’s	no	reason	for	this	instance	constructor	to	run	again.	

For	that	reason,	when	the	instance	constructor	is	finished,	it	sets	the	static	Current	property	

equal	to	the	instance	of	MusicPresenter being	created.	This	first	instance	will	actually	be	

created	from	the	static	constructor	at	the	very	top	of	the	class,	and	result	in	setting	the	

Composers	property	(down	at	the	bottom),	which	consists	of	a	list	of	ComposerInfo	objects.	If	

the	constructor	is	called	again,	it	merely	transfers	the	existing	Composers	property	to	the	new	

instance.	

Why	not	make	MusicPresenter	a	static	class	and	simplify	it	somewhat?	Because	MusicPresenter

is	used	in	data	bindings	in	XAML	files	and	an	actual	instance	of	a	class	is	required	for	those	

bindings.	However,	code	also	needs	to	access	the	class	and	for	that	the	static	

MusicPresenter.Current	property	is	helpful.	

This	static	constructor	executes	when	the	program	first	accesses	the	class,	of	course,	but	also	

when	the	program	accesses	the	class	again	after	it	is	revived	from	tombstoning.	In	this	case,	

recreating	the	data	from	the	MediaLibrary	is	certainly	easier	than	saving	it	all	in	isolated	

storage.	

736

	

	 	 	 	 	

	

	

	

	 	 	

	

	 	

Displaying
the
Albums

When	the	program	starts	up,	MainPage is	displayed.	The	XAML	file	contains	XML	namespace	

declarations	for	“controls”	(to	access	the	Pivot	control)	and	“local”	(for	MusicPresenter).	The	

Resources	collection	instantiates	MusicPresenter:	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.Resources>

<local:MusicPresenter x:Key="musicPresenter" />

</phone:PhoneApplicationPage.Resources>

In	the	design	view,	Visual	Studio	will	complain	that	it	can’t	create	an	instance	of	

MusicPresenter,	and	of	course	it	can’t	because	it	would	need	access	to	the	phone’s	(or	the	

phone	emulator’s)	music	library.	

Almost	the	entire	visual	tree	of	the	page	is	a	Pivot	control:	

Silverlight Project: File: (excerpt)

<Grid x:Name="LayoutRoot" Background="Transparent">

<controls:Pivot Name="pivot"

 Title="MUSIC BY COMPOSER"

 ItemsSource="{Binding Source={StaticResource musicPresenter},

 Path=Composers}">

<controls:Pivot.HeaderTemplate>

<!-- Objects of type ComposerInfo -->

<DataTemplate>

<TextBlock Text="{Binding Composer}" />

</DataTemplate>

</controls:Pivot.HeaderTemplate>

<controls:Pivot.ItemTemplate>

<!-- Objects of type ComposerInfo -->

<DataTemplate>

<ListBox ItemsSource="{Binding Albums}"

 SelectionChanged="OnListBoxSelectionChanged">

<ListBox.ItemTemplate>

<!-- Objects of type AlbumInfo -->

<DataTemplate>

<Grid Background="Transparent">

<Grid.ColumnDefinitions>

<ColumnDefinition Width="Auto" />

<ColumnDefinition Width="*" />

</Grid.ColumnDefinitions>

<Border Grid.Column="0"

 BorderBrush="{StaticResource

PhoneForegroundBrush}"

737	

	

	 	

	 	 	 	

	

	 	

	 	 	

	 	 	 	

	 	

	

	

	 	

	 	 	 	

	

 BorderThickness="1"

 Width="100" Height="100"

 Margin="0 2 6 2">

<Image Source="{Binding ThumbnailArt}" />

</Border>

<StackPanel Grid.Column="1"

 VerticalAlignment="Center">

<TextBlock

 Text="{Binding ShortAlbumName}"

 Foreground="{StaticResource

PhoneAccentBrush}"

 TextWrapping="Wrap" />

<TextBlock Text="{Binding Album.Artist.Name}"

 TextWrapping="Wrap" />

</StackPanel>

</Grid>

</DataTemplate>

</ListBox.ItemTemplate>

</ListBox>

</DataTemplate>

</controls:Pivot.ItemTemplate>

</controls:Pivot>

</Grid>

This	XAML	file	really	shows	off	the	power	of	templates	and	data	binding.	Remember	that	

Pivot	derives	from	ItemsTemplate,	so	it	has	an	ItemsSource	property	that	you	can	bind	to	a	

collection:	

ItemsSource="{Binding Source={StaticResource musicPresenter},

Path=Composers}"

This	means	that	the	Pivot	is	filled	with	a	collection	of	objects	of	type	ComposerInfo.	Internally,	

Pivot	will	generate	objects	of	type	PivotInfo,	one	for	each	ComposerInfo	item.	The	Header

property	of	each	PivotItem	needs	to	be	bound	to	the	Composer	property	of	the	

corresponding	ComposerInfo	object.	But	the	actual	PivotItem	object	is	being	created	behind	

the	scenes!	It	is	for	this	reason	that	Pivot	defines	a	HeaderTemplate	property:	

<controls:Pivot.HeaderTemplate>

<!-- Objects of type ComposerInfo -->

<DataTemplate>

<TextBlock Text="{Binding Composer}" />

</DataTemplate>

</controls:Pivot.HeaderTemplate>

Don’t	worry	about	the	formatting	of	the	TextBlock	object	in	this	template:	It	magically	gets	

the	proper	formatting,	probably	through	property	inheritance.	

The	Pivot	class	also	defines	an	ItemTemplate.	This	is	a	DataTemplate	that	is	used	to	generate	

the	content	of	each	PivotItem:	

738

	

	

	 	 	 	 	

	 	 	

	 	 	 	 	

	

	

	

	 	

	 	 	 	 	

<controls:Pivot.ItemTemplate>

<!-- Objects of type ComposerInfo -->

<DataTemplate>

<ListBox ItemsSource="{Binding Albums}"

 SelectionChanged="OnListBoxSelectionChanged">

…

</ListBox>

</DataTemplate>

</controls:Pivot.ItemTemplate>

This	DataTemplate	consists	of	a	ListBox	that	lists	all	the	albums	associated	with	the	composer	

represented	by	the	PivotItem.	The	ItemsSource	property	of	the	ListBox is	bound	to	the	Albums

property	of	the	ComposerInfo	object.	This	means	that	the	ListBox is	filled	with	a	collection	of	

objects	of	type	AlbumInfo,	which	means	the	DataTemplate	of	the	ListBox	defines	how	each	of	

those	items	is	displayed:	

<ListBox.ItemTemplate>

<!-- Objects of type AlbumInfo -->

<DataTemplate>

…

</DataTemplate>

</ListBox.ItemTemplate>

This	DataTemplate	references	the	ThumbnailArt,	ShortAlbumName,	and	Album	properties	of	

AlbumInfo.	

The	first	of	the	two	screen	shots	of	MusicByComposer	shown	earlier	is	entirely	the	result	of	

the	MainPage.xaml	file	and	the	data	objects	functioning	as	binding	sources.	The	codebehind	

file	for	MainPage	is	left	with	little	to	do	except	process	the	SelectionChanged	event	from	the	

ListBox	to	navigate	to	AlbumPage.xaml:	

Silverlight Project: File: (excerpt)

public partial class MainPage : PhoneApplicationPage

{

 public MainPage()

 {

InitializeComponent();

 }

 void OnListBoxSelectionChanged(object sender, SelectionChangedEventArgs args)

 {

ComposerInfo composerInfo = pivot.SelectedItem as ComposerInfo;

int composerInfoIndex =

MusicPresenter.Current.Composers.IndexOf(composerInfo);

AlbumInfo albumInfo = (sender as ListBox).SelectedItem as AlbumInfo;

int albumInfoIndex = composerInfo.Albums.IndexOf(albumInfo);

// Construct URI with two indices and navigate

string destinationUri =

739	

	

	 	

	 	 	

	 	

	 	 	

	 	 	 	

	 	

	 	

	 	

	

	

	

	 	 	 	

String.Format("/AlbumPage.xaml?ComposerInfoIndex={0}&AlbumInfoIndex={1}",

 composerInfoIndex, albumInfoIndex);

this.NavigationService.Navigate(new Uri(destinationUri, UriKind.Relative));

 }

}

The	query	string	consists	of	two	indices:	an	index	into	the	Composers	collection	of	

MusicPresenter	to	indicate	the	current	ComposerInfo	object,	and	an	index	into	the	Albums

property	of	the	ComposerInfo	object	to	reference	the	selected	AlbumInfo.	

The	code	obtains	the	current	ComposerInfo	object	being	displayed	through	the	SelectedItem

property	of	the	Pivot control.	It	was	my	original	intention	to	save	the	SelectedIndex	of	the	

Pivot	control	during	tombstoning	so	I	could	restore	the	MainPage	display	on	reactivation.	

However,	I	experienced	problems	setting	SelectedIndex	on	a	newly	created	Pivot	control,	so	I	

decided	to	abandon	that	amenity	for	now.	This	means	that	if	the	program	is	tombstoned,	the	

MainPage	always	goes	back	to	displaying	the	albums	of	John	Adams.	

The	Navigate	call	instantiates	an	AlbumPage	instance,	which	displays	an	album.	AlbumPage	is	

a	normal	PhoneApplicationPage	derivative,	with	the	normal	two	titles.	(The	page	title	is	set	to	

the	composer’s	name	from	code.)	The	content	area	of	the	XAML	file	assumes	that	the	

DataContext	of	AlbumPage	is	set	to	an	instance	of	AlbumInfo.	(This	is	also	set	in	code.)	The	

first	row	of	the	content	grid	is	the	album	art,	album	name,	and	artist.	The	second	row	is	a	

ScrollViewer	with	an	ItemsControl	to	display	the	songs:	

Silverlight Project: File: (excerpt)

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Grid.RowDefinitions>

<RowDefinition Height="Auto" />

<RowDefinition Height="*" />

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>

<ColumnDefinition Width="Auto" />

<ColumnDefinition Width="*" />

</Grid.ColumnDefinitions>

<Border Grid.Row="0" Grid.Column="0"

 BorderBrush="{StaticResource PhoneForegroundBrush}"

 BorderThickness="1"

 Height="200" Width="200"

 Margin="0 0 6 0">

<Image Source="{Binding AlbumArt}" />

</Border>

740	

	

	 	 	

	 	 	 	 	

	 	 	 	 	 	 	

	 	

	 	

<StackPanel Grid.Row="0" Grid.Column="1"

 VerticalAlignment="Center">

<TextBlock Text="{Binding Album.Name}"

 Foreground="{StaticResource PhoneAccentBrush}"

 TextWrapping="Wrap" />

<TextBlock Text=" " />

<TextBlock Text="{Binding Album.Artist}"

 TextWrapping="Wrap" />

</StackPanel>

<ScrollViewer Grid.Row="1" Grid.Column="0" Grid.ColumnSpan="2">

<ItemsControl ItemsSource="{Binding Album.Songs}">

<ItemsControl.ItemTemplate>

<DataTemplate>

<local:SongTitleControl Song="{Binding}" />

</DataTemplate>

</ItemsControl.ItemTemplate>

</ItemsControl>

</ScrollViewer>

</Grid>

Notice	that	the	ItemsControl	that	displays	the	songs	has	its	ItemsSource property	set	to	the	

Songs	collection	of	the	Album	property	of	AlbumInfo.	This	Songs	property	is	of	type	

SongCollection and	contains	objects	of	the	XNA	class	Song.	Each	Song object	in	that	collection	

is	the	source	of	a	binding	to	the	SongTitleControl	class	that	I’ll	show	you	soon.	

AlbumPage.xaml	also	has	an	ApplicationBar	for	controlling	the	music	player:	

Silverlight Project: File: (excerpt)

<phone:PhoneApplicationPage.ApplicationBar>

<shell:ApplicationBar>

<shell:ApplicationBarIconButton

IconUri="/Images/appbar.transport.rew.rest.png"

 Text="previous"

 Click="OnAppbarPreviousButtonClick" />

<shell:ApplicationBarIconButton x:Name="appbarPlayPauseButton"

IconUri="/Images/appbar.transport.play.rest.png"

 Text="play"

 Click="OnAppbarPlayButtonClick" />

<shell:ApplicationBarIconButton

IconUri="/Images/appbar.transport.ff.rest.png"

 Text="next"

 Click="OnAppbarNextButtonClick" />

</shell:ApplicationBar>

</phone:PhoneApplicationPage.ApplicationBar>

741	

	

	 	

	

	 	 	

	 	

	 	 	

	 	

	

	

	

	 	

	 	

	 	

	 	 	 	 	

	 	

	 	 	 	

	

	

	

	 	

The
XNA
Music
Classes:
MediaPlayer
To	display	music	from	the	music	library	you	use	the	XNA	MediaLibrary and	related	classes.	To	

actually	play	that	music	you	use	the	static	XNA	MediaPlayer	class.	

The	MediaPlayer	class	plays	either	a	Song	object,	or	all	the	songs	in	a	SongCollection,	or	all	the	

songs	in	a	SongCollection	beginning	at	a	particular	index.	Those	are	the	three	variations	of	the	

static	MediaPlayer.Play	method.	

You	cannot	create	a	SongCollection object	yourself.	You	must	always	obtain	an	immutable	

SongCollection	from	one	of	the	other	classes	(such	as	Album).	This	means	that	it’s	not	a	simple	

matter	to	let	the	user	select	a	particular	subset	of	an	album,	or	to	rearrange	the	tracks	in	some	

way.	That	would	require	the	program	to	maintain	its	own	list	of	Song	objects,	and	to	play	

them	sequentially.	I	chose	not	to	implement	anything	like	that	for	this	relatively	simple	

demonstration	program.	

Besides	Play,	MediaPlayer	also	defines	Pause,	Resume,	and	Stop	methods,	as	well	as	

MovePrevious	and	MoveNext	to	move	to	the	previous	or	next	item	in	a	SongCollection.	

The	crucial	properties	of	MediaPlayer	are	all	getonly:	

• State,	which	returns	a	member	of	the	MediaState	enumeration:	Playing,	Paused,	or	

Stopped.	

• PlayPosition,	a	TimeSpan	object	indicating	the	position	within	the	currently	playing	song.	

• Queue,	a	MediaQueue	object	that	contains	a	collection	of	the	Song objects	in	the	

currentlyplaying	collection	as	well	as	an	ActiveSong	property.	

From	the	ActiveSong	property,	you	can	obtain	the	Album object	and	other	information	

associated	with	that	song.	

MediaPlayer	also	defines	two	events:	

• MediaStateChanged

• ActiveSongChanged

The	codebehind	file	for	AlbumPage	is	responsible	for	actually	playing	the	album.	But	first	

take	a	look	at	the	parts	of	the	class	that	perform	what	might	be	considered	the	

“housekeeping”	chores:	

Silverlight Project: File: (excerpt)

public partial class AlbumPage : PhoneApplicationPage

{

// Used for switching play and pause icons

742	

	

 static Uri playButtonIconUri =

new Uri("/Images/appbar.transport.play.rest.png", UriKind.Relative);

 static Uri pauseButtonIconUri =

new Uri("/Images/appbar.transport.pause.rest.png",

UriKind.Relative);

 int composerInfoIndex;

 int albumInfoIndex;

 public AlbumPage()

 {

InitializeComponent();

appbarPlayPauseButton = this.ApplicationBar.Buttons[1] as

ApplicationBarIconButton;

}

 protected override void OnNavigatedFrom(NavigationEventArgs args)

 {

PhoneApplicationService.Current.State["ComposerInfoIndex"] =

composerInfoIndex;

PhoneApplicationService.Current.State["AlbumInfoIndex"] = albumInfoIndex;

base.OnNavigatedFrom(args);

 }

 protected override void OnNavigatedTo(NavigationEventArgs args)

 {

// Navigating from MainPage

if (this.NavigationContext.QueryString.ContainsKey("ComposerInfoIndex"))

{

 composerInfoIndex =

Int32.Parse(this.NavigationContext.QueryString["ComposerInfoIndex"]);

 albumInfoIndex =

Int32.Parse(this.NavigationContext.QueryString["AlbumInfoIndex"]);

}

// Reactivating from tombstoning

else if

(PhoneApplicationService.Current.State.ContainsKey("ComposerInfoIndex"))

{

 composerInfoIndex =

 (int)PhoneApplicationService.Current.State["ComposerInfoIndex"];

 albumInfoIndex =

 (int)PhoneApplicationService.Current.State["AlbumInfoIndex"];

}

ComposerInfo composerInfo =

MusicPresenter.Current.Composers[composerInfoIndex];

AlbumInfo albumInfo = composerInfo.Albums[albumInfoIndex];

// Set page title and DataContext

PageTitle.Text = composerInfo.Composer;

this.DataContext = albumInfo;

743

	

	 	

	

	 	 	

	 	 	 	

	 	

	

	 	

	

	

// Get the media state when it changes and also right now

MediaPlayer.MediaStateChanged += OnMediaPlayerMediaStateChanged;

OnMediaPlayerMediaStateChanged(null, EventArgs.Empty);

base.OnNavigatedTo(args);

 }

 …

}

When	being	tombstoned,	the	OnNavigatedFrom	method	saves	the	two	fields	named	

composerInfoIndex	and	albumInfoIndex.	These	are	the	same	two	values	that	MainPage	passes	

to	AlbumPage in	the	navigation	query	string.	The	OnNavigatedTo	method	obtains	those	

values	either	from	the	query	string	or	the	State	property	of	the	PhoneApplicationService	to	set	

the	text	of	the	PageTitle element	(to	display	the	name	of	the	composer)	and	the	DataContext

of	the	page	(so	the	bindings	in	AlbumPage.xaml	work).	

The	OnNavigatedTo	method	also	sets	a	handler	for	the	MediaPlayer.MediaStateChanged

event	to	maintain	the	correct	icon	image	for	the	button	that	combines	the	functions	of	Play	

and	Pause.	

The	event	handler	for	that	button	turned	out	to	be	one	of	the	trickier	aspects	of	this	class:	

Silverlight Project: File: (excerpt)

void OnAppbarPlayButtonClick(object sender, EventArgs args)

{

Album thisPagesAlbum = (this.DataContext as AlbumInfo).Album;

switch (MediaPlayer.State)

 {

// The MediaPlayer is currently playing so pause it.

case MediaState.Playing:

MediaPlayer.Pause();

break;

// The MediaPlayer is currently paused...

case MediaState.Paused:

MediaQueue queue = MediaPlayer.Queue;

// so if we're on the same page as the paused song, resume it.

if (queue.ActiveSong != null &&

 queue.ActiveSong.Album == thisPagesAlbum)

{

MediaPlayer.Resume();

 }

// Otherwise, start playing this page's album.

else

 {

goto case MediaState.Stopped;

 }

744	

	

	

	

	

	 	 	

	 	 	

	 	 	 	

	

	

	 	

	 	

	

	 	

	

	 	 	

	

	 	 	 	

	

	

	

	

	

break;

// The MediaPlayer is stopped, so play this page's album.

case MediaState.Stopped:

MediaPlayer.Play(thisPagesAlbum.Songs);

break;

}

}

void OnAppbarPreviousButtonClick(object sender, EventArgs args)

{

MediaPlayer.MovePrevious();

}

void OnAppbarNextButtonClick(object sender, EventArgs args)

{

MediaPlayer.MoveNext();

}

Once	a	program	calls	MediaPlayer.Play	on	a	Song	or	SongCollection	object,	the	music	keeps	

going	even	if	the	user	exits	that	program	or	the	phone	shuts	off	the	screen	and	locks	the	

display.	This	is	how	it	should	be.	The	user	wants	to	listen	to	the	music	regardless—even	to	the	

point	where	the	battery	completely	runs	down.	

For	that	reason,	a	program	should	be	very	cautious	about	calling	MediaPlayer.Stop,	because	

calling	that	method	will	stop	the	music	without	allowing	it	to	be	resumed.	I	found	no	reason	

to	call	MediaPlayer.Stop	at	all	in	my	program.	

The	user	can	also	exit	a	program	such	as	MusicByComposer	and	then	return	to	it,	and	the	user	

should	also	be	allowed	to	navigate	to	different	album	pages	without	interfering	with	the	

playing	music.	Yet,	the	user	should	also	have	the	option	of	switching	from	the	music	currently	

playing	to	the	album	currently	in	view.	It	seemed	to	me	that	these	choices	implied	four	

different	cases	when	the	user	presses	the	play/pause	button:	

• If	music	is	currently	playing,	then	the	play/pause	button	displays	the	pause	icon,	and	the	

currently	playing	music	should	be	paused.	

• If	the	player	is	stopped,	then	the	play/pause	button	displays	the	play	icon,	and	the	album	

in	view	should	be	played.	

• If	the	music	is	paused,	then	the	play/pause	button	also	displays	the	play	icon.	If	the	user	is	

on	the	album	page	that’s	currently	active,	then	the	play	button	should	just	resume	

whatever	was	playing.	

• However,	if	the	music	is	paused	but	the	user	is	on	a	different	album	page,	then	the	play	

button	should	start	playing	the	album	on	the	current	page.	

In	actual	use,	that	logic	seems	to	work	well.	

745	

	

	 	 	 	 	 	 	

	 	 	 	

	

	 	

	 	

	 	 	 	 	

The	only	class	you	haven’t	seen	yet	is	SongTitleControl,	an	instance	of	which	is	used	to	display	

each	individual	song	on	the	album.	SongTitleControl	is	also	responsible	for	highlighting	the	

currently	playing	song	and	displaying	the	elapsed	time	and	total	duration	of	that	song.	

SongTitleControl	just	derives	from	UserControl	and	has	a	simple	visual	tree:	

Silverlight Project: File: (excerpt)

<Grid x:Name="LayoutRoot">

<StackPanel Margin="0 3">

<TextBlock Name="txtblkTitle"

Text="{Binding Name}"

 TextWrapping="Wrap" />

<TextBlock Name="txtblkTime"

 Margin="24 6"

 Visibility="Collapsed" />

</StackPanel>

</Grid>

In	AlbumPage.xaml,	the	SongTitleControl contains	a	binding	on	its	Song	property,	which	

means	that	SongTitleControl	must	define	a	dependency	property	named	Song	of	the	XNA	

type	Song.	Here’s	the	definition	of	the	Song property	and	the	propertychanged	handlers:	

Silverlight Project: MusicByComposer File: SongTitleControl.xaml.cs (excerpt)

public static readonly DependencyProperty SongProperty =

DependencyProperty.Register("Song",

typeof(Song),

typeof(SongTitleControl),

new PropertyMetadata(OnSongChanged));

…

public Song Song

{

 set { SetValue(SongProperty, value); }

 get { return (Song)GetValue(SongProperty); }

}

static void OnSongChanged(DependencyObject obj, DependencyPropertyChangedEventArgs

args)

{

 (obj as SongTitleControl).OnSongChanged(args);

}

void OnSongChanged(DependencyPropertyChangedEventArgs args)

{

 if (Song != null)

MediaPlayer.ActiveSongChanged += OnMediaPlayerActiveSongChanged;

746	

	

	

	

	 	

	 	 	

	 	

	

 else

MediaPlayer.ActiveSongChanged -= OnMediaPlayerActiveSongChanged;

 OnMediaPlayerActiveSongChanged(null, EventArgs.Empty);

}

If	Song	is	set	to	a	nonnull	value,	then	an	event	handler	is	set	for	the	

MediaPlayer.ActiveSongChanged	event.	That	event	is	handled	here:	

Silverlight Project: MusicByComposer File: SongTitleControl.xaml.cs (excerpt)

void OnMediaPlayerActiveSongChanged(object sender, EventArgs args)

{

if (this.Song == MediaPlayer.Queue.ActiveSong)

 {

txtblkTitle.FontWeight = FontWeights.Bold;

txtblkTitle.Foreground = this.Resources["PhoneAccentBrush"] as Brush;

txtblkTime.Visibility = Visibility.Visible;

timer.Start();

 }

else

 {

txtblkTitle.FontWeight = FontWeights.Normal;

txtblkTitle.Foreground = this.Resources["PhoneForegroundBrush"] as Brush;

txtblkTime.Visibility = Visibility.Collapsed;

timer.Stop();

 }

}

The	Text	property	of	txtblkTitle	is	handled	with	a	binding	in	the	XAML	file.	If	the	active	song	is	

the	Song associated	with	this	instance	of	SongTitleControl,	then	this	TextBlock	is	highlighted	

with	the	accent	color,	the	other	TextBlock with	the	time	information	is	made	visible,	and	a	

DispatcherTimer	is	started:	

Silverlight Project: MusicByComposer File: SongTitleControl.xaml.cs (excerpt)

public partial class SongTitleControl : UserControl

{

DispatcherTimer timer = new DispatcherTimer();

 …

 public SongTitleControl()

{

InitializeComponent();

timer.Interval = TimeSpan.FromSeconds(0.25);

timer.Tick += OnTimerTick;

 }

 …

 void OnTimerTick(object sender, EventArgs args)

{

747

	

	 	

	

	 	 	 	 	 	

	

	 	 	

	

	 	 	 	 	 	 	

TimeSpan dur = this.Song.Duration;

TimeSpan pos = MediaPlayer.PlayPosition;

txtblkTime.Text = String.Format("{0}:{1:D2} / {2}:{3:D2}",

 (int)pos.TotalMinutes, pos.Seconds,

 (int)dur.TotalMinutes, dur.Seconds);

 }

}

That	Tick	handler	simply	formats	the	duration	of	the	song	and	the	current	position	for	display	

purposes.	

I	thought	about	shifting	some	of	this	code	to	XAML,	which	would	require	defining	a	property	

for	the	elapsed	time,	as	well	as	using	the	Visual	State	Manager	for	ActiveSong	and	

NotActiveSong	states,	and	then	bringing	in	the	StringFormatterConverter	for	formatting	the	

two	TimeSpan objects.	But	for	this	particular	application	the	code	file	seemed	the	simpler	of	

the	two	approaches.	

Although	you’ve	seen	many	ways	in	which	XAML	is	very	powerful,	sometimes	code	is	really	

the	right	solution.	

748	

	

	

Part	III		

XNA

	

	

	 	 	

	 	 	

	 	 	 	

	 	 	 	

	

	 	

	 	 	 	 	

	

	 	 	 	

	

	 	 	 	 	

	 	

	 	

	

	

	 	 	 	

	 	

	 	 	 	 	 	

	 	 	

Chapter	19	

Principles of Movement
Much	of	the	core	of	an	XNA	program	is	dedicated	to	moving	sprites	around	the	screen.	

Sometimes	these	sprites	move	under	user	control;	at	other	times	they	move	on	their	own	

volition	as	if	animated	by	some	internal	vital	force.	Instead	of	moving	real	sprites,	you	can	

instead	move	some	text,	and	text	is	what	I’ll	be	sticking	with	for	this	entire	chapter.	The	

concepts	and	strategies	involved	in	moving	text	around	the	screen	are	the	same	as	those	in	

moving	sprites.	

A	particular	text	string	seems	to	move	around	the	screen	when	it’s	given	a	different	position	

in	the	DrawString method	during	subsequent	calls	of	the	Draw	method	in	Game.	In	Chapter	

1,	you’ll	recall,	the	textPosition	variable	was	simply	assigned	a	fixed	value	during	the	

LoadContent method.	This	code	puts	the	text	in	the	center	of	the	screen:	

Vector2 textSize = segoe14.MeasureString(text);

Viewport viewport = this.GraphicsDevice.Viewport;

textPosition = new Vector2((viewport.Width - textSize.X) / 2,

 (viewport.Height - textSize.Y) / 2);

Most	of	the	programs	in	this	chapter	recalculate	textPosition	during	every	call	to	Update	so	

the	text	is	drawn	in	a	different	location	during	the	Draw	method.	Usually	nothing	fancy	will	be	

happening;	the	text	will	simply	be	moved	from	the	top	of	the	screen	down	to	the	bottom,	and	

then	back	up	to	the	top,	and	down	again.	Lather,	rinse,	repeat.	

I’m	going	to	begin	with	a	rather	“naïve”	approach	to	moving	text,	and	then	refine	it.	If	you’re	

not	accustomed	to	thinking	in	terms	of	vectors	or	parametric	equations,	my	refinements	will	

at	first	seem	to	make	the	program	more	complex,	but	you’ll	see	that	the	program	actually	

becomes	simpler	and	more	flexible.	

The
Naïve
Approach

For	this	first	attempt	at	text	movement,	I	want	to	try	something	simple.	I’m	just	going	to	

move	the	text	up	and	down	vertically	so	the	movement	is	entirely	in	one	dimension.	All	we	

have	to	worry	about	is	increasing	and	decreasing	the	Y	coordinate	of	textPosition.	

If	you	want	to	play	along,	you	can	create	a	Visual	Studio	project	named	NaiveTextMovement	

and	add	the	14point	Segoe	UI	Mono	font	to	the	Content	directory.	The	fields	in	the	Game1

class	are	defined	like	so:	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

750	

	

	 	

	

	

	 	

	

	 	 	

const float SPEED = 240f; // pixels per second

const string TEXT = "Hello, Windows Phone 7!";

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

SpriteFont segoe14;

Viewport viewport;

Vector2 textSize;

Vector2 textPosition;

bool isGoingUp = false;

…

 }

}

Nothing	should	be	too	startling	here.	I’ve	defined	both	the	SPEED	and	TEXT	as	constants.	The	

SPEED	is	set	at	240	pixels	per	second.	The	Boolean	isGoingUp	indicates	whether	the	text	is	

currently	moving	down	the	screen	or	up	the	screen.	

The	LoadContent	method	is	very	familiar	from	the	program	in	Chapter	1	except	that	the	

viewport	is	saved	as	a	field:	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);
 viewport = this.GraphicsDevice.Viewport;

 segoe14 = this.Content.Load<SpriteFont>("Segoe14");

 textSize = segoe14.MeasureString(TEXT);

 textPosition = new Vector2(viewport.X + (viewport.Width - textSize.X) / 2, 0);

}

Notice	that	this	textPosition centers	the	text	horizontally	but	positions	it	at	the	top	of	the	

screen.	As	is	usual	with	most	XNA	programs,	all	the	real	calculational	work	occurs	during	the	

Update	method:	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

if (!isGoingUp)

 {

 textPosition.Y += SPEED * (float)gameTime.ElapsedGameTime.TotalSeconds;

if (textPosition.Y + textSize.Y > viewport.Height)

 {

float excess = textPosition.Y + textSize.Y - viewport.Height;

751	

	

	

	

	 	 	

	 	 	

	 	

	

	

	 	 	 	 	

	 	 	

	 	 	 	

	 	

	 	

	 	 	 	

	 	 	

	 	 	

	 	

	 	 	

	 	 	

	

	

	

 textPosition.Y -= 2 * excess;

 isGoingUp = true;

}

 }

else

 {

 textPosition.Y -= SPEED * (float)gameTime.ElapsedGameTime.TotalSeconds;

if (textPosition.Y < 0)

 {

float excess = - textPosition.Y;

 textPosition.Y += 2 * excess;

 isGoingUp = false;

}

 }

 base.Update(gameTime);

}

The	GameTime	argument	to	Update	has	two	crucial	properties	of	type	TimeSpan:	

TotalGameTime	and	ElapsedGameTime.	This	“game	time”	might	not	exactly	keep	pace	with	

real	time.	There	are	some	approximations	involved	so	that	animations	are	smoothly	paced.	

But	it’s	close.	TotalGameTime	reflects	the	length	of	time	since	the	game	was	started;	

ElapsedGameTime	is	the	time	since	the	previous	Update	call.	In	general,	ElapsedGameTime	will	

always	equal	the	same	value—331/3	milliseconds	reflecting	the	30	Hz	refresh	rate	of	the	

phone’s	video	display.	

You	can	use	either	TotalGameTime	or	ElapsedGameTime	to	pace	movement.	In	this	example,	

on	the	first	call	to	Update,	the	textPosition has	been	calculated	so	the	text	is	positioned	on	the	

upper	edge	of	the	screen	and	isGoingUp	is	false.	The	code	increments	textPosition.Y	based	on	

the	product	of	SPEED	(which	is	in	units	of	pixels	per	second)	and	the	total	seconds	that	have	

elapsed	since	the	last	Update call,	which	will	actually	be	1/30th	second.	

It	could	be	that	performing	this	calculation	moves	the	text	too	far—for	example,	partially	

beyond	the	bottom	of	the	screen.	This	can	be	detected	if	the	vertical	text	position	plus	the	

height	of	the	text	is	greater	than	the	Bottom property	of	the	viewport	heigh.	In	that	case	I	

calculate	something	I	call	excess.	This	is	the	distance	that	the	vertical	text	position	has	

exceeded	the	boundary	of	the	display.	I	compensate	with	two	times	that—as	if	the	text	has	

bounced	off	the	bottom	and	is	now	excess pixels	above	the	bottom	of	the	screen.	At	that	

point,	isGoingUp	is	set	to	true.	

The	logic	for	moving	up	is	(as	I	like	to	say)	the	same	but	completely	opposite.	The	actual	Draw

override	is	simple:	

752

	

	

	 	 	

	 	 		

	 	 	 	

	 	

	

	 	 	

	 	

	

	

	

	 	

	 	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.DrawString(segoe14, TEXT, textPosition, Color.White);

 spriteBatch.End();

base.Draw(gameTime);

}

The	big	problem	with	this	naïve	approach	is	that	it	doesn’t	incorporate	any	mathematical	

tools	that	would	allow	us	to	do	something	a	little	more	complex—for	example,	move	the	text	

diagonally	rather	than	just	in	one	dimension.	

What’s	missing	from	the	NaiveTextMovement	program	is	any	concept	of	direction	that	would	

allow	escaping	from	horizontal	or	vertical	movement.	What	we	need	are	vectors.	

A
Brief
Review
of
Vectors

A	vector	is	a	mathematical	entity	that	encapsulates	both	a	direction	and	a	magnitude.	Very	

often	a	vector	is	symbolized	by	a	line	with	an	arrow.	These	three	vectors	have	the	same	

direction	but	different	magnitudes:	

These	three	vectors	have	the	same	magnitude	but	different	directions:	

These	three	vectors	have	the	same	magnitude	and	the	same	direction,	and	hence	are	

considered	to	be	identical:	

753	

	

	

	 	 	 	 	

	 	 	

	 	 	

	 	

	

	 	 	 	 	 	

	 	

	

	 	

	 	 	

	 	 	 	

A	vector	has	no	location,	so	even	if	these	three	vectors	seem	to	be	in	different	locations	and,	

perhaps	for	that	reason,	somewhat	distinct,	they	really	aren’t	in	any	location	at	all.	

A	point	has	no	magnitude	and	no	dimension.	A	point	is	just	location.	In	twodimensional	

space,	a	point	is	represented	by	a	number	pair	(x,	y)	to	represent	a	horizontal	distance	and	a	

vertical	distance	from	an	origin	(0,	0):	

The	figure	shows	increasing	values	of	Y	going	down	for	consistency	with	the	twodimensional	

coordinate	system	in	XNA.	(XNA	3D	is	different.)	

A	vector	has	magnitude	and	dimension	but	no	location.,	but	like	the	point	a	vector	is	

represented	by	the	number	pair	(x,	y)	except	that	it’s	usually	written	in	boldface	like	(x,
y)	to	

indicate	a	vector	rather	than	a	point.	

How	can	it	be	that	twodimensional	points	and	twodimensional	vectors	are	both	represented	

in	the	same	way?	Consider	two	points	(x1,	y1)	and	(x2,	y2),	and	a	line	from	the	first	point	to	

the	second:	

754	

	

	

	 	 	

	

	

That	line	has	the	same	length	and	is	in	the	same	direction	as	a	line	from	the	origin	to	(x2	–	x1,	

y2	–	y1):	

That	magnitude	and	direction	define	the	vector	(x2
–
x1,
y2
–
y1).	

755	

	

	 	

	 	

	

	 	 	

	 	 	

	

		

	

	 	 	 	

	 	

	 	

	 	

	 	

	 	 	

	 	

	 	

	 	 	 	

	 	 	

	

	 	

	 	

For	that	reason,	XNA	uses	the	same	Vector2	structure	to	store	twodimensional	coordinate	

points	and	twodimensional	vectors.	(There	is	also	a	Point	structure	in	XNA	but	the	X	and	Y

fields	are	integers.)		

For	the	vector	(x,
y),	the	magnitude	is	the	length	of	the	line	from	the	point	(0,	0)	to	the	point	

(x,	y).	You	can	determine	the	length	of	the	line	and	the	vector	using	the	Pythagorean	

Theorem,	which	has	the	honor	of	being	the	most	useful	tool	in	computer	graphics	

programming:	

The	Vector2	structure	defines	a	Distance	method	that	will	perform	this	calculation	for	you.	

Vector2	also	includes	a	DistanceSquared method,	which	despite	the	longer	name,	is	actually	a	

simpler	calculation.	It	is	very	likely	that	the	Vector2	structure	implements	DistanceSquared	like	

this:	

public float DistanceSquare()

{

 return x * x + y * y;

}

The	Distance method	is	then	based	on	DistanceSquared:	

public float Distance()

{

 return (float)Math.Sqrt(DistanceSquare());

}

If	you	only	need	to	compare	magnitudes	between	two	vectors,	use	DistanceSquared	because	

it’s	faster.	In	the	context	of	working	with	Vector2	objects,	the	terms	“length”	and	“distance”	

and	“magnitude”	can	be	used	interchangeably.	

Because	you	can	represent	points,	vectors,	and	sizes	with	the	same	Vector2	structure,	the	

structure	provides	plenty	of	flexibility	for	performing	arithmetic	calculations.	It’s	up	to	you	to	

perform	these	calculations	with	some	degree	of	intelligence.	For	example,	suppose	point1	and	

point2	are	both	objects	of	type	Vector2	but	you’re	using	them	to	represent	points.	It	makes	no	

sense	to	add	those	two	points	together,	although	Vector2	will	allow	you	to	do	so.	But	it	makes	

lot	of	sense	to	subtract	one	point	from	another	to	obtain	a	vector:	

Vector2 vector = point2 – point1;

The	operation	just	subtracts	the	X	values	and	the	Y	values;	the	vector	is	in	the	direction	from	

point1	to	point2	and	its	magnitude	is	the	distance	between	those	points.	It	is	also	common	to	

add	a	vector	to	a	point:	

Vector2 point2 = point1 + vector;

756	

	

	

	 	 	

		

	

	 	

	

	 	 	 	

	 	

	

	

	

	 	 	

	 	

	 	 	 	 	 	 	

	 	 	 	 	

	

	 	

	

	 	

	

	 	 	 	 	 	 	 	

	 	

	 	 	 	 	 	 	

	 	 	 	 	

This	operation	obtains	a	point	that	is	a	certain	distance	and	in	a	certain	direction	from	

another	point.	You	can	multiply	a	vector	by	a	single	number.	If	vector	is	an	object	of	type	

Vector2,	then	

vector *= 5;

is	equivalent	to:	

vector.X *= 5;

vector.Y *= 5;

The	operation	effectively	increases	the	magnitude	of	the	vector	by	a	factor	of	5.	Similarly	you	

can	divide	a	vector	by	a	number.	If	you	divide	a	vector	by	the	vector’s	length,	then	the	

resultant	length	becomes	1.	This	is	known	as	a	normalized	vector,	and	Vector2	has	a	

Normalize	method	specifically	for	that	purpose.	The	statement:	

vector.Normalize();

is	equivalent	to	

vector /= vector.Distance();

Often	more	conveniently,	the	static	Vector.Normalize	method	creates	a	normalized	vector	

from	another	vector:	

Vector normalizedVector = Vector.Normalize(vector)

A	normalized	vector	represents	just	a	direction	without	magnitude,	but	it	can	be	multiplied	by	

a	number	to	give	it	that	length.	

If	vector	has	a	certain	length	and	direction,	then	–vector	has	the	same	length	but	the	opposite	

direction.	I’ll	make	use	of	this	operation	in	the	next	program	coming	up.	

The	direction	of	a	vector	(x,
y)	is	the	direction	from	the	point	(0,	0)	to	the	point	(x,	y).	You	can	

convert	that	direction	to	an	angle	with	the	second	most	useful	tool	in	computer	graphics	

programming,	the	Math.Atan2	method:	

float angle = (float)Math.Atan2(vector.Y, vector.X);

Notice	that	the	Y component	is	specified	first.	The	angle	is	in	radians—remember	that	there	

are	2π	radians	to	360	degrees—measured	clockwise	from	the	positive	X	axis.		

If	you	have	an	angle	in	radians,	you	can	obtain	a	normalized	vector	from	it	like	so:	

Vector2 vector = new Vector2((float)Math.Cos(angle),

 (float)Math.Sin(angle));

The	Vector2	structure	has	four	static	properties:	Vector2.Zero	returns	a	Vector2	object	with	

both	X	and	Y	set	to	zero.	That’s	actually	an	invalid	vector	because	it	has	no	direction,	but	it’s	

useful	for	representing	a	point	at	the	origin.	Vector2.UnitX	is	the	normalized	vector	(1,
0),	i.e.,	

pointing	right	in	the	direction	of	the	positive	X	axis,	and	Vector2.UnitY	is	the	vector	(0,
1)

757	

	

	 	 	 	 	

	

	 	

	 	 	 	

	

	 	 	

	 	 	 	

	 	 	 	

	

	

pointing	up	Vector2.One is	the	point	(1,	1)	or	the	vector	(1,
1),	which	is	useful	if	you’re	using	

the	Vector2	for	horizontal	and	vertical	scaling	factors	(as	I	do	later	in	this	chapter.)	

Moving
Sprites
with
Vectors

That	little	refresher	course	should	provide	enough	knowledge	to	revamp	the	textmoving	

program	to	use	vectors.	This	Visual	Studio	project	is	called	VectorTextMovement.	Here	are	the	

fields:	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

const float SPEED = 240f; // pixels per second

const string TEXT = "Hello, Windows Phone 7!";

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

SpriteFont segoe14;

Vector2 midPoint;

Vector2 pathVector;

Vector2 pathDirection;

Vector2 textPosition;

 …

}

The	text	will	be	moved	between	two	points	(called	position1	and	position2	in	the	LoadContent

method),	and	the	midPoint field	will	store	the	point	midway	between	those	two	points.	The	

pathVector	field	is	the	vector	from	position1	to	position2,	and	pathDirection	is	pathVector

normalized.	

The	LoadContent	method	calculates	and	initializes	all	these	fields:	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

Viewport viewport = this.GraphicsDevice.Viewport;

 segoe14 = this.Content.Load<SpriteFont>("Segoe14");

Vector2 textSize = segoe14.MeasureString(TEXT);

Vector2 position1 = new Vector2(viewport.Width - textSize.X, 0);

Vector2 position2 = new Vector2(0, viewport.Height - textSize.Y);

 midPoint = Vector2.Lerp(position1, position2, 0.5f);

 pathVector = position2 - position1;

758	

	

	 	 	

	 	 	

	

	 	

	 	 	

	

	 	 	 	

	 	 	 	

	 	

	 	

	 	

	 	

 pathDirection = Vector2.Normalize(pathVector);

 textPosition = position1;

}

The	starting	point	is	position1,	which	puts	the	text	in	the	upperright	corner.	The	position2

point	is	the	lowerleft	corner.	The	calculation	of	midPoint makes	use	of	the	static	Vector2.Lerp

method,	which	stands	for	Linear	intERPolation.	If	the	third	argument	is	0,	Vector2.Lerp	returns	

its	first	argument;	if	the	third	argument	is	1,	Vector2.Lerp	returns	its	second	argument,	and	for	

values	in	between,	the	method	performs	a	linear	interpolation.	Lerp	is	probably	overkill	for	

calculating	a	midpoint:	All	that’s	really	necessary	is	to	average	the	two	X	values	and	the	two	Y

values.	

Note	that	pathVector	is	the	entire	vector	from	position1	to	position2	while	pathDirection	is	the	

same	vector	normalized.	The	method	concludes	by	initializing	textPosition	to	position1.	The	

use	of	these	fields	should	become	apparent	in	the	Update	method:	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

 float pixelChange = SPEED * (float)gameTime.ElapsedGameTime.TotalSeconds;

 textPosition += pixelChange * pathDirection;

 if ((textPosition - midPoint).LengthSquared() > (0.5f *

pathVector).LengthSquared())

 {

float excess = (textPosition - midPoint).Length()- (0.5f *

pathVector).Length();

pathDirection = -pathDirection;

textPosition += 2 * excess * pathDirection;

 }

 base.Update(gameTime);

}

The	first	time	Update	is	called,	textPosition	equals	position1	and	pathDirection	is	a	normalized	

vector	from	position1	to	position2.	This	is	the	crucial	calculation:	

textPosition += pixelChange * pathDirection;

Multiplying	the	normalized	pathDirection	by	pixelChange	results	in	a	vector	that	is	in	the	same	

direction	as	pathDirection	but	with	a	length	of	pixelChange.	The	textPosition	point	is	increased	

by	this	amount.	

759

	

	 	 	

	 	 	 	 	

	 	 	 	

	 	

	 	 	

	 	

	 	 	 	

	 	

	 	 	 	 	

	 	 	

	

	 	 	

	 	

	 	 	 	 	 	

	 	 	 	

	 	

	 	

	 	 	 	

	

	 	 	 	 	 	

After	a	few	seconds	of	textPosition	increases,	textPosition	will	go	beyond	position2.	That	can	

be	detected	when	the	length	of	the	vector	from	midPoint	to	textPosition is	greater	than	the	

length	of	half	the	pathVector.	The	direction	must	be	reversed:	pathDirection	is	set	to	the	

negative	of	itself,	and	textPosition	is	adjusted	for	the	bounce.	

Notice	there’s	no	longer	a	need	to	determine	if	the	text	is	moving	up	or	down.	The	

calculation	involving	textPosition	and	midPoint	works	for	both	cases.	Also	notice	that	the	if

statement	performs	a	comparison	based	on	LengthSquared	but	the	calculation	of	excess

requires	the	actual	Length method.	Because	the	if	clause	is	calculated	for	every	Update	call,	it’s	

good	to	try	to	keep	the	code	efficient.	The	length	of	half	the	pathVector	never	changes,	so	I	

could	have	been	even	more	efficient	by	storing	Length	or	LengthSquared	(or	both)	as	fields.	

The	Draw	method	is	the	same	as	before:	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.DrawString(segoe14, TEXT, textPosition, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}

Working
with
Parametric
Equations

It	is	well	known	that	when	the	math	or	physics	professor	says	“Now	let’s	introduce	a	new	

variable	to	simplify	this	mess,”	no	one	really	believes	that	the	discussion	is	heading	towards	a	

simpler	place.	But	it’s	very	often	true,	and	it’s	the	whole	rationale	behind	parametric	

equations.	Into	a	seemingly	difficult	system	of	formulas	a	new	variable	is	introduced	that	is	

often	simply	called	t,	as	if	to	suggest	time.	The	value	of	t usually	ranges	from	0	to	1	(although	

that’s	just	a	convention)	and	other	variables	are	calculated	based	on	t.	Amazingly	enough,	

simplicity	often	results.	

Let’s	think	about	the	problem	of	moving	text	around	the	screen	in	terms	of	a	“lap.”	One	lap	

consists	of	the	text	moving	from	the	upperright	corner	(position1)	to	the	lowerleft	corner	

(position2)	and	back	up	to	position1.	

How	long	does	that	lap	take?	We	can	easily	calculate	the	lap	time	based	on	the	regular	speed	

in	pixelspersecond	and	the	length	of	the	lap,	which	is	twice	the	magnitude	of	the	vector	

called	pathVector in	the	previous	program,	and	which	was	calculated	as	position2	–	position1.	

760	

	

	

	 	

	 	

	 	 	 	 	

	

	

	

	 		

	 	 	

	 	 	

	 	 	

	 	 	

	 	

Once	we	know	the	speed	in	laps	per	second,	it	should	be	easy	to	calculate	a	tLap	variable	

ranging	from	0	to	1,	where	0	is	the	beginning	of	the	lap	and	1	is	the	end,	at	which	point	tLap

starts	over	again	at	0.	From	tLap	we	can	get	pLap,	which	is	a	relative	position	on	the	lap	

ranging	from	0	(the	top	or	position1)	to	1	(the	bottom	or	position2).	From	pLap,	calculating	

textPosition	should	also	be	easy.	The	following	table	shows	the	relationship	between	these	

three	variables:	

tLap:	 0	 0.5	 1	

pLap:	 0	 1	 0	

textPosition:	 position1	 position2	 position1	

Probably	right	away	we	can	see	that	

textPosition = position1 + pLap * pathVector;

where	pathVector	(as	in	the	previous	program)	equals	position2	minus	position1.	The	only	

really	tricky	part	is	the	calculation	of	pLap	based	on	tLap.	

The	ParametricTextMovement	project	contains	the	following	fields:	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

const float SPEED = 240f; // pixels per second

const string TEXT = "Hello, Windows Phone 7!";

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

SpriteFont segoe14;

Vector2 position1;

Vector2 pathVector;

Vector2 textPosition;

float lapSpeed; // laps per second

float tLap;

…

}

The	only	new	variables	here	are	lapSpeed	and	tLap.	As	is	now	customary,	most	of	the	variables	

are	set	during	the	LoadContent	method:	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

761	

	

	 	

	 	 	

	 	

	 	 	

	 	 	 	 	 	 	

	 	 	

	

	 		

	 	

	

	 	 	

	 	 	 	

	

	

Viewport viewport = this.GraphicsDevice.Viewport;

 segoe14 = this.Content.Load<SpriteFont>("Segoe14");

Vector2 textSize = segoe14.MeasureString(TEXT);

 position1 = new Vector2(viewport.Width - textSize.X, 0);

Vector2 position2 = new Vector2(0, viewport.Height - textSize.Y);

 pathVector = position2 - position1;

 lapSpeed = SPEED / (2 * pathVector.Length());

}

In	the	calculation	of	lapSpeed,	the	numerator	is	in	units	of	pixelspersecond.	The	

denominator	is	the	length	of	the	entire	lap,	which	is	two	times	the	length	of	pathVector;	

therefore	the	denominator	is	in	units	of	pixelsperlap.	Dividing	pixelspersecond	by	pixels

perlap	give	you	a	speed	in	units	of	lapspersecond.	

One	of	the	big	advantages	of	this	parametric	technique	is	the	sheer	elegance	of	the	Update

method:	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

 tLap += lapSpeed * (float)gameTime.ElapsedGameTime.TotalSeconds;

 tLap %= 1;

 float pLap = tLap < 0.5f ? 2 * tLap : 2 - 2 * tLap;

 textPosition = position1 + pLap * pathVector;

 base.Update(gameTime);

}

The	tLap	field	is	incremented	by	the	lapSpeed	times	the	elapsed	time	in	seconds.	The	second	

calculation	removes	any	integer	part,	so	if	tLap	is	incremented	to	1.1	(for	example),	it	gets	

bumped	back	down	to	0.1.	

I	will	agree	the	calculation	of	pLap	from	tLap—which	is	a	transfer	function	of	sorts—looks	like	

an	indecipherable	mess	at	first.	But	if	you	break	it	down,	it’s	not	too	bad:	If	tLap	is	less	than	

0.5,	then	pLap	is	twice	tLap,	so	for	tLap	from	0	to	0.5,	pLap	goes	from	0	to	1.	If	tLap	is	greater	

than	or	equal	to	0.5,	tLap	is	doubled	and	subtracted	from	2,	so	for	tLap	from	0.5	to	1,	pLap

goes	from	1	back	down	to	0.	

The	Draw	method	remains	the	same:	

762	

	

	 	 	

	 	 	 	

	 	

	 	 	

	 	 	

	 	 	 	

	 	

	 	

	

	 	 	 	

	

	

	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.DrawString(segoe14, TEXT, textPosition, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}

There	are	some	equivalent	ways	of	performing	these	calculations.	Instead	of	saving	

pathVector as	a	field	you	could	save	position2.	Then	during	the	Update method	you	would	

calculate	textPosition	using	the	Vector2.Lerp	method:	

textPosition = Vector2.Lerp(position1, position2, pLap);

In	Update,	instead	of	calculating	an	increment	to	tLap,	you	can	calculate	tLap	directly	from	the	

TotalGameState	of	the	GameTime	argument	and	keep	the	variable	local:	

float tLap = (lapSpeed * (float)gameTime.TotalGameTime.TotalSeconds) % 1;

Fiddling
with
the
Transfer
Function

I	want	to	change	one	statement	in	the	ParametricTextMovement	program	and	improve	the	

program	enormously	by	making	the	movement	of	the	text	more	natural	and	fluid.	Can	it	be	

done?	Of	course!	

Earlier	I	showed	you	the	following	table:	

tLap:	 0	 0.5	 1	

pLap:	 0	 1	 0	

textPosition:	 position1	 position2	 position1	

In	the	ParametricTextMovement	project	I	assumed	that	the	transfer	function	from	tLap	to	

pLap	would	be	linear,	like	so:	

float pLap = tLap < 0.5f ? 2 * tLap : 2 - 2 * tLap;

But	it	doesn’t	have	to	be	linear.	The	VariableTextMovement	project	is	the	same	as	

ParametricTextMovent	except	for	the	calculation	of	pLap,	which	is	now:	

float pLap = (1 - (float)Math.Cos(tLap * MathHelper.TwoPi)) / 2;

763	

	

	 	 	 	 	

	 	 	 	

	 	 	 	

	

	

	 	

	

	 	

	 	

	 	

	 	 	 	

	 	

	

	 	 	 	 	

	

	 	

	

	 	

	 	 	

	

When	tLap is	0,	the	cosine	is	1	and	pLap	is	0.	When	tLap	is	0.5,	the	argument	to	the	cosine	

function	is	ʌ	radians	(180	degrees).	The	cosine	is	–1,	it’s	subtracted	from	1	and	the	result	is	

divided	by	2,	so	the	result	is	1.	And	so	forth.	But	the	difference	is	dramatic:	The	text	now	slows	

down	as	it	approaches	the	corners	and	then	speeds	up	as	it	moves	away.	

You	can	also	try	a	couple	others.	This	one	slows	down	only	when	it	reaches	the	bottom:	

float pLap = (float)Math.Sin(tLap * Math.PI);

At	the	top	of	the	screen	it’s	at	full	velocity	and	seems	to	ricochet	off	the	edge	of	the	screen.	

This	one’s	just	the	opposite	and	seems	more	like	a	bouncing	ball	slowed	down	by	gravity	at	

the	top:	

float pLap = 1 - Math.Abs((float)Math.Cos(tLap * Math.PI));

So	you	see	that	it’s	true:	Using	parametric	equations	not	only	simplifies	the	code	but	makes	it	

much	more	amenable	to	enhancements.	

Scaling
the
Text

If	you’ve	glanced	at	the	documentation	of	the	SpriteBatch	class,	you’ve	seen	five	other	

versions	of	the	DrawString	method.	Until	now	I’ve	been	using	this	one:	

DrawString(spriteFont, text, position, color);

There	are	also	these	two:	

DrawString(spriteFont, text, position, color, rotation, origin, uniformScale, effects,

layerDepth);

DrawString(spriteFont, text, position, color, rotation, origin, vectorScale, effects,

layerDepth);

The	other	three	versions	of	DrawString	are	the	same	except	the	second	argument	is	a	

StringBuilder	rather	than	a	string.	If	you’re	displaying	text	that	frequently	changes,	you	might	

want	to	switch	to	StringBuilder	to	avoid	lots	of	memory	allocations	from	the	local	heap.	

The	additional	arguments	to	these	longer	versions	of	DrawString	are	primarily	for	rotating,	

scaling,	and	flipping	the	text.	The	exception	is	the	last	argument,	which	is	a	float	value	that	

indicates	how	multiple	sprites	should	be	arranged	from	front	(0)	to	back	(1).	I	won’t	be	using	

that	argument	in	connection	with	DrawString.	

The	penultimate	argument	is	a	member	of	the	SpriteEffects	enumeration:	The	default	is	None.	

The	FlipHorizontally	and	FlipVertically	members	both	create	mirror	images	but	don’t	change	

the	location	of	the	text:	

764	

	

	

	

	 	 	 	

	

	 	

	 	

	 	

	 	

	 	 	 	 	

	 	

	 	 	 	 	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	 	

	 	 	

	

	 	 	

	

The	alternatives	are	really	the	same	just	flipped	180°	from	each	other.	

The	argument	labeled	origin	is	a	point	with	a	default	value	of	(0,	0).	This	argument	is	used	for	

three	related	purposes:	

• It	is	the	point	relative	to	the	text	string	that	is	aligned	with	the	position	argument	relative	

to	the	screen.	

• It	is	the	center	of	rotation.	The	rotation	argument	is	a	clockwise	angle	in	radians.	

• It	is	the	center	of	scaling.	Scaling	can	be	specified	with	either	a	single	number,	which	

scales	equally	in	the	horizontal	and	vertical	directions	to	maintain	the	correct	aspect	ratio,	

or	a	Vector2,	which	allows	unequal	horizontal	and	vertical	scaling.	(Sometimes	these	two	

modes	of	scaling	are	called	isotropic—equal	in	all	directions—and	anisotropic.)	

If	you	use	one	of	the	longer	versions	of	DrawString	and	aren’t	interested	in	scaling,	do	not	set	

that	argument	to	zero!	Text	or	a	sprite	scaled	to	a	zero	dimension	will	not	show	up	on	the	

screen	and	you’ll	spend	many	hours	trying	to	figure	out	what	went	wrong.	(I	speak	from	

experience.)	If	you	don’t	want	any	scaling,	set	the	argument	to	1	or	the	static	property	

Vector2.One.	

The	very	first	XNA	program	in	this	book	calculated	textPosition	based	on	the	dimensions	of	

the	screen	and	the	dimensions	of	the	text:	

textPosition = new Vector2((viewport.Width - textSize.X) / 2,

 (viewport.Height - textSize.Y) / 2);

The	textPosition	is	the	point	on	the	screen	where	the	upperleft	corner	of	the	text	is	to	be	

aligned.	With	the	longer	versions	of	DrawString,	some	alternatives	become	possible.	For	

example:	

textPosition = new Vector2(viewport.Width / 2, viewport.Height / 2);

origin = new Vector2(textSize.X / 2, textSize.Y / 2);

Now	the	textPosition	is	set	to	the	center	of	the	screen	and	origin	is	set	to	the	center	of	the	

text.	This	DrawString	call	uses	those	two	variables	to	put	the	text	in	the	center	of	the	screen:	

spriteBatch.DrawString(segoe14, TEXT, textPosition, Color.White,

 0, origin, 1, SpriteEffects.None, 0);

765	

	

	 	

	 	

	 	

	 	

	 	 	 	

	

	 	 	 	 	 	

	 	

	 	 	

	 	

	 	 	

	

	

	 	 	 	

	 	

The	textPosition	could	be	set	to	the	lowerright	corner	of	the	screen,	and	origin	could	be	set	

to	the	lowerright	corner	of	the	text:	

textPosition = new Vector2(viedwport.Width, viewport.Height);

origin = new Vector2(textSize.X, textSize.Y);

Now	the	text	will	be	positioned	in	the	lowerright	corner	of	the	screen.	

Rotation	and	scaling	are	always	relative	to	a	point.	This	is	most	obvious	with	rotation,	as	

anyone	who’s	ever	explored	the	technology	of	propeller	beanies	will	confirm.	But	scaling	is	

also	relative	to	a	point.	As	an	object	grows	or	shrinks	in	size,	one	point	remains	anchored;	

that’s	the	point	indicated	by	the	origin	argument	to	DrawString.	(The	point	could	actually	be	

outside	the	area	of	the	scaled	object.)	

The	ScaleTextToViewport	project	displays	a	text	string	in	its	center	and	expands	it	out	to	fill	

the	viewport.	As	with	the	other	programs,	it	includes	a	font.	Here	are	the	fields:	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{
const float SPEED = 0.5f; // laps per second

const string TEXT = "Hello, Windows Phone 7!";

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

SpriteFont segoe14;

Vector2 textPosition;

Vector2 origin;

Vector2 maxScale;

Vector2 scale;

float tLap;

 …

}

The	“lap”	in	this	program	is	a	complete	cycle	of	scaling	the	text	up	and	then	back	down	to	

normal.	During	this	lap,	the	scale	field	will	vary	between	Vector2.One	and	maxScale.	

The	LoadContent	method	sets	the	textPosition	field	to	the	center	of	the	screen,	the	origin	field	

to	the	center	of	the	text,	and	maxScale to	the	maximum	scaling	factor	necessary	to	fill	the	

screen	with	the	text.	All	alignment,	rotation,	and	scaling	are	based	on	both	the	center	of	the	

text	and	the	center	of	the	screen.	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

766	

	

	

	

	 	

	 	 	 	

	 	 	

	 	 	

	 	

	

Viewport viewport = this.GraphicsDevice.Viewport;

 segoe14 = this.Content.Load<SpriteFont>("Segoe14");

Vector2 textSize = segoe14.MeasureString(TEXT);

 textPosition = new Vector2(viewport.Width / 2, viewport.Height / 2);

 origin = new Vector2(textSize.X / 2, textSize.Y / 2);

 maxScale = new Vector2(viewport.Width / textSize.X, viewport.Height /

textSize.Y);

}

As	in	the	previous	couple	programs,	tLap	repetitively	cycles	from	0	through	1.	During	this	

single	lap,	the	pLap	variable	goes	from	0	to	1	and	back	to	0,	where	0	means	unscaled	and	1	

means	maximally	scaled.	The	Vector2.Lerp	method	calculates	scale	based	on	pLap.	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

tLap = (SPEED * (float)gameTime.TotalGameTime.TotalSeconds) % 1;

 float pLap = (1 - (float)Math.Cos(tLap * MathHelper.TwoPi)) / 2;

 scale = Vector2.Lerp(Vector2.One, maxScale, pLap);

 base.Update(gameTime);

}

The	Draw method	uses	one	of	the	long	versions	of	DrawString	with	the	textPosition,	angle,	

and	origin	calculated	during	LoadContent,	and	the	scale	calculated	during	Update:	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.DrawString(segoe14, TEXT, textPosition, Color.White,

 0, origin, scale, SpriteEffects.None, 0);

 spriteBatch.End();

 base.Draw(gameTime);

}

As	you	run	this	program,	you’ll	notice	that	the	vertical	scaling	doesn’t	make	the	top	and	

bottom	of	the	text	come	anywhere	close	to	the	edges	of	the	screen.	The	reason	is	that	

MeasureString	returns	a	vertical	dimension	based	on	the	maximum	text	height	for	the	font,	

767	

	

	

	 	

	

	 	

	 	

	 	 	

	

	 	

	

	 	

	

	 	 	 	

	

	 	 	 	

	 	 	 	

	 	

	 		

		

	

	 	 	 	

		

which	includes	space	for	descenders,	possible	diacritical	marks,	and	a	little	breathing	room	as	

well.	

It	should	also	be	obvious	that	you’re	dealing	with	a	bitmap	font	here:	

The	display	engine	tries	to	smooth	out	the	jaggies	but	it’s	debatable	whether	the	fuzziness	is	

an	improvement.	If	you	need	to	scale	text	and	maintain	smooth	vector	outlines,	that’s	a	job	

for	Silverlight.	Or,	you	can	start	with	a	large	font	size	and	always	scale	down.	

Two
Text
Rotation
Programs

Let’s	conclude	this	chapter	with	two	programs	that	rotate	text.	

It	would	be	fairly	simple	to	write	a	program	that	just	rotates	text	around	its	center,	but	let’s	try	

something	just	a	little	more	challenging.	Let’s	gradually	speed	up	the	rotation	and	then	stop	it	

when	a	finger	touches	the	screen.	After	the	finger	is	released,	the	rotation	should	start	up	

slowly	again	and	then	get	faster.	As	the	speed	in	revolutions	per	second	approaches	the	

refresh	rate	of	the	video	display	(or	some	integral	fraction	thereof),	the	rotating	text	should	

seem	to	slow	down,	stop,	and	reverse.	That	will	be	fun	to	see	as	well.	

A	little	background	about	working	with	acceleration:	One	of	the	most	common	forms	of	

acceleration	we	experience	in	daytoday	life	involves	objects	in	freefall.	In	a	vacuum	on	the	

surface	of	the	Earth,	the	effect	of	gravity	produces	an	acceleration	of	a	constant	32	feet	per	

second	per	second,	or,	as	it’s	often	called,	32	feet	per	second	squared:	

The	seemingly	odd	units	of	“feet	per	second	per	second”	really	means	that	every	second,	the	

velocity	increases	by	32	feet	per	second.	At	any	time	t	in	seconds,	the	velocity	is	given	by	the	

simple	formula:	

768	

	

	 	 	 	 	 	

	

	 	

	 	 	

	 	 	 	 	

		

	 	 	

	 	 	

	 	 	 	 	

	 	 	 	

	 	 	 	

	 	

	 	 	

	

	

	 	

	 	 	

	 	 	

	 	 	

where	a	is	32	feet	per	second	squared.	When	the	acceleration	in	units	of	feet	per	second	

squared	is	multiplied	by	a	time,	the	result	has	units	of	feet	per	second,	which	is	a	velocity.	At	0	

seconds,	the	velocity	is	0.	At	1	second	the	velocity	is	32	feet	per	second.	At	2	seconds	the	

velocity	is	64	feet	per	second,	and	so	forth.	

The	distance	an	object	in	free	fall	travels	is	given	by	the	formula:	

Rudimentary	calculus	makes	this	family	of	formulas	comprehensible:	The	velocity	is	the	

derivative	of	the	distance,	and	the	acceleration	is	the	derivative	of	the	velocity.	In	this	formula,	

the	acceleration	is	multiplied	by	a	time	squared,	so	the	units	reduce	to	feet.	At	the	end	of	one	

second	the	velocity	of	an	object	in	free	fall	is	up	to	32	feet	per	second	but	because	the	free

fall	started	at	a	zero	velocity,	the	object	has	only	traveled	a	distance	of	16	feet.	By	the	end	of	

two	seconds,	it’s	gone	64	feet.	

In	the	TouchToStopRotation	project,	velocity	is	in	units	of	revolutions	per	second	and	

acceleration	in	units	of	revolutions	per	second	squared.	The	program	requires	an	additional	

using	directive	for	System.Text.	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

const float ACCELERATION = 1; // revs per second squared

const float MAXSPEED = 30; // revs per second

const string TEXT = "Hello, Windows Phone 7!";

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

SpriteFont segoe14;

Vector2 textPosition;

Vector2 origin;

Vector2 statusPosition;

float speed;

float angle;

StringBuilder strBuilder = new StringBuilder();

…

}

The	MAXSPEED	constant	is	set	at	30	revolutions	per	second,	which	is	the	same	as	the	frame	

rate.	As	the	spinning	text	reaches	that	speed,	it	should	appear	to	stop.	The	ACCELERATION	is	

1	revolution	per	second	squared,	which	means	that	every	second,	the	velocity	increases	by	1	

revolution	per	second.	At	the	end	of	the	first	second,	the	speed	is	1	revolution	per	second.	At	

the	end	of	the	second	second,	the	speed	is	2	revolutions	per	second.	Velocity	gets	to	

MAXSPEED	at	the	end	of	30	seconds.	

769	

	

	 	 	 	 	

	 	

	

	 	

The	fields	include	a	speed	variable	and	a	StringBuilder,	which	I’ll	use	for	displaying	the	current	

velocity	on	the	screen	at	statusPosition.	The	LoadContent method	prepares	most	of	these	

fields:	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

Viewport viewport = this.GraphicsDevice.Viewport;

 textPosition = new Vector2(viewport.Width / 2, viewport.Height / 2);

 segoe14 = this.Content.Load<SpriteFont>("Segoe14");

Vector2 textSize = segoe14.MeasureString(TEXT);

 origin = new Vector2(textSize.X / 2, textSize.Y / 2);

 statusPosition = new Vector2(viewport.Width - textSize.X,

viewport.Height - textSize.Y);

}

The	Update	method	increases	speed	based	on	the	acceleration,	and	then	increases	angle

based	on	the	new	speed	value.	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

 if (TouchPanel.GetState().Count == 0)

 {

speed += ACCELERATION * (float)gameTime.ElapsedGameTime.TotalSeconds;

speed = Math.Min(MAXSPEED, speed);

angle += MathHelper.TwoPi * speed *

(float)gameTime.ElapsedGameTime.TotalSeconds;

angle %= MathHelper.TwoPi;

 }

 else

 {

if (speed == 0)

 SuppressDraw();

speed = 0;

 }

 strBuilder.Remove(0, strBuilder.Length);

 strBuilder.AppendFormat(" {0:F1} revolutions/second", speed);

 base.Update(gameTime);

}

770	

	

	 	 	 	

	

	 	 	

	

	 	 	 	

	 	 	

	 	

	 	

	

	 	

	 	 	

	

	 	 	

If	TouchPanel.GetState()	returns	a	collection	containing	anything—that	is,	if	anything	is	

touching	the	screen—then	speed	is	set	back	to	zero.	Moreover,	the	next	time	Update	is	called	

and	something	is	still	touching	the	screen,	then	SuppressDraw	is	called.	So	by	touching	the	

screen	you’re	not	only	inhibiting	the	rotation	of	the	text,	but	you’re	saving	power	as	well.	

Also	notice	the	use	of	StringBuilder	to	update	the	status	field.	The	Draw	method	is	similar	to	

those	in	previous	programs	but	with	two	calls	to	DrawString:	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.DrawString(segoe14, strBuilder, statusPosition, Color.White);

 spriteBatch.DrawString(segoe14, TEXT, textPosition, Color.White,

 angle, origin, 1, SpriteEffects.None, 0);

 spriteBatch.End();

 base.Draw(gameTime);

}

For	the	final	program	in	this	chapter,	I	went	back	to	a	default	origin	of	the	upperleft	corner	

of	the	text.	But	I	wanted	that	upperleft	corner	of	the	text	string	to	crawl	around	the	inside	

perimeter	of	the	display,	and	I	also	wanted	the	text	to	be	fully	visible	at	all	times.	That	implies	

that	the	text	rotates	90	degrees	as	it	makes	it	way	past	each	corner.	Here’s	the	text	

maneuvering	around	the	lowerright	corner	of	the	display:	

The	program	is	called	TextCrawl,	and	the	fields	should	look	mostly	familiar	at	this	point:	

771	

	

	

	

	 	 	 	 	

	

	 	 	

	

	 	 	 	

	 	 	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

const float SPEED = 0.1f; // laps per second

const string TEXT = "Hello, Windows Phone 7!";

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

SpriteFont segoe14;

Viewport viewport;

Vector2 textSize;

Vector2 textPosition;

float tCorner; // height / perimeter

float tLap;

float angle;

 …

}

The	tLap	variable	goes	from	0	to	1	as	the	text	makes	its	way	counterclockwise	around	the	

perimeter.	To	help	figure	out	what	side	it’s	currently	on,	I	also	define	tCorner.	If	tLap	is	less	

than	tCorner,	the	text	is	on	the	left	edge	of	the	display;	if	tLap	is	greater	than	tCorner	but	less	

than	0.5,	it’s	on	the	bottom	of	the	display,	and	so	forth.	The	LoadContent	method	is	nothing	

special:	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 viewport = this.GraphicsDevice.Viewport;

 tCorner = 0.5f * viewport.Height / (viewport.Width + viewport.Height);

 segoe14 = this.Content.Load<SpriteFont>("Segoe14");

 textSize = segoe14.MeasureString(TEXT);

}

The	Update	method	is	the	real	monster,	I’m	afraid.	The	objective	here	is	to	calculate	a	

textPosition	and	angle for	the	eventual	call	to	DrawString.	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

772	

	

	 	

	 	 	 	

	

	

	 	 	

 tLap = (tLap + SPEED * (float)gameTime.ElapsedGameTime.TotalSeconds) % 1;

 if (tLap < tCorner) // down left side of screen

 {

textPosition.X = 0;

textPosition.Y = (tLap / tCorner) * viewport.Height;

angle = -MathHelper.PiOver2;

if (textPosition.Y < textSize.X)

 angle += (float)Math.Acos(textPosition.Y / textSize.X);

 }

 else if (tLap < 0.5f) // across bottom of screen

 {

textPosition.X = ((tLap - tCorner) / (0.5f - tCorner)) * viewport.Width;

textPosition.Y = viewport.Height;

angle = MathHelper.Pi;

if (textPosition.X < textSize.X)

 angle += (float)Math.Acos(textPosition.X / textSize.X);

 }

 else if (tLap < 0.5f + tCorner) // up right side of screen

 {

textPosition.X = viewport.Width;

textPosition.Y = (1 - (tLap - 0.5f) / tCorner) * viewport.Height;

angle = MathHelper.PiOver2;

if (textPosition.Y + textSize.X > viewport.Height)

 angle += (float)Math.Acos((viewport.Height - textPosition.Y) /

textSize.X);

 }

 else // across top of screen

 {

textPosition.X = (1 - (tLap - 0.5f - tCorner) / (0.5f - tCorner)) *

viewport.Width;

textPosition.Y = 0;

angle = 0;

if (textPosition.X + textSize.X > viewport.Width)

 angle += (float)Math.Acos((viewport.Width - textPosition.X) /

textSize.X);

 }

 base.Update(gameTime);

}

As	I	was	developing	this	code,	I	found	it	convenient	to	concentrate	on	getting	the	first	three	

statements	in	each	if	and	else	block	working	correctly.	These	statements	simply	move	the	

upperleft	corner	of	the	text	string	counterclockwise	around	the	inside	perimeter	of	the	

display.	The	initial	calculation	of	angle ensures	that	the	top	of	the	text	is	flush	against	the	

edge.	Only	when	I	got	all	that	working	was	I	ready	to	attack	the	code	that	alters	angle	for	the	

773

	

	

	 	 	 	 	

	 	

movement	around	the	corners.	A	couple	simple	drawings	convinced	me	that	the	inverse	

cosine	was	the	right	tool	for	the	job.	After	all	that	work	in	Update,	the	Draw	method	is	trivial:	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.DrawString(segoe14, TEXT, textPosition, Color.White,

 angle, Vector2.Zero, 1, SpriteEffects.None, 0);

 spriteBatch.End();

 base.Draw(gameTime);

}

In	the	next	chapter	you’ll	see	how	to	make	sprites	travel	along	curves.	

774	

	

	

	 	 	

	 	 	

	

	 	 	

	

	

	

	 	 	 	 	

	 	

	

	 	 	 	

	 	

	 	 	

	

	 	 	 	

	 	 	 	 	 	

	

	

	 	

	 	 	

	

	 	

	 	

	 	

	 	

Chapter	20	

Textures and Sprites
I	promised	that	learning	how	to	use	XNA	to	move	text	around	the	screen	would	provide	a	leg	

up	in	the	art	of	moving	regular	bitmap	sprites.	This	relationship	becomes	very	obvious	when	

you	begin	examining	the	Draw	methods	supported	by	the	SpriteBatch.	The	Draw	methods	

have	almost	the	same	arguments	as	DrawString	but	work	with	bitmaps	rather	than	text.	In	this	

chapter	I’ll	examine	techniques	for	moving	and	turning	sprites,	particularly	along	curves.		

The
Draw
Variants

Both	the	Game	class	and	the	SpriteBatch	class	have	methods	named	Draw.	Despite	the	

identical	names,	the	two	methods	are	not	genealogically	related	through	a	class	hierarchy.	In	

a	class	derived	from	Game you	override	the	Draw method	so	that	you	can	call	the	Draw

method	of	SpriteBatch.	This	latter	Draw method	comes	in	seven	different	versions.	The	

simplest	one	is:	

Draw(Texture2D texture, Vector2 position, Color color)

The	first	argument	is	a	Texture2D,	which	is	basically	a	bitmap.	A	Texture2D	is	potentially	a	

little	more	complex	than	an	ordinary	bitmap	because	it	could	have	multiple	“mipmap”	levels.	

(These	represent	the	same	image	but	at	different	resolutions	to	allow	the	image	to	be	

displayed	at	a	variety	of	sizes.)	The	Texture2D objects	that	I’ll	be	discussing	there	are	plain	old	

bitmaps.	Professional	game	developers	often	use	specialized	tools	to	create	these	bitmaps,	

but	I’m	going	to	use	Paint	because	it’s	readily	available.	After	you	create	these	bitmaps,	you	

add	them	to	the	content	of	the	XNA	project,	and	then	load	them	into	your	program	the	same	

way	you	load	a	font.		

The	second	argument	to	Draw	indicates	where	the	bitmap	is	to	appear	on	the	display.	By	

default,	the	position	argument	indicates	the	point	on	the	display	where	the	upperleft	corner	

of	the	texture	is	to	appear.	

The	Color	argument	is	used	a	little	differently	than	with	DrawString	because	the	texture	itself	

can	contain	color	information.	The	argument	is	referred	to	in	the	documentation	as	a	“color	

channel	modulation,”	and	it	serves	as	a	filter	through	which	to	view	the	bitmap.	

Conceptually,	every	pixel	in	the	bitmap	has	a	onebyte	red	value,	a	onebyte	green	value,	and	

a	onebyte	blue	value	(ignoring	alpha	for	the	moment).	When	the	bitmap	is	displayed	by	

Draw,	these	red,	green,	and	blue	colors	values	are	effectively	multiplied	by	the	onebyte	red,	

green,	and	blue	values	of	the	Color	argument	to	Draw,	and	the	results	are	divided	by	255	to	

bring	them	back	in	the	range	of	0	to	255.	That’s	what’s	used	to	color	that	pixel.	

775	

	

	 	

	 	

	

	 	 	 	

	 	 	 	

	 	

	 	 	 	 	

	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	

	 	 	

	 	

	

	

	 	 	 	

	 	 	 	 	 	 	

	 	

	 	

	

	 	

	 	 	

	

	

	 	 	 	 	

	 	 	

For	example,	suppose	your	texture	has	lots	of	color	information	and	you	wish	all	those	colors	

to	be	preserved	on	the	display.	Use	a	value	of	Color.White	in	the	Draw	method.	

Now	suppose	you	want	to	draw	that	same	texture	but	darker.	Perhaps	the	sun	is	setting	in	

your	game	world.	Use	some	gray	color	value	in	the	Draw	method.	The	darker	the	gray,	the	

darker	the	texture	will	appear.	If	you	use	Color.Black,	the	texture	will	appear	as	a	silhouette	

with	no	color.	

Suppose	your	texture	is	all	white	and	you	wish	to	display	it	as	blue.	Use	Color.Blue	in	the	Draw

method.	You	can	display	the	same	allwhite	texture	in	a	variety	of	colors.	(I’ll	do	precisely	that	

in	the	first	sample	program	in	this	chapter.)		

If	your	texture	is	yellow	(a	combination	of	red	and	green)	and	you	use	Color.Green	in	the	

Draw	method,	it	will	be	displayed	as	green.	If	you	use	Color.Red	in	the	Draw	method	it	will	be	

displayed	as	red.	If	you	use	Color.Blue	in	the	Draw	method,	it	will	turn	black.	The	argument	to	

Draw can	only	attenuate	or	suppress	color.	You	cannot	get	colors	that	aren’t	in	the	texture	to	

begin	with.	

The	second	version	of	the	Draw	method	is:	

Draw(Texture2D texture, Rectangle destination, Color color)

Instead	of	a	Vector2 to	indicate	the	position	of	the	texture,	you	use	a	Rectangle,	which	is	the	

combination	of	a	point	(the	upperleft	corner),	a	width,	and	a	height.	If	the	width	and	height	

of	the	Rectangle	don’t	match	the	width	and	height	of	the	texture,	the	texture	will	be	scaled	to	

the	size	of	the	Rectangle.	The	original	aspect	ratio	is	ignored.	

If	you	only	want	to	display	a	rectangular	subset	of	the	texture,	you	can	use	one	of	the	two	

slightly	expanded	versions	of	the	Draw	method:	

Draw(Texture2D texture, Vector2 position, Rectangle? source, Color color)

Draw(Texture2D texture, Rectangle destination, Rectangle? source, Color color)

The	third	arguments	are	nullable	Rectangle	objects.	If	you	set	this	argument	to	null,	the	result	

is	the	same	as	using	one	of	the	first	two	versions	of	Draw.	Otherwise	you	can	specify	a	pixel	

subset	of	the	image.	

The	next	two	versions	of	Draw	have	five	additional	arguments	that	you’ll	recognize	from	the	

DrawString	methods:	

Draw(Texture2D texture, Vector2 position, Rectangle? source, Color color,

float rotation, Vector2 origin, float scale, SpriteEffects effects, float depth)

Draw(Texture2D texture, Vector2 position, Rectangle? source, Color color,

float rotation, Vector2 origin, Vector2 scale, SpriteEffects effects, float depth)

As	with	DrawString,	the	rotation angle	is	in	radians,	measured	clockwise.	The	origin	is	a	point	

in	the	texture	that	is	to	be	aligned	with	the	position	argument.	You	can	scale	uniformly	with	a	

776	

	

	 	 	

	 	 	

	

	

	

	 	 	

	

	 	 	 	 	

	 	

	 	 	 	 	 	 	

	 	

	 	 	

	 	

		

	 	

	 	 	

	 	 	 	

	 	

	 	 	

	

	 	 	

	 	 	 	

	 	 	

	 	 	 	

	 	

single	float	or	differently	in	the	horizontal	and	vertical	directions	with	a	Vector2.	The	

SpriteEffects	enumeration	lets	you	flip	an	image	horizontally	or	vertically	to	get	its	mirror	

image.	The	last	argument	allows	overriding	the	defaults	for	layering	multiple	textures	on	the	

screen.		

Finally,	there’s	also	a	slightly	shorter	longer	version	where	the	second	argument	is	a	

destination	rectangle:	

spriteBatch.Draw(Texture2D texture, Rectangle destination, Rectangle? source, Color color,

 float rotation, Vector2 origin, SpriteEffects effects, float depth)

Notice	there’s	no	separate	scaling	argument	because	scaling	in	this	one	is	handled	through	

the	destination	argument.	

Within	the	Draw	method	of	your	Game	class,	you	use	the	SpriteBatch	object	like	so:	

spriteBatch.Begin();

spriteBatch.Draw …

spriteBatch.End();

Within	the	Begin	and	End	calls,	you	can	have	any	number	of	calls	to	Draw	and	DrawString.	

The	Draw calls	can	reference	the	same	texture.	You	can	also	have	multiple	calls	to	Begin

followed	by	End	with	Draw	and	DrawString	in	between.	

Another
Hello
Program?

If	you’re	tired	of	“hello,	world”	programs	by	now,	I’ve	got	some	bad	news.	But	this	time	I’ll	

compose	a	very	blocky	rendition	of	the	word	“HELLO”	using	two	different	bitmaps—a	vertical	

bar	and	a	horizontal	bar.	The	letter	“H”	will	be	two	vertical	bars	and	one	horizontal	bar.	The	

“O”	at	the	end	will	look	like	a	rectangle.	

And	then,	when	you	tap	the	screen,	all	15	bars	will	fly	apart	in	random	directions	and	then	

come	back	together.	Sound	like	fun?	

If	you	were	creating	the	FlyAwayHello	program	in	scratch,	the	first	step	would	be	to	add	

content	to	the	Content	directory—not	a	font	this	time	but	two	bitmaps	called	HorzBar.png	

and	VertBar.png.	You	can	create	these	right	in	Visual	Studio	or	in	Paint.	By	default,	Paint	

creates	an	allwhite	bitmap	for	you.	That’s	ideal!	All	I	want	you	to	do	is	change	the	size.	Click	

the	Paint	Button	menu	(upperleft	below	the	title	bar)	and	select	Properties.	Change	the	size	

to	45	pixels	wide	and	5	pixels	high.	(The	exact	dimensions	really	don’t	matter;	the	program	is	

coded	to	be	a	little	flexible.)	It’s	most	convenient	to	save	the	file	right	in	the	Content	directory	

of	the	project	under	the	name	HorzBar.png.	Now	change	the	size	to	5	pixels	wide	and	75	

pixels	high.	Save	under	the	name	VertBar.png.	

777	

	

	 	 	 	

	 	

	 	 	

	 	 	

	 	 	

	 	 	

Although	the	bitmaps	are	now	in	the	proper	directory,	the	XNA	project	doesn’t	know	of	their	

existence.	In	Visual	Studio,	right	click	the	Content	directory	and	choose	Add	Existing	Item.	You	

can	select	both	PNG	files	and	add	them	to	the	project.	

I’m	going	to	use	a	little	class	called	SpriteInfo	to	keep	track	of	the	15	textures	required	for	

forming	the	text.	If	you’re	creating	the	project	from	scratch,	rightclick	the	project	name,	and	

select	Add	and	then	New	Item	(or	select	Add	New	Item	from	the	main	Project	menu).	From	

the	dialog	box	select	Class	and	give	it	the	name	SpriteInfo.cs.	

XNA Project: File: (complete)

using Microsoft.Xna.Framework;

using Microsoft.Xna.Framework.Graphics;

namespace FlyAwayHello

{

public class SpriteInfo

 {

public static float InterpolationFactor { set; get; }

public Texture2D Texture2D { protected set; get; }

public Vector2 BasePosition { protected set; get; }

public Vector2 PositionOffset { set; get; }

public float MaximumRotation { set; get; }

public SpriteInfo(Texture2D texture2D, int x, int y)

{

 Texture2D = texture2D;

 BasePosition = new Vector2(x, y);

}

public Vector2 Position

{

get

{

return BasePosition + InterpolationFactor * PositionOffset;

 }

}

public float Rotation

{

get

{

return InterpolationFactor * MaximumRotation;

 }

}

 }

}

778	

	

	

	 	 	 	 	 	 	

	 	

	 	

	

	

	 	 	 	

	 	 	

	 		

The	required	constructor	stores	a	Texture2D	along	with	positioning	information.	This	is	how	

each	sprite	is	initially	positioned	to	spell	out	the	word	“HELLO.”	Later	in	the	“fly	away”	

animation,	the	program	sets	the	PositionOffset	and	MaximumRotation	properties.	The	Position

and	Rotation properties	perform	calculations	based	on	the	static	InterpolationFactor,	which	

can	range	from	0	to	1.	

Here	are	the	fields	of	the	Game1	class:	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

static readonly TimeSpan ANIMATION_DURATION = TimeSpan.FromSeconds(5);

const int CHAR_SPACING = 5;

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

Viewport viewport;

List<SpriteInfo> spriteInfos = new List<SpriteInfo>();

Random rand = new Random();

bool isAnimationGoing;

TimeSpan animationStartTime;

 …

}

This	program	initiates	an	animation	only	when	the	user	taps	the	screen,	so	I’m	handling	the	

timing	just	a	little	differently	than	in	earlier	programs,	as	I’ll	demonstrate	in	the	Update

method.	

The	LoadContent	method	loads	the	two	Texture2D objects	using	the	same	generic	Load

method	that	previous	programs	used	to	load	a	SpriteFont.	Enough	information	is	now	

available	to	create	and	initialize	all	SpriteInfo	objects:	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);
 viewport = this.GraphicsDevice.Viewport;

Texture2D horzBar = Content.Load<Texture2D>("HorzBar");

Texture2D vertBar = Content.Load<Texture2D>("VertBar");

int x = (viewport.Width - 5 * horzBar.Width - 4 * CHAR_SPACING) / 2;

int y = (viewport.Height - vertBar.Height) / 2;

int xRight = horzBar.Width - vertBar.Width;

int yMiddle = (vertBar.Height - horzBar.Height) / 2;

int yBottom = vertBar.Height - horzBar.Height;

779	

	

	 	 	

	 	 	 	

// H

 spriteInfos.Add(new SpriteInfo(vertBar, x, y));

 spriteInfos.Add(new SpriteInfo(vertBar, x + xRight, y));

 spriteInfos.Add(new SpriteInfo(horzBar, x, y + yMiddle));

// E

 x += horzBar.Width + CHAR_SPACING;

 spriteInfos.Add(new SpriteInfo(vertBar, x, y));

 spriteInfos.Add(new SpriteInfo(horzBar, x, y));

 spriteInfos.Add(new SpriteInfo(horzBar, x, y + yMiddle));

 spriteInfos.Add(new SpriteInfo(horzBar, x, y + yBottom));

// LL

 for (int i = 0; i < 2; i++)

 {

x += horzBar.Width + CHAR_SPACING;

spriteInfos.Add(new SpriteInfo(vertBar, x, y));

spriteInfos.Add(new SpriteInfo(horzBar, x, y + yBottom));

 }

// O

 x += horzBar.Width + CHAR_SPACING;

 spriteInfos.Add(new SpriteInfo(vertBar, x, y));

 spriteInfos.Add(new SpriteInfo(horzBar, x, y));

 spriteInfos.Add(new SpriteInfo(horzBar, x, y + yBottom));

 spriteInfos.Add(new SpriteInfo(vertBar, x + xRight, y));

}

The	Update	method	is	responsible	for	keeping	the	animation	going.	If	the	isAnimationGoing

field	is	false,	it	checks	for	a	new	finger	pressed	on	the	screen.	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

if (isAnimationGoing)

 {

TimeSpan animationTime = gameTime.TotalGameTime - animationStartTime;

double fractionTime = (double)animationTime.Ticks /

 ANIMATION_DURATION.Ticks;

if (fractionTime >= 1)

{

 isAnimationGoing = false;

 fractionTime = 1;

}

SpriteInfo.InterpolationFactor = (float)Math.Sin(Math.PI * fractionTime);

780	

	

	 	

	 	

	 	 	

	 	 	 	

 }

else

 {

TouchCollection touchCollection = TouchPanel.GetState();

bool atLeastOneTouchPointPressed = false;

foreach (TouchLocation touchLocation in touchCollection)

 atLeastOneTouchPointPressed |=

 touchLocation.State == TouchLocationState.Pressed;

if (atLeastOneTouchPointPressed)

{

foreach (SpriteInfo spriteInfo in spriteInfos)

 {

float r1 = (float)rand.NextDouble() - 0.5f;

float r2 = (float)rand.NextDouble() - 0.5f;

float r3 = (float)rand.NextDouble();

 spriteInfo.PositionOffset = new Vector2(r1 * viewport.Width,

r2 * viewport.Height);

 spriteInfo.MaximumRotation = 2 * (float)Math.PI * r3;

 }

 animationStartTime = gameTime.TotalGameTime;

 isAnimationGoing = true;

}

 }

 base.Update(gameTime);

}

When	the	animation	begins,	the	animationStartTime	is	set	from	the	TotalGameTime	property	

of	GameTime.	During	subsequent	calls,	Update	compares	that	value	with	the	new	

TotalGameTime	and	calculates	an	interpolation	factor.	The	InterpolationFactor	property	of	

SpriteInfo	is	static	so	it	need	be	set	only	once	to	affect	all	the	SpriteInfo	instances.	The	Draw

method	loops	through	the	SpriteInfo	objects	to	access	the	Position	and	Rotation	properties:	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 foreach (SpriteInfo spriteInfo in spriteInfos)

 {

spriteBatch.Draw(spriteInfo.Texture2D, spriteInfo.Position, null,

Color.Lerp(Color.Blue, Color.Red, SpriteInfo.InterpolationFactor),

 spriteInfo.Rotation, Vector2.Zero, 1, SpriteEffects.None, 0);

 }

 spriteBatch.End();

781

	

	 	

	 	 	

	 	

	

	 	 	

	 	 	 	

	 	 	

	 	 	 	

	 	 	 	

	 	

	 	 	 	

	

 base.Draw(gameTime);

}

The	Draw call	also	uses	SpriteInfo.InterpolationFactor	to	interpolate	between	blue	and	red	for	

coloring	the	bars.	Notice	that	the	Color	structure	also	has	a	Lerp method.	The	text	is	normally	

blue	but	changes	to	red	as	the	pieces	fly	apart.	

That	call	to	Draw	could	actually	be	part	of	SpriteInfo.	SpriteInfo	could	define	its	own	Draw

method	with	an	argument	of	type	SpriteBatch,	and	then	pass	its	own	Texture2D,	Position,	and	

Rotation	properties	to	the	Draw	method	of	the	SpriteBatch:	

public void Draw(SpriteBatch spriteBatch)

{

 spriteBatch.Draw(Texture2D, Position, null,

Color.Lerp(Color.Blue, Color.Red, InterpolationFactor),

 Rotation, Vector2.Zero, 1, SpriteEffects.None, 0);

}

The	loop	in	the	Draw override	of	the	Game1	glass	then	looks	like	this:	

foreach (SpriteInfo spriteInfo in spriteInfos)

{

 spriteInfo.Draw(spriteBatch);

}

This	is	a	common	technique	and	allows	SpriteInfo	to	have	fewer	public	properties.	

Driving
Around
the
Block

For	the	remainder	of	this	chapter	I	want	to	focus	on	techniques	to	maneuver	a	sprite	around	

some	kind	of	path.	To	make	it	more	“realistic,”	I	commissioned	my	wife	Deirdre	to	make	a	

little	racecar	in	Paint:	

782

	

	

	 	 	

	 	 	

	 	 	 	

	

	

	

	 	

	 	

	

The	car	is	48	pixels	tall	and	29	pixels	in	width.	Notice	the	magenta	background:	If	you	want	

part	of	an	image	to	be	transparent	in	an	XNA	scene,	you	can	use	a	32bit	bitmap	format	that	

supports	transparency,	such	as	PNG.	Each	pixel	in	this	format	has	8bit	red,	green,	and	blue	

components	but	also	an	8bit	alpha	channel	for	transparency.	(I’ll	explore	this	format	in	the	

next	chapter.)	The	Paint	program	in	Windows	does	not	support	bitmap	transparency,	alas,	but	

you	can	use	magenta	instead.	In	Paint,	create	magenta	by	setting	the	red	and	blue	values	to	

255	and	green	to	0.	

In	each	of	the	projects	in	this	chapter,	this	image	is	stored	as	the	file	car.png	as	part	of	the	

project’s	content.	The	first	project	is	called	CarOnRectangularCourse	and	demonstrates	a	

rather	clunky	approach	to	driving	a	car	around	the	perimeter	of	the	screen.	Here	are	the	

fields:	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

const float SPEED = 100; // pixels per second

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

Texture2D car;

Vector2 carCenter;

Vector2[] turnPoints = new Vector2[4];

int sideIndex = 0;

Vector2 position;

783	

	

	 	

	 	 	

	 	 	

	

	 	 	 	 	 	

	 	 	

	

float rotation;

 …

}

The	turnPoints	array	stores	the	four	points	near	the	corners	of	the	display	where	the	car	

makes	a	sharp	turn.	Calculating	these	points	is	one	of	the	primary	activities	of	the	

LoadContent method,	which	also	loads	the	Texture2D	and	initializes	other	fields:	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 car = this.Content.Load<Texture2D>("car");

 carCenter = new Vector2(car.Width / 2, car.Height / 2);

float margin = car.Width;
Viewport viewport = this.GraphicsDevice.Viewport;

 turnPoints[0] = new Vector2(margin, margin);

 turnPoints[1] = new Vector2(viewport.Width - margin, margin);

 turnPoints[2] = new Vector2(viewport.Width - margin, viewport.Height - margin);

 turnPoints[3] = new Vector2(margin, viewport.Height - margin);

 position = turnPoints[0];

 rotation = MathHelper.PiOver2;

}

I	use	the	carCenter	field	as	the	origin	argument	to	the	Draw	method,	so	that’s	the	point	on	

the	car	that	aligns	with	a	point	on	the	course	defined	by	the	four	members	of	the	turnPoints

array.	The	margin value	makes	this	course	one	car	width	from	the	edge	of	the	display;	hence	

the	car	is	really	separated	from	the	edge	of	the	display	by	half	its	width.	

I	described	this	program	as	“clunky”	and	the	Update	method	proves	it:	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

float pixels = SPEED * (float)gameTime.ElapsedGameTime.TotalSeconds;

switch (sideIndex)

 {

case 0: // top

 position.X += pixels;

if (position.X > turnPoints[1].X)

 {

 position.X = turnPoints[1].X;

784	

	

	

	 	

	 	 	

	

	

 position.Y = turnPoints[1].Y + (position.X - turnPoints[1].X);

 rotation = MathHelper.Pi;

 sideIndex = 1;

 }

break;

case 1: // right

 position.Y += pixels;

if (position.Y > turnPoints[2].Y)

 {

 position.Y = turnPoints[2].Y;

 position.X = turnPoints[2].X - (position.Y - turnPoints[2].Y);

 rotation = -MathHelper.PiOver2;

 sideIndex = 2;

 }

break;

case 2: // bottom

 position.X -= pixels;

if (position.X < turnPoints[3].X)

 {

 position.X = turnPoints[3].X;

 position.Y = turnPoints[3].Y + (position.X - turnPoints[3].X);

 rotation = 0;

 sideIndex = 3;

 }

break;

case 3: // left

 position.Y -= pixels;

if (position.Y < turnPoints[0].Y)

 {

 position.Y = turnPoints[0].Y;

 position.X = turnPoints[0].X - (position.Y - turnPoints[0].Y);

 rotation = MathHelper.PiOver2;

 sideIndex = 0;

 }

break;

}

base.Update(gameTime);

}

This	is	the	type	of	code	that	screams	out	“There’s	got	to	be	a	better	way!”	Elegant	it	is	not,	

and	not	very	versatile	either.	But	before	I	take	a	stab	at	a	more	flexible	approach,	here’s	the	

entirely	predictable	Draw method	that	incorporates	the	updated	position	and	rotation	values	

calculated	during	Update:	

785

	

	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	

	

	

	 	 	

	

	 	 	 	 	

	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Blue);

 spriteBatch.Begin();

 spriteBatch.Draw(car, position, null, Color.White, rotation,

 carCenter, 1, SpriteEffects.None, 0);

 spriteBatch.End();

base.Draw(gameTime);

}

Movement
Along
a
Polyline

The	code	in	the	previous	program	will	work	for	any	rectangle	whose	corners	are	stored	in	the	

turnPoints array,	but	it	won’t	work	for	any	arbitrary	collection	of	four	points,	or	more	than	

four	points.	In	computer	graphics,	a	collection	of	points	that	describe	a	series	of	straight	lines	

is	often	called	a	polyline,	and	it	would	be	nice	to	write	some	code	that	makes	the	car	travel	

along	any	arbitrary	polyline.	

The	next	project,	called	CarOnPolylineCourse,	includes	a	class	named	PolylineInterpolator	that	

does	precisely	that.	Let	me	show	you	the	Game1	class	first,	and	then	I’ll	describe	the	

PolylineInterpolator	class	that	makes	it	all	possible.	Here	are	the	fields:	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

const float SPEED = 0.25f; // laps per second

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

Texture2D car;

Vector2 carCenter;

PolylineInterpolator polylineInterpolator = new PolylineInterpolator();

Vector2 position;

float rotation;

 …

}

You’ll	notice	a	speed	in	terms	of	laps,	and	the	instantiation	of	the	mysterious	

PolylineInterpolator	class.	The	LoadContent method	is	very	much	like	that	in	the	previous	

project	except	instead	of	adding	points	to	an	array	called	turnPoints,	it	adds	them	to	a	

Vertices	property	of	the	PolylineInterpolator	class:	

786	

	

	 	 	 	

	 	

	 	

	 	 	 	

	 	

	 	

	

	 	

	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 car = this.Content.Load<Texture2D>("Car");

 carCenter = new Vector2(car.Width / 2, car.Height / 2);

float margin = car.Width;
Viewport viewport = this.GraphicsDevice.Viewport;

 polylineInterpolator.Vertices.Add(

new Vector2(car.Width, car.Width));

 polylineInterpolator.Vertices.Add(

new Vector2(viewport.Width - car.Width, car.Width));

 polylineInterpolator.Vertices.Add(

new Vector2(car.Width, viewport.Height - car.Width));

 polylineInterpolator.Vertices.Add(

new Vector2(viewport.Width - car.Width, viewport.Height - car.Width));

 polylineInterpolator.Vertices.Add(

new Vector2(car.Width, car.Width));

}

Also	notice	that	the	method	adds	the	beginning	point	in	again	at	the	end,	and	that	these	

points	don’t	exactly	describe	the	same	course	as	the	previous	project.	The	previous	project	

caused	the	car	to	travel	from	the	upperleft	to	the	upperright	down	to	lowerright	and	

across	to	the	lowerleft	and	back	up	to	upperleft.	The	order	here	goes	from	upperleft	to	

upperright	but	then	diagonally	down	to	lowerleft	and	across	to	lowerright	before	another	

diagonal	trip	up	to	the	beginning.	This	is	precisely	the	kind	of	versatility	the	previous	program	

lacked.	

As	with	the	programs	in	the	last	chapter	that	used	parametric	equations,	the	Update	method	

is	now	so	simple	it	makes	you	want	to	weep:	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

float t = (SPEED * (float)gameTime.TotalGameTime.TotalSeconds) % 1;

float angle;

 position = polylineInterpolator.GetValue(t, false, out angle);

 rotation = angle + MathHelper.PiOver2;

base.Update(gameTime);

}

787	

	

	 	 	 	 	

	 	

	 	 	 	

	 		

	 	 	

	 	

	 	

	 	 	

	 	

	

	 	

	

	

	

	

As	usual,	t	is	calculated	to	range	from	0	to	1,	where	0	indicates	the	beginning	of	the	course	in	

the	upperleft	corner	of	the	screen,	and	t	approaches	1	as	it’s	heading	towards	that	initial	

position	again.	This	t is	passed	directly	to	the	GetValue	method	of	PolylineInterpolator,	which	

returns	a	Vector2 value	somewhere	along	the	polyline.	

As	an	extra	bonus,	the	last	argument	of	GetValue	allows	obtaining	an	angle	value	that	is	the	

tangent	of	the	polyline	at	that	point.	This	angle	is	measured	clockwise	relative	to	the	positive	

X	axis.	For	example,	when	the	car	is	travelling	from	the	upperleft	corner	to	the	upperright,	

angle	is	0.	When	the	car	is	travelling	from	the	upperright	corner	to	the	lowerleft,	the	angle	is	

somewhere	between	ʌ/2	and	ʌ,	depending	on	the	aspect	ratio	of	the	screen.	The	car	in	the	

bitmap	is	facing	up	so	it	needs	to	be	rotated	an	additional	ʌ/2	radians.	

The	Draw	method	is	the	same	as	before:	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Blue);

 spriteBatch.Begin();

 spriteBatch.Draw(car, position, null, Color.White, rotation,

 carCenter, 1, SpriteEffects.None, 0);

 spriteBatch.End();

base.Draw(gameTime);

}

Here’s	the	car	heading	towards	the	lowerleft	corner:	

For	demonstration	purposes,	the	PolylineInterpolator	class	sacrifices	efficiency	for	simplicity.	

Here’s	the	entire	class:	

788	

	

 XNA Project: CarOnPolylineCourse File: PolylineInterpolator.cs (complete)

using System;

using System.Collections.Generic;

using Microsoft.Xna.Framework;

namespace CarOnPolylineCourse

{

public class PolylineInterpolator

 {

public PolylineInterpolator()

{

 Vertices = new List<Vector2>();

}

public List<Vector2> Vertices { protected set; get; }

public float TotalLength()

{

float totalLength = 0;

// Notice looping begins at index 1

for (int i = 1; i < Vertices.Count; i++)

 {

 totalLength += (Vertices[i] - Vertices[i - 1]).Length();

 }

return totalLength;

}

public Vector2 GetValue(float t, bool smooth, out float angle)

{

if (Vertices.Count == 0)

 {

return GetValue(Vector2.Zero, Vector2.Zero, t, smooth, out angle);

 }

else if (Vertices.Count == 1)

 {

return GetValue(Vertices[0], Vertices[0], t, smooth, out angle);

 }

if (Vertices.Count == 2)

 {

return GetValue(Vertices[0], Vertices[1], t, smooth, out angle);

 }

// Calculate total length

float totalLength = TotalLength();

float accumLength = 0;

// Notice looping begins at index 1

for (int i = 1; i < Vertices.Count; i++)

 {

float prevLength = accumLength;

789	

	

	 	 	 	 	

	 	 	 	 	

	 	 	

	 	 	 	

	 	

	 	

	

	

	 	 	 	

	

	 	 	

 accumLength += (Vertices[i] - Vertices[i - 1]).Length();

if (t >= prevLength / totalLength && t <= accumLength / totalLength)

 {

float tPrev = prevLength / totalLength;

float tThis = accumLength / totalLength;

float tNew = (t - tPrev) / (tThis - tPrev);

return GetValue(Vertices[i - 1], Vertices[i],

tNew, smooth, out angle);

 }

 }

return GetValue(Vector2.Zero, Vector2.Zero, t, smooth, out angle);

}

Vector2 GetValue(Vector2 vertex1, Vector2 vertex2, float t,

bool smooth, out float angle)

{

 angle = (float)Math.Atan2(vertex2.Y - vertex1.Y, vertex2.X - vertex1.X);

return smooth ? Vector2.SmoothStep(vertex1, vertex2, t) :

Vector2.Lerp(vertex1, vertex2, t);

}

 }

}

The	single	Vertices	property	allows	you	to	define	a	collection	of	Vector2	objects	that	define	

the	polyline.	If	you	want	the	polyline	to	end	up	where	it	started,	you	need	to	explicitly	

duplicate	that	point.	All	the	work	occurs	during	the	GetValue	method.	At	that	time,	the	

method	determines	the	total	length	of	the	polyline.	It	then	loops	through	the	vertices	and	

accumulates	their	lengths,	finding	the	pair	of	vertices	whose	accumulated	length	straddles	the	

t	value.	These	are	passed	to	the	private	GetValue	method	to	perform	the	linear	interpolation	

using	Vector2.Lerp,	and	to	calculate	the	tangent	angle	with	the	graphics	programmer’s	second	

BFF,	Math.Atan2.	

But	wait:	There’s	also	a	Boolean	argument	to	GetValue	that	causes	the	method	to	use	

Vector2.SmoothStep	rather	than	Vector2.Lerp.	You	can	try	out	this	alternative	by	replacing	this	

call	in	the	Update	method	of	Game1:	

position = polylineInterpolator.GetValue(t, false, out angle);

with	this	one:	

position = polylineInterpolator.GetValue(t, true, out angle);

The	“smooth	step”	interpolation	is	based	on	a	cubic,	and	causes	the	car	to	slow	down	as	it	

approaches	one	of	the	vertices,	and	speed	up	afterwards.	It	still	makes	an	abrupt	and	

unrealistic	turn	but	the	speed	change	is	quite	nice.	

790

	

	 	 	

	 	 	 	

	 	 	

	 	

	 	 	 	 	

	 	 	 	

	 	 	

	 	 	 	

	 	

	 	 	

	 	 	 	

	 	 	 	 	

	 	 	 	 	

	 	

	 	 	 	

	 	 	

	 	 	 	

	

	

	

	 	 	 	

	 	

	

	

	

	 	

What	I	don’t	like	about	the	PolylineInterpolator	class	is	its	inefficiency.	GetValue	needs	to	

make	several	calls	to	the	Length	method	of	Vector2,	which	of	course	involves	a	squareroot	

calculation.	It	would	be	nice	for	the	class	to	retain	the	total	length	and	the	accumulated	

length	at	each	vertex	so	it	could	simply	reuse	that	information	on	successive	GetValue	calls.	

As	written,	the	class	can’t	do	that	because	it	has	no	knowledge	when	Vector2	values	are	

added	to	or	removed	from	the	Vertices	collection.	One	possibility	is	to	make	that	collection	

private,	and	to	only	allow	a	collection	of	points	to	be	submitted	in	the	class’s	constructor.	

Another	approach	is	to	replace	the	List	with	an	ObservableCollection,	which	provides	an	event	

notification	when	objects	are	added	and	removed.	

The
Elliptical
Course

The	most	unrealistic	behavior	of	the	previous	program	involves	the	turns.	Real	cars	slow	down	

to	turn	around	corners,	but	they	actually	travel	along	a	curved	path	to	change	direction.	To	

make	the	previous	program	more	realistic,	the	corners	would	have	to	be	replaced	by	curves.	

These	curves	could	be	approximated	with	polylines,	but	the	increasing	number	of	polylines	

would	then	require	PolylineInterpolator	to	be	restructured	for	better	performance.	

Instead,	I’m	going	to	go	off	on	a	somewhat	different	tangent	and	drive	the	car	around	a	

traditional	oval	course,	or	to	express	it	more	mathematically,	an	elliptical	course.	

Let’s	look	at	some	math.	A	circle	centered	on	the	point	(0,	0)	with	a	radius	of	R	consists	of	all	

points	(x,	y)	where		

An	ellipse	has	two	radii.	If	these	are	parallel	to	the	horizontal	and	vertical	axes,	they	are	

sometimes	called	Rx	and	Ry,	and	the	ellipse	formula	is:	

For	our	purposes,	it	is	more	convenient	to	represent	the	ellipse	in	the	parametric	form.	In	

these	two	equations,	x	and	y are	functions	of	the	angle	Į,	which	ranges	from	0	to	2ʌ:	

When	the	ellipse	is	centered	around	the	point	(Cx,	Cy),	the	formulas	become:	

If	we	also	want	to	introduce	a	variable	t,	where	t	goes	from	0	to	1,	the	formulas	are:	

791	

	

	

	 	 	

	

	 	

	

	

	

	

	 	

	 	

	 	

And	these	will	be	ideal	for	our	purpose.	As	t	goes	from	0	to	1,	the	car	goes	around	the	lap	

once.	But	how	do	we	rotate	the	car	so	it	appears	to	be	travelling	in	a	tangent	to	this	ellipse?	

For	that	job,	the	differential	calculus	comes	to	the	rescue.	First,	take	the	derivatives	of	the	

parametric	equations:	

In	physical	terms,	these	equations	represent	the	instantaneous	change	in	direction	in	the	X	

direction	and	Y	direction,	respectively.	To	turn	that	into	a	tangent	angle,	simply	apply	the	ever	

useful	Math.Atan2.	

And	now	we’re	ready	to	code.	Here	are	the	fields:	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

const float SPEED = 0.25f; // laps per second

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

Texture2D car;

Vector2 carCenter;

Point ellipseCenter;

float ellipseRadiusX, ellipseRadiusY;

Vector2 position;

float rotation;

 …

}

The	fields	include	the	three	items	required	for	the	parametric	equations	for	the	ellipse:	the	

center	and	the	two	radii.	These	are	determined	during	the	LoadContent	method	based	on	the	

dimensions	of	the	available	area	of	the	screen:	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 car = this.Content.Load<Texture2D>("car");

 carCenter = new Vector2(car.Width / 2, car.Height / 2);
Viewport viewport = this.GraphicsDevice.Viewport;

 ellipseCenter = viewport.Bounds.Center;

 ellipseRadiusX = viewport.Width / 2 - car.Width;

792	

	

	 	 	 	

	 	 	

	 	

	 	

	

	

	 	

 ellipseRadiusY = viewport.Height / 2 - car.Width;

}

Notice	that	the	Update	method	below	calculates	two	angles.	The	first,	called	ellipseAngle,	is	

based	on	t	and	determines	where	on	the	ellipse	the	car	is	located.	This	is	the	angle	passed	to	

the	parametric	equations	for	the	ellipse,	to	obtain	the	position	as	a	combination	of	x	and	y:	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

float t = (SPEED * (float)gameTime.TotalGameTime.TotalSeconds) % 1;

float ellipseAngle = MathHelper.TwoPi * t;

float x = ellipseCenter.X + ellipseRadiusX * (float)Math.Cos(ellipseAngle);

float y = ellipseCenter.Y + ellipseRadiusY * (float)Math.Sin(ellipseAngle);

 position = new Vector2(x, y);

float dxdt = -ellipseRadiusX * (float)Math.Sin(ellipseAngle);

float dydt = ellipseRadiusY * (float)Math.Cos(ellipseAngle);

 rotation = MathHelper.PiOver2 + (float)Math.Atan2(dydt, dxdt);

base.Update(gameTime);

}

The	second	angle	that	Update	calculates	is	called	rotation.	This	is	the	angle	that	governs	the	

orientation	of	the	car.	The	dxdt	and	dydt	variables	are	the	derivatives	of	the	parametric	

equations	that	I	showed	earlier.	The	Math.Atan2	method	provides	the	rotation	angle	relative	

to	the	positive	X	axis,	and	this	must	be	rotated	another	90	degrees	for	the	original	orientation	

of	the	bitmap.	

By	this	time,	you	can	probably	recite	Draw	by	heart:	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Blue);

 spriteBatch.Begin();

 spriteBatch.Draw(car, position, null, Color.White, rotation,

 carCenter, 1, SpriteEffects.None, 0);

 spriteBatch.End();

base.Draw(gameTime);

}

793

	

	 	 	

	 	

	 	

	 	 	

	

	

	

	

	 	

	 	 	

	 	 	

	 		

	 	 	

	 	 	

	 	

	

	 	 	

	

	 	 	

	 	 	 	

A
Generalized
Curve
Solution

For	movement	along	curves	that	are	not	quite	convenient	to	express	in	parametric	equations,	

XNA	itself	provides	a	generalized	solution	based	around	the	Curve	and	CurveKey	classes	

defined	in	the	Microsoft.Xna.Framework	namespace.	

The	Curve	class	contains	a	property	named	Keys	of	type	CurveKeyCollection,	a	collection	of	

CurveKey	objects.	Each	CurveKey	object	allows	you	to	specify	a	number	pair	of	the	form	

(Position,	Value).	Both	the	Position	and	Value	properties	are	of	type	float.	Then	you	pass	a	

position	to	the	Curve	method	Evaluate,	and	it	returns	an	interpolated	value.	

But	it’s	all	rather	confusing	because—as	the	documentation	indicates—the	Position	property	

of	CurveKey	is	almost	always	a	time,	and	the	Value	property	is	very	often	a	position,	or	more	

accurately,	one	coordinate	of	a	position.	If	you	want	to	use	Curve	to	interpolate	between	

points	in	twodimensional	space,	you	need	two	instances	of	Curve—one	for	the	X	coordinate	

and	the	other	for	Y.	These	Curve	instances	are	treated	very	much	like	parametric	equations.	

Suppose	you	want	the	car	to	go	around	a	path	that	looks	like	an	infinity	sign,	and	let’s	assume	

that	we’re	going	to	approximate	the	infinity	sign	with	two	adjacent	circles.	(The	technique	I’m	

going	to	show	you	will	allow	you	to	move	those	two	circles	apart	at	a	later	time	if	you’d	like.)	

Draw	dots	every	45	degrees	on	these	two	circles:	

If	the	radius	of	each	circle	is	1	unit,	the	entire	figure	is	4	units	wide	and	2	units	tall.	The	X	

coordinates	of	these	dots	(going	from	left	to	right)	are	the	values	0,	0.293,	1,	0.707,	2,	2.293,	3,	

3.707,	and	4,	and	the	Y	coordinates	(going	from	top	to	bottom)	are	the	values	0,	0.293,	1,	

794	

	

	 	

	 	 	

	 	 	 	 	 	

	 	 	 	

	 	

	 	

	 	

	 	

	 	

	

	

1.707,	and	2.	The	value	0.707	is	simply	the	sine	and	cosine	of	45	degrees,	and	0.293	is	one	

minus	that	value.	

Let’s	begin	at	the	point	on	the	far	left,	and	let’s	travel	clockwise	around	the	first	circle.	At	the	

center	of	the	figure,	let’s	switch	to	going	counterclockwise	around	the	second	circle	to	form	

an	infinity	sign	and	finish	with	the	same	dot	we	started	with.	The	X	values	are:	

0,	0.293,	1,	1.707,	2,	2.293,	3,	3.707,	4,	3.707,	3,	2.293,	2,	1.707,	1,	0.293,	0	

If	we’re	using	values	of	t	ranging	from	0	to	1	to	drive	around	the	infinity	sign,	then	the	first	

value	corresponds	to	a	t	of	0,	and	the	last	(which	is	the	same)	to	a	t of	1.	For	each	value,	t	is	

incremented	by	1/16	or	0.0625.	The	Y	values	are:	

1,	0.293,	0,	0.293,	1,	1.707,	2,	1.707,	1,	0.293,	0,	0.293,	1,	1.707,	2,	1.707,	1	

We	are	now	ready	for	some	coding.	Here	are	the	fields	for	the	CarOnInfinityCourse	project:	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

const float SPEED = 0.1f; // laps per second

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

Viewport viewport;

Texture2D car;

Vector2 carCenter;

Curve xCurve = new Curve();

Curve yCurve = new Curve();

Vector2 position;

float rotation;

 …

}

Notice	the	two	Curve	objects,	one	for	X	coordinates	and	the	other	for	Y.	Because	the	

initialization	of	these	objects	use	precisely	the	coordinates	I	described	above	and	don’t	

require	accessing	any	resources	or	program	content,	I	decided	to	use	the	Initialize	override	for	

this	work.	

XNA Project: File: (excerpt)

protected override void Initialize()

{

float[] xValues = { 0, 0.293f, 1, 1.707f, 2, 2.293f, 3, 3.707f,

 4, 3.707f, 3, 2.293f, 2, 1.707f, 1, 0.293f };

float[] yValues = { 1, 0.293f, 0, 0.293f, 1, 1.707f, 2, 1.707f,

 1, 0.293f, 0, 0.293f, 1, 1.707f, 2, 1.707f };

795	

	

	 	 	 	 	 	

	 	 	 	

	

	 	 	 	 	 	

	

	 	

	

	

	 	 	 	

	 	 	 	

	

	 	 	 	

	 	

	

	

	

for (int i = -1; i < 18; i++)

 {

int index = (i + 16) % 16;

float t = 0.0625f * i;

xCurve.Keys.Add(new CurveKey(t, xValues[index]));

yCurve.Keys.Add(new CurveKey(t, yValues[index]));

}

 xCurve.ComputeTangents(CurveTangent.Smooth);

 yCurve.ComputeTangents(CurveTangent.Smooth);

base.Initialize();

}

The	xValues	and	yValues arrays	only	have	16	values;	they	don’t	include	the	last	point	that	

duplicates	the	first.	Rather	oddly	(you	may	think),	the	for	loop	goes	from	–1	through	17	but	

the	modulo	16	operation	ensures	that	the	arrays	are	indexed	from	0	through	15.	The	end	

result	is	that	the	Keys	collections	of	xCurve	and	yCurve	get	coordinates	associated	with	t

values	of	–0.0625,	0,	0.0625,	0.0125,	…,	0.875,	0.9375,	1,	and	1.0625,	which	are	apparently	two	

more	points	than	is	necessary	to	make	this	thing	work	right.	

These	extra	points	are	necessary	for	the	ComputeTangents	calls	following	the	for	loop.	The	

Curve class	performs	a	type	of	interpolation	called	a	cubic	Hermite	spline,	also	called	a	cspline.	

Consider	two	points	pt1	and	pt2.	The	cspline	interpolates	between	these	two	points	based	not	

only	on	pt1	and	pt2	but	also	on	assumed	tangents	of	the	curve	at	pt1	and	pt2.	You	can	specify	

these	tangents	to	the	Curve	object	yourself	as	part	of	the	CurveKeys objects,	or	you	can	have	

the	Curve object	calculate	tangents	for	you	based	on	adjoining	points.	That	is	the	approach	

I’ve	taken	by	the	two	calls	to	ComputeTangents.	With	an	argument	of	CurveTangent.Smooth,	

the	ComputeTangents method	uses	not	only	the	two	adjacent	points,	but	the	points	on	either	

side.	It’s	really	just	a	simple	weighted	average	but	it’s	better	than	the	alternatives.	

The	Curve	and	CurveKey classes	have	several	other	options,	but	the	approach	I’ve	taken	

seemed	to	offer	the	best	results	with	the	least	amount	of	work.	(And	isn’t	that	what	

programming	is	all	about?)	

The	LoadContent	method	needs	to	load	the	car	and	get	its	center	point:	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 viewport = this.GraphicsDevice.Viewport;

 car = this.Content.Load<Texture2D>("Car");

 carCenter = new Vector2(car.Width / 2, car.Height / 2);

}

796	

	

	 	 	

	 	

	 	 	 	

	 	

	 	 	

	 	 	

	 	

	

	

	

	

	 	

Now	it’s	time	for	Update.	The	method	calculates	t	based	on	TotalGameTime.	The	Curve	class	

defines	a	method	named	Evaluate that	can	accept	this	t	value	directly;	this	is	how	the	

program	obtains	interpolated	X	and	Y	coordinates.	However,	all	the	data	in	the	two	Curve

objects	are	based	on	a	maximum	X	coordinate	of	4	and	a	Y	coordinate	of	2.	For	this	reason,	

Update	calls	a	little	method	I’ve	supplied	named	GetValue that	scales	the	values	based	on	the	

size	of	the	display.	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

float t = (SPEED * (float)gameTime.TotalGameTime.TotalSeconds) % 1;

float x = GetValue(t, true);

float y = GetValue(t, false);

 position = new Vector2(x, y);

 rotation = MathHelper.PiOver2 + (float)

Math.Atan2(GetValue(t + 0.001f, false) - GetValue(t - 0.001f, false),

GetValue(t + 0.001f, true) - GetValue(t - 0.001f, true));

base.Update(gameTime);

}

float GetValue(float t, bool isX)

{
if (isX)

return xCurve.Evaluate(t) * (viewport.Width - 2 * car.Width) / 4 + car.Width;

return yCurve.Evaluate(t) * (viewport.Height - 2 * car.Width) / 2 + car.Width;

}

After	calculating	the	position field,	we	have	a	little	bit	of	a	problem	because	the	Curve	class	is	

missing	an	essential	method:	the	method	that	provides	the	tangent	of	the	spline.	Tangents	

are	required	by	the	Curve	class	to	calculate the	spline,	but	after	the	spline	is	calculated,	the	

class	doesn’t	provide	access	to	the	tangents	of	the	spline	itself!	

That’s	the	purpose	of	the	other	four	calls	to	GetValue.	Small	values	are	added	to	and	

subtracted	from	t	to	approximate	the	derivative	and	allow	Math.Atan2 to	calculate	the	

rotation	angle.	

Once	again,	Draw	is	trivial:	

XNA Project: File: (excerpt)

797	

	

	 	 	 	

	 	

	 	 	

	 	

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Blue);

 spriteBatch.Begin();

 spriteBatch.Draw(car, position, null, Color.White, rotation,

 carCenter, 1, SpriteEffects.None, 0);

 spriteBatch.End();

 base.Draw(gameTime);

}

If	you	want	the	Curve class	to	calculate	the	tangents	used	for	calculating	the	spline	(as	I	did	in	

this	program)	it	is	essential	to	give	the	class	sufficient	points,	not	only	beyond	the	range	of	

points	you	wish	to	interpolate	between,	but	enough	so	that	these	calculated	tangents	are	

more	or	less	accurate.	I	originally	tried	defining	the	infinity	course	with	points	on	the	two	

circles	every	90	degrees,	and	it	didn’t	work	well	at	all.	

798	

	

	 	 	 	

	 	

	 	

	

	

	 	 	

	 	

	 	

	

	 	

	

	 	

	

	 	

	 	

	 	 	 	

	 	 	

	 	

	 	

	 	

	

	 	

Chapter	21	

Dynamic Textures
The	most	common	way	for	an	XNA	program	to	obtain	a	Texture2D	object	is	by	loading	it	as	

program	content.	In	Chapter	4	you	also	saw	how	a	program	can	create	a	Texture2D	from	a	

Stream	object	using	the	static	Texture2D.FromSteam	method.	This	Stream	object	can	

reference	a	bitmap	downloaded	over	the	internet,	or	a	picture	stored	in	the	user’s	photo	

library,	or	a	photo	just	snapped	by	the	phone’s	camera.	

It	is	also	possible	to	create	a	Texture2D	object	entirely	in	code	using	this	constructor:	

Texture2D texture = new Texture2D(this.GraphicsDevice, width, height);

The	width	and	height	arguments	are	integers	that	indicate	the	desired	size	of	the	Texture2D	in	

pixels;	this	size	cannot	be	changed	after	the	Texture2D	is	created.	The	total	number	of	pixels	

in	the	bitmap	is	easily	calculated	as	width	*	height.	The	result	is	a	bitmap	filled	with	zeros.	So	

now	the	big	question	is:	How	do	you	get	actual	stuff	onto	the	surface	of	this	bitmap?	

You	have	two	ways:	

• Draw	on	the	bitmap	surface	just	as	you	draw	on	the	video	display.	

• Algorithmically	manipulate	the	actual	pixel	bits	that	make	up	the	bitmap.	

You	can	use	these	two	techniques	separately,	or	in	combination	with	each	other.	You	can	also	

begin	with	an	existing	image,	and	modify	it	using	these	techniques.	

The
Render
Target

Strictly	speaking,	you	actually	can’t use	the	first	of	the	two	techniques	with	a	Texture2D

object.	You	need	to	create	an	instance	of	a	class	that	derives	from	Texture2D	called	

RenderTarget2D:	

RenderTarget2D renderTarget = new RenderTarget2D(this.GraphicsDevice, width, height);

As	with	any	code	that	references	the	GraphicsDevice	property	of	the	Game class,	you’ll	want	

to	wait	until	the	LoadContent	method	to	create	any	Texture2D	or	RenderTarget2D	objects	

your	program	needs.	You’ll	usually	be	storing	the	objects	in	fields	so	you	can	display	them	

later	on	in	the	Draw	override.	

The	idea	behind	the	RenderTarget2D	is	fairly	simple	but	understanding	it	requires	some	

background:	

799	

	

	

	 	 	 	 	

	

	 	 	 	

	 	

	 	 	

	 	

	 	 	

	 	 	 	 	 	

	 	 	

	 	 	 	 	 	 	

	 	

	

	

	 	

	

	

	 	 	 	

	 	 	 	 	

	 	

	 	 	 	 	 	 	

	 	

	 	 	 	 	 	

	 	 	

	 	

	 	

	 	

As	you	know,	normally	during	the	Draw	override	of	the	Game	class,	your	program	draws	to	

the	video	display.	You	can	set	the	entire	video	display	to	a	particular	color	by	calling	the	Clear

method	of	the	GraphicsDevice	object	associated	with	your	game:	

this.GraphicsDevice.Clear(Color.CornflowerBlue);

You	can	draw	Texture2D	objects	and	text	strings	on	the	display	using	a	SpriteBatch	object:	

spriteBatch.Begin();

spriteBatch.Draw(…);

spriteBatch.DrawString(…);

spriteBatch.End();

This	SpriteBatch	object	is	routinely	created	in	the	LoadContent override.	It	is	associated	with	

the	GraphicsDevice	object	because	a	GraphicsDevice	object	is	required	in	its	constructor:	

spriteBatch = new SpriteBatch(this.GraphicsDevice);

The	calls	to	the	Clear	method	of	the	GraphicsDevice	and	the	Draw	and	DrawString	methods	

of	SpriteBatch	actually	draw	on	a	bitmap	called	the	back buffer,	the	contents	of	which	are	then	

transferred	to	the	video	display.	You	can	discover	some	information	about	the	back	buffer	

through	the	PresentationParameters	property	of	GraphicsDevice.	If	your	program	is	running	

on	a	largescreen	phone	and	you	haven’t	indicated	that	you	want	a	nondefault	size	for	the	

back	buffer,	you’ll	discover	that	the	BackBufferWidth	and	BackBufferHeight	properties	of	

PresentationParameters	indicate	800	and	480,	respectively.	

PresentationParameters	also	defines	BackBufferFormat	property	set	to	set	to	a	member	of	the	

SurfaceFormat	enumeration.	The	format	indicates	both	the	number	of	bits	in	each	pixel	and	

how	these	bits	represent	color.	For	Windows	Phone	7	devices,	you’ll	discover	that	this	

BackBufferFormat	property	equals	SurfaceFormat.Bgr565.	This	means	that	each	pixel	is	16	bits	

wide	with	5	bits	used	for	red	and	blue,	and	6	bits	for	green	in	the	following	bit	configuration:	

RRRRRGGGGGGBBBBB	

Green	gets	an	extra	bit	because	green	is	in	the	center	of	the	spectrum	of	electromagnetic	

radiation	that	is	visible	to	the	human	eye—the	primary	to	which	humans	are	most	sensitive.	

If	you’ve	ever	seen	any	color	gradients	displayed	on	a	Windows	Phone	7	device—and	if	not,	

there’s	one	coming	up	in	this	chapter—you’ve	probably	noticed	that	they	aren’t	as	smooth	as	

gradients	on	common	desktop	displays.	Video	display	adapters	in	common	use	on	the	

desktop	use	8	bits	for	each	primary.	The	5	or	6	bits	for	each	primary	in	the	Windows	Phone	7	

video	display	is	insufficient	to	represent	the	color	gradations	that	most	humans	can	perceive.	

It	is	very	likely	that	Windows	Phone	devices	of	the	future	will	move	beyond	16bit	color.	

It	is	possible	for	an	XNA	program	to	temporarily	replace	the	normal	back	buffer	in	the	

GraphicsDevice	object	with	an	object	of	type	RenderTarget2D:	

this.GraphicsDevice.SetRenderTarget(renderTarget);

800	

	

	 	 	

	 	 	 	

	 	

	 	

	 	 	

	 	

	 	 	 	 	

	 	

	 	 	 	 	 	

		

	 	 	

	 	 	

	 	 	

	 	

	

	 	 	

	 	

	 	 	 	 	

	 	 	

	

	

	 	 	 	

You	can	then	draw	on	this	RenderTarget2D	in	the	same	way	you	draw	on	the	back	buffer.	

After	you’re	finished	drawing,	you	disassociate	the	RenderTarget2D	from	the	GraphicsDevice

with	another	call	to	SetRenderTarget	with	a	null	argument:	

this.GraphicsDevice.SetRenderTarget(null);

Now	the	GraphicsDevice	is	back	to	normal.		

If	you’re	creating	a	RenderTarget2D	that	remains	the	same	for	the	duration	of	the	program,	

you’ll	generally	perform	this	entire	operation	during	the	LoadContent	override.	If	the	

RenderTarget2D	needs	to	change,	you	can	also	draw	on	the	bitmap	during	the	Update

override.	Because	RenderTarget2D	derives	from	Texture2D	you	can	display	the	

RenderTarget2D	on	the	screen	during	your	Draw	override	just	as	you	display	any	other	

Texture2D	image.	

Of	course,	you’re	not	limited	to	one	RenderTarget2D	object.	If	you	have	a	complex	series	of	

images	that	form	some	kind	of	animation,	you	can	create	a	series	of	RenderTarget2D	objects	

that	you	then	display	in	sequence	as	a	kind	of	movie.	

Suppose	you	want	to	display	something	that	looks	like	this:	

That’s	a	bunch	of	text	strings	all	saying	“Windows	Phone	7”	rotated	around	a	center	point	

with	colors	that	vary	between	cyan	and	yellow.	Of	course,	you	can	have	a	loop	in	the	Draw

override	that	makes	32	calls	to	the	DrawString	method	of	SpriteBatch,	but	if	you	assemble	

those	text	strings	on	a	single	bitmap,	you	can	reduce	the	Draw override	to	just	a	single	call	to	

the	Draw	method	of	SpriteBatch.	Moreover,	it	becomes	easier	to	treat	this	assemblage	of	text	

strings	as	a	single	entity,	and	then	perhaps	rotate	it	like	a	pinwheel.	

That’s	the	idea	behind	the	PinwheelText	program.	The	program’s	content	includes	the	14

point	Segoe	UI	Mono	SpriteFont,	but	a	SpriteFont object	is	not	included	among	the	program’s	

fields,	nor	is	the	text	itself:	

801	

	

	

	 	 	

	 	 	

	 	 	 	 	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

Vector2 screenCenter;

RenderTarget2D renderTarget;

Vector2 textureCenter;

float rotationAngle;

 …

}

The	LoadContent	method	is	the	most	involved	part	of	the	program,	but	it	only	results	in	

setting	the	screenCenter,	renderTarget,	and	textureCenter	fields.	The	segoe14	and	textSize

variables	set	early	on	in	the	method	are	normally	saved	as	fields	but	here	they’re	only	

required	locally:	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

// Create a new SpriteBatch, which can be used to draw textures.

 spriteBatch = new SpriteBatch(GraphicsDevice);

// Get viewport info

Viewport viewport = this.GraphicsDevice.Viewport;

 screenCenter = new Vector2(viewport.Width / 2, viewport.Height / 2);

// Load font and get text size

SpriteFont segoe14 = this.Content.Load<SpriteFont>("Segoe14");

 string text = " Windows Phone 7";

Vector2 textSize = segoe14.MeasureString(text);

// Create RenderTarget2D

 renderTarget =

new RenderTarget2D(this.GraphicsDevice, 2 * (int)textSize.X,

 2 * (int)textSize.X);

// Find center

 textureCenter = new Vector2(renderTarget.Width / 2,

 renderTarget.Height / 2);

Vector2 textOrigin = new Vector2(0, textSize.Y / 2);

// Set the RenderTarget2D to the GraphicsDevice

 this.GraphicsDevice.SetRenderTarget(renderTarget);

802	

	

	 	 	

	 	 	

	 	

	 	

	 	 	

	

	 	

	 	

	 	

// Clear the RenderTarget2D and render the text

 this.GraphicsDevice.Clear(Color.Transparent);

 spriteBatch.Begin();

 for (float t = 0; t < 1; t += 1f / 32)

 {

float angle = t * MathHelper.TwoPi;

Color clr = Color.Lerp(Color.Cyan, Color.Yellow, t);

spriteBatch.DrawString(segoe14, text, textureCenter, clr,

 angle, textOrigin, 1, SpriteEffects.None, 0);

 }

 spriteBatch.End();

// Restore the GraphicsDevice back to normal

 this.GraphicsDevice.SetRenderTarget(null);

}

The	RenderTarget2D is	created	with	a	width	and	height	that	is	twice	the	width	of	the	text	

string.	The	RenderTarget2D is	set	into	the	GraphicsDevice	with	a	call	to	SetRenderTarget	and	

then	cleared	to	a	transparent	color	with	the	Clear	method.	At	this	point	a	sequence	of	calls	on	

the	SpriteBatch	object	renders	the	text	32	times	on	the	RenderTarget2D.	The	LoadContent	call	

concludes	by	restoring	the	GraphicsDevice to	the	normal	back	buffer.	

The	Update	method	calculates	a	rotation	angle	for	the	resultant	bitmap	so	it	rotates	360°	

every	eight	seconds:	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

// Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

 rotationAngle =

(MathHelper.TwoPi * (float) gameTime.TotalGameTime.TotalSeconds / 8) %

MathHelper.TwoPi;

 base.Update(gameTime);

}

As	promised,	the	Draw	override	can	then	treat	that	RenderTarget2D	as	a	normal	Texture2D	in	

a	single	Draw	call	on	the	SpriteBatch.	All	32	text	strings	seem	to	rotate	in	unison:	

803	

	

	

	

	 	 	 	 	

	 	 	 	

	 	

	

	 	

	 	

	

	 	 	

	 	

	 	 	 	

	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.Draw(renderTarget, screenCenter, null, Color.White,

 rotationAngle, textureCenter, 1, SpriteEffects.None, 0);

 spriteBatch.End();

 base.Draw(gameTime);

}

The	FlyAwayHello	program	in	the	previous	chapter	loaded	two	white	bitmaps	as	program	

content.	That	wasn’t	really	necessary.	The	program	could	have	created	those	two	bitmaps	as	

RenderTarget2D objects	and	then	just	colored	them	white	with	a	few	simple	statements.	In	

FlyAwayHello	you	can	replace	these	two	statements	in	LoadContent:	

Texture2D horzBar = Content.Load<Texture2D>("HorzBar");

Texture2D vertBar = Content.Load<Texture2D>("VertBar");

with	these:	

RenderTarget2D horzBar = new RenderTarget2D(this.GraphicsDevice, 45, 5);

this.GraphicsDevice.SetRenderTarget(horzBar);

this.GraphicsDevice.Clear(Color.White);

this.GraphicsDevice.SetRenderTarget(null);

RenderTarget2D vertBar = new RenderTarget2D(this.GraphicsDevice, 5, 75);

this.GraphicsDevice.SetRenderTarget(vertBar);

this.GraphicsDevice.Clear(Color.White);

this.GraphicsDevice.SetRenderTarget(null);

Yes,	I	know	there’s	more	code	involved,	but	you	no	longer	need	the	two	bitmap	files	as	

program	content,	and	if	you	ever	wanted	to	change	the	sizes	of	the	bitmaps,	doing	it	in	code	

is	trivial.	

The	DragAndDraw	program	coming	up	lets	you	draw	multiple	solidcolor	rectangles	by	

dragging	your	finger	on	the	screen.	Every	time	you	touch	and	drag	along	the	screen	a	new	

rectangle	is	drawn	with	a	random	color.	Yet	the	entire	program	uses	only	one	RenderTarget2D

object	containing	just	one	white	pixel!	

That	single	RenderTarget2D object	is	stored	as	a	field,	along	with	a	collection	of	RectangleInfo

objects	that	will	describe	each	drawn	rectangle:	

804	

	

	

	 	 	

	

		

	 	 	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

struct RectangleInfo

 {

public Vector2 point1;

public Vector2 point2;

public Color color;

 }

List<RectangleInfo> rectangles = new List<RectangleInfo>();

Random rand = new Random();

RenderTarget2D tinyTexture;

bool isDragging;

public Game1()

 {

graphics = new GraphicsDeviceManager(this);

Content.RootDirectory = "Content";

// Frame rate is 30 fps by default for Windows Phone.

TargetElapsedTime = TimeSpan.FromTicks(333333);

// Enable dragging gestures

TouchPanel.EnabledGestures = GestureType.FreeDrag |

GestureType.DragComplete;

 }

 …

}

Notice	also	that	the	bottom	of	the	Game1 constructor	enables	two	touch	gestures,	FreeDrag

and	DragComplete.	These	are	gestures	that	correspond	to	touching	the	screen,	dragging	the	

finger	(whatever	which	way),	and	lifting.	

The	LoadContent	method	creates	the	tiny	RenderTarget2D	object	and	colors	it	white:	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

// Create a new SpriteBatch, which can be used to draw textures.

 spriteBatch = new SpriteBatch(GraphicsDevice);

// Create a white 1x1 bitmap

 tinyTexture = new RenderTarget2D(this.GraphicsDevice, 1, 1);

805	

	

	 	 	

	

	 		

	 	

	 	

	 	

	

	 	

	

	 		

	 	

	 	 	 	

	 	 	 	

	 	

	

	 	 	 	 	

	

 this.GraphicsDevice.SetRenderTarget(tinyTexture);

 this.GraphicsDevice.Clear(Color.White);

 this.GraphicsDevice.SetRenderTarget(null);

}

The	Update	method	handles	the	drag	gestures.	As	you	might	recall	from	Chapter	3,	the	static	

TouchPanel class	supports	both	lowlevel	touch	input	and	highlevel	gesture	recognition.	I’m	

using	the	gesture	support	in	this	program.	

If	gestures	are	enabled,	then	gestures	are	available	when	TouchPanel.IsGestureAvailable	is	

true.	You	can	then	call	TouchPanel.ReadGesture	to	return	an	object	of	type	GestureSample.	

TouchPanel.IsGestureAvailable	returns	false	when	no	more	gestures	are	available	during	this	

particular	Update	call.	

For	this	program,	the	GestureType	property	of	GestureSample	will	be	one	of	the	two	

enumeration	members,	GestureType.FreeDrag	or	GestureType.DragComplete.	The	FreeDrag

type	indicates	that	the	finger	has	touched	the	screen	or	is	moving	around	the	screen.	

DragComplete indicates	that	the	finger	has	lifted.	

For	the	FreeDrag	gesture,	two	other	properties	of	GestureSample	are	valid:	Position	is	a	

Vector2 object	that	indicates	the	current	position	of	the	finger	relative	to	the	screen;	Delta	is	

also	a	Vector2 object	that	indicates	the	difference	between	the	current	position	of	the	finger	

and	the	position	of	the	finger	in	the	last	FreeDrag	sample.	(I	don’t	use	the	Delta	property	in	

this	program.)	These	properties	are	not	valid	with	the	DragComplete	gesture.	

The	program	maintains	an	isDragging	field	to	help	it	discern	when	a	finger	first	touches	the	

screen	and	when	a	finger	is	moving	around	the	screen,	both	of	which	are	FreeDrag	gestures:	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

// Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

 while (TouchPanel.IsGestureAvailable)

 {

GestureSample gesture = TouchPanel.ReadGesture();

switch (gesture.GestureType)

{

 case GestureType.FreeDrag:

 if (!isDragging)

 {

RectangleInfo rectInfo = new RectangleInfo();

 rectInfo.point1 = gesture.Position;

 rectInfo.point2 = gesture.Position;

806

	

	 	

	 	 	

	 	 	

	

	

	 	

	 	 	 	 	

	 	 	 	 	 	

	 	 	

	 	

	 	

	 	 	 	

	 	 	 	 	

	 	 	

	 	 	

	 	

	 	

 rectInfo.color = new Color(rand.Next(256),

rand.Next(256),

rand.Next(256));

 rectangles.Add(rectInfo);

 isDragging = true;

 }

 else

 {

RectangleInfo rectInfo = rectangles[rectangles.Count - 1];

 rectInfo.point2 = gesture.Position;

 rectangles[rectangles.Count - 1] = rectInfo;

 }

 break;

 case GestureType.DragComplete:

 if (isDragging)

 isDragging = false;

 break;

}

 }

 base.Update(gameTime);

}

If	isDragging	is	false,	then	a	finger	is	first	touching	the	screen	and	the	program	creates	a	new	

RectangleInfo object	and	adds	it	to	the	collection.	At	this	time,	the	point1	and	point2	fields	of	

RectangleInfo are	both	set	to	the	point	where	the	finger	touched	the	screen,	and	color	is	a	

random	Color	value.	

With	subsequent	FreeDrag	gestures,	the	point2	field	of	the	most	recent	RectangleInfo	in	the	

collection	is	reset	to	indicate	the	current	position	of	the	finger.	With	DragComplete,	nothing	

more	needs	to	be	done	and	the	isDragging field	is	set	to	false.	

In	the	Draw override	(shown	below),	the	program	calls	the	Draw	method	of	SpriteBatch	once	

for	each	RectangleInfo	object	in	the	collection,	in	each	case	using	the	version	of	Draw	that	

expands	the	Texture2D	to	the	size	of	a	Rectangle	destination:	

Draw(Texture2D texture, Rectangle destination, Color color)

The	first	argument	is	always	the	1×1	white	RenderTarget2D	called	tinyTexture,	and	the	last	

argument	is	the	random	color	stored	in	the	RectangleInfo	object.	

The	Rectangle	argument	to	Draw	requires	some	massaging,	however.	Each	RectangleInfo

object	contains	two	points	named	point1	and	point2	that	are	opposite	corners	of	the	

rectangle	drawn	by	the	user.	But	depending	how	the	finger	dragged	across	the	screen,	point1

might	be	the	upperright	corner	and	point2	the	lowerleft	corner,	or	point1	the	lowerright	

corner	and	point2 the	upperleft	corner,	or	two	other	possibilities.		

The	Rectangle	object	passed	to	Draw	requires	a	point	indicating	the	upperleft	corner	with	

nonnegative	width	and	heights	values.	(Actually,	Rectangle	also	accepts	a	point	indicating	the	

807

	

	 	 	

	 	

	

	

	 	 	 	

lowerright	corner	with	width	and	height	values	that	are	both	negative,	but	that	little	fact	

doesn’t	help	simplify	the	logic.)	That’s	the	purpose	of	the	calls	to	Math.Min	and	Math.Abs:	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 foreach (RectangleInfo rectInfo in rectangles)

 {

Rectangle rect =

new Rectangle((int)Math.Min(rectInfo.point1.X, rectInfo.point2.X),

 (int)Math.Min(rectInfo.point1.Y, rectInfo.point2.Y),

 (int)Math.Abs(rectInfo.point2.X - rectInfo.point1.X),

 (int)Math.Abs(rectInfo.point2.Y - rectInfo.point1.Y));

spriteBatch.Draw(tinyTexture, rect, rectInfo.color);

 }

 spriteBatch.End();

 base.Draw(gameTime);

}

Here	it	is	after	I’ve	drawn	a	couple	rectangles:	

Preserving
Render
Target
Contents

I	mentioned	earlier	that	the	pixels	in	the	Windows	Phone	7	back	buffer—and	the	video	

display	itself—were	only	16	bits	wide.	What	is	the	color	format	of	the	bitmap	created	with	

RenderTarget2D?	

808	

	

	 	 	 	 	

	 	 	

	 	 	

	 	

	 	

	 	 	

	

	

	 	 	 	

	 	

	 	

	 	 	

	

	 	

	 	 	

	 	 	

	 	 	 	

	 	 	 	

	 	 	

	 	 	

	

	 	

	 	 	 	 	 	 	

	

	 	

By	default,	the	RenderTarget2D	is	created	with	32	bits	per	pixel—8	bits	each	for	red,	green,	

blue,	and	alpha—corresponding	to	the	enumeration	member	SurfaceFormat.Color.	I’ll	have	

more	to	say	about	this	format	before	the	end	of	this	chapter,	but	this	32bit	color	format	is	

now	commonly	regarded	as	fairly	standard.	It	is	the	only	color	format	supported	in	Silverlight	

bitmaps,	for	example.	

To	maximize	performance,	you	might	want	to	create	a	RenderTarget2D	or	a	Texture2D	object	

that	has	the	same	pixel	format	as	the	back	buffer	and	the	display	surface.	Both	classes	support	

constructors	that	include	arguments	of	type	SurfaceFormat	to	indicate	a	color	format.	

For	the	PinwheelText	program,	creating	a	RenderTarget2D	object	with	SurfaceFormat.Bgr565

wouldn’t	work	well.	There’s	no	alpha	channel	in	this	format	so	the	background	of	the	

RenderTarget2D	can’t	be	transparent.	The	background	would	have	to	be	specifically	colored	

to	match	the	background	of	the	back	buffer.	

The	following	program	creates	a	RenderTarget2D	object	that	is	not	only	the	size	of	the	back	

buffer	but	also	the	same	color	format.	The	program,	however,	is	rather	retro,	and	you	might	

wonder	what	the	point	is.		

Back	in	the	early	days	of	Microsoft	Windows,	particularly	at	trade	shows	where	lots	of	

computers	were	running,	it	was	common	to	see	programs	that	simply	displayed	a	continuous	

series	of	randomly	sized	and	colored	rectangles.	But	the	strategy	of	writing	such	a	program	

using	XNA	is	not	immediately	obvious.	It	makes	sense	to	add	a	new	rectangle	to	the	mix	

during	the	Update method	but	you	don’t	want	to	do	it	like	the	DragAndDraw	program.	The	

rectangle	collection	would	increase	by	30	rectangles	every	second,	and	by	the	end	of	an	hour	

the	Draw override	would	be	trying	to	render	over	a	hundred	thousand	rectangles	every	33	

milliseconds!	

Instead,	you	probably	want	to	build	up	the	random	rectangles	on	a	RenderTarget2D	that’s	the	

size	of	the	back	buffer.	The	rectangles	you	successively	plaster	on	this	RenderTarget2D	can	be	

based	on	the	same	1×1	white	bitmap	used	in	DragAndDraw.	

These	two	bitmaps	are	stored	as	fields	of	the	RandomRectangles	program	together	with	a	

Random	object:	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

Random rand = new Random();

RenderTarget2D tinyTexture;

RenderTarget2D renderTarget;

809	

	

	 	 	 	

	 	 	 	 	

	 	 	 	

	 	 	

	

	 	

	 	

	 	

	 	

 …

}

The	LoadContent	method	creates	the	two	RenderTarget2D	objects.	The	big	one	requires	an	

extensive	constructor,	some	arguments	of	which	refer	to	features	beyond	the	scope	of	this	

book:		

XNA Project: File: (excerpt)

protected override void LoadContent()

{

// Create a new SpriteBatch, which can be used to draw textures.

 spriteBatch = new SpriteBatch(GraphicsDevice);

 tinyTexture = new RenderTarget2D(this.GraphicsDevice, 1, 1);

 this.GraphicsDevice.SetRenderTarget(tinyTexture);

 this.GraphicsDevice.Clear(Color.White);

 this.GraphicsDevice.SetRenderTarget(null);

 renderTarget = new RenderTarget2D(

 this.GraphicsDevice,

 this.GraphicsDevice.PresentationParameters.BackBufferWidth,

 this.GraphicsDevice.PresentationParameters.BackBufferHeight,

 false,

 this.GraphicsDevice.PresentationParameters.BackBufferFormat,

DepthFormat.None, 0, RenderTargetUsage.PreserveContents);

}

You	can	see	the	reference	to	the	BackBufferFormat	in	the	constructor,	but	also	notice	the	last	

argument:	the	enumeration	member	RenderTargetUsage.PreserveContents.	This	is	not	the	

default	option.	Normally	when	a	RenderTarget2D	is	set	in	a	GraphicsDevice,	the	existing	

contents	of	the	bitmap	are	ignored	and	essentially	discarded.	The	PreserveContents	option	

retains	the	existing	render	target	data	and	allows	each	new	rectangle	to	be	displayed	on	top	

of	all	the	previous	rectangles.	

The	Update	method	determines	some	random	coordinates	and	color	values,	sets	the	large	

RenderTarget2D	object	in	the	GraphicsDevice,	and	draws	the	tiny	texture	over	the	existing	

content	with	random	Rectangle	and	Color	values:	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

// Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

810

	

	 	 	 	

	

	

 int x1 = rand.Next(renderTarget.Width);

 int x2 = rand.Next(renderTarget.Width);

 int y1 = rand.Next(renderTarget.Height);

 int y2 = rand.Next(renderTarget.Height);

 int r = rand.Next(256);

 int g = rand.Next(256);

 int b = rand.Next(256);

 int a = rand.Next(256);

Rectangle rect = new Rectangle(Math.Min(x1, x2), Math.Min(y1, y2),

Math.Abs(x2 - x1), Math.Abs(y2 - y1));

Color clr = new Color(r, g, b, a);

 this.GraphicsDevice.SetRenderTarget(renderTarget);

 spriteBatch.Begin();

 spriteBatch.Draw(tinyTexture, rect, clr);

 spriteBatch.End();

 this.GraphicsDevice.SetRenderTarget(null);

 base.Update(gameTime);

}

The	Draw	override	simply	displays	that	entire	large	RenderTarget2D	on	the	display:	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 spriteBatch.Begin();

 spriteBatch.Draw(renderTarget, Vector2.Zero, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}

After	almost	no	time	at	all,	the	display	looks	something	like	this:	

811

	

	 	 	 	 	 	 	

	 	 	 	 	 	

	 	 	

	 	

	 	 	

	 	 	

	 	 	 	

	 	

		

	 	 	

	 	

	 	

	

	 	

	 	

	 	

	 	

	 	

	 	 	

	 	

	 	 	

	 	 	

	

	

	

The	colors	used	for	the	rectangles	include	a	random	alpha	channel,	so	in	general	(as	you	can	

see)	the	rectangles	are	partially	transparent.	Interestingly	enough,	you	can	still	get	this	

transparency	even	if	the	rectangle	being	rendered	has	no	alpha	channel.	Change	the	creation	

of	tinyTexture	to	this:	

tinyTexture = new RenderTarget2D(this.GraphicsDevice, 1, 1, false,

SurfaceFormat.Bgr565, DepthFormat.None);

Now	tinyTexture	itself	is	not	capable	of	transparency,	but	it	can	still	be	rendered	on	the	larger	

texture	with	a	partially	transparent	color	in	the	Draw	call	of	SpriteBatch.	

Drawing
Lines

For	developers	coming	from	more	mainstream	graphical	programming	environments,	it	is	

startling	to	realize	that	XNA	has	no	way	of	rendering	simple	lines	and	curves	in	2D.	In	this	

chapter	I’m	going	to	show	you	two	ways	that	limitation	can	be	overcome.	

Suppose	you	want	to	draw	a	red	line	between	the	points	(x1,	y1)	and	(x2,	y2),	and	you	want	this	

line	to	have	a	3pixel	thickness.	First,	create	a	RenderTarget2D that	is	3	pixels	high	with	a	

width	equal	to:	

That’s	the	length	of	the	line	between	the	two	points.	Now	set	the	RenderTarget2D	to	the	

GraphicsDevice,	clear	it	with	Color.Red,	and	reset	the	GraphicsDevice	back	to	normal.	

During	the	Draw	override,	draw	this	bitmap	to	the	screen	using	a	position	of	(x1,	y1)	with	an	

origin	of	(0,	1).	That	origin	is	the	point	within	the	RenderTarget2D	that	is	aligned	with	the	

position	argument.	This	line	is	supposed	to	have	a	3pixel	thickness	so	the	vertical	center	of	

the	bitmap	should	be	aligned	with	(x1,	y1).	In	this	Draw	call	you’ll	also	need	to	apply	a	rotation	

equal	to	the	angle	from	(x1,	y1)	to	(x2,	y2),	which	can	be	calculated	with	Math.Atan2.	

Actually,	you	don’t	need	a	bitmap	the	size	of	the	line.	You	can	use	a	much	smaller	bitmap	and	

apply	a	scaling	factor.	Probably	the	easiest	bitmap	size	for	this	purpose	is	2	pixels	wide	and	3	

pixels	high.	That	allows	you	to	set	an	origin	of	(0,	1)	in	the	Draw	call,	which	means	the	point	

(0,	1)	in	the	bitmap	remains	fixed.	A	horizontal	scaling	factor	then	enlarges	the	bitmap	for	the	

line	length,	and	a	vertical	scaling	factor	handles	the	line	thickness.	

I	have	such	a	class	in	a	XNA	library	project	called	Petzold.Phone.Xna.	I	created	this	project	in	

Visual	Studio	by	selecting	a	project	type	of	Windows	Phone	Game	Library	(4.0).	Here’s	the	

complete	class	I	call	LineRenderer:	

812	

	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	

	 	 	

	

	 	

	 	 	

	 	 	 	

XNA Project: Petzold.Phone.Xna File: LineRenderer.cs

using System;

using Microsoft.Xna.Framework;

using Microsoft.Xna.Framework.Graphics;

namespace Petzold.Phone.Xna

{

public class LineRenderer

 {

RenderTarget2D lineTexture;

public LineRenderer(GraphicsDevice graphicsDevice)

{

 lineTexture = new RenderTarget2D(graphicsDevice, 2, 3);

 graphicsDevice.SetRenderTarget(lineTexture);

 graphicsDevice.Clear(Color.White);

 graphicsDevice.SetRenderTarget(null);

}

public void DrawLine(SpriteBatch spriteBatch,

Vector2 point1, Vector2 point2,

float thickness, Color color)

{

Vector2 difference = point2 - point1;

float length = difference.Length();

float angle = (float)Math.Atan2(difference.Y, difference.X);

 spriteBatch.Draw(lineTexture, point1, null, color, angle,

new Vector2(0, 1),

 new Vector2(length / 2, thickness / 3),

SpriteEffects.None, 0);

}

 }

}

The	constructor	creates	the	small	white	RenderTarget2D.	The	DrawLine method	requires	an	

argument	of	type	SpriteBatch	and	calls	the	Draw method	on	that	object.	Notice	the	scaling	

factor,	which	is	the	7th	argument	to	that	Draw	call.	The	width	of	the	RenderTarget2D	is	2	

pixels,	so	horizontal	scaling	is	half	the	length	of	the	line.	The	height	of	the	bitmap	is	3	pixels,	

so	the	vertical	scaling	factor	is	the	line	thickness	divided	by	3.	I	chose	a	height	of	3	so	the	line	

always	straddles	the	geometric	point	regardless	how	thick	it	is.	

To	use	this	class	in	one	of	your	programs,	you’ll	first	need	to	build	the	library	project.	Then,	in	

any	regular	XNA	project,	you	can	rightclick	the	References	section	in	the	Solution	Explorer	

and	select	Add	Reference.	In	the	Add	Reference	dialog	select	the	Browse	label.	Navigate	to	

the	directory	with	Petzold.Phone.Xna.dll	and	select	it.	

In	the	code	file	you’ll	need	a	using	directive:	

using Petzold.Phone.Xna;

813	

	

	 	 	

	 	 	 	 	 	 	

	

	 	 	 	

	 	

	 	

	

	

You’ll	probably	create	a	LineRenderer	object	in	the	LoadContent override	and	then	call	

DrawLine	in	the	Draw override,	passing	to	it	the	SpriteBatch	object	you’re	using	to	draw	other	

2D	graphics.	

All	of	this	is	demonstrated	in	the	TapForPolygon	project.	The	program	begins	by	drawing	a	

triangle	including	lines	from	the	center	to	each	vertex.	Tap	the	screen	and	it	becomes	a	

square,	than	again	for	a	pentagon,	and	so	forth:	

The	Game1	class	has	fields	for	the	LineRenderer	as	well	as	a	couple	helpful	variables.	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

LineRenderer lineRenderer;

Vector2 center;

float radius;

int vertexCount = 3;

public Game1()

 {

graphics = new GraphicsDeviceManager(this);

Content.RootDirectory = "Content";

// Frame rate is 30 fps by default for Windows Phone.

TargetElapsedTime = TimeSpan.FromTicks(333333);

// Enable taps

TouchPanel.EnabledGestures = GestureType.Tap;

 }

 …

}

814	

	

	 	 	 	 	 	 	

	

	 	 	

	 	

	 	

Notice	that	the	Tap	gesture	is	enabled	in	the	constructor.	That	LineRenderer is	created	in	the	

LoadContent	override:	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

// Create a new SpriteBatch, which can be used to draw textures.

 spriteBatch = new SpriteBatch(GraphicsDevice);

Viewport viewport= this.GraphicsDevice.Viewport;

 center = new Vector2(viewport.Width / 2, viewport.Height / 2);

 radius = Math.Min(center.X, center.Y) - 10;

 lineRenderer = new LineRenderer(this.GraphicsDevice);

}

The	Update	override	is	responsible	for	determining	if	a	tap	has	occurred;	if	so,	the	vertexCount

is	incremented,	going	from	(say)	a	hexadecagon	to	a	heptadecagon	as	shown	above.	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

// Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

 while (TouchPanel.IsGestureAvailable)

if (TouchPanel.ReadGesture().GestureType == GestureType.Tap)

 vertexCount++;

 base.Update(gameTime);

}

The	lines—which	are	really	just	a	single	RenderTarget2D	object	stretched	into	long	lineline	

shapes—are	rendered	in	the	Draw	override.	The	for	loop	is	based	on	the	vertexCount;	it	draws	

two	lines	with	every	iteration:	one	from	the	center	to	the	vertex	and	another	from	the	

previous	vertex	to	the	current	vertex:	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

815	

	

	 	 	 	 	 	 	 	 	

	 	 	

	 	 	 	 	

	 	

	

	 	 	 	

Vector2 saved = new Vector2();

 for (int vertex = 0; vertex <= vertexCount; vertex++)

{

double angle = vertex * 2 * Math.PI / vertexCount;

float x = center.X + radius * (float)Math.Sin(angle);

float y = center.Y - radius * (float)Math.Cos(angle);

Vector2 point = new Vector2(x, y);

if (vertex != 0)

{

 lineRenderer.DrawLine(spriteBatch, center, point, 3, Color.Red);

 lineRenderer.DrawLine(spriteBatch, saved, point, 3, Color.Red);

}

saved = point;

 }

 spriteBatch.End();

 base.Draw(gameTime);

}

You	don’t	have	to	use	LineRenderer to	draw	lines	on	the	video	display.	You	can	draw	them	on	

another	RenderTarget2D	objects.	One	possible	application	of	the	LineRenderer	class	used	in	

this	way	is	a	“finger	paint”	program,	where	you	draw	freeform	lines	and	curves	with	your	

finger.	The	next	project	is	a	very	simple	first	stab	at	such	a	program.	The	lines	you	draw	with	

your	fingers	are	always	red	with	a	25pixel	line	thickness.	Here	are	the	fields	and	constructor	

(and	please	don’t	be	too	dismayed	by	the	project	name):	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

RenderTarget2D renderTarget;

LineRenderer lineRenderer;

public Game1()

 {

graphics = new GraphicsDeviceManager(this);

Content.RootDirectory = "Content";

// Frame rate is 30 fps by default for Windows Phone.

TargetElapsedTime = TimeSpan.FromTicks(333333);

// Enable gestures

TouchPanel.EnabledGestures = GestureType.FreeDrag;

 }

816	

	

	 	 	

	 	 	 	

	 	

	 	 	 	 	 	 	 	

	 	

		

	

	 	

	 	

	 	 	

 …

}

Notice	that	only	the	FreeDrag	gesture	is	enabled.	Each	gesture	will	result	in	another	short	line	

being	drawn	that	is	connected	to	the	previous	line.	

The	RenderTarget2D	object	named	renderTarget	is	used	as	a	type	of	“canvas”	on	which	you	

can	paint	with	your	fingers.	It	is	created	in	the	LoadContent method	to	be	as	large	as	the	back	

buffer,	and	with	the	same	color	format,	and	preserving	content:	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

// Create a new SpriteBatch, which can be used to draw textures.

 spriteBatch = new SpriteBatch(GraphicsDevice);

 renderTarget = new RenderTarget2D(

this.GraphicsDevice,

this.GraphicsDevice.PresentationParameters.BackBufferWidth,

this.GraphicsDevice.PresentationParameters.BackBufferHeight,

false,

this.GraphicsDevice.PresentationParameters.BackBufferFormat,

DepthFormat.None, 0, RenderTargetUsage.PreserveContents);

 this.GraphicsDevice.SetRenderTarget(renderTarget);

 this.GraphicsDevice.Clear(Color.Navy);

 this.GraphicsDevice.SetRenderTarget(null);

 lineRenderer = new LineRenderer(this.GraphicsDevice);

}

The	LoadContent	override	also	creates	the	LineRenderer	object.	

You’ll	recall	that	the	FreeDrag	gesture	type	is	accompanied	by	a	Position	property	that	

indicates	the	current	location	of	the	finger,	and	a	Delta property,	which	is	the	difference	

between	the	current	location	of	the	finger	and	the	previous	location	of	the	finger.	That	

previous	location	can	be	calculated	by	subtracting	Delta	from	Position,	and	those	two	points	

are	used	to	draw	a	short	line	on	the	RenderTarget2D	canvas:	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

// Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

817

	

	 	 	

	 	 	 	

	 	 	 	

	

 while (TouchPanel.IsGestureAvailable)

 {

GestureSample gesture = TouchPanel.ReadGesture();

if (gesture.GestureType == GestureType.FreeDrag &&

 gesture.Delta != Vector2.Zero)

{

 this.GraphicsDevice.SetRenderTarget(renderTarget);

 spriteBatch.Begin();

 lineRenderer.DrawLine(spriteBatch,

 gesture.Position,

 gesture.Position - gesture.Delta,

 25, Color.Red);

 spriteBatch.End();

 this.GraphicsDevice.SetRenderTarget(null);

}

 }

 base.Update(gameTime);

}

The	Draw	override	then	merely	needs	to	draw	the	canvas	on	the	display:	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 spriteBatch.Begin();

 spriteBatch.Draw(renderTarget, Vector2.Zero, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}

When	you	try	this	out,	you’ll	find	that	it	works	really	well	in	that	you	can	quickly	move	your	

finger	around	the	screen	and	you	can	draw	a	squiggly	line:	

818

	

	 	 	 	

	 	 	 	

	 	

	 	

	

	

	

	

	 	

	 	 	

	 	

	

	

	

	

	 	 	 	 	

	

	 	 	

		

	 	 	

	 	

	

	 	

	 	

	 	

The	only	problem	seems	to	be	cracks	in	the	figure,	which	become	more	severe	as	your	finger	

makes	fast	sharp	curves,	and	which	justify	the	name	of	this	project.	

If	you	think	about	what’s	actually	being	rendered	here,	those	cracks	will	make	sense.	You’re	

really	drawing	rectangles	between	pairs	of	points,	and	if	those	rectangles	are	at	angles	to	one	

another,	then	a	sliver	is	missing:	

This	is	much	less	noticeable	for	thin	lines,	but	becomes	intolerable	for	thicker	ones.	

What	can	be	done?	Well,	if	the	method	displaying	these	rectangular	textures	knows	that	it’s	

drawing	a	series	of	lines	(called	a	polyline	in	graphics	circles)	it	can	increase	the	scaling	factor	

of	the	bitmap	a	little	more	in	the	horizontal	direction	so	they	meet	up	at	the	outer	corner	

rather	than	the	center:	

Getting	this	right	requires	calculations	involving	the	angle	between	the	two	lines.	And	the	

technique	has	to	be	modified	a	bit	for	a	finger	painting	program	because	you	don’t	know	

what	the	next	line	will	be	at	the	time	each	line	is	rendered.	

In	environments	that	support	linedrawing	functions	(such	as	Silverlight),	problems	such	as	

these	also	exist	with	default	linedrawing	properties.	However,	in	Silverlight	it’s	possible	to	set	

rounded	“caps”	on	the	lines	so	they	join	very	smoothly.	

In	XNA,	putting	rounded	caps	on	the	lines	is	probably	best	handled	by	manipulating	the	

actual	pixel	bits.	

Manipulating
the
Pixel
Bits

Early	in	this	chapter	I	showed	you	how	to	create	a	blank	Texture2D object	using	one	of	its	

constructors:	

Texture2D texture = new Texture2D(this.GraphicsDevice, width, height);

As	with	the	back	buffer	and	the	RenderTarget2D,	how	the	bits	of	each	pixel	correspond	to	a	

particular	color	is	indicated	by	a	member	of	the	SurfaceFormat	enumeration.	A	Texture2D

created	with	this	simple	constructor	will	have	a	Format	property	of	SurfaceFormat.Color,	

819	

	

	

	 	

	

	 	

	 	 	 	 	

	

	 	 	 	

	 	 	

	 	 	 	

	

	 	 	 	 	

	 	

	 	

	 	 	 	 	

	 	 	 	

	

	

	 	

	 	

which	means	that	every	pixel	consists	of	4	bytes	(or	32	bits)	of	data,	one	byte	each	for	the	red,	

green,	and	blue	values	and	another	byte	for	the	alpha	channel,	which	is	the	opacity	of	that	

pixel.	

It	is	also	possible	(and	very	convenient)	to	treat	each	pixel	as	a	32bit	unsigned	integer,	which	

in	C#	is	a	uint.	The	colors	appear	in	the	8digit	hexadecimal	value	of	this	uint	like	so:	

AABBGGRR	

Each	letter	represents	four	bits.	If	you	have	a	Texture2D	that	you	either	loaded	as	content	or	

created	as	shown	above,	and	it	has	a	Format	property	of	SurfaceFormat.Color,	you	can	obtain	

all	the	pixel	bits	of	the	bitmap	by	first	creating	an	array	of	type	uint large	enough	to	

encompass	all	the	pixels:	

uint[] pixels = new uint[texture.width * texture.height];

You	then	transfer	all	the	pixels	of	the	Texture2D	into	the	array	like	so:	

texture.GetData<uint>(pixels);

GetData	is	a	generic	method	and	you	simply	need	to	indicate	the	data	type	of	the	array.	

Overloads	of	GetData	allow	you	to	get	pixels	corresponding	to	a	rectangular	subset	of	the	

bitmap,	or	starting	at	an	offset	into	the	pixels	array.	

Because	RenderTarget2D	derives	from	Texture2D	you	can	use	this	technique	with	

RenderTarget2D	objects	as	well.	

You	can	also	go	the	other	way	to	transfer	the	data	in	the	pixels	array	back	into	the	bitmap:	

texture.SetData<uint>(pixels);

The	pixels	in	the	pixels	array	are	arranged	by	row	beginning	with	the	topmost	row.	The	pixels	

in	each	row	are	arranged	left	by	right.	For	a	particular	row	y	and	column	x in	the	bitmap,	you	

can	index	the	pixels	array	using	a	simple	formula:	

pixels[y * texture.width + x]

One	exceptionally	convenient	property	of	the	Color	structure	is	PackedValue.	This	converts	a	

Color	object	into	a	uint of	the	precise	format	required	for	this	array,	for	example:	

pixels[y * texture.width + x] = Color.Fuchsia.PackedValue;

In	fact,	Color	and	uint	are	so	closely	related	that	you	can	alternatively	create	a	pixels	array	of	

type	Color:	

Color[] pixels = new Color[texture.Width * texture.Height];

You	can	then	use	this	array	with	GetData

texture.GetData<Color>(pixels);

820	

	

	

	 	

	

	 	 	 	

	

	 	 	

	 	

	 	

	 	 	

	

	 	 	 	

	 	 	

	

	 	 	

and	SetData

texture.SetData<Color>(pixels);

and	set	individual	pixels	directly	with	Color	values:	

pixels[y * texture.width + x] = Color.AliceBlue;

All	that’s	required	is	consistency.	

You	can	create	Texture2D objects	in	other	color	formats	but	the	pixel	array	must	have	

members	of	the	correct	size,	for	example	ushort	with	SurfaceFormat.Bgr565.	Consequently,	

none	of	the	other	formats	are	quite	as	easy	to	use	as	SurfaceFormat.Color,	so	that’s	what	I’ll	

be	sticking	with	in	this	chapter.	

Let’s	look	at	a	simple	example.	Suppose	you	want	a	background	to	your	game	that	consists	of	

a	gradient	from	blue	at	the	left	to	red	at	the	right.	The	GradientBackground	project	

demonstrates	how	to	create	it.	Here	are	the	fields:	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{
GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

Rectangle viewportBounds;

Texture2D background;

 …

}

All	the	real	work	is	done	in	the	LoadContent	override.	The	method	creates	a	bitmap	based	on	

the	Viewport	size	(but	here	using	the	Bounds	property	which	has	convenient	integer	

dimensions),	and	fills	it	with	data.	The	interpolation	for	the	gradient	is	accomplished	by	the	

Color.Lerp	method	based	on	the	x	value:	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 viewportBounds = this.GraphicsDevice.Viewport.Bounds;

 background = new Texture2D(this.GraphicsDevice, viewportBounds.Width,

 viewportBounds.Height);

Color[] pixels = new Color[background.Width * background.Height];

 for (int x = 0; x < background.Width; x++)

821	

	

	

	 	 	

	 	

	 	

	

	

	 	

	 	 	 	

	 	 	

	 	 	 	 	 	

	

 {

Color clr = Color.Lerp(Color.Blue, Color.Red,

 (float)x / background.Width);

for (int y = 0; y < background.Height; y++)

 pixels[y * background.Width + x] = clr;

 }

 background.SetData<Color>(pixels);

}

Don’t	forget	to	call	SetData	after	filling	the	pixels	array	with	data!	It’s	pleasant	to	assume	that	

there’s	some	kind	of	behindthescenes	binding	between	the	Texture2D	and	the	array,	but	

there’s	really	no	such	thing.	

The	Draw	method	simply	draws	the	Texture2D	like	normal:	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 spriteBatch.Begin();

 spriteBatch.Draw(background, viewportBounds, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}

Here’s	the	gradient:	

Although	the	code	seems	to	imply	hundreds	of	gradations	between	pure	blue	and	pure	red,	

the	16bit	color	resolution	of	the	Windows	Phone	7	video	display	clearly	shows	32	bands.	

For	this	particular	example,	where	the	Texture2D	is	the	same	from	top	to	bottom,	it’s	not	

necessary	to	have	quite	so	many	rows.	In	fact,	you	can	create	the	background	object	with	just	

one	row:	

822

	

	 	 	

	 	

	 	

	 	 	 	 	 	

	 	

	 	

	

	 	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	

	 	

background = new Texture2D(this.GraphicsDevice, viewportBounds.Width, 1);

Because	the	other	code	in	LoadContent is	based	on	the	background.Width	and	

background.Height	properties,	nothing	else	needs	to	be	changed	(although	the	loops	could	

certainly	be	simplified).	In	the	Draw	method,	the	bitmap	is	then	stretched	to	fill	the	Rectangle:	

spriteBatch.Draw(background, viewportBounds, Color.White);

Earlier	in	this	chapter	I	created	a	1×1	white	RenderTarget2D	using	this	code:	

tinyTexture = new RenderTarget2D(this.GraphicsDevice, 1, 1);

this.GraphicsDevice.SetRenderTarget(tinyTexture);

this.GraphicsDevice.Clear(Color.White);

this.GraphicsDevice.SetRenderTarget(null);

You	can	do	it	with	a	Texture2D with	only	two	lines	of	code	that	includes	an	inline	array:	

tinyTexture = new Texture2D(this.GraphicsDevice, 1, 1);

tinyTexture.SetData<Color>(new Color[] { Color.White });

The
Geometry
of
Line
Drawing

To	draw	lines	on	a	Texture2D,	it	would	be	convenient	to	directly	set	the	pixels	in	the	bitmap	

to	render	the	line.	For	purposes	of	analysis	and	illustration,	let’s	suppose	you	want	to	draw	a	

line	between	pt1	and	pt2:	

This	geometric	line	has	zero	thickness,	but	a	rendered	line	has	a	nonzero	thickness,	which	

we’ll	assume	is	2R	pixels.	(R	stands	for	radius,	and	you’ll	understand	why	I’m	thinking	of	it	in	

those	terms	shortly.)	You	really	want	to	draw	a	rectangle,	where	pt1	and	pt2 are	extended	on	

each	side	by	R	pixels:	

pt2

pt1

823	

	

	

	 	

	 	

	 	 	

	 	 	 	 	

	 	 	

	 	 	 	

	 	

	 	

	

	 	 	 	 	 	 	 	

	

	 	

pt1a

pt1b

pt2a

pt2b

How	are	these	corner	points	calculated?	Well,	it’s	really	rather	easy	using	vectors.	Let’s	

calculate	the	normalized	vector	from	pt1	to	pt2	and	normalize	it:	

Vector2 vector = Vector2.Normalize(pt2 – pt1);

This	vector	must	be	rotated	in	increments	of	90	degrees,	and	that’s	a	snap.	To	rotate	vector	by	

90	degrees	clockwise,	switch	the	X	and	Y	coordinates	while	negating	the	Y	coordinate:	

Vector2 vect90 = new Vector2(-vector.Y, vector.X)

A	vector	rotated	–90	degrees	from	vector	is	the	negation	of	vect90.	

If	vector	points	from	pt1	to	pt2,	then	the	vector	from	pt1	to	pt1a	(for	example)	is	that	vector	

rotated	–90	degrees	with	a	length	of	R.	Then	add	that	vector	to	pt1	to	get	pt1a.	

Vector2 pt1a = pt1 - R * vect90;

In	a	similar	manner,	you	can	also	calculate	pt1b,	pt2a,	and	pt2b.	

But	as	you	saw	before,	the	rectangle	is	not	sufficient	for	thick	lines	that	join	at	angles.	To	

avoid	those	slivers	seen	earlier,	you	really	need	to	draw	rounded	caps	on	these	rectangles:	

pt1a

pt1b

pt2a

pt2b

These	are	semicircles	of	radius	R	centered	on	pt1	and	pt2.	

824	

	

	

	 	

	

	 	 	 	 	

	 	 	 	 	

	 	

		

	 	 	

	 	

	

	

		

	

		

		

	 	 	

	 	 	

	 	 	 	 	 	

	 	

	 	 	

	 	

	 	 	 	

		

	 	 	

		

		

At	this	point,	we	have	derived	an	overall	outline	of	the	shape	to	draw	for	two	successive	

points:	A	line	from	pt1a	to	pt2a,	a	semicircle	from	pt2a	to	pt2b,	another	line	from	pt2b	to	

pt1b,	and	another	semicircle	from	pt1b	to	pt1a.	The	goal	is	to	find	all	pixels	(x,	y)	in	the	

interior	of	this	outline.	

When	drawing	vector	outlines,	parametric	equations	are	ideal.	When	filling	areas,	it’s	best	to	

go	back	to	the	standard	equations	that	we	learned	in	high	school.	You	probably	remember	

the	equations	for	a	line	in	slopeintercept	form:	

where	m	is	the	slope	of	the	line	(“rise	over	run”)	and	b	is	the	value	of	y where	the	line	

intercepts	the	Y	axis.	

In	computer	graphics,	however,	areas	are	traditionally	filled	based	on	horizontal	scan	lines,	

also	known	as	raster	lines.	(The	terms	come	from	television	displays.)	This	straight	line	

equation	represents	x	as	a	function	of	y:	

For	a	line	from	pt1	to	pt2,	

For	any	y,	there	is	a	point	on	the	line	that	connects	pt1	and	pt2	if	y	is	between	pt1.Y	and	pt2.Y.	

The	x	value	can	then	be	calculated	from	the	equations	of	the	line.	

Look	at	the	previous	diagram	and	imagine	a	horizontal	scan	line	that	crosses	these	two	lines	

from	pt1a	to	pt2a,	and	from	pt1b	to	pt2b.	For	any	y,	we	can	calculate	xa	on	the	line	from	pt1a

to	pt2a,	and	xb	on	the	line	from	pt1b	to	pt2b.	For	that	scan	line,	the	pixels	that	must	be	

colored	are	those	between	(xa,	y)	and	(xb,	y).	This	can	be	repeated	for	all	y.	

This	process	gets	a	little	messier	for	the	rounded	caps	but	not	much	messier.	A	circle	of	radius	

R centered	on	the	origin	consists	of	all	points	(x,	y)	that	satisfy	the	equation:	

For	a	circle	centered	on	(xc,	yc),	the	equation	is:	

Or	for	any	y:	

825	

	

	 	

	 	 	 	 	 	 	

	 	 	

	

	

	

	

	 	

	 	

	 	

	 	 	

	 	

	 	 	

	 	 	

	 	 	 	 	

	

	 	 	

	 	

		

	

If	the	expression	in	the	square	root	is	negative,	then	y	is	outside	the	circle	entirely.	Otherwise,	

there	are	(in	general)	two	values	of	x	for	each	y.	The	only	exception	is	when	the	square	root	is	

zero,	that	is,	when	y	is	exactly	R	units	from	yc,	which	are	the	top	and	bottom	points	of	the	

circle.	

We’re	dealing	with	a	semicircle	so	it’s	a	little	more	complex,	but	not	much.	Consider	the	semi

circle	at	the	top	of	the	diagram.	The	center	is	pt1,	and	the	semicircle	goes	from	pt1b	to	pt1a.	

The	line	from	pt1	to	pt1b	forms	an	angle	angle1	that	can	be	calculated	with	Math.Atan2.	

Similarly	for	the	line	from	pt1	to	pt1a	there	is	an	angle2.	If	the	point	(x,	y)	is	on	the	circle	as	

calculated	above,	it	too	forms	an	angle	from	the	center	pt1.	If	that	angle	is	between	angle1

and	angle2,	then	the	point	is	on	the	semicircle.	(This	determination	of	“between”	gets	just	a	

little	messier	because	angles	returned	from	Math.Atan2	wrap	around	from	ʌ	to	–ʌ.)	

Now	for	any	y we	can	examine	both	the	two	lines	and	the	two	semicircles	and	determine	all	

points	(x,	y)	that	are	on	these	four	figures.	At	most,	there	will	be	only	two	such	points—one	

where	the	scan	line	enters	the	figure	and	the	other	where	it	exits.	For	that	scan	line,	all	pixels	

between	those	two	points	can	be	filled.	

The	Petzold.Phone.Xna	project	contains	several	structures	that	help	draw	lines	in	a	Texture2D.	

(I	made	them	structures	rather	than	classes	because	they	will	probably	be	frequently	

instantiated	during	Update	calls.)	All	these	structures	implement	this	little	interface:	

XNA Project: Petzold.Phone.Xna File: IGeometrySegment.cs

using System.Collections.Generic;

namespace Petzold.Phone.Xna

{

public interface IGeometrySegment

 {

void GetAllX(float y, IList<float> xCollection);

 }

}

For	any	y	value	the	GetAllX method	adds	items	to	a	collection	of	x	values.	In	actual	practice,	

with	the	structures	in	the	library,	often	this	collection	will	be	returned	empty.	Sometimes	it	will	

contain	one	value,	and	sometimes	two.	

Here’s	the	LineSegment	structure:	

XNA Project: Petzold.Phone.Xna File: LineSegment.cs

using System.Collections.Generic;

using Microsoft.Xna.Framework;

namespace Petzold.Phone.Xna

826	

	

	 	

	 	 	 	

	 	 	 	

	 	 	

	 	

	 	 	

	 	 	

	 	 	 	 	 	

{

public struct LineSegment : IGeometrySegment

 {

readonly float a, b; // as in x = ay + b

public LineSegment(Vector2 point1, Vector2 point2) : this()

{

 Point1 = point1;

 Point2 = point2;

 a = (Point2.X - Point1.X) / (Point2.Y - Point1.Y);

 b = Point1.X - a * Point1.Y;

}

public Vector2 Point1 { private set; get; }

public Vector2 Point2 { private set; get; }

public void GetAllX(float y, IList<float> xCollection)

{

if ((Point2.Y > Point1.Y && y >= Point1.Y && y < Point2.Y) ||

 (Point2.Y < Point1.Y && y <= Point1.Y && y > Point2.Y))

{

 xCollection.Add(a * y + b);

}

}

 }

}

Notice	that	the	if	statement	in	GetAllX	checks	that	y	is	between	Point1.Y	and	Point2.Y;	it	allows	

y	values	that	equal	Point1.Y	but	not	those	that	equal	Point2.Y.	In	other	words,	it	defines	the	

line	to	be	all	points	from	Point1 (inclusive)	up	to	but	not	including	Point2.	This	caution	about	

what	points	are	included	and	excluded	comes	into	play	when	multiple	lines	and	arcs	are	

connected;	it	helps	avoid	the	possibility	of	having	duplicate	x values	in	the	collection.	

Also	notice	that	no	special	consideration	is	given	to	horizontal	lines,	that	is,	lines	where	

Point1.Y	equals	Point2.Y	and	where	a	equals	infinity.	If	that	is	the	case,	then	the	if	statement	in	

the	method	is	never	satisfied.	A	scan	line	never	crosses	a	horizontal	boundary	line.	

The	next	structure	is	similar	but	for	a	generalized	arc	on	the	circumference	of	a	circle:	

XNA Project: Petzold.Phone.Xna File: ArcSegment.cs

using System;

using System.Collections.Generic;

using Microsoft.Xna.Framework;

namespace Petzold.Phone.Xna

{

public struct ArcSegment : IGeometrySegment

 {

readonly double angle1, angle2;

827	

	

	 	 	 	 	

	 	 	

	 	 	 	

	 	

	

	

public ArcSegment(Vector2 center, float radius,

Vector2 point1, Vector2 point2) :

this()

{

 Center = center;

 Radius = radius;

 Point1 = point1;

 Point2 = point2;

 angle1 = Math.Atan2(point1.Y - center.Y, point1.X - center.X);

 angle2 = Math.Atan2(point2.Y - center.Y, point2.X - center.X);

}

public Vector2 Center { private set; get; }

public float Radius { private set; get; }

public Vector2 Point1 { private set; get; }

public Vector2 Point2 { private set; get; }

public void GetAllX(float y, IList<float> xCollection)

{

double sqrtArg = Radius * Radius - Math.Pow(y - Center.Y, 2);

if (sqrtArg >= 0)

 {

double sqrt = Math.Sqrt(sqrtArg);

 TryY(y, Center.X + sqrt, xCollection);

 TryY(y, Center.X - sqrt, xCollection);

 }

}

public void TryY(double y, double x, IList<float> xCollection)

{

double angle = Math.Atan2(y - Center.Y, x - Center.X);

if ((angle1 < angle2 && (angle1 <= angle && angle < angle2)) ||

 (angle1 > angle2 && (angle1 <= angle || angle < angle2)))

 {

 xCollection.Add((float)x);

 }

}

 }

}

The	rather	complex	(but	symmetrical)	if	clause	in	TryY	accounts	for	the	wrapping	of	angle	

values	from	ʌ	to	–ʌ.	Notice	also	that	the	comparison	of	angle	with	angle1	and	angle2	allows	

cases	where	angle	equals	angle1	but	not	when	angle	equals	angle2.	It’s	allowing	all	angles	

from	angle1	(inclusive)	up	to	but	not	including	angle2.	

For	now,	the	final	structure	involved	with	line	drawing	represents	a	line	with	rounded	caps:	

828	

	

	

	

	

XNA Project: Petzold.Phone.Xna File: RoundCappedLines.cs

using System.Collections.Generic;

using Microsoft.Xna.Framework;

namespace Petzold.Phone.Xna

{

public class RoundCappedLine : IGeometrySegment

 {

LineSegment lineSegment1;

ArcSegment arcSegment1;

LineSegment lineSegment2;

ArcSegment arcSegment2;

public RoundCappedLine(Vector2 point1, Vector2 point2, float radius)

{

 Point1 = point1;

 Point2 = point2;

 Radius = radius;

Vector2 vector = point2 - point1;

Vector2 normVect = vector;

 normVect.Normalize();

Vector2 pt1a = Point1 + radius * new Vector2(normVect.Y, -normVect.X);

Vector2 pt2a = pt1a + vector;

Vector2 pt1b = Point1 + radius * new Vector2(-normVect.Y, normVect.X);

Vector2 pt2b = pt1b + vector;

 lineSegment1 = new LineSegment(pt1a, pt2a);

 arcSegment1 = new ArcSegment(point2, radius, pt2a, pt2b);

 lineSegment2 = new LineSegment(pt2b, pt1b);

 arcSegment2 = new ArcSegment(point1, radius, pt1b, pt1a);

}

public Vector2 Point1 { private set; get; }

public Vector2 Point2 { private set; get; }

public float Radius { private set; get; }

public void GetAllX(float y, IList<float> xCollection)

{

 arcSegment1.GetAllX(y, xCollection);

 lineSegment1.GetAllX(y, xCollection);

 arcSegment2.GetAllX(y, xCollection);

 lineSegment2.GetAllX(y, xCollection);

}

 }

}

This	structure	includes	two	LineSegment	objects	and	two	ArcSegment	objects	and	defines	

them	all	based	on	the	arguments	to	its	own	constructor.	Implementing	GetAllX	is	just	a	matter	

of	calling	the	same	method	on	the	four	components.	It	is	the	responsibility	of	the	code	calling	

829	

	

	 	

	

	

	

	 	

	 	

	 	

	

	 	 	

GetAllX	to	ensure	that	the	collection	has	previously	been	cleared.	For	RoundCappedLines,	this	

method	will	return	a	collection	with	either	one	x	value—a	case	that	can	be	ignored	for	filling	

purposes—or	two	x	values,	in	which	case	the	pixels	between	those	two	x	values	can	be	filled.	

Using	these	structures	in	an	actual	program	is	not	as	easy	as	using	the	LineRenderer	class.	The	

technique	is	demonstrated	in	the	BetterFingerPaint	project.	The	fields	include	a	Texture2D	on	

which	to	draw,	the	pixel	array	for	that	texture,	and	a	reusable	collection	of	float	objects	for	

passing	to	the	linedrawing	structures.	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

Texture2D canvas;

Color[] pixels;

List<float> xCollection = new List<float>();

public Game1()

 {

graphics = new GraphicsDeviceManager(this);

Content.RootDirectory = "Content";

// Frame rate is 30 fps by default for Windows Phone.

TargetElapsedTime = TimeSpan.FromTicks(333333);

// Enable FreeDrag gestures

TouchPanel.EnabledGestures = GestureType.FreeDrag;

 }

…

}

The	Game1	constructor	enables	the	FreeDrag	gesture,	and	as	usual,	those	gestures	are	

handled	in	the	Update	override	shown	below.	

The	LoadContent	override	creates	this	Texture2D	to	be	the	size	of	the	screen	and	then	

initializes	it	with	Color.Navy	pixels:	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

// Create a new SpriteBatch, which can be used to draw textures.

 spriteBatch = new SpriteBatch(GraphicsDevice);

Rectangle viewportBounds = this.GraphicsDevice.Viewport.Bounds;

 canvas = new Texture2D(this.GraphicsDevice, viewportBounds.Width,

830	

	

	 	 	

	

	

	 	

	 	

	

 viewportBounds.Height);

 pixels = new Color[canvas.Width * canvas.Height];

 for (int i = 0; i < pixels.Length; i++)

pixels[i] = Color.Navy;

 canvas.SetData<Color>(pixels);

}

The	key	call	in	the	Update override	is	to	the	RoundCappedLine constructor	with	the	two	points	

and	the	radius,	which	is	half	the	line	thickness.	Following	that,	the	routine	can	loop	through	

all	the	Y	values	of	the	canvas,	call	the	GetAllX	method	of	the	RoundCappedLine	object,	and	

then	fill	the	area	between	the	X	values	in	the	collection.	However,	the	routine	attempts	to	

restrict	looping	and	method	calls	to	only	X	and	Y	values	that	could	possibly	be	affected	by	the	

particular	gesture.	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

// Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

 bool canvasNeedsUpdate = false;

 int yMinUpdate = Int32.MaxValue, yMaxUpdate = 0;

 while (TouchPanel.IsGestureAvailable)

 {

GestureSample gesture = TouchPanel.ReadGesture();

if (gesture.GestureType == GestureType.FreeDrag &&

 gesture.Delta != Vector2.Zero)

{

Vector2 point1 = gesture.Position - gesture.Delta;

Vector2 point2 = gesture.Position;

 float radius = 12;

RoundCappedLine line = new RoundCappedLine(point1, point2, radius);

 int yMin = (int)(Math.Min(point1.Y, point2.Y) - radius - 1);

 int yMax = (int)(Math.Max(point1.Y, point2.Y) + radius + 1);

 yMin = Math.Max(0, Math.Min(canvas.Height, yMin));

 yMax = Math.Max(0, Math.Min(canvas.Height, yMax));

 for (int y = yMin; y < yMax; y++)

 {

 xCollection.Clear();

 line.GetAllX(y, xCollection);

831

	

	 	

	 	 	 	

	

	 	 	 	 	

		

	 	

	

	 	 	 	 	 	

	 	 	

 if (xCollection.Count == 2)

 {

 int xMin = (int)(Math.Min(xCollection[0],

 xCollection[1]) + 0.5f);

 int xMax = (int)(Math.Max(xCollection[0],

 xCollection[1]) + 0.5f);

 xMin = Math.Max(0, Math.Min(canvas.Width, xMin));

 xMax = Math.Max(0, Math.Min(canvas.Width, xMax));

 for (int x = xMin; x < xMax; x++)

 {

 pixels[y * canvas.Width + x] = Color.Red;

}

 yMinUpdate = Math.Min(yMinUpdate, yMin);

 yMaxUpdate = Math.Max(yMaxUpdate, yMax);

 canvasNeedsUpdate = true;

 }

 }

}

 }

 if (canvasNeedsUpdate)

 {

this.GraphicsDevice.Textures[0] = null;

int height = yMaxUpdate - yMinUpdate;

Rectangle rect = new Rectangle(0, yMinUpdate, canvas.Width, height);

canvas.SetData<Color>(0, rect, pixels,

 yMinUpdate * canvas.Width, height * canvas.Width);

 }

 base.Update(gameTime);

}

When	all	the	gestures	have	been	handled—and	there	may	be	more	than	one	FreeDrag

gesture	during	a	single	Update	call—then	the	method	has	yMinUpdate	and	yMaxUpdate

values	indicating	the	rows	that	were	affected	by	these	particular	gestures.	These	are	used	to	

construct	a	Rectangle	object	so	that	the	Texture2D	canvas	is	updated	from	the	pixels	array	

only	where	pixels	have	changed.	

The	simplest	way	to	call	SetData	is	like	this:	

texture.SetData<Color>(pixels);

This	is	an	alternative:	

texture.SetData<Color>(pixels, startIndex, count);

This	call	fills	up	the	entire	Texture2D	from	the	pixels array	but	it	begins	at	startIndex	to	index	

the	array.	The	count	argument	must	still	be	equal	to	the	product	of	the	pixel	width	and	height	

832

	

	 	

	 	

	

	 	 	 	 	

	 	 	

	 	 	

	

	 	 	

	 	 	

	

	

	 	 	 	 	 	 	

	 	 	

	 	

	 	 	

	 	 	

	 	

	

	

	 	

of	the	Texture2D,	and	the	array	must	have	count	values	starting	at	startIndex.	This	variation	

might	be	useful	if	you’re	using	the	same	pixels	array	for	several	small	Texture2D	objects.	

The	third	variation	is	this:	

texture.SetData<Color>(0, rectangle, pixels, startIndex, count);

The	rectangle	argument	of	type	Rectangle restricts	updating	to	a	particular	rectangle	within	

the	Texture2D.	The	startIndex	still	refers	to	an	index	of	the	pixels	array	but	count	must	be	

equal	to	the	product	of	the	rectangle	width	and	height.	The	method	assumes	that	the	count

pixels	beginning	at	startIndex	are	for	that	rectangular	area.	

If	you’re	working	with	a	single	pixels	array	that	corresponds	to	the	entire	Texture2D,	and	you	

want	to	restrict	updating	to	a	particular	rectangular	area,	you	don’t	have	the	flexibility	to	

specify	any	rectangle	you	want	because	the	rows	of	pixels	in	the	pixels	array	are	still	based	on	

the	full	width	of	the	Texture2D.	This	means	that	the	width	of	the	rectangle	must	be	the	same	

as	the	width	of	the	Texture2D.	In	short,	you	can	only	restrict	the	SetData	call	to	one	or	more	

entire	rows.	That’s	why	the	code	only	retains	yMinUpdate	and	yMaxUpdate	and	not	the	

equivalent	values	for	X.	

In	the	Update method	shown	above	you’ll	also	see	this	call	prior	to	calling	SetData:	

this.GraphicsDevice.Textures[0] = null;

This	is	sometimes	necessary	when	calling	SetData	from	the	Update	override	if	the	particular	

Texture2D	was	the	last	thing	displayed	in	the	Draw	method	and	it	is	still	set	in	the	

GraphicsDevice	object.	

The	Draw	override	is	trivial:	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 spriteBatch.Begin();

 spriteBatch.Draw(canvas, Vector2.Zero, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}

The	really	good	news	involves	the	display:	

833	

	

	

	 	 	 	

	 	 	

	 	

	 	 	 	

	 	 	 	

	

	 	

	 	

	 	 	

	 	 	

	 	

	

The	strokes	are	solid	with	no	cracks,	and	check	out	those	nice	rounded	ends.	

The	BetterFingerPaint	program	will	not	let	you	draw	with	two	fingers	at	once.	To	enhance	the	

program	for	that	feature	while	still	using	gestures	would	be	somewhat	messy.	A	single	finger	

generates	FreeDrag gestures	while	two	fingers	generate	Pinch	gestures,	which	include	valid	

Position2	and	Delta2 properties,	but	then	the	program	would	fail	for	three	or	simultaneous	

fingers.	

To	handle	multiple	fingers,	it’s	necessary	to	go	back	to	the	lowlevel	touch	interface	as	shown	

in	the	following	MultiFingerPaint	project.	Most	of	MultiFingerPaint	is	identical	to	

BetterFingerPaint,	but	the	constructor	does	not	enable	gestures:	

XNA Project: File: (excerpt)

public Game1()

{

 graphics = new GraphicsDeviceManager(this);

 Content.RootDirectory = "Content";

// Frame rate is 30 fps by default for Windows Phone.

 TargetElapsedTime = TimeSpan.FromTicks(333333);

}

I’ll	only	show	you	part	of	the	Update	overrride	because	the	rest	is	the	same	as	before.	The	

method	essentially	enumerates	through	the	TouchCollection	obtained	from	the	

TouchPanel.GetState	call.	This	collection	contains	TouchLocation	objects	for	multiple	fingers	

touching	the	screen,	moving,	and	lifting,	but	the	program	is	only	interested	in	moves.	It	

doesn’t	even	have	to	keep	track	of	multiple	fingers.	All	it	needs	to	do	is	get	a	particular	touch	

point,	and	the	previous	touch	point	for	that	finger	from	TryGetPreviousLocation,	and	draw	a	

line	between	those	points:	

834	

	

	

	

	 	

	

	 	 	 	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

// Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

 bool canvasNeedsUpdate = false;

 int yMinUpdate = Int32.MaxValue, yMaxUpdate = 0;

TouchCollection touches = TouchPanel.GetState();

 foreach (TouchLocation touch in touches)

 {

if (touch.State == TouchLocationState.Moved)

{

TouchLocation previousTouch;

 touch.TryGetPreviousLocation(out previousTouch);

Vector2 point1 = previousTouch.Position;

Vector2 point2 = touch.Position;

 float radius = 12;

RoundCappedLine line = new RoundCappedLine(point1, point2, radius);

 …

}

And	here	it	is	with	four	fingers	simultaneously:	

Modifying
Existing
Images

You	can	modify	an	existing	image	by	calling	GetData	on	a	“source”	Texture2D,	then	

algorithmically	modifying	the	pixels	and	transferring	them	to	a	“destination”	Texture2D	with	

SetData.	This	is	demonstrated	in	the	RippleEffect	project.	The	source	Texture2D is	a	bitmap	

835	

	

	 	

	 	

	

	

	

	 	 	 	 	 	 	

	 	

	 	 	 	

	

	 	 	 	

	 	

	

	

that	I	copied	from	my	web	site.	The	program	modifies	the	pixels	so	the	picture	has	waves	that	

move	horizontally	across	the	image:	

The	fields	of	the	program	store	the	source	(“src”)	and	destination	(“dst”)	Texture2D	objects	as	

well	as	the	corresponding	pixel	arrays:	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

const int RIPPLE = 10;

Texture2D srcTexture;

Texture2D dstTexture;

uint[] srcPixels;

uint[] dstPixels;

Vector2 position;

 …

}

The	constant	indicates	that	pixels	in	the	source	bitmap	will	be	moved	up	and	down	by	10	

pixels.	This	is	used	both	in	the	algorithm	that	calculates	destination	pixels	from	source	pixels,	

and	also	to	determine	how	much	larger	than	the	source	image	the	destination	image	must	

be.	

LoadContent	loads	the	srcTexture	from	program	content,	and	copies	the	pixels	into	the	

srcPixels	array.	The	dstTexture	is	20	pixels	taller	than	the	srcTexture;	an	array	is	allocated	for	

the	destination	pixels	but	nothing	is	done	with	it	yet:	

836	

	

	 	 	 	

	 	 	

	 	

	 	 	

	

	 	 	

	

	

	 	

	 	 	 	

	

	

	 	 	

	 	 	

	 	 	 		

XNA Project: File: (excerpt)

protected override void LoadContent()

{

// Create a new SpriteBatch, which can be used to draw textures.

 spriteBatch = new SpriteBatch(GraphicsDevice);

 srcTexture = this.Content.Load<Texture2D>("PetzoldTattoo");

 srcPixels = new uint[srcTexture.Width * srcTexture.Height];

 srcTexture.GetData<uint>(srcPixels);

 dstTexture = new Texture2D(this.GraphicsDevice,

 srcTexture.Width,

 srcTexture.Height + 2 * RIPPLE);

 dstPixels = new uint[dstTexture.Width * dstTexture.Height];

Viewport viewport = this.GraphicsDevice.Viewport;

 position = new Vector2((viewport.Width - dstTexture.Width) / 2,

 (viewport.Height - dstTexture.Height) / 2);

}

The	goal	during	the	Update method	is	to	transfer	pixels	from	srcPixels	to	dstPixels	based	on	

an	algorithm	that	incorporates	animation.	The	dstPixels	array	is	then	copied	into	dstTexture

with	SetData.	

To	transfer	pixels	from	a	source	to	a	destination,	two	different	approaches	can	be	used:	

• Loop	through	the	source	rows	and	columns.	Get	each	source	pixel.	Figure	out	the	

corresponding	destination	row	and	column	and	store	the	pixel	there.	

• Loop	through	the	destination	rows	and	columns.	Figure	out	the	corresponding	source	

row	and	column,	get	the	pixel,	and	store	it	in	the	destination.	

In	the	general	case,	the	second	approach	is	usually	a	bit	harder	than	the	first	but	that	doesn’t	

matter	because	it’s	the	only	one	that	guarantees	that	every	pixel	in	the	destination	bitmap	is	

set.	That’s	why	the	for	loops	in	the	following	method	are	based	on	xDst	and	yDst,	the	column	

and	row	of	the	destination	bitmap.	From	these,	xSrc	and	xDst	are	calculated.	(In	this	particular	

algorithm,	xSrc	always	equals	xDst.)	

The	two	pixel	arrays	can	then	be	indexed	with	dstIndex	and	srcIndex.	Although	dstIndex	will	

always	be	valid	because	it’s	based	on	valid	xDst	and	yDst	values,	for	some	values	srcIndex

might	not	be	valid.	In	those	cases,	I	set	the	pixel	referenced	by	dstIndex	to	a	transparent	value.	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

// Allows the game to exit

837	

	

	 	 	 	

	

	 	 	 	 	

	 	

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

 float phase =

(MathHelper.TwoPi * (float)gameTime.TotalGameTime.TotalSeconds) %

MathHelper.TwoPi;

for (int xDst = 0; xDst < dstTexture.Width; xDst++)

 {

int xSrc = xDst;

float angle = phase - xDst * MathHelper.TwoPi / 100;

int offset = (int)(RIPPLE * Math.Sin(angle));

for (int yDst = 0; yDst < dstTexture.Height; yDst++)

{

int dstIndex = yDst * dstTexture.Width + xDst;

int ySrc = yDst - RIPPLE + offset;

int srcIndex = ySrc * dstTexture.Width + xSrc;

if (ySrc < 0 || ySrc >= srcTexture.Height)

 dstPixels[dstIndex] = Color.Transparent.PackedValue;

else

 dstPixels[dstIndex] = srcPixels[srcIndex];

 }

 }

 this.GraphicsDevice.Textures[0] = null;

 dstTexture.SetData<uint>(dstPixels);

 base.Update(gameTime);

}

In	this	Update	override,	the	srcTexture	is	used	solely	to	determine	if	yDst	is	beyond	the	

bottom	row	of	the	bitmap;	obviously	I	could	have	saved	that	number	of	rows	and	discarded	

the	actual	srcTexture	image.	

The	Update	override	concludes	with	dstTexture being	updated	from	the	pixels	in	the	dstPixels

array	and	the	Draw override	simply	displays	that	image:	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.Draw(dstTexture, position, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}

838

	

	 	

	 	 	

	

	 	 	 	

	 	

	 	 	 	 	

	 	

	 	 	 	

	 	 	

	

Although	this	program	only	modifies	coordinates,	similar	programs	could	modify	the	actual	

color	values	of	the	pixels.	It’s	also	possible	to	base	destination	pixels	on	multiple	source	pixels	

for	filtering	effects.	

But	watch	out	for	performance	problems	if	you’re	calculating	pixels	and	transferring	data	

during	every	Update	call.	Both	perpixel	processing	and	the	SetData	call	require	nontrivial	

time.	The	first	version	of	this	program	ran	fine	on	the	phone	emulator	but	bogged	down	to	

about	two	updates	per	second	on	the	phone	itself.	I	reduced	the	bitmap	to	50%	its	original	

size	(and	¼	the	number	of	pixels)	and	that	improved	performance	considerably.	

In	the	next	chapter,	I’ll	show	you	how	to	calculate	pixels	algorithmically	in	a	second	thread	of	

execution.	

839	

	

	 	 	

	 	 	 	 	

	

	

	 	

	 	 	 	 	 	

	 	 	

	

	

	

	

	

	 	 	

	 	

	

	 	 	

	 	

	 	 	 	

	

	

	 	 	 	

Chapter	22	

From Gestures to Transforms
The	primary	means	of	user	input	to	a	Windows	Phone	7	application	is	touch.	A	Windows	

Phone	7	device	has	a	screen	that	supports	at	least	four	touch	points,	and	applications	must	be	

written	to	accommodate	touch	in	a	way	that	feels	natural	and	intuitive	to	the	user.	

As	you’ve	seen,	XNA	programmers	have	two	basic	approaches	to	obtaining	touch	input.	With	

the	lowlevel	TouchPanel.GetState	method	a	program	can	track	individual	fingers—each	

identified	by	an	ID	number—as	they	first	touch	the	screen,	move,	and	lift	off.	The	

TouchPanel.ReadGesture method	provides	a	somewhat	higherlevel	interface	that	allows	

rudimentary	handling	of	inertia	and	twofinger	manipulation	in	the	form	of	“pinch”	and	

“stretch”	gestures.	

Gestures
and
Properties

The	various	gestures	supported	by	the	TouchPanel	class	correspond	to	members	of	the	

GestureType	enumeration:	

• Tap	—	quickly	touch	and	lift	

• DoubleTap —	the	second	of	two	successive	taps	

• Hold	—	press	and	hold	for	one	second	

• FreeDrag —	move	finger	around	the	screen	

• HorizontalDrag	—	horizontal	component	of	FreeDrag

• VerticalDrag	—	vertical	component	of	FreeDrag

• DragComplete —	finger	lifted	from	screen	

• Flick —	singlefinger	swiping	movement	

• Pinch	—	two	fingers	moving	towards	each	other	or	apart	

• PinchComplete	—	fingers	lifted	from	screen	

To	receive	information	for	particular	gestures,	the	gestures	must	be	enabled	by	setting	the	

TouchPanel.EnabledGestures property.	The	program	then	obtains	gestures	during	the	Update

840	

	

	 	

	

	

	 	

	

	 	 	

	 	 	 	

	 	 	 	 	 	

	 	 	 	

	

	 	

	 	 	 	

	 	 	 	

	 	 	 	 	

	 	 		

	 	

	 	

	

override	of	the	Game	class	in	the	form	of	GestureSample	structures	that	include	a	GestureType

property	to	identify	the	gesture.	

GestureSample	also	defines	four	properties	of	type	Vector2.	None	of	these	properties	are	valid	

for	the	DragComplete	and	PinchComplete	types.	Otherwise:	

• Position	is	valid	for	all	gestures	except	Flick.	

• Delta	is	valid	for	all	Drag	gestures,	Pinch,	and	Flick.	

• Position2	and	Delta2 are	valid	only	for	Pinch.	

The	Position property	indicates	the	current	position	of	the	finger	relative	to	the	screen.	The	

Delta property	indicates	the	movement	of	the	finger	since	the	last	position.	For	an	object	of	

type	GestureSample	named	gestureSample,	

Vector2 previousPosition = gestureSample.Position - gestureSample.Delta;

The	Delta vector	equals	zero	when	the	finger	first	touches	the	screen	or	when	the	finger	is	

still.	

Suppose	you’re	only	interested	in	dragging	operations,	and	you	enable	the	FreeDrag	and	

DragComplete	gestures.	If	you	need	to	keep	track	of	the	complete	distance	a	finger	travels	

from	the	time	it	touches	the	screen	to	time	it	lifts,	you	can	use	one	of	two	strategies:	Either	

save	the	Position value	from	the	first	occurrence	of	FreeDrag	after	a	DragComplete	and	

compare	that	with	the	later	Position	values,	or	accumulate	the	Delta	values	in	a	running	total.	

Let’s	look	at	a	simple	program	that	lets	the	user	drag	a	little	bitmap	around	the	screen.	In	the	

OneFingerDrag	project	the	Game1	class	has	fields	to	store	a	Texture2D	and	maintain	its	

position:	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

Texture2D texture;

Vector2 texturePosition = Vector2.Zero;

public Game1()

 {

graphics = new GraphicsDeviceManager(this);

Content.RootDirectory = "Content";

// Frame rate is 30 fps by default for Windows Phone.

TargetElapsedTime = TimeSpan.FromTicks(333333);

841	

	

	 		

	

	

	 	 	

	 	

	 	 	 	

	

	

	 	 	 	

	 	 	

TouchPanel.EnabledGestures = GestureType.FreeDrag;

 }

 …

}

Notice	the	FreeDrag gesture	enabled	at	the	bottom	of	the	constructor.	

The	LoadContent	override	loads	the	same	Texture2D	used	in	the	RippleEffect	project	in	the	

previous	chapter:	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

// Create a new SpriteBatch, which can be used to draw textures.

 spriteBatch = new SpriteBatch(GraphicsDevice);

 texture = this.Content.Load<Texture2D>("PetzoldTattoo");

}

The	Update	override	handles	the	FreeDrag gesture	simply	by	adjusting	the	texturePosition

vector	by	the	Delta	property	of	the	GestureSample:	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

// Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

 while (TouchPanel.IsGestureAvailable)

 {

GestureSample gesture = TouchPanel.ReadGesture();

if (gesture.GestureType == GestureType.FreeDrag)

 texturePosition += gesture.Delta;

 }

 base.Update(gameTime);

}

Although	texturePosition	is	a	point	and	the	Delta	property	of	GestureSample	is	a	vector,	they	

are	both	Vector2	values	so	they	can	be	added.	

The	while	loop	might	seem	a	little	pointless	in	this	program	because	we’re	only	interested	in	a	

single	gesture	type.	Couldn’t	it	simply	be	an	if	statement?	Actually,	no.	It	is	my	experience	that	

multiple	gestures	of	the	same	type	can	be	available	during	a	single	Update	call.	

842	

	

	

	 	 	 	 	 	

	 	

	

	

	 	 	 	

	

The	Draw	override	simply	draws	the	Texture2D	at	the	updated	position:	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.CornflowerBlue);

 spriteBatch.Begin();

 spriteBatch.Draw(texture, texturePosition, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}

Initially	the	Texture2D is	parked	at	the	upperleft	corner	of	the	screen	but	by	dragging	your	

finger	across	the	screen	you	can	move	it	around:	

You	can	actually	drag	your	finger	anywhere	on	the	screen	and	the	texture	moves	in	response!	

The	program	doesn’t	check	if	the	finger	is	actually	sitting	on	the	Texture2D	but	that’s	a	fairly	

easy	enhancement:	

while (TouchPanel.IsGestureAvailable)

{

GestureSample gesture = TouchPanel.ReadGesture();

if (gesture.GestureType == GestureType.FreeDrag)

 {

if (gesture.Position.X > texturePosition.X &&

 gesture.Position.X < texturePosition.X + texture.Width &&

 gesture.Position.Y > texturePosition.Y &&

 gesture.Position.Y < texturePosition.Y + texture.Height)

{

 texturePosition += gesture.Delta;

}

 }

}

843	

	

	

	 	

	

	 	 	

	 	 	

	

	 	 	

	 	 	 	 	 	

	

	 	 	 	

	 	

	 	 	 	 	

	

You	may	not	care	for	the	way	this	logic	works	either.	If	you	drag	your	finger	across	the	screen	

in	an	area	outside	from	the	texture,	the	texture	won’t	move,	but	if	your	finger	then	slides	over	

the	texture,	it	will	start	up.	You’ll	probably	want	to	drag	the	texture	only	if	the	first	FreeDrag	in	

a	sequence	is	over	the	texture.	If	not,	you’ll	want	to	ignore	all	FreeDrag gesture	samples	until	

a	DragComplete	occurs.	

Scale
and
Rotate

Let’s	continue	examining	dragging	gestures	involving	a	simple	figure,	but	using	those	

gestures	to	implement	scaling	and	rotation	rather	than	movement.	For	the	next	three	

programs	I’ll	position	the	Texture2D in	the	center	of	the	screen,	and	it	will	remain	in	the	

center	except	that	you	can	scale	it	or	rotate	it	with	a	single	finger.	

The	OneFingerScale	project	has	a	couple	more	fields	than	the	previous	program:	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

Texture2D texture;

Vector2 screenCenter;

Vector2 textureCenter;

Vector2 textureScale = Vector2.One;

public Game1()

 {

graphics = new GraphicsDeviceManager(this);

Content.RootDirectory = "Content";

// Frame rate is 30 fps by default for Windows Phone.

TargetElapsedTime = TimeSpan.FromTicks(333333);

TouchPanel.EnabledGestures = GestureType.FreeDrag;

 }

 …

}

The	program	needs	the	center	of	the	Texture2D	because	it	uses	a	long	version	of	the	Draw

call	to	SpriteBatch	to	include	an	origin	argument.	As	you’ll	recall,	the	origin	argument	to	Draw	

is	the	point	in	the	Texture2D that	is	aligned	with	the	position	argument,	and	which	also	serves	

as	the	center	of	scaling	and	rotation.	

844	

	

	 	 	 	

	 	 	 	 	 	

	 	

	 	 	

	

	 	

	

	 	

	 	 	

	 	 	

	

Notice	that	the	textureScale field	is	set	to	the	vector	(1,
1),	which	means	to	multiply	the	width	

and	height	by	1.	It’s	a	common	mistake	to	set	scaling	to	zero,	which	tends	to	make	graphical	

objects	disappear	from	the	screen.	

All	the	uninitialized	fields	are	set	in	the	LoadContent	override:	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

// Create a new SpriteBatch, which can be used to draw textures.

 spriteBatch = new SpriteBatch(GraphicsDevice);

Viewport viewport = this.GraphicsDevice.Viewport;

 screenCenter = new Vector2(viewport.Width / 2, viewport.Height / 2);

 texture = this.Content.Load<Texture2D>("PetzoldTattoo");

 textureCenter = new Vector2(texture.Width / 2, texture.Height / 2);

}

The	handling	of	the	FreeDrag	gesture	in	the	following	Update	override	doesn’t	attempt	to	

determine	if	the	finger	is	over	the	bitmap.	Because	the	bitmap	is	positioned	in	the	center	of	

the	screen	and	it	will	be	scaled	to	various	degrees,	that	calculation	is	a	little	more	difficult	

(although	certainly	not	impossible.)	

Instead,	the	Update	override	shows	how	to	use	the	Delta property	to	determine	the	previous	

position	of	the	finger,	which	is	then	used	to	calculate	how	far	the	finger	has	moved	from	the	

center	of	the	texture	(which	is	also	the	center	of	the	screen)	during	this	particular	part	of	the	

entire	gesture:	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

// Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

 while (TouchPanel.IsGestureAvailable)

 {

GestureSample gesture = TouchPanel.ReadGesture();

if (gesture.GestureType == GestureType.FreeDrag)

{

Vector2 prevPosition = gesture.Position - gesture.Delta;

 float scaleX = (gesture.Position.X - screenCenter.X) /

 (prevPosition.X - screenCenter.X);

845	

	

	 	 	

	

	 	

	 	 	 	 	

	

	 	

	 	

	

	 	 	 	

	 	 	 	

 float scaleY = (gesture.Position.Y - screenCenter.Y) /

 (prevPosition.Y - screenCenter.Y);

 textureScale.X *= scaleX;

 textureScale.Y *= scaleY;

}

 }

 base.Update(gameTime);

}

For	example,	the	center	of	the	screen	is	probably	the	point	(400,	240).	Suppose	during	this	

particular	part	of	the	gesture,	the	Position property	is	(600,	200)	and	the	Delta property	is	(20,	

10).	That	means	the	previous	position	was	(580,	190).	In	the	horizontal	direction,	the	distance	

of	the	finger	from	the	center	of	the	texture	increased	from	180	pixels	(580	minus	400)	to	200	

pixels	(600	minus	400)	for	a	scaling	factor	of	200	divided	by	180	or	1.11.	In	the	vertical	

direction,	the	distance	from	the	center	decreased	from	50	pixels	(240	minus	190)	to	40	pixels	

(240	minus	200)	for	a	scaling	factor	of	40	divided	by	80	or	0.80.	The	image	increases	in	size	by	

11%	in	the	horizontal	direction	and	decreases	by	20%	in	the	vertical.	

Therefore,	multiply	the	X	component	of	the	scaling	vector	by	1.11	and	the	Y	component	by	

0.80.	As	expected,	that	scaling	factor	shows	up	in	the	Draw	override:	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.CornflowerBlue);

 spriteBatch.Begin();

 spriteBatch.Draw(texture, screenCenter, null, Color.White, 0,

 textureCenter, textureScale, SpriteEffects.None, 0);

 spriteBatch.End();

 base.Draw(gameTime);

}

Probably	the	most	rewarding	way	to	play	with	this	program	is	to	“grab”	the	image	at	one	of	

the	corners	and	move	that	corner	roughly	towards	or	away	from	the	center:	

846

	

	

	 	 	

	

	

	 	 	 	 	 	 	

	

	 	 	 	

	 	

	

	

	 	 	

	

	 	 	

	

	 	

	 	 	 	

	 	

	 	

As	you	can	see,	there’s	nothing	to	prevent	the	image	from	losing	its	proper	aspect	ratio,	as	

the	calculations	above	imply.	You	can	even—by	sweeping	your	finger	across	the	vertical	

center	or	horizontal	center	of	the	screen—cause	the	image	to	scale	down	to	nothing!	

In	a	reallife	application,	you	probably	want	to	put	a	lower	limit	on	the	scaling	factor,	perhaps	

0.1	or	0.25,	just	to	leave	enough	so	the	user	can	size	it	back	up.		

It’s	also	likely	that	in	some	applications,	you’ll	want	to	preserve	the	aspect	ratio	of	the	image.	

You’ll	want	to	derive	just	one	scaling	factor	that	applies	to	both	horizontal	and	vertical	

scaling.	It	might	seem	reasonable	to	calculate	separate	scaling	factors	as	shown	in	the	

OneFingerScale	program	and	then	just	average	them.	But	this	is	clearly	wrong.	If	the	user	

knows	that	a	program	preserves	aspect	ratio,	the	user	will	expect	the	image	to	scale	

appropriately	with	just	a	horizontal	drag	or	a	vertical	drag.	

You	might	consider	calculating	both	scaling	factors	and	taking	the	maximum.	But	that’s	not	

quite	right	either.	You’ll	notice	in	OneFingerScale	that	when	your	finger	is	close	to	the	center	

of	the	image,	just	a	little	movement	is	magnified	into	a	large	amount	of	scaling.	If	the	finger	is	

close	to	the	center	horizontally	but	far	from	the	center	vertically,	then	the	scaling	factors	are	

different	for	equal	horizontal	and	vertical	finger	movement.	

Perhaps	the	best	strategy	is	to	examine	the	Delta property	and	determine	whether	the	X	or	Y	

component	has	the	greatest	magnitude	(apart	from	sign)	and	then	use	that	for	the	scaling	

calculation.	This	is	shown	in	the	OneFingerUniformScale	project.	

The	fields	are	the	same	as	the	previous	program	except	that	a	Vector2	scaling	factor	has	been	

replaced	with	a	float.	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

847	

	

	

	 	 	 	

	 	

	

	

Texture2D texture;

Vector2 screenCenter;

Vector2 textureCenter;

float textureScale = 1;

 …

}

The	LoadContent	override	is	exactly	the	same	as	the	previous	version,	but	the	gesture	

handling	in	the	Update override	has	become	more	extensive.	The	method	checks	whether	the	

absolute	value	of	the	horizontal	or	vertical	component	of	the	Delta	vector	is	largest,	and	also	

skips	the	calculation	if	they’re	both	zero,	which	in	the	case	when	the	user	first	touches	a	finger	

to	the	screen.	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

// Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

 while (TouchPanel.IsGestureAvailable)

 {

GestureSample gesture = TouchPanel.ReadGesture();

if (gesture.GestureType == GestureType.FreeDrag)

{

Vector2 prevPosition = gesture.Position - gesture.Delta;

 float scale = 1;

 if (Math.Abs(gesture.Delta.X) > Math.Abs(gesture.Delta.Y))

 {

 scale = (gesture.Position.X - screenCenter.X) /

 (prevPosition.X - screenCenter.X);

 }

 else if (gesture.Delta.Y != 0)

 {

 scale = (gesture.Position.Y - screenCenter.Y) /

 (prevPosition.Y - screenCenter.Y);

 }

 if (!float.IsInfinity(scale) && !float.IsNaN(scale))

 {

 textureScale = Math.Min(10,

Math.Max(0.25f, scale * textureScale));

 }

}

 }

 base.Update(gameTime);

}

848	

	

	 	

	

	

	

	 	 	 	

	 	 	

	 	 	

	 	

	

	

	 	 	 	 	

	 	 	 	 	

	 	 		

	

	

Another	precaution	implemented	here	is	checking	if	the	calculated	value	is	infinite	or	not	a	

number.	This	could	be	the	case	if	the	user	touches	the	exact	center	of	the	screen	resulting	in	

division	by	zero.	I’ve	also	clamped	the	overall	scaling	factor	between	0.25	and	10,	which	are	

rather	arbitrary	values	but	still	an	important	concept.	

The	Draw	override	is	the	same	as	in	the	previous	program	except	that	textureScale	is	a	float

rather	than	a	Vector2:	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.CornflowerBlue);

 spriteBatch.Begin();

 spriteBatch.Draw(texture, screenCenter, null, Color.White, 0,

 textureCenter, textureScale, SpriteEffects.None, 0);

 spriteBatch.End();

 base.Draw(gameTime);

}

I	set	a	maximum	on	textureScale	after	experimenting	with	an	earlier	version	of	the	program.	I	

touched	the	image	very	close	to	the	center	of	the	screen	and	a	small	movement	expanded	

the	image	by	a	scaling	factor	of	several	hundred,	where	only	two	pixels	of	the	image	were	

visible	on	the	screen!	It’s	safe	to	say	that’s	too	much	scaling.	

It’s	possible	for	a	program	to	ignore	certain	gestures	that	occur	too	close	to	a	reference	point.	

I	do	this	in	the	next	project.	

Although	singlefinger	scaling	is	somewhat	unusual,	singlefinger	rotation	is	very	powerful	

and	quite	common—both	on	the	computer	screen	and	in	real	life.	If	your	phone	is	sitting	on	

the	desk	next	to	you,	put	your	finger	on	a	corner	and	pull	it	towards	you.	The	phone	probably	

rotates	a	bit	relative	to	its	center	before	being	dragged.	

Very	often	singlefinger	rotation	is	combined	with	regular	dragging.	Let’s	see	how	this	works.	

The	OneFingerRotation	fields	are	somewhat	similar	to	the	previous	programs:	

849	

	

	

	 	

	 	 	 	

	 	 	 	

	 	 	

	

	 	 	

	

	 	 	

	 	 	

	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

Texture2D texture;

Vector2 texturePosition;

Vector2 textureCenter;

float textureRotation;

 …

}

The	LoadContent	override	is	similar	as	well	The	texturePosition	field	is	initialized	to	be	the	

center	of	the	screen	but	this	will	change	as	the	texture	is	dragged	around	the	screen:	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

// Create a new SpriteBatch, which can be used to draw textures.

 spriteBatch = new SpriteBatch(GraphicsDevice);

Viewport viewport = this.GraphicsDevice.Viewport;

 texturePosition = new Vector2(viewport.Width / 2, viewport.Height / 2);

 texture = this.Content.Load<Texture2D>("PetzoldTattoo");

 textureCenter = new Vector2(texture.Width / 2, texture.Height / 2);

}

The	idea	behind	the	Update	method	is	to	first	examine	the	previous	finger	position	and	the	

new	finger	position	relative	to	the	center	of	the	Texture2D	at	texturePosition.	In	Update	I	

represent	these	two	positions	as	vectors	from	that	center	called	oldVector	and	newVector,	and	

by	“old”	and	“new”	I	mean	“previous”	and	“current.”	If	these	two	vectors	are	at	different	

angles,	then	the	textureRotation	angle	is	altered	by	the	difference	in	those	angles.	

Now	we	want	to	remove	rotation	from	these	finger	positions.	Anything	left	over	should	be	

applied	to	dragging	the	texture.	The	oldVector	is	recalculated	so	it	has	its	original	magnitude	

but	now	points	in	the	same	direction	as	newVector.	A	new	delta	value	is	recalculated	from	

newVector	and	oldVector	and	this	is	used	for	dragging:	

850	

	

	

 XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

// Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

 while (TouchPanel.IsGestureAvailable)

 {

GestureSample gesture = TouchPanel.ReadGesture();

if (gesture.GestureType == GestureType.FreeDrag)

{

Vector2 delta = gesture.Delta;

Vector2 newPosition = gesture.Position;

Vector2 oldPosition = newPosition - delta;

// Find vectors from center of bitmap to touch points

Vector2 oldVector = oldPosition - texturePosition;

Vector2 newVector = newPosition - texturePosition;

// Avoid rotation if fingers are close to center

 if (newVector.Length() > 25 && oldVector.Length() > 25)

 {

// Find angles from center of bitmap to touch points

 float oldAngle = (float)Math.Atan2(oldVector.Y, oldVector.X);

 float newAngle = (float)Math.Atan2(newVector.Y, newVector.X);

// Adjust texture rotation angle

 textureRotation += newAngle - oldAngle;

// Essentially rotate the old vector

 oldVector = oldVector.Length() / newVector.Length() * newVector;

// Re-calculate delta

 delta = newVector - oldVector;

 }

// Move texture

 texturePosition += delta;

}

 }

 base.Update(gameTime);

}

851	

	

	 	 	 	

	 	

	 	 	

	

	 	

	 	 	 	

	

	 	 	 	

	 	 	 	

	

	

	

	

The	Draw	override	references	that	rotation	angle	but	has	a	scaling	factor	equal	to	1:	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.CornflowerBlue);

 spriteBatch.Begin();

 spriteBatch.Draw(texture, texturePosition, null, Color.White,

 textureRotation, textureCenter, 1, SpriteEffects.None, 0);

 spriteBatch.End();

 base.Draw(gameTime);

}

As	you	experiment	with	this,	you’ll	find	that	the	movement	is	very	natural.	You	can	grab	the	

image	at	any	point	and	drag	it,	and	it’s	as	if	the	image	trails	behind	your	finger	just	like	when	

you	use	your	finger	to	move	the	phone	on	your	desk.	

Of	course,	the	most	common	form	of	scaling	implemented	in	multitouch	applications	

involves	two	fingers	in	a	pinching	or	stretching	gesture,	and	in	a	sense,	that	isn’t	much	more	

difficult	than	what	you’ve	already	seen.	I’ve	been	stretching	and	rotating	relative	to	a	

reference	point,	and	with	two	fingers	it’s	similar	except	that	the	reference	point	is	always	the	

other	finger.	

For	example,	put	two	fingers	on	an	onscreen	object.	If	you	keep	one	finger	steady	and	move	

the	other	finger,	you	should	expect	all	scaling	and	rotation	to	occur	relative	to	the	first	finger.	

If	that	first	finger	is	also	moving,	then	whatever	scaling	and	rotation	it	defines	is	relative	to	the	

second	finger.	If	the	two	fingers	move	in	the	same	direction,	then	normal	dragging	results.	

The	math	is	likely	to	get	messy;	fortunately	XNA	provides	some	very	powerful	tools	to	help	

out.	

852	

	

	 	

	 	 	

	 	 	 	 	

	 	 	 	

	 	

		

		

	 	

	

	 	 	 	 	 	 	

	

	 	

		

		

	 	

	 	 	

		

		

	

		

		

	 	

		

Matrix
Transforms

Traditionally,	twodimensional	graphical	systems	have	supported	operations	called	

transforms.	These	are	basically	mathematical	formulas	that	are	applied	to	coordinates	(x,	y)	to	

make	new	coordinates	(xļ,	yļ).	Although	completely	generalized	transforms	can	potentially	be	

very	complex,	twodimensional	graphics	programming	environments	often	restrict	transforms	

to	a	subset	called	affine	(“noninfinite”)	transforms,	which	are	a	slight	superset	of	linear

transforms.	

Linear	transforms	of	x	and	y	look	like	this:	

where	the	subscripted	a	and	b	are	constants	that	define	a	particular	transform.	As	you	can	

see,	xļ	and	yļ	are	both	functions	of	x	and	y,	but	they	are	very	simple	functions.	It’s	just	

multiplication	by	constants	and	adding	the	results;	x	and	y aren’t	multiplied	by	each	other,	for	

example.	

An	affine	translation	adds	in	another	constant	that’s	not	multiplied	by	anything:	

Very	often	some	of	these	constants	are	zero.	If	ax	and	by	are	both	1,	and	bx	and	ay	are	both	

zero,	then	the	formulas	represent	a	type	of	transform	known	as	translation:	

This	transform	just	causes	a	shift	to	another	location—not	unlike	the	OneFingerDrag	program	

that	started	off	this	chapter.	

If	bx	and	ay	are	zero,	and	cx	and	cy	are	also	zero,	then	the	formulas	represent	scaling:	

Coordinates	are	multiplied	by	factors	to	make	objects	larger	or	smaller.		

The	four	multiplicative	constants	can	be	set	to	sines	and	cosines	of	a	particular	angle	like	so:			

853	

	

		

	 	 	 	

	

	 	

	 	

	

	 	

	

	

		

	 	

		

	 	

		

	 	 	

	 	

	 	

	

	

	 	

	 	

	 	 	

The	formulas	rotate	the	point	around	the	origin	by	Į	degrees.	Setting	these	four	constants	to	

other	values	not	related	by	trigonometric	functions	cause	a	type	of	transform	known	as	skew,	

which	transforms	a	square	into	a	parallelogram.	But	that’s	as	strange	as	affine	transforms	get:	

Affine	transforms	never	cause	straight	lines	to	become	curves,	or	parallel	lines	to	become	

nonparallel.	As	the	name	suggests,	affine transforms	don’t	cause	coordinates	to	become	

infinite.	

Translation,	scaling,	and	rotation	are	the	most	common	types	of	transforms,	and	they	can	be	

combined.	To	keep	the	math	easy	(well,	easier)	transforms	are	often	represented	as	3×3	

matrices:	

A	particular	transform	is	applied	to	a	point	(x,	y)	by	representing	the	point	as	a	1×3	matrix	

with	a	1	in	the	third	position	and	performing	a	matrix	multiplication:	

The	identity	matrix	contains	a	diagonal	of	all	1’s	and	results	in	no	transform:	

Representing	transforms	with	matrices	is	of	great	advantage	when	transforms	are	combined.	

Combining	transforms	is	equivalent	to	multiplying	matrices,	and	that’s	an	operation	that	is	

well	known.	It	is	also	well	known	that	matrix	multiplication	is	not	commutative.	The	order	of	

the	multiplication	makes	a	difference	in	the	result.	

For	example,	you	might	apply	a	scale	transform	to	a	graphical	object	to	make	it	larger,	and	

then	apply	a	translate	transform	to	move	it.	If	you	switch	those	two	operations—perform	the	

translation	first	and	then	the	scaling—the	result	is	different	because	you’re	effectively	scaling	

the	original	translation	factors	as	well.	

Transforms	in	2D	space	require	a	3×3	matrix,	and	transforms	in	3D	space	require	a	4×4	

matrix.	There	is	a	good	reason	why	the	matrix	needs	one	more	dimension	that	the	coordinate	

space.	It’s	all	about	translation.	Translation	is	very	basic	and	very	desirable	but	it	can’t	be	

represented	with	a	linear	transform	that	only	applies	factors	to	x	and	y.	To	represent	

translation	as	a	linear	transform,	another	dimension	must	be	added.	Translation	in	two	

854	

	

	 	 	

	 	 	

	

	

	

	 	 	 	 	

	 	 	

	

	 	 	 	 	

	 	 	

	 	 	 	

	 	 	

	 	 	 	

	 	

	 	

	 	 	 	

	

	 	 	

	

	 	 	 	

	 	 	

	 	

	 	

	 	

	 	

	 	 	 	

	 	 	

	

dimensions	in	actually	skew	in	three	dimensions,	and	that’s	why	the	twodimensional	point	is	

converted	to	a	threedimensional	point	with	a	Z	value	of	1	for	multiplying	by	the	matrix.	

The	third	column	of	a	twodimensional	affine	transform	matrix	is	always	two	zeroes	and	a	1	in	

the	bottom	right	corner.	That’s	what	makes	it	an	affine	transform.	(I’ll	discuss	nonaffine	two

dimensional	transforms	towards	the	end	of	this	chapter.)	

After	my	big	buildup,	you’ll	probably	be	surprised	to	learn	that	XNA	is	unlike	virtually	all	

other	graphical	programming	environments	in	that	it	does	not	support	a	structure	that	

encapsulates	a	3×3	transform	matrix.	In	XNA	matrices	are	used	much	more	for	3D	

programming,	so	the	XNA	Matrix structure	actually	encapsulates	a	4×4	matrix	suitable	for	3D	

graphics	but	a	bit	overabundant	for	2D	graphics.	

Although	you	can	use	the	Matrix structure	with	2D	graphics—and	it’s	very	convenient	for	

performing	compound	transforms—there	is	not	much	support	for	transforms	in	2D	drawing	

except	a	rather	more	extensive	version	of	the	Begin	call	of	SpriteBatch:	

spriteBatch.Begin(SpriteSortMode.Deferred, null, null, null, null, null, matrix);

If	you	use	this	form	of	the	Begin	call,	then	that	Matrix	object	will	affect	all	the	Draw	and	

DrawString	calls	until	End.	This	can	be	very	useful	for	applying	a	transform	to	a	whole	group	

of	graphical	objects.	

You	can	also	apply	transforms	to	Vector2 objects	“manually”	with	several	versions	of	the	static	

Vector2.Transform	method.	

The	Matrix	structure	supports	very	many	static	methods	for	creating	Matrix	objects	that	

represent	various	types	of	transforms.	These	are	all	designed	for	3D,	but	here’s	how	you	can	

use	the	most	basic	ones	for	2D:	

Matrix matrix = Matrix.CreateTranslation(xOffset, yOffset, 0);

Matrix matrix = Matrix.CreateScale(xScale, yScale, 1);

Matrix matrix = Matrix.CreateRotationZ(radians);

The	last	argument	on	the	first	two	methods	is	normally	set	to	the	translation	or	scaling	factor	

for	the	threedimensional	Z	axis.	Notice	I’ve	set	the	third	argument	in	the	second	call	to	1	

rather	than	0.	A	0	will	work	for	most	purposes,	but	if	you	ever	need	to	invert	the	matrix,	a	zero	

scaling	factor	is	a	real	deal	killer.	Also	notice	that	the	third	method	name	makes	reference	to	

the	Z	axis.	The	method	needs	to	calculate	rotation	around	the	Z	axis	for	rotation	in	the	two

dimensional	XY	plane.	

The	Matrix	structure	supports	arithmetical	operators,	so	you	can	easily	multiply	matrices	for	

compounding	transforms.	One	of	the	most	common	reasons	to	multiply	matrices	is	to	

represent	scaling	or	rotation	around	a	particular	point.	

855	

	

	 	 	

	 	 	

	 	

	

	 	

	 	

	 	 	 	

		

	 	 	

	 	

		

	 	 	

	 	 	

	 	 	 	

		

		

	 	 	 	

	

	 	 	 	

	 	

	 	

Suppose	you	have	a	point	stored	as	a	Vector2	object	called	center.	You	want	to	calculate	a	

matrix	that	represents	rotation	by	angle	degrees	but	centered	on	that	point.	You	begin	with	

translation	to	move	that	center	point	to	the	origin,	then	you	apply	the	rotation	(or	scaling)	

and	then	another	translation	to	move	the	center	back	to	where	it	was:	

Matrix matrix = Matrix.CreateTranslation(-center.X, -center.Y, 0);

matrix *= Matrix.CreateRotationZ(angle);

matrix *= Matrix.CreateTranslation(center.X, center.Y, 0);

Notice	the	multiplication	operators.	

The	Matrix	structure	in	XNA	has	16	public	fields	of	type	float	representing	all	16	cells	of	the	

4×4	matrix.	These	have	names	that	indicate	their	row	and	column	position	within	the	matrix:	

Rather	than	using	the	static	methods	of	Matrix	to	create	Matrix	objects,	you	can	set	these	

fields	individually	(or	set	them	all	in	a	16argument	constructor.)	The	subscripted	constants	

that	I	used	earlier	correspond	to	these	cells:	

The	M11	field	is	the	horizontal	scaling	factor	and	M22	is	vertical	scaling;	M41	is	horizontal	

translation	and	M42	is	vertical	translation.	Or,	you	can	rewrite	the	2D	affine	transform	

formulas	using	the	Matrix structure	field	names:	

Knowing	the	relationship	between	these	fields	and	transforms	can	aid	in	extracting	

information	from	the	Matrix structure	or	implementing	short	cuts	that	don’t	involve	creating	

new	Matrix	objects	and	multiplying	them.	I’ll	demonstrate	some	of	these	techniques	in	the	

pages	ahead.	

The
Pinch
Gesture

With	the	Pinch	gesture,	four	Vector2	properties	of	the	GestureSample	are	valid:	Position,	Delta,	

Position2,	and	Delta2.	The	first	two	reflect	the	position	and	movement	of	one	finger;	the	

second	two	represent	the	second	finger.	This	is	ideal	for	scaling,	although	the	actual	

mathematics	are	probably	not	immediately	obvious.	

856	

	

	 	 	

	 	 	 	

	 	

	 	 	

	 	 	

	 	

	

	 	

	 	 	

	 	 	 	

	 	 	 	 	 	

	

	

Generally	you’ll	want	to	support	both	FreeDrag	and	Pinch so	the	user	can	use	one	or	two	

fingers.	Then	you	need	to	decide	whether	to	restrict	scaling	to	uniform	or	nonuniform	

scaling,	and	whether	rotation	should	be	supported.	

The	DragAndPinch	program	handles	both	FreeDrag	and	Pinch	gestures	with	nonuniform	

scaling	and	without	rotation.	As	usual,	these	gestures	are	enabled	in	the	constructor.	The	new	

field	you’ll	see	here	is	Matrix	object	initialized	to	the	notransform	identity	state	with	the	

static	Matrix.Identity	property:	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

Texture2D texture;

Matrix matrix = Matrix.Identity;

public Game1()

 {

graphics = new GraphicsDeviceManager(this);

Content.RootDirectory = "Content";

// Frame rate is 30 fps by default for Windows Phone.

TargetElapsedTime = TimeSpan.FromTicks(333333);

TouchPanel.EnabledGestures = GestureType.FreeDrag | GestureType.Pinch;

 }

 …

}

The	statement	

Matrix matrix = Matrix.Identity;

is	not	the	same	as:	

Matrix matrix = new Matrix();

Matrix	is	a	structure,	and	like	all	structures	its	fields	are	initialized	to	zero	values.	A	Matrix

object	with	all	zeroes	is	not	good	for	anything	since	it	completely	obliterates	anything	it’s	

applied	to.	A	default	donothing	Matrix object	should	have	all	its	diagonal	cells	set	to	1,	and	

that’s	what’s	provided	by	the	Matrix.Identity	property.	

All	dragging	and	pinching	operations	will	be	applied	to	the	matrix	field,	which	is	then	used	in	

the	Draw	override.		

The	LoadContent	method	merely	loads	the	Texture2D:	

857	

	

	

	 	 	

	 	 	 	 	

	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

// Create a new SpriteBatch, which can be used to draw textures.

 spriteBatch = new SpriteBatch(GraphicsDevice);

 texture = this.Content.Load<Texture2D>("PetzoldTattoo");

}

The	Update	override	handles	both	FreeDrag	and	Pinch:	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

 // Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

 while (TouchPanel.IsGestureAvailable)

 {

GestureSample gesture = TouchPanel.ReadGesture();

switch (gesture.GestureType)

{

 case GestureType.FreeDrag:

 matrix *= Matrix.CreateTranslation(gesture.Delta.X, gesture.Delta.Y,

0);

 break;

 case GestureType.Pinch:

Vector2 oldPoint1 = gesture.Position - gesture.Delta;

Vector2 newPoint1 = gesture.Position;

Vector2 oldPoint2 = gesture.Position2 - gesture.Delta2;

Vector2 newPoint2 = gesture.Position2;

 matrix *= ComputeScaleMatrix(oldPoint1, oldPoint2, newPoint2);

 matrix *= ComputeScaleMatrix(newPoint2, oldPoint1, newPoint1);

 break;

}

 }

 base.Update(gameTime);

}

Notice	that	for	FreeDrag,	the	method	creates	a	new	Matrix	from	the	static	

Matrix.CreateTranslation	method	and	multiplies	it	by	the	existing	matrix field.	You	can	replace	

that	statement	with	the	following:	

matrix.M41 += gesture.Delta.X;

matrix.M42 += gesture.Delta.Y;

858	

	

	 	

	 	 	 	 	

	 	 	

	 	 	 	 	 	 	 	

	 	 	

	 	 	 	

	 	

	 	 	

	 	

	 	

	

	 	

	 	 	 	

	 	

For	the	Pinch	gesture,	Update	breaks	down	the	data	into	“old”	points	and	“new”	points.	When	

two	fingers	are	both	moving	relative	to	each	other,	you	can	determine	a	composite	scaling	

factor	by	treating	the	two	fingers	separately.	Assume	the	first	finger	is	fixed	in	position	and	

the	other	is	moving	relative	to	it,	and	then	the	second	finger	is	fixed	in	position	and	the	first	

finger	is	moving	relative	to	it.	Each	represents	a	separate	scaling	operation	that	you	then	

multiply.	In	each	case,	you	have	a	reference	point	(the	fixed	finger)	and	an	old	point	and	a	

new	point	(the	moving	finger).	

To	do	this	properly,	for	the	first	scaling	operation	the	reference	point	should	reflect	the	old

position	of	the	fixed	finger,	but	for	the	second	scaling	factor	you	should	use	a	reference	point	

based	on	the	new	position	of	the	fixed	finger.	That’s	the	reason	for	the	slightly	asymmetrical	

calls	to	the	ComputeScaleMatrix	method	shown	above.	Here’s	the	method	itself:	

XNA Project: File: (excerpt)

Matrix ComputeScaleMatrix(Vector2 refPoint, Vector2 oldPoint, Vector2 newPoint)

{

float scaleX = (newPoint.X - refPoint.X) / (oldPoint.X - refPoint.X);

float scaleY = (newPoint.Y - refPoint.Y) / (oldPoint.Y - refPoint.Y);

if (float.IsNaN(scaleX) || float.IsInfinity(scaleX) ||

float.IsNaN(scaleY) || float.IsInfinity(scaleY) ||

scaleX <= 0 || scaleY <= 0)

 {

return Matrix.Identity;

 }

 scaleX = Math.Min(1.1f, Math.Max(0.9f, scaleX));

 scaleY = Math.Min(1.1f, Math.Max(0.9f, scaleY));

Matrix matrix = Matrix.CreateTranslation(-refPoint.X, -refPoint.Y, 0);

 matrix *= Matrix.CreateScale(scaleX, scaleY, 1);

 matrix *= Matrix.CreateTranslation(refPoint.X, refPoint.Y, 0);

return matrix;

}

That	reference	point	plays	two	roles	here:	It	is	used	to	measure	the	increase	or	decrease	in	the	

position	of	the	moving	finger,	and	it	is	used	to	bracket	the	Matrix.CreateScale	calls	at	the	end	

to	reflect	scaling	around	a	center	point.	You	can	replace	those	three	calls	at	the	end	with	the	

following:	

Matrix matrix = Matrix.Identity;

matrix.M41 -= refPoint.X;

matrix.M42 -= refPoint.Y;

matrix *= Matrix.CreateScale(scaleX, scaleY, 1);

859	

	

	

	 	

	 	 	 	

	 	 	

	 	

	 	

	 	 	

	

	

	 	 	

	

matrix.M41 += refPoint.X;

matrix.M42 += refPoint.Y;

The	accumulated	composite	matrix	is	simply	passed	to	the	last	argument	of	the	Begin	call	of	

spriteBatch	in	the	Draw	override:	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.CornflowerBlue);

 spriteBatch.Begin(SpriteSortMode.Deferred, null, null, null, null, null,

matrix);

 spriteBatch.Draw(texture, Vector2.Zero, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}

If	you’d	prefer	to	use	the	simpler	form	of	the	Begin	call,	you	can	extract	the	scaling	and	

position	information	from	the	Matrix object	and	use	them	in	the	Draw	call:	

Vector2 scale = new Vector2(matrix.M11, matrix.M22);

Vector2 position = new Vector2(matrix.M41, matrix.M42);

spriteBatch.Begin();

spriteBatch.Draw(texture, position, null, Color.White, 0,

Vector2.Zero, scale, SpriteEffects.None, 0);

spriteBatch.End();

The	Matrix	structure	also	supports	a	Decompose	method,	which	extracts	scaling,	rotation,	and	

translation	components.	The	rotation	component	is	the	form	of	a	Quaternion,	which	is	a	very	

common	tool	for	3D	rotation	but	never	(to	my	knowledge)	used	in	2D	graphics.	Replace	those	

scale	and	position	calculations	with	the	following:	

Vector3 scale3;

Quaternion quaternion;

Vector3 translation3;

matrix.Decompose(out scale3, out quaternion, out translation3);

Vector2 scale = new Vector2(scale3.X, scale3.Y);

Vector2 position = new Vector2(translation3.X, translation3.Y);

Let’s	add	both	one	and	twofinger	rotation	support	to	the	DragAndPinch	program	and	call	it	

DragPinchRotate.	Everything	is	the	same	except	for	the	Update	override.	

860	

	

	

	 	 	 	

	 	 	 	

	

	 	 	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

// Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

 while (TouchPanel.IsGestureAvailable)

 {

GestureSample gesture = TouchPanel.ReadGesture();

switch (gesture.GestureType)

{

 case GestureType.FreeDrag:

Vector2 newPoint = gesture.Position;

Vector2 oldPoint = newPoint - gesture.Delta;

Vector2 textureCenter = new Vector2(texture.Width / 2,

texture.Height / 2);

Vector2 refPoint = Vector2.Transform(textureCenter, matrix);

 matrix *= ComputeRotateAndTranslateMatrix(refPoint, oldPoint,

newPoint);

 break;

 case GestureType.Pinch:

Vector2 oldPoint1 = gesture.Position - gesture.Delta;

Vector2 newPoint1 = gesture.Position;

Vector2 oldPoint2 = gesture.Position2 - gesture.Delta2;

Vector2 newPoint2 = gesture.Position2;

 matrix *= ComputeScaleAndRotateMatrix(oldPoint1, oldPoint2,

newPoint2);

 matrix *= ComputeScaleAndRotateMatrix(newPoint2, oldPoint1,

newPoint1);

 break;

}

 }

 base.Update(gameTime);

}

In	the	earlier	program	that	demonstrated	onefinger	rotation,	the	Texture2D	was	always	

positioned	at	a	point	corresponding	to	its	center,	so	the	rotation	reference	point	was	always	

readily	available.	This	Texture2D is	positioned	by	the	Draw	call	of	SpriteBatch	at	the	upperleft	

corner	of	the	display,	but	its	actual	location	is	somewhere	else	based	on	the	Matrix	object.	

For	that	reason,	the	FreeDrag	logic	expresses	the	center	of	the	Texture2D relative	to	its	upper

left	corner	as	a	Vector2	value	and	then	applies	the	current	matrix	transform	to	obtain	a	

refPoint	relative	to	the	screen.	

861	

	

	 	

	 	 	

	

	

	 	 	

	 	

	 	

	 	

	 	

	

	

The	ComputeRotateAndTranslateMatrix	method	that	Update	calls	for	the	FreeDrag	gesture	is	

very	similar	to	the	previous	onefinger	rotation	logic	except	that	transforms	are	obtained	and	

multiplied:	

XNA Project: File: (excerpt)

Matrix ComputeRotateAndTranslateMatrix(Vector2 refPoint, Vector2 oldPoint, Vector2

newPoint)

{

Matrix matrix = Matrix.Identity;

Vector2 delta = newPoint - oldPoint;

Vector2 oldVector = oldPoint - refPoint;

Vector2 newVector = newPoint - refPoint;

// Avoid rotation if fingers are close to center

if (newVector.Length() > 25 && oldVector.Length() > 25)

 {

// Find angles from center of bitmap to touch points

float oldAngle = (float)Math.Atan2(oldVector.Y, oldVector.X);

float newAngle = (float)Math.Atan2(newVector.Y, newVector.X);

// Calculate rotation matrix

float angle = newAngle - oldAngle;

matrix *= Matrix.CreateTranslation(-refPoint.X, -refPoint.Y, 0);

matrix *= Matrix.CreateRotationZ(angle);

matrix *= Matrix.CreateTranslation(refPoint.X, refPoint.Y, 0);

// Essentially rotate the old vector

oldVector = oldVector.Length() / newVector.Length() * newVector;

// Re-calculate delta

delta = newVector - oldVector;

 }

// Include translation

 matrix *= Matrix.CreateTranslation(delta.X, delta.Y, 0);

return matrix;

}

Notice	that	the	Matrix.CreateRotationZ	call	is	sandwiched	between	two	

Matrix.CreateTranslation calls	to	perform	the	rotation	relative	to	the	reference	point,	which	is	

the	transformed	center	of	the	Texture2D.	At	the	end,	another	Matrix.CreateTranslation	call	

handles	the	translation	part	of	the	gesture	after	rotation	has	been	extracted.	

Some	of	that	same	logic	was	merged	into	the	ComputeScaleMatrix method	from	the	previous	

project	for	this	new	ComputeScaleAndRotateMatrix	method	that’s	called	twice	for	any	Pinch

gesture:	

862	

	

	 	 	 	 	

	

	

	

	 	

	

XNA Project: File: (excerpt)

Matrix ComputeScaleAndRotateMatrix(Vector2 refPoint, Vector2 oldPoint, Vector2

newPoint)

{

Matrix matrix = Matrix.Identity;

Vector2 oldVector = oldPoint - refPoint;

Vector2 newVector = newPoint - refPoint;

// Find angles from reference point to touch points

float oldAngle = (float)Math.Atan2(oldVector.Y, oldVector.X);

float newAngle = (float)Math.Atan2(newVector.Y, newVector.X);

// Calculate rotation matrix

float angle = newAngle - oldAngle;

 matrix *= Matrix.CreateTranslation(-refPoint.X, -refPoint.Y, 0);

 matrix *= Matrix.CreateRotationZ(angle);

 matrix *= Matrix.CreateTranslation(refPoint.X, refPoint.Y, 0);

// Essentially rotate the old vector

 oldVector = oldVector.Length() / newVector.Length() * newVector;

float scale = 1;

// Determine scaling from dominating delta

if (Math.Abs(newVector.X - oldVector.X) > Math.Abs(newVector.Y - oldVector.Y))

scale = newVector.X / oldVector.X;

else

scale = newVector.Y / oldVector.Y;

// Calculate scaling matrix

if (!float.IsNaN(scale) && !float.IsInfinity(scale) && scale > 0)

 {

scale = Math.Min(1.1f, Math.Max(0.9f, scale));

matrix *= Matrix.CreateTranslation(-refPoint.X, -refPoint.Y, 0);

matrix *= Matrix.CreateScale(scale, scale, 1);

matrix *= Matrix.CreateTranslation(refPoint.X, refPoint.Y, 0);

 }

return matrix;

}

To	scale	uniformly,	the	method	examines	whether	movement	is	dominant	in	the	horizontal	

direction	or	vertical	direction	relative	to	the	reference	point,	and	that	involves	a	comparison	

between	the	absolute	values	of	the	differences	between	newVector	and	oldVector	(with	the	

rotation	component	already	extracted).	Notice	also	how	Matrix.CreateScale	is	sandwiched	

between	two	Matrix.CreateTranslation	calls	based	on	the	reference	points.	

And	now	you	can	perform	onefinger	translation	and	rotation,	and	twofinger	uniform	scaling	

and	rotation:	

863	

	

	

	 	

	

	 	 	

	

	

	 	 	

	 	 	

	 	

	 	

	

	 	 	 	 	

	 	 	

	 	 	

	 	 	 	 	 	 	

	 	 	

	 	 	

	 	 	 	 	 	

	 	

	

	

	

Although	not	explicitly	included,	a	pair	of	fingers	can	also	translate	the	image	if	the	fingers	

move	in	the	same	direction.	

Flick
and
Inertia

In	the	movie	Minority Report	(2002),	Tom	Cruise	demonstrated	how	to	flick	an	object	off	to	

one	side	of	the	computer	screen,	and	the	whole	world	said	“Way	cool!”	

For	the	most	part,	implementing	inertia	in	the	touch	interfaces	of	a	program	is	your	

responsibility.	XNA	helps	out	just	a	little	with	the	Flick	gesture,	which	is	generated	when	the	

user	quickly	sweeps	a	finger	on	the	screen.	The	Delta	property	of	the	GestureSample	object	

indicates	the	velocity	of	the	finger	in	pixels	per	second.	(That’s	what	it’s	supposed	to	be,	

anyway.	It	actually	seems	to	be	closer	to	half	the	actual	velocity.)	The	velocity	is	represented	

as	a	Vector2,	so	it	indicates	direction	as	well	as	magnitude.	

There’s	no	position	information	with	the	Flick gesture.	It’s	basically	the	same	no	matter	where	

you	flick	the	screen.	If	you	need	to	implement	inertia	based	on	finger	position	as	well	as	

velocity,	you’ll	probably	find	yourself	calculating	velocity	from	Drag	gestures	by	dividing	the	

Delta	values	by	the	ElapsedGameTime	property	of	the	GameTime	argument	to	Update.	

To	implement	inertia,	you	need	to	continue	moving	an	object	based	on	an	initial	velocity	and	

a	deceleration	value.	If	the	velocity	is	in	units	pixels	per	second,	the	deceleration	is	probably	in	

units	of	pixels	per	second	squared.	Every	second,	the	velocity	decreases	by	the	deceleration	

value	until	the	magnitude	gets	down	to	zero.	For	Update	calls	occurring	every	fraction	of	a	

second,	the	velocity	decreases	proportionally.	

The	FlickInertia	project	demonstrates	a	very	simple	implementation	of	inertia.	The	fields	

include	position,	velocity,	and	a	deceleration	constant:	

864	

	

	 	 	 	 	 	 	

	 	

	 	

	 	 	 	

	 	

	 	 	

	

	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

const float DECELERATION = 1000; // pixels per second squared

Texture2D texture;

Vector2 position = Vector2.Zero;

Vector2 velocity;

SpriteFont segoe14;

StringBuilder text = new StringBuilder();

public Game1()

 {

graphics = new GraphicsDeviceManager(this);

Content.RootDirectory = "Content";

// Frame rate is 30 fps by default for Windows Phone.

TargetElapsedTime = TimeSpan.FromTicks(333333);

TouchPanel.EnabledGestures = GestureType.Flick;

 }

 …

}

The	constructor	enables	only	Flick	gestures.	The	LoadContent	override	loads	both	the	

Texture2D	and	a	font	for	displaying	status	information	(position	and	velocity)	on	the	screen:	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

// Create a new SpriteBatch, which can be used to draw textures.

 spriteBatch = new SpriteBatch(GraphicsDevice);

 texture = this.Content.Load<Texture2D>("PetzoldTattoo");

 segoe14 = this.Content.Load<SpriteFont>("Segoe14");

}

The	Update	override	has	several	responsibilities.	The	first	is	to	read	the	gesture	and	

accumulate	any	additional	velocity	in	the	velocity	field.	If	there’s	velocity	in	effect,	the	velocity

vector	is	multiplied	by	the	elapsed	time	in	seconds	to	obtain	a	change	in	position.	This	is	

added	to	the	position	vector.	The	magnitude	of	the	velocity	vector	must	then	be	decreased	by	

an	amount	based	on	the	DECELERATION	constant	also	multiplied	by	the	elapsed	time	in	

seconds.	Finally,	a	StringBuilder	is	formatted	to	display	the	two	vectors:	

865	

	

	 	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

// Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

// Set velocity from Flick gesture

 while (TouchPanel.IsGestureAvailable)

 {

GestureSample gesture = TouchPanel.ReadGesture();

if (gesture.GestureType == GestureType.Flick)

 velocity += gesture.Delta;

 }

// Use velocity to adjust position and decelerate

 if (velocity != Vector2.Zero)

 {

float elapsedSeconds = (float)gameTime.ElapsedGameTime.TotalSeconds;

position += velocity * elapsedSeconds;

float newMagnitude = velocity.Length() - DECELERATION * elapsedSeconds;

velocity.Normalize();

velocity *= Math.Max(0, newMagnitude);

 }

// Display current position and velocity

 text.Remove(0, text.Length);

 text.AppendFormat("Position: {0} Velocity: {1}", position, velocity);

 base.Update(gameTime);

}

The	Draw override	draws	both	the	Texture2D	and	the	StringBuilder:	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.CornflowerBlue);

 spriteBatch.Begin();

 spriteBatch.Draw(texture, position, Color.White);

 spriteBatch.DrawString(segoe14, text, Vector2.Zero, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}

866	

	

	 	 	

	 	 	

	

	

	

	 	

	

	 	 	

	 	

	 	

		

	 	

		

	 	

	 		

	

	 	

	 	 	 	 	 	

	 	 	

Yes,	you	can	flick	the	image	right	off	the	screen.	However,	because	the	program	responds	to	

flicks	anywhere	on	the	screen,	you	can	flick	the	screen	again	to	bring	it	back	into	view.	

The
Mandelbrot
Set

In	1980,	Benoît	Mandelbrot	(1924–2010),	a	Polishborn	French	and	American	mathematician	

working	for	IBM,	saw	for	the	first	time	a	graphic	visualization	of	a	recursive	equation	involving	

complex	numbers	that	had	been	investigated	earlier	in	the	century.	It	looked	something	like	

this:	

Since	that	time,	the	Mandelbrot	Set	(as	it	is	called)	has	become	a	favorite	plaything	of	

computer	programmers.	

The	Mandelbrot	Set	is	graphed	on	the	complex	plane,	where	the	horizontal	axis	represents	

real	numbers	(negative	at	the	left	and	positive	at	the	right)	and	the	vertical	axis	represents	

imaginary	numbers	(negative	at	the	bottom	and	positive	at	the	top).	Take	any	point	in	the	

plane	and	call	it	c,	and	set	z equal	to	0:	

Now	perform	the	following	recursive	operation:	

If	the	magnitude	of	z does	not	diverge	to	infinity,	then	c	is	said	to	belong	to	the	Mandelbrot	

Set	and	is	colored	black	in	the	above	screen	shot.	

For	some	complex	numbers	(for	example,	the	real	number	0)	it’s	very	clear	that	the	number	

belongs	to	the	Mandelbrot	Set.	For	others	(for	example,	the	real	number	1)	it’s	very	clear	that	

it	does	not.	For	many	others,	you	just	have	to	start	cranking	out	the	values.	Fortunately,	if	the	

absolute	value	of	z ever	becomes	greater	than	2	after	a	finite	number	of	iterations,	you	know	

that	c	does	not	belong	to	the	Mandelbrot	Set.	

867	

	

	 	 	

	 	

	 	

	

	 	

	

	 	 	

	

	 	 	

	

	

	

	 	

	

	 	 	 	 	

Each	number	c	that	does	not	belong	to	the	Mandelbrot	Set	has	an	associated	“iteration”	

factor,	which	is	the	number	of	iterations	calculating	z	that	occur	before	the	absolute	value	

becomes	greater	than	2.	Many	people	who	compute	visualizations	of	the	Mandelbrot	Set	use	

that	iteration	factor	to	select	a	color	for	that	point	so	that	areas	not	in	the	Mandelbrot	Set	

become	rather	more	interesting:	

The	text	at	the	upperleft	corner	indicates	the	complex	coordinate	associated	with	that	

corner,	and	similarly	for	the	lowerright	corner.	The	number	in	the	upperright	corner	is	a	

global	iteration	count.	

One	of	the	interesting	characteristics	of	the	Mandelbrot	Set	is	that	no	matter	how	much	you	

zoom	in,	the	complexity	of	the	image	does	not	decrease:	

That	qualifies	the	Mandelbrot	Set	as	a	fractal,	a	branch	of	mathematics	that	Benoît	

Mandelbrot	pioneered.	Considering	the	simplicity	of	the	algorithm	that	produces	this	image,	

the	results	are	truly	astonishing.	

Can	you	think	of	a	better	program	to	demonstrate	multitouch	dragging	and	zooming	as	well	

as	algorithmically	generating	pixels	in	a	Texture2D?	

868	

	

	

	 	

	 	 	 	

	

	

	 	 	

	 	

	 	 	 	 	

	 	 	 	

	 	 	

	

	 	 	

	 	 	 	

	 	

	 	 	 	

	 	 	

	

	 	

	

	

	 	 	 	

	 	 	 	 	

Very	often	when	programmers	write	Mandelbrot	Set	programs,	they	decide	on	a	particular	

maximum	iteration	factor,	for	example,	100	or	1000.	Then	for	each	pixel,	z is	calculated	up	to	

that	maximum	number,	and	if	it	hasn’t	diverged	by	then,	the	pixel	is	set	to	black.	In	

pseudocode,	it’s	something	like	this:	

For	each	pixel	

{	

Perform	up	to	MAX	iterations	

Set	pixel	to	black	or	some	color	

}	

The	problem	with	this	approach	is	that	it	tends	to	be	inadequate	when	you	zoom	in	a	great	

deal.	Generally	the	more	you	zoom	in	on	a	particular	area	of	the	Mandelbrot	Set,	the	more	

iterations	are	needed	to	determine	whether	a	pixel	is	not	part	of	the	set	and	how	it	should	be	

colored.	

That	problem	implied	to	me	a	different	approach:	My	MandelbrotSet	program	initially	sets	all	

the	pixels	to	black	and	then	performs	the	following	in	a	second	thread	of	execution:	

Do	forever	

{	

For	each	pixel

	 {	

Perform	another	iteration	if	necessary	

Possibly	set	pixel	to	some	color

	 }	

}	

This	approach	creates	a	screen	that	progressively	gets	more	interesting	the	longer	you	wait.	

The	downside	is	that	about	17	megabytes	of	memory	is	required	to	support	the	data	structure	

necessary	for	this	job.	That’s	too	large	to	be	saved	during	tombstoning.	The	overall	

performance	also	seems	to	be	slower	than	more	traditional	approaches.	

Here	is	the	PixelInfo	structure	used	to	store	information	for	each	pixel.	The	program	retains	an	

array	of	these	structures	that	parallels	the	normal	pixels array	used	for	writing	data	to	the	

Texture2D:	

XNA Project: MandelbrotSet File: PixelInfo.cs

using Microsoft.Xna.Framework;

namespace MandelbrotSet

{

public struct PixelInfo

 {

869	

	

	 	

	

public static int pixelWidth;

public static int pixelHeight;

public static double xPixelCoordAtComplexOrigin;

public static double yPixelCoordAtComplexOrigin;

public static double unitsPerPixel;

public static bool hasNewColors;

public static int firstNewIndex;

public static int lastNewIndex;

public double cReal;

public double cImag;

public double zReal;

public double zImag;

public int iteration;

public bool finished;

public uint packedColor;

public PixelInfo(int pixelIndex, uint[] pixels)

{

int x = pixelIndex % pixelWidth;

int y = pixelIndex / pixelWidth;

 cReal = (x - xPixelCoordAtComplexOrigin) * unitsPerPixel;

 cImag = (yPixelCoordAtComplexOrigin - y) * unitsPerPixel;

 zReal = 0;

 zImag = 0;

 iteration = 0;

 finished = false;

 packedColor = pixels != null ? pixels[pixelIndex] :

Color.Black.PackedValue;

}

public bool Iterate()

 {

double zImagSquared = zImag * zImag;

 zImag = 2 * zReal * zImag + cImag;

 zReal = zReal * zReal - zImagSquared + cReal;

if (zReal * zReal + zImag * zImag >= 4.0)

 {

 finished = true;

return true;

}

 iteration++;

return false;

}

 }

}

Skip	down	to	the	instance	fields.	I	originally	wrote	a	structure	called	Complex	for	

encapsulating	complex	numbers	and	performing	the	operations	on	those	numbers,	but	I	

discovered	that	working	directly	with	the	real	and	imaginary	parts	improved	performance	

significantly.	This	PixelInfo	structure	retains	the	c	and	z	values	I	described	above,	the	current	

870	

	

	 	 	

	 	 	 	

	 	 	

	

	

	

	 	 	

	

	 	

	 		

	

	 	 	

	 	 	 	 	

	 		

	 	

	

	

	

	

	 	 	

	

	 	 	

	

	

	 	

	 	

iteration,	and	a	Boolean	finished	that’s	set	to	true when	it’s	known	that	the	magnitude	of	z

diverges	to	infinity.	At	this	point	the	iteration	value	can	be	used	to	determine	a	color	value.	

The	constructor	calculates	cReal	and	cImag	from	a	pixelIndex	that	ranges	from	0	up	to	(but	

not	including)	the	product	of	the	pixel	width	and	height	of	the	display.	The	static	pixelWidth

and	pixelHeight	fields	are	based	on	the	screen	dimensions	and	fixed	throughout	the	duration	

of	the	program.	

The	calculation	of	cReal	and	cImag	is	also	based	on	three	other	static	fields.	The	

xPixelCoordAtComplexOrigin	and	yPixelCoordAtComplexOrigin	fields	indicate	the	horizontal	

and	vertical	pixel	coordinates	that	correspond	to	the	origin	of	the	complex	plane.	Obviously	

the	use	of	double	for	these	fields	indicates	that	they	are	capable	of	representing	fractional	

pixels.	These	two	fields	change	with	translation	operations.	The	unitsPerPixel	field	indicates	

the	range	of	real	numbers	or	imaginary	numbers	currently	associated	with	a	single	pixel.	This	

value	changes	with	scaling	operations.	

This	PixelInfo	structure	contains	more	double	values	than	in	all	the	other	XNA	programs	in	this	

book	combined.	I	originally	made	these	values	all	float,	of	course	(and	

pixelCoordAtComplexOrigin	was	a	Vector2)	but	I	made	the	leap	to	double	the	first	time	I	

zoomed	in	beyond	the	precision	of	float.	Interestingly,	moving	from	float	to	double	had	very	

little	impact	on	performance.	

The	second	argument	to	the	constructor	is	optional.	If	it’s	present,	the	constructor	will	copy	

the	corresponding	color	from	the	pixels	array	into	its	own	packedColor	field.	You’ll	see	how	

this	works	shortly.	

The	other	three	static	fields	are	used	for	interthread	communication.	Basically,	the	thread	

that	performs	the	calculations	sets	these	fields	when	a	color	value	changes;	the	fields	are	reset	

when	the	array	of	PixelInfo	structures	is	used	to	update	the	pixels	array	and	the	Texture2D.	

Finally,	the	Iterate	method	performs	the	basic	iterative	calculation	using	multiplication	rather	

than	Math.Pow	calls	for	performance	reasons.	Iterate	returns	true	if	z	is	known	to	diverge	to	

infinity.	

With	those	static	fields	of	PixelInfo,	I	managed	to	keep	the	fields	of	the	Game	derivative	down	

to	a	reasonable	number.	You’ll	see	the	normal	pixels array	here	as	well	as	the	PixelInfo	array.	

The	pixelInfosLock	object	is	used	for	thread	synchronization.	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

871	

	

	

	 	

	 	 	 	

	

Viewport viewport;

Texture2D texture;

uint[] pixels;

PixelInfo[] pixelInfos;

Matrix drawMatrix = Matrix.Identity;

int globalIteration = 0;

object pixelInfosLock = new object();

SpriteFont segoe14;

StringBuilder upperLeftCoordText = new StringBuilder();

StringBuilder lowerRightCoordText = new StringBuilder();

StringBuilder upperRightStatusText = new StringBuilder();

Vector2 lowerRightCoordPosition, upperRightStatusPosition;

public Game1()

 {

graphics = new GraphicsDeviceManager(this);

Content.RootDirectory = "Content";

// Frame rate is 30 fps by default for Windows Phone.

TargetElapsedTime = TimeSpan.FromTicks(333333);

// Set full screen & enable gestures

graphics.IsFullScreen = true;

TouchPanel.EnabledGestures = GestureType.FreeDrag | GestureType.DragComplete

|

GestureType.Pinch | GestureType.PinchComplete;

 }

 …

}

The	fields	also	include	a	Matrix	object	that	handles	translation	and	scaling	but	only	as	the	

gesture	operations	are	in	process.	Once	the	user’s	fingers	lift	from	the	screen—and	you’ll	

notice	that	the	DragComplete	and	PinchComplete	gestures	are	also	enabled	so	the	program	

can	determine	when	that	happens—the	entire	pixels	and	PixelInfo	arrays	are	rearranged	and	

the	Matrix	object	is	set	back	to	its	default	value.	This	turns	out	to	be	one	of	the	more	complex	

parts	of	the	program.	

The	LoadContent	override	is	surprisingly	sparse:	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

// Create a new SpriteBatch, which can be used to draw textures.

 spriteBatch = new SpriteBatch(GraphicsDevice);

 viewport = this.GraphicsDevice.Viewport;

 segoe14 = this.Content.Load<SpriteFont>("Segoe14");

}

872	

	

	 	 	

	 	

	 	

	 	

	

	

	 	

	

	 	

	

	 	

	

	 	 	

	 	 	 	 	

	

	

	 	 	 	

	

	 	

But	that’s	only	because	much	of	the	other	initialization	is	performed	in	conjunction	with	

tombstoning.	Of	course,	I	wanted	to	save	the	whole	array	of	PixelInfo	objects,	but	considering	

that	each	of	them	is	44	bytes	in	size,	and	the	full	array	approaches	17	megabytes,	you	can	

understand	why	the	Windows	Phone	7	operating	system	seemed	so	reluctant	to	comply	with	

my	desires.		

Instead,	the	program	tombstones	four	items	necessary	to	restart	the	program	reasonably:	The	

static	xPixelCoordAtComplexOrigin,	yPixelCoordAtComplexOrigin	and	unitsPerPixel	fields	in	

PixelInfo	allow	the	program	to	recreate	the	PixelInfo	array.	In	addition,	the	program	saves	the	

entire	screen	image	as	a	PNG	file	and	restores	that.	When	the	program	returns	from	

tombstoning,	it	looks	the	same	as	when	it	left,	but	that’s	somewhat	deceptive	because	it	

needs	to	start	the	calculations	over	with	each	pixel.	Consequently,	the	screen	may	sit	there	for	

awhile	before	anything	gets	updated.	

The	code	to	save	and	restore	Texture2D	objects	during	tombstoning	is	standard	and	fairly	

simple,	but	I	decided	to	make	a	couple	methods	to	encapsulate	the	job.	The	static	

Texture2DExtensions class	in	the	Petzold.Phone.Xna	library	contains	the	following	two	

methods.	The	first	is	an	extension	method,	so	you	can	call	it	directly	on	a	Texture2D	object:	

XNA Project: Petzold.Phone.Xna File: Texture2DExtensions.cs (excerpt)

public static void SaveToPhoneServiceState(this Texture2D texture, string key)

{

MemoryStream memoryStream = new MemoryStream();

 texture.SaveAsPng(memoryStream, texture.Width, texture.Height);

PhoneApplicationService.Current.State[key] = memoryStream.GetBuffer();

}

The	method	creates	a	MemoryStream	object	and	just	passes	that	to	the	SaveAsPng	method	of	

the	Texture2D.	The	MemoryStream	itself	can’t	be	serialized	but	a	GetBuffer	method	on	the	

MemoryStream	returns	an	array	of	bytes	and	that	can	be	serialized.	

The	companion	load	method	is	not	an	extension	method	because	it	results	in	the	creation	of	

a	new	Texture2D object.	A	byte	array	is	retrieved	from	storage	and	passed	to	a	

MemoryStream	constructor,	which	is	then	used	with	the	static	Texture2D.FromStream	method:	

XNA Project: Petzold.Phone.Xna File: Texture2DExtensions.cs (excerpt)

public static Texture2D LoadFromPhoneServiceState(GraphicsDevice graphicsDevice,

string key)

{

Texture2D texture = null;

if (PhoneApplicationService.Current.State.ContainsKey(key))

 {

873	

	

	

	 	 	

byte[] buffer = PhoneApplicationService.Current.State[key] as byte[];

MemoryStream memoryStream = new MemoryStream(buffer);

texture = Texture2D.FromStream(graphicsDevice, memoryStream);

memoryStream.Close();

}

return texture;

}

Here	are	the	OnActivated	and	OnDeactivated	overrides	in	MandelbrotSet	that	makes	use	of	

those	two	methods,	and	a	method	named	InitializePixelInfo:	

XNA Project: File: (excerpt)

protected override void OnActivated(object sender, EventArgs args)

{

PhoneApplicationService appService = PhoneApplicationService.Current;

if (appService.State.ContainsKey("xOrigin") &&

 appService.State.ContainsKey("yOrigin") &&

 appService.State.ContainsKey("resolution"))

 {

PixelInfo.xPixelCoordAtComplexOrigin = (double)appService.State["xOrigin"];

PixelInfo.yPixelCoordAtComplexOrigin = (double)appService.State["yOrigin"];

PixelInfo.unitsPerPixel = (double)appService.State["resolution"];

 }

else

 {

// Program running from beginning

PixelInfo.xPixelCoordAtComplexOrigin = 2 * viewport.Width / 3f;

PixelInfo.yPixelCoordAtComplexOrigin = viewport.Height / 2;

PixelInfo.unitsPerPixel = Math.Max(2.5 / viewport.Height,

 3.0 / viewport.Width);

 }

 UpdateCoordinateText();

// Restore bitmap from tombstoning or recreate it

 texture = Texture2DExtensions.LoadFromPhoneServiceState(this.GraphicsDevice,

"mandelbrotBitmap");

if (texture == null)

texture = new Texture2D(this.GraphicsDevice, viewport.Width,

viewport.Height);

// Get texture information and pixels array

PixelInfo.pixelWidth = texture.Width;

PixelInfo.pixelHeight = texture.Height;

int numPixels = PixelInfo.pixelWidth * PixelInfo.pixelHeight;

 pixels = new uint[numPixels];

 texture.GetData<uint>(pixels);

// Create and initialize PixelInfo array

 pixelInfos = new PixelInfo[numPixels];

874	

	

	

	 	

	

	 	

 InitializePixelInfo(pixels);

// Start up the calculation thread

Thread thread = new Thread(PixelSetterThread);

 thread.Start();

base.OnActivated(sender, args);

}

protected override void OnDeactivated(object sender, EventArgs args)

{

PhoneApplicationService.Current.State["xOrigin"] =

PixelInfo.xPixelCoordAtComplexOrigin;

PhoneApplicationService.Current.State["yOrigin"] =

PixelInfo.yPixelCoordAtComplexOrigin;

PhoneApplicationService.Current.State["resolution"] = PixelInfo.unitsPerPixel;

 texture.SaveToPhoneServiceState("mandelbrotBitmap");

base.OnDeactivated(sender, args);

}

void InitializePixelInfo(uint[] pixels)

{

for (int index = 0; index < pixelInfos.Length; index++)

 {

pixelInfos[index] = new PixelInfo(index, pixels);

}

PixelInfo.hasNewColors = true;

PixelInfo.firstNewIndex = 0;

PixelInfo.lastNewIndex = pixelInfos.Length - 1;

}

As	OnActivated	completes,	everything	is	initialized	and	ready,	and	so	it	starts	up	a	second	

thread	based	on	the	PixelSetterThread method.	This	method	spends	the	rest	of	eternity	

looping	through	all	the	members	of	the	PixelInfo	array	indexed	by	pixelIndex	and	calling	the	

Iterate	method.	If	Iterate	returns	true,	then	a	color	is	assigned	to	the	pixel:	

XNA Project: File: (excerpt)

void PixelSetterThread()

{

int pixelIndex = 0;

while (true)

{

lock (pixelInfosLock)

{

if (!pixelInfos[pixelIndex].finished)

 {

if (pixelInfos[pixelIndex].Iterate())

875

	

 {

int iteration = pixelInfos[pixelIndex].iteration;

 pixelInfos[pixelIndex].packedColor =

 GetPixelColor(iteration).PackedValue;

PixelInfo.hasNewColors = true;

PixelInfo.firstNewIndex = Math.Min(PixelInfo.firstNewIndex,

pixelIndex);

PixelInfo.lastNewIndex = Math.Max(PixelInfo.lastNewIndex,

pixelIndex);

 }

else

 {

// Special case: On scale up, prevent blocks of color from

// remaining inside the Mandelbrot Set

if (pixelInfos[pixelIndex].iteration == 500 &&

 pixelInfos[pixelIndex].packedColor !=

Color.Black.PackedValue)

 {

 pixelInfos[pixelIndex].packedColor =

Color.Black.PackedValue;

PixelInfo.hasNewColors = true;

PixelInfo.firstNewIndex =

 Math.Min(PixelInfo.firstNewIndex,

pixelIndex);

PixelInfo.lastNewIndex =

 Math.Max(PixelInfo.lastNewIndex,

pixelIndex);

 }

 }

 }

if (++pixelIndex == pixelInfos.Length)

 {

 pixelIndex = 0;

 globalIteration++;

 }

}

 }

}

Color GetPixelColor(int iteration)

{

float proportion = (iteration / 32f) % 1;

if (proportion < 0.5)

return new Color(1 - 2 * proportion, 0, 2 * proportion);

 proportion = 2 * (proportion - 0.5f);

return new Color(0, proportion, 1 - proportion);

}

876

	

	

	 	

	 	

	

	 	 	 	 	 	 	 	

	 	 	

	 	 	

	

	

	 	

	

	

	 	

	 	 	 	

Although	it’s	important	for	this	thread	to	perform	the	calculations	as	quickly	as	possible,	it	

also	tries	to	relieve	some	work	that	must	be	performed	in	the	Update override	(coming	up).	

By	setting	static	fields	in	the	PixelInfo	structure,	the	thread	indicates	the	minimum	and	

maximum	pixel	indices	that	have	been	changed.	

I	mentioned	earlier	that	most	simple	Mandelbrot	programs	I’ve	seen	set	a	maximum	for	the	

number	of	iterations.	(A	pseudocode	algorithm	in	the	Wikipedia	entry	on	the	Mandelbrot	Set	

sets	max_iteration	to	1000.)	The	only	place	in	my	implementation	where	I	had	to	use	an	

iteration	maximum	is	right	in	here.	As	you’ll	see	shortly,	when	you	use	a	pair	of	fingers	to	

zoom	in	on	the	viewing	area,	the	program	needs	to	entirely	start	from	scratch	with	a	new	

array	of	PixelInfo	structures.	But	for	visualization	purposes	it	expands	the	Texture2D	to	

approximate	the	eventual	image.	This	expansion	often	results	in	some	pixels	in	the	

Mandelbrot	Set	being	colored,	and	the	algorithm	I’m	using	here	would	never	restore	those	

pixels	to	black.	So,	if	the	iteration	count	on	a	particular	pixel	reaches	500,	and	if	the	pixel	is	

not	black,	it’s	set	to	black.	That	pixel	could	very	well	later	be	set	to	some	other	color,	but	

that’s	not	known	at	this	point.	

Here’s	the	first	section	of	the	Update	override	that	transfers	color	information	from	the	

PixelInfo	array	calculated	in	the	second	thread	into	the	pixels	array,	and	then	updates	the	

Texture2D	from	that	array:	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

// Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

// Update texture from pixels array from pixelInfos array

 if (PixelInfo.hasNewColors)

 {

lock (pixelInfosLock)

{

// Transfer new colors to pixels array

 for (int pixelIndex = PixelInfo.firstNewIndex;

 pixelIndex <= PixelInfo.lastNewIndex;

 pixelIndex++)

 {

 pixels[pixelIndex] = pixelInfos[pixelIndex].packedColor;

 }

// Transfer new pixels to texture

 int firstRow = PixelInfo.firstNewIndex / texture.Width;

 int numRows = PixelInfo.lastNewIndex / texture.Width - firstRow + 1;

Rectangle rect = new Rectangle(0, firstRow, texture.Width, numRows);

 texture.SetData<uint>(0, rect, pixels, firstRow * texture.Width,

 numRows * texture.Width);

877	

	

	 	 	 	 	

	 	 	

	

	 	 	 	 	 	

	 	

	 	 	 	 	

	 	

// Reset PixelInfo

PixelInfo.hasNewColors = false;

PixelInfo.firstNewIndex = Int32.MaxValue;

PixelInfo.lastNewIndex = 0;

}

 }

// Update globalIteration display

 upperRightStatusText.Remove(0, upperRightStatusText.Length);

 upperRightStatusText.AppendFormat("{0}", globalIteration + 1);

Vector2 textSize = segoe14.MeasureString(upperRightStatusText);

 upperRightStatusPosition = new Vector2(viewport.Width - textSize.X, 0);

 …

}

Pan
and
Zoom

The	remainder	of	the	Update	override	is	devoted	to	dealing	with	touch	input.	The	idea	here	is	

simple:	As	you’re	touching	the	screen,	moving	it	around,	perhaps	zooming	in	or	zooming	out,	

nothing	irrevocable	happens.	The	screen	seems	to	be	moving	and	zooming	because	a	Matrix

object	named	drawMatrix is	being	modified,	and	that’s	used	in	the	Begin	call	of	the	

SpriteBatch.	

However,	once	your	finger	or	fingers	lift	from	the	screen,	then	the	program	changes	both	the	

PixelInfo	array	and	the	pixels	array	for	the	new	position	and	zoom	level	of	the	screen.	There	is	

no	attempt	to	retain	anything	that	is	now	off	the	screen.	

Here’s	the	handling	of	the	FreeDrag	and	DragComplete	gestures	for	translation	operations:	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

…

// Read touch gestures

 while (TouchPanel.IsGestureAvailable)

 {

GestureSample gesture = TouchPanel.ReadGesture();

switch (gesture.GestureType)

{

 case GestureType.FreeDrag:

// Adjust drawMatrix for shifting

 drawMatrix.M41 += gesture.Delta.X;

 drawMatrix.M42 += gesture.Delta.Y;

 break;

 case GestureType.DragComplete:

// Update texture from pixels from shifted pixelInfos

878	

	

	 	 	

	 	 	

	 	

	 	 	

	 	

	

	 	 	

	 	

 lock (pixelInfosLock)

 {

 pixelInfos = TranslatePixelInfo(pixelInfos, drawMatrix);

 for (int pixelIndex = 0; pixelIndex < pixelInfos.Length;

pixelIndex++)

 pixels[pixelIndex] = pixelInfos[pixelIndex].packedColor;

PixelInfo.hasNewColors = false;

PixelInfo.firstNewIndex = Int32.MaxValue;

PixelInfo.lastNewIndex = 0;

 }

 texture.SetData<uint>(pixels);

 drawMatrix = Matrix.Identity;

 globalIteration = 0;

 break;

 …

}

UpdateCoordinateText();

 }

 base.Update(gameTime);

}

As	the	user	is	moving	one	finger	around	the	screen,	only	the	drawMatrix	is	affected,	but	when	

the	finger	lifts	off	the	screen	the	DragComplete	gesture	processing	makes	a	call	to	the	

TranslatePixelInfo	method	to	move	elements	in	the	array	of	PixelInfo	structures	in	accordance	

with	the	final	selected	position.	Fortunately,	pixels	moved	from	one	part	of	the	screen	to	

another	can	be	preserved;	new	pixel	locations	start	out	as	black.	Update	then	transfers	the	

pixel	colors	from	the	PixelInfo	array	to	the	pixels	array	and	updates	the	Texture2D	from	that.	

When	that’s	done,	the	drawMatrix	can	be	set	back	to	the	identity	matrix.	

The	TranslatePixelInfo	method	uses	the	final	drawMatrix	translation	factors	to	set	new	values	

of	the	PixelInfo.xPixelCoordAtComplexOrigin	and	the	PixelInfo.yPixelCoordAtComplexOrigin

fields	and	shifts	the	PixelInfo	members	around:	

XNA Project: File: (excerpt)

PixelInfo[] TranslatePixelInfo(PixelInfo[] srcPixelInfos, Matrix drawMatrix)

{

int x = (int)(drawMatrix.M41 + 0.5);

int y = (int)(drawMatrix.M42 + 0.5);

PixelInfo.xPixelCoordAtComplexOrigin += x;

PixelInfo.yPixelCoordAtComplexOrigin += y;

PixelInfo[] dstPixelInfos = new PixelInfo[srcPixelInfos.Length];

for (int dstY = 0; dstY < PixelInfo.pixelHeight; dstY++)

 {

int srcY = dstY - y;

int srcRow = srcY * PixelInfo.pixelWidth;

879

	

	 	

	 	

	 	

	

	 	 	

	 	 	

	 	 	

	

	

	

int dstRow = dstY * PixelInfo.pixelWidth;

for (int dstX = 0; dstX < PixelInfo.pixelWidth; dstX++)

{

int srcX = dstX - x;

int dstIndex = dstRow + dstX;

if (srcX >= 0 && srcX < PixelInfo.pixelWidth &&

 srcY >= 0 && srcY < PixelInfo.pixelHeight)

 {

int srcIndex = srcRow + srcX;

 dstPixelInfos[dstIndex] = pixelInfos[srcIndex];

 }

else

 {

 dstPixelInfos[dstIndex] = new PixelInfo(dstIndex, null);

 }

}

 }

return dstPixelInfos;

}

With	zooming,	the	opposite	approach	is	taken.	It	is	the	very	nature	of	the	Mandelbrot	Set	that	

each	point	is	unique	and	can’t	be	approximated	from	its	neighbors.	For	this	reason,	any	

zooming	operation	must	result	in	the	entire	PixelInfo	array	being	recreated	and	all	

calculations	starting	over	from	the	beginning.	

However,	the	visuals	can	be	retained	as	a	temporary	approximation.	For	this	reason,	Update

handles	the	PinchComplete gesture	by	applying	the	transform	to	the	pixels	array,	and	then	

using	that	to	set	colors	in	the	PixelInfo	array.	When	you	zoom	in	you’ll	see	something	that	

might	first	look	like	this:	

But	wait	a	little	while	and	it	becomes	this:	

880	

	

	

	 	 	 	 	 	

	

The	Pinch	code	should	look	familiar	except	that	it	determines	whether	the	horizontal	or	

vertical	delta	dominates.	This	information	is	passed	to	the	ComputeScaleMatrix	method:	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

…

// Read touch gestures

 while (TouchPanel.IsGestureAvailable)

 {

GestureSample gesture = TouchPanel.ReadGesture();

switch (gesture.GestureType)

{

 …

 case GestureType.Pinch:

 bool xDominates = Math.Abs(gesture.Delta.X) +

Math.Abs(gesture.Delta2.X) >

Math.Abs(gesture.Delta.Y) +

Math.Abs(gesture.Delta2.Y);

Vector2 oldPoint1 = gesture.Position - gesture.Delta;

Vector2 newPoint1 = gesture.Position;

Vector2 oldPoint2 = gesture.Position2 - gesture.Delta2;

Vector2 newPoint2 = gesture.Position2;

 drawMatrix *= ComputeScaleMatrix(oldPoint1, oldPoint2, newPoint2,

 xDominates);

 drawMatrix *= ComputeScaleMatrix(newPoint2, oldPoint1, newPoint1,

 xDominates);

 break;

 case GestureType.PinchComplete:

// Set texture from zoomed pixels

 pixels = ZoomPixels(pixels, drawMatrix);

 texture.SetData<uint>(pixels);

// Set new PixelInfo parameters

881	

	

	 	 	

	 	 	 	

PixelInfo.xPixelCoordAtComplexOrigin *= drawMatrix.M11;

PixelInfo.xPixelCoordAtComplexOrigin += drawMatrix.M41;

PixelInfo.yPixelCoordAtComplexOrigin *= drawMatrix.M22;

PixelInfo.yPixelCoordAtComplexOrigin += drawMatrix.M42;

PixelInfo.unitsPerPixel /= drawMatrix.M11;

// Reinitialize PpixelInfos

 lock (pixelInfosLock)

 {

 InitializePixelInfo(pixels);

 }

 drawMatrix = Matrix.Identity;

 globalIteration = 0;

 break;

}

UpdateCoordinateText();

 }

 base.Update(gameTime);

}

The	ComputeScaleMatrix	method	is	very	similar	to	the	one	in	DragAndPinch except	that	it	

scales	uniformly	based	on	the	Boolean	argument	to	the	method:	

XNA Project: File: (excerpt)

Matrix ComputeScaleMatrix(Vector2 refPoint, Vector2 oldPoint, Vector2 newPoint,

bool xDominates)

{

float scale = 1;

if (xDominates)

scale = (newPoint.X - refPoint.X) / (oldPoint.X - refPoint.X);

else

scale = (newPoint.Y - refPoint.Y) / (oldPoint.Y - refPoint.Y);

if (float.IsNaN(scale) || float.IsInfinity(scale) || scale < 0)

 {

return Matrix.Identity;

 }

 scale = Math.Min(1.1f, Math.Max(0.9f, scale));

Matrix matrix = Matrix.CreateTranslation(-refPoint.X, -refPoint.Y, 0);

 matrix *= Matrix.CreateScale(scale, scale, 1);

 matrix *= Matrix.CreateTranslation(refPoint.X, refPoint.Y, 0);

return matrix;

}

882	

	

	

	 	 	 	

	

	 	 	 	

	 	

	 	

	 	 	

	 	

	 	 	

	

The	ZoomPixels	method	called	for	the	PinchComplete	gesture	obtains	the	inverse	of	the	

Matrix for	use	in	calculating	source	pixel	coordinates	from	destination	pixel	coordinates.	

Fortunately,	inverting	the	matrix	is	simply	a	matter	of	calling	the	static	Matrix.Invert	method.	

An	earlier	version	of	the	program	called	Matrix.CreateScale	(above)	with	zero	as	the	third	

argument.	This	created	an	uninvertible	matrix,	and	calling	Invert	created	a	matrix	with	NaN	

(“not	a	number”)	values	in	all	the	fields.	That’s	no	good.	

XNA Project: File: (excerpt)

uint[] ZoomPixels(uint[] srcPixels, Matrix matrix)

{

Matrix invMatrix = Matrix.Invert(matrix);

uint[] dstPixels = new uint[srcPixels.Length];

for (int dstY = 0; dstY < PixelInfo.pixelHeight; dstY++)

 {

int dstRow = dstY * PixelInfo.pixelWidth;

for (int dstX = 0; dstX < PixelInfo.pixelWidth; dstX++)

{

int dstIndex = dstRow + dstX;

Vector2 dst = new Vector2(dstX, dstY);

Vector2 src = Vector2.Transform(dst, invMatrix);

int srcX = (int)(src.X + 0.5f);

int srcY = (int)(src.Y + 0.5f);

if (srcX >= 0 && srcX < PixelInfo.pixelWidth &&

 srcY >= 0 && srcY < PixelInfo.pixelHeight)

 {

int srcIndex = srcY * PixelInfo.pixelWidth + srcX;

 dstPixels[dstIndex] = srcPixels[srcIndex];

 }

else

 {

 dstPixels[dstIndex] = Color.Black.PackedValue;

 }

}

 }

return dstPixels;

}

All	the	exciting	work	is	now	finished.	But	it	is	considered	essential	in	Mandelbrot	programs	to	

have	some	kind	of	display	indicating	where	you	are	in	the	complex	plane.	The	

UpdateCoordinateText method	is	responsible	for	calculating	the	upperleft	and	lowerright	

coordinates,	formatting	them	in	StringBuilder	objects,	and	determining	where	they	should	be	

displayed:	

883	

	

	

	 	 	 	

	

	

XNA Project: File: (excerpt)

void UpdateCoordinateText()

{

double xAdjustedPixelCoord =

PixelInfo.xPixelCoordAtComplexOrigin * drawMatrix.M11 + drawMatrix.M41;

double yAdjustedPixelCoord =

PixelInfo.yPixelCoordAtComplexOrigin * drawMatrix.M22 + drawMatrix.M42;

double adjustedUnitsPerPixel = PixelInfo.unitsPerPixel / drawMatrix.M11;

double xUpperLeft = -adjustedUnitsPerPixel * xAdjustedPixelCoord;

double yUpperLeft = adjustedUnitsPerPixel * yAdjustedPixelCoord;

 upperLeftCoordText.Remove(0, upperLeftCoordText.Length);

 upperLeftCoordText.AppendFormat("X:{0} Y:{1}", xUpperLeft, yUpperLeft);

double xLowerRight = xUpperLeft + PixelInfo.pixelWidth * adjustedUnitsPerPixel;

double yLowerRight = -yUpperLeft + PixelInfo.pixelHeight *

adjustedUnitsPerPixel;

 lowerRightCoordText.Remove(0, lowerRightCoordText.Length);

 lowerRightCoordText.AppendFormat("X:{0} Y:{1}", xLowerRight, yLowerRight);

Vector2 textSize = segoe14.MeasureString(lowerRightCoordText);

 lowerRightCoordPosition = new Vector2(viewport.Width - textSize.X,

viewport.Height - textSize.Y);

}

After	all	that,	the	Draw	method	is	very	straightforward.	Notice	there	are	two	calls	to	the	Begin

and	End	methods	of	SpriteBatch.	The	first	requires	the	Matrix	object	that	moves	and	scales	the	

Texture2D	while	it’s	being	manipulated	and	the	second	is	for	the	text	items:	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Black);

// Draw Mandelbrot Set image

 spriteBatch.Begin(SpriteSortMode.Immediate, null, null, null, null, null,

drawMatrix);

 spriteBatch.Draw(texture, Vector2.Zero, null, Color.White,

 0, Vector2.Zero, 1, SpriteEffects.None, 0);

 spriteBatch.End();

// Draw coordinate and status text

 spriteBatch.Begin();

 spriteBatch.DrawString(segoe14, upperLeftCoordText, Vector2.Zero, Color.White);

 spriteBatch.DrawString(segoe14, lowerRightCoordText,

884	

	

	 	 	

	 	 	 	 	

	 	

	 	 	

	 	

	 	 	 	

	 	 	

	 	 	

	 	

	 	

	

	

	

	 	 	

	 	

	 	 	

	 	 	

	 	

	 	 	

	 	

	

	 	 	 	

	 	

	

	 	 	 	 	 	 	

	 	 		

	 	

	 	 	

lowerRightCoordPosition, Color.White);

 spriteBatch.DrawString(segoe14, upperRightStatusText,

upperRightStatusPosition, Color.White);

 spriteBatch.End();

base.Draw(gameTime);

}

Game
Components

To	conclude	this	chapter,	I	have	two	programs	that	display	that	same	old	Texture2D	I	used	

earlier	in	this	chapter,	except	that	you’ll	be	able	to	define	a	transform	on	this	image	

interactively	by	dragging	the	texture’s	corners.	

To	give	your	fingers	a	target	to	touch	and	drag,	the	programs	display	translucent	disks	at	the	

Texture2D	corners.	It	would	be	nice	to	code	these	draggable	translucent	disks	so	they’re	

usable	by	multiple	programs.	In	a	traditional	graphics	programming	environment,	we	might	

think	of	something	like	this	as	a	control but	in	XNA	it’s	called	a	game component.	

Components	help	modularize	your	XNA	programs.	Components	can	derive	from	the	

GameComponent	class	but	often	they	derive	from	DrawableGameComponent	so	they	can	

display	something	on	the	screen	in	addition	to	(and	on	top	of)	what	goes	out	in	the	Draw

method	of	your	Game	class.	

To	add	a	new	component	class	to	your	project,	rightclick	the	project	name,	select	Add	and	

then	New	Item,	and	then	pick	Game	Component	from	the	list.	You’ll	need	to	change	the	base	

class	to	DrawableGameComponent	and	override	the	Draw	method	if	you	want	the	

component	to	participate	in	drawing.	

A	game	generally	instantiates	the	components	that	it	needs	either	in	the	game’s	constructor	

or	during	the	Initialize method.	The	components	officially	become	part	of	the	game	when	

they	are	added	to	the	Components	collection	defined	by	the	Game	class.	

As	with	Game,	a	DrawableGameComponent derivative	generally	overrides	the	Initialize,	

LoadContent,	Update,	and	Draw	methods.	When	the	Initialize	override	of	the	Game	derivative	

calls	the	Initialize	method	in	the	base	class,	the	Initialize	methods	in	all	the	components	are	

called.	Likewise,	when	the	LoadComponent,	Update,	and	Draw overrides	in	the	Game

derivative	call	the	method	in	the	base	class,	the	LoadComponent,	Update,	and	Draw	methods	

in	all	the	components	are	called.	

As	you	know,	the	Update override	normally	handles	touch	input.	In	my	experience	that	

attempting	to	access	touch	input	in	a	game	component	is	somewhat	problematic.	It	seems	as	

if	the	game	itself	and	the	components	end	up	competing	for	input.	

To	fix	this,	I	decided	that	my	Game	derivative	would	be	solely	responsible	for	calling	

TouchPanel.GetState,	but	the	game	would	then	give	the	components	the	opportunity	to	

885	

	

	

	 	 	

	 	 	

	 	

	 	 	 	 	

	 	 	

	

	 	 	

	 	

process	this	touch	input.	To	accommodate	this	concept,	I	created	this	interface	for	

GameComponent	and	DrawableGameComponent	derivatives:	

XNA Project: Petzold.Phone.Xna File: IProcessTouch.cs

using Microsoft.Xna.Framework.Input.Touch;

namespace Petzold.Phone.Xna

{

public interface IProcessTouch

 {

bool ProcessTouch(TouchLocation touch);

 }

}

When	a	game	component	implements	this	interface,	the	game	calls	the	game	component’s	

ProcessTouch	method	for	every	TouchLocation	object.	If	the	game	component	needs	to	use	

that	TouchLocation,	it	returns	true	from	ProcessTouch,	and	the	game	then	probably	ignores	

that	TouchLocation.	

The	first	component	I’ll	show	you	is	called	Dragger,	and	it	is	part	of	the	Petzold.Phone.Xna	

library.	Dragger	derives	from	DrawableGameComponent	and	implements	the	IProcessTouch

interface:	

XNA Project: File: (excerpt showing fields)

public class Dragger : DrawableGameComponent, IProcessTouch

{

SpriteBatch spriteBatch;

 int? touchId;

 public event EventHandler PositionChanged;

 public Dragger(Game game)

: base(game)

 {

 }

 public Texture2D Texture { set; get; }

 public Vector2 Origin { set; get; }

 public Vector2 Position { set; get; }

 …

}

The	constructor	of	a	GameComponent	derivative	must	be	passed	the	parent	Game	so	the	

component	can	share	some	properties	with	the	Game	(such	as	the	GraphicsDevice	object).	A	

886	

	

	 	

	 	 	 	

	 	 	

	

	 	 	 	 	

	 	 	 	

	 	 	 	

	 	

	 	 	 	

	 	

DrawableGameComponent derivative	will	usually	create	a	SpriteBatch	for	its	own	use	just	as	a	

Game	derivative	does.	

Dragger	also	defines	a	touchId	field	for	help	in	processing	touch	input,	a	public	event	named	

PositionChanged,	and	three	public	properties:	Texture	of	type	Texture2D,	a	Vector2	called	

Origin	(which	is	commonly	set	to	the	center	of	the	Texture2D)	and	another	Vector2	for	the	

Position.	

A	program	making	use	of	Dragger could	define	a	custom	Texture2D for	the	component	and	

set	it	through	this	public	Texture property,	at	which	time	it	would	probably	also	set	the	Origin

property.	However,	Dragger defines	a	default	Texture property	for	itself	during	its	

LoadContent	method:	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(this.GraphicsDevice);

// Create default texture

 int radius = 48;

Texture2D texture = new Texture2D(this.GraphicsDevice, 2 * radius, 2 * radius);

 uint[] pixels = new uint[texture.Width * texture.Height];

 for (int y = 0; y < texture.Height; y++)

for (int x = 0; x < texture.Width; x++)

{

Color clr = Color.Transparent;

 if ((x - radius) * (x - radius) +

 (y - radius) * (y - radius) <

 radius * radius)

 {

 clr = new Color(0, 128, 128, 128);

 }

 pixels[y * texture.Width + x] = clr.PackedValue;

}

 texture.SetData<uint>(pixels);

 Texture = texture;

 Origin = new Vector2(radius, radius);

 base.LoadContent();

}

The	Dragger	class	implements	the	IProcessTouch interface	so	it	has	a	ProcessTouch	method	

that	is	called	from	the	Game	derivative	for	each	TouchLocation	object.	The	ProcessTouch

method	is	interested	in	finger	presses	that	occur	over	the	component	itself.	If	that	is	the	case,	

887	

	

	

	

	

it	retains	the	ID	and	basically	owns	that	finger	until	it	lifts	from	the	screen.	For	every	

movement	of	that	finger,	Dragger	fires	a	PositionChanged	event.	

XNA Project: File: (excerpt)

public bool ProcessTouch(TouchLocation touch)

{

if (Texture == null)

return false;

bool touchHandled = false;

switch (touch.State)

 {

case TouchLocationState.Pressed:

if ((touch.Position.X > Position.X - Origin.X) &&

 (touch.Position.X < Position.X - Origin.X + Texture.Width) &&

 (touch.Position.Y > Position.Y - Origin.Y) &&

 (touch.Position.Y < Position.Y - Origin.Y + Texture.Height))

 {

 touchId = touch.Id;

 touchHandled = true;

}

break;

case TouchLocationState.Moved:

if (touchId.HasValue && touchId.Value == touch.Id)

 {

TouchLocation previousTouch;

 touch.TryGetPreviousLocation(out previousTouch);

 Position += touch.Position - previousTouch.Position;

// Fire the event!

if (PositionChanged != null)

 PositionChanged(this, EventArgs.Empty);

 touchHandled = true;

}

break;

case TouchLocationState.Released:

if (touchId.HasValue && touchId.Value == touch.Id)

 {

 touchId = null;

 touchHandled = true;

}

break;

}

return touchHandled;

}

888	

	

	 	 	 	

	 	 	 	

	 	 	

	

	 	 	

	 	 	

The	Draw	override	just	draws	the	Texture2D	at	the	new	position:	

XNA Project: File: (excerpt)

public override void Draw(GameTime gameTime)

{

if (Texture != null)

{

spriteBatch.Begin();

spriteBatch.Draw(Texture, Position, null, Color.White,

0, Origin, 1, SpriteEffects.None, 0);

spriteBatch.End();

 }

base.Draw(gameTime);

}

Now	let’s	put	this	Dragger	component	to	use	in	exploring	rather	more	advanced	transform	

math.	

Affine
and
Non-Affine
Transforms

Sometimes	it’s	convenient	to	derive	a	transform	that	maps	a	particular	set	of	points	to	a	

particular	destination.	For	example,	here’s	a	program	that	incorporates	three	instances	of	the	

Dragger component	I	just	described,	and	lets	you	drag	three	corners	of	the	Texture2D	to	

arbitrary	locations	on	the	screen:	

This	program	uses	an	affine	transform,	which	means	that	rectangles	are	always	mapped	to	

parallelograms.	The	fourth	corner	isn’t	draggable	because	it’s	always	determined	by	the	other	

three:	

889	

	

	

	 	 	

	

	

	 	

	 	

		

		

		

	 	 	 	

	 	 	 	 	

		

		

	 	 	

	

		

		

		

		

		

		

You	can’t	choose	just	any	three	points.	Everything	goes	kaflooey	if	you	attempt	to	make	an	

interior	angle	greater	than	180°.	

To	nail	down	the	mathematics,	it	will	be	easier	to	first	assume	that	the	original	image	we’re	

trying	to	transform	is	1	pixel	wide	and	1	pixel	tall.	We	want	a	transform	that	produces	the	

following	mappings	from	the	three	corners	of	the	image	to	three	arbitrary	points:	

These	are,	respectively,	the	upperleft,	upperright,	and	lowerleft	corners.	Using	the	fields	of	

the	Matrix	object	defined	in	XNA,	the	transform	formulas	are:	

It’s	easy	to	apply	the	transform	to	the	points	(0,	0),	(1,	0),	and	(0,	1)	and	solve	for	the	elements	

of	the	matrix:	

890	

	

	 	 	

	

	 	 	 	

	 	 	

	 	

	 	

	 	 	

A	static	class	named	MatrixHelper in	the	Petzold.Phone.Xna	library	has	a	method	named	

ComputeAffineTransform	that	creates	a	Matrix	object	based	on	these	formulas:	

XNA Project: Petzold.Phone.Xna File: MatrixHelper.cs (excerpt)

static Matrix ComputeAffineTransform(Vector2 ptUL, Vector2 ptUR, Vector2 ptLL)

{

return new Matrix()

{

M11 = (ptUR.X - ptUL.X),

M12 = (ptUR.Y - ptUL.Y),

M21 = (ptLL.X - ptUL.X),

M22 = (ptLL.Y - ptUL.Y),

M33 = 1,

M41 = ptUL.X,

M42 = ptUL.Y,

M44 = 1

 };

}

This	method	isn’t	public	because	it’s	not	very	useful	by	itself.	It’s	not	very	useful	because	the	

formulas	are	based	on	transforming	an	image	that	is	onepixel	wide	and	onepixel	tall.	Notice,	

however,	that	the	code	sets	M33	and	M44 to	1.	This	doesn’t	happen	automatically	and	it	is	

essential	for	the	matrix	to	work	right.	

To	compute	a	Matrix	for	an	affine	transform	that	applies	to	an	object	of	a	particular	size,	this	

public	method	is	much	more	useful:	

XNA Project: Petzold.Phone.Xna File: MatrixHelper.cs (excerpt)

public static Matrix ComputeMatrix(Vector2 size, Vector2 ptUL, Vector2 ptUR, Vector2

ptLL)

{

// Scale transform

Matrix S = Matrix.CreateScale(1 / size.X, 1 / size.Y, 1);

// Affine transform

Matrix A = ComputeAffineTransform(ptUL, ptUR, ptLL);

// Product of two transforms

return S * A;

}

The	first	transform	scales	the	object	down	to	a	1×1	size	before	applying	the	computed	affine	

transform.	

891	

	

	 	 	

	

	

	

	 	

	

The	AffineTransform	project	is	responsible	for	the	two	screen	shots	shown	above.	It	creates	

three	instances	of	the	Dragger component	in	its	Initialize override,	sets	a	handler	for	the	

PositionChanged	event,	and	adds	the	component	to	the	Components	collection:	

XNA Project: File: (excerpt)

public class Game1 : Microsoft.Xna.Framework.Game

{

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

Texture2D texture;

Matrix matrix = Matrix.Identity;

Dragger draggerUL, draggerUR, draggerLL;

 …

protected override void Initialize()

 {

 draggerUL = new Dragger(this);

 draggerUL.PositionChanged += OnDraggerPositionChanged;

this.Components.Add(draggerUL);

 draggerUR = new Dragger(this);

 draggerUR.PositionChanged += OnDraggerPositionChanged;

this.Components.Add(draggerUR);

 draggerLL = new Dragger(this);

 draggerLL.PositionChanged += OnDraggerPositionChanged;

this.Components.Add(draggerLL);

base.Initialize();

 }

 …

}

Don’t	forget	to	add	the	components	to	the	Components collection	of	the	Game	class!	

The	LoadContent	override	is	responsible	for	loading	the	image	that	will	be	transformed	and	

initializing	the	Position	properties	of	the	three	Dragger	components	at	the	three	corners	of	

the	image:	

892	

	

	

	

	 	

	 	 	

	

	 	 	

	 	 	

	 	 	 	

	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

// Create a new SpriteBatch, which can be used to draw textures.

 spriteBatch = new SpriteBatch(GraphicsDevice);

Viewport viewport = this.GraphicsDevice.Viewport;

 texture = this.Content.Load<Texture2D>("PetzoldTattoo");

 draggerUL.Position = new Vector2((viewport.Width - texture.Width) / 2,

 (viewport.Height - texture.Height) / 2);

 draggerUR.Position = draggerUL.Position + new Vector2(texture.Width, 0);

 draggerLL.Position = draggerUL.Position + new Vector2(0, texture.Height);

 OnDraggerPositionChanged(null, EventArgs.Empty);

}

Dragger	only	fires	its	PositionChanged	event	when	the	component	is	actually	dragged	by	the	

user,	so	the	LoadContent	method	concludes	by	simulating	a	PositionChanged	event,	which	

calculates	an	initial	Matrix	based	on	the	size	of	the	Texture2D	and	the	initial	positions	of	the	

Dragger	components:	

XNA Project: File: (excerpt)

void OnDraggerPositionChanged(object sender, EventArgs args)

{

 matrix = MatrixHelper.ComputeMatrix(new Vector2(texture.Width, texture.Height),

 draggerUL.Position,

 draggerUR.Position,

 draggerLL.Position);

}

The	program	doesn’t	need	to	handle	any	touch	input	of	its	own,	but	Dragger	implements	the	

IProcessTouch interface,	so	the	program	funnels	touch	input	to	the	Dragger	components.	

These	Dragger	components	respond	by	possibly	moving	themselves	and	setting	new	Position

properties,	which	will	cause	PositionChanged	events	to	be	fired.	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

// Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

893	

	

	 	 	

	 	 	 	 	 	

	 	 	

	 	 	

	 	

	 	 	 	 	 	 	 	

	

	 	 	

		

this.Exit();

TouchCollection touches = TouchPanel.GetState();

 foreach (TouchLocation touch in touches)

 {

bool touchHandled = false;

foreach (GameComponent component in this.Components)

{

 if (component is IProcessTouch &&

 (component as IProcessTouch).ProcessTouch(touch))

 {

 touchHandled = true;

 break;

 }

}

if (touchHandled == true)

 continue;

 }

 base.Update(gameTime);

}

It	is	possible	for	the	program	to	dispense	with	setting	handlers	for	the	PositionChanged	event	

of	the	Dragger	components	and	instead	poll	the	Position properties	during	each	Update	call	

and	recalculate	a	Matrix	from	those	values.	However,	recalculating	a	Matrix only	when	one	of	

the	Position properties	actually	changes	is	much	more	efficient.	

The	Draw	override	uses	that	Matrix	to	display	the	texture:	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.CornflowerBlue);

 spriteBatch.Begin(SpriteSortMode.Immediate, null, null, null, null, null,

matrix);

 spriteBatch.Draw(texture, Vector2.Zero, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}

As	you	experiment	with	AffineTransform,	you’ll	want	to	avoid	making	the	interior	angles	at	

any	corner	greater	than	180°.	(In	other	words,	keep	it	convex.)	Affine	transforms	can	express	

familiar	operations	like	translation,	scaling,	rotation,	and	skew,	but	they	never	transform	a	

square	into	anything	more	exotic	than	a	parallelogram.	

894	

	

	

	 	

	 	

	

	 	 	 	 	

		

	 	 	 	

	

	 	 	 	

	

		

		

		

		

	 	 	 	

	 	

	 	

	

	 	 	 	 	 	 	 	

	

	

	 	 	

	 	 	

	 	 	 	 	 	

	 	

	

Nonaffine	transforms	are	much	more	common	in	3D	than	2D.	In	3D,	nonaffine	transforms	

are	necessary	to	implement	perspective	effects.	A	long	straight	desert	highway	in	a	3D	world	

must	seem	to	get	narrower	as	it	recedes	into	the	distance,	just	like	in	the	real	world.	Although	

we	know	that	the	sides	of	the	road	remains	parallel,	visually	they	seem	to	converge	at	infinity.	

This	tapering	effect	is	characteristic	of	nonaffine	transforms.	

The	complete	matrix	transform	for	a	threedimensional	coordinate	point	looks	like	this:	

Because	x,	y,	and	z	are	already	the	last	three	letters	of	the	alphabet,	the	fourth	dimension	is	

represented	with	the	letter	w.	The	threedimensional	coordinate	point	is	first	expressed	as	a	

fourdimensional	point	for	multiplying	by	the	4×4	matrix.	The	following	formulas	result	from	

the	matrix	multiplication:	

For	an	affine	transform,	M14,	M24,	and	M34	are	all	zero,	and	M44	is	1,	so	wļ is	1,	and	the	

entire	transform	occurs	on	a	plane	in	4D	space.	For	nonaffine	transforms,	wļ is	not	1,	and	to	

project	4D	space	back	into	3D	space,	the	threedimensaional	point	must	be	constructed	from	

the	fourdimensional	point	(xƍ,	yƍ,	zƍ,	wƍ)	like	so:	

It’s	the	division	here	that	causes	tapering.	If	M14 is	a	positive	number,	for	example,	then	wļƍ
will	increase	for	increasing	x,	and	the	graphical	object	will	get	progressively	smaller	as	x	gets	

larger.	

What	happens	if	wļ becomes	zero?	That’s	the	non-affine part	of	this	process:	Coordinates	can	

become	infinite.	Generally	you’ll	want	to	keep	infinite	objects	out	of	sight	because	they	tend	

to	hog	the	screen.	

Although	nonaffine	transforms	are	essential	for	3D	graphics	programming,	I	wasn’t	even	sure	

if	SpriteBatch	supported	twodimensional	nonaffine	transforms	until	I	tried	them,	and	I	was	

pleased	to	discover	that	XNA	says	“No	problem!”	What	this	means	is	that	you	can	use	non

affine	transforms	in	2D	programming	to	simulate	perspective	effects.	

895	

	

	 	 	 	 	 	

	

	

	

	

	 	

	 	

	 	 	 	 	 	

	 	 	

	

	 	

		

		

		

A	nonaffine	transform	in	2D	can	transform	a	square	into	a	simple	convex	quadrilateral—a	

foursided	figure	where	the	sides	meet	only	at	the	corners,	and	interior	angles	at	any	corner	

are	less	than	180°.	Here’s	one	example:	

This	one	makes	me	look	really	smart:	

This	program	is	called	NonAffineTransform	and	it’s	just	like	AffineTransform	except	it	has	a	

fourth	Dragger	component	and	it	calls	a	somewhat	more	sophisticated	method	in	the	

MatrixHelper class	in	Petzold.Phone.Xna.	You	can	move	the	little	disks	around	with	a	fair	

amount	of	freedom;	as	long	as	you’re	not	trying	to	form	a	concave	quadrilateral,	you’ll	get	an	

image	stretched	to	fit.	

Again,	let’s	nail	down	the	mathematics	by	assuming	that	the	original	image	we’re	trying	to	

transform	is	1	pixel	wide	and	1	pixel	tall.	Now	we	want	a	transform	that	produces	mappings	

from	the	four	corners	of	a	square	to	four	arbitrary	points:	

896	

	

		

	

		

		

		

		

	 	 	

	 	 	 	

	 	

		

		

	

		

		

		

		

	

	 	

		

		

	 	

	

The	transform	we	desire	will	be	much	easier	to	derive	if	we	break	it	down	into	two	transforms:	

The	first	transform	is	a	nonaffine	transform	that	I’ll	call	B.	The	second	is	something	that	I’ll	

force	to	be	an	affine	transform	called	A	(for	“affine”).	The	composite	transform	is	B×A.	The	

task	here	is	to	derive	the	two	transforms	plus	the	point	(a,	b).	

I’ve	already	defined	the	affine	transform.	But	I	want	this	affine	transform	to	map	a	point	(a,	b)	

to	the	point	(x3,	y3).	What	is	the	point	(a,	b)?	If	we	apply	the	affine	transform	to	(a,	b)	and	solve	

for	a	and	b,	we	get:	

Now	let’s	focus	on	the	nonaffine	transform,	which	needs	to	produce	the	following	mappings:	

The	generalized	nonaffine	2D	transform	formulas	(using	field	names	from	the	Matrix

structure	and	incorporating	the	division	by	wļ)	are:	

The	point	(0,	0)	is	mapped	to	(0,	0),	which	tells	us	that	M41	and	M42	are	zero,	and	M44	is	

nonzero.	Let’s	go	out	on	a	limb	and	say	M44	is	1.	

The	point	(1,	0)	is	mapped	to	(1,	0),	which	tells	us	that	M12	is	zero	and	M14	=	M11	–	1.	

897	

	

	

		

		

	 	

	 	

	

	 	 	

	 	

	

The	point	(0,	1)	is	mapped	to	(0,	1),	which	tells	us	that	M21	is	zero	and	M24	=	M22	–	1.	

The	point	(1,	1)	is	mapped	to	(a,	b),	which	requires	a	bit	of	algebra	to	derive:	

And	a	and	b	have	already	been	calculated	in	connection	with	the	affine	transform.	

This	math	has	been	incorporated	into	a	second	static	MatrixHelper.ComputeMatrix	method	in	

the	Petzold.Phone.Xna	library:	

XNA Project: Petzold.Phone.Xna File: MatrixHelper.cs

public static Matrix ComputeMatrix(Vector2 size, Vector2 ptUL, Vector2 ptUR,

Vector2 ptLL, Vector2 ptLR)

{

// Scale transform

Matrix S = Matrix.CreateScale(1 / size.X, 1 / size.Y, 1);

// Affine transform

Matrix A = ComputeAffineTransform(ptUL, ptUR, ptLL);

// Non-Affine transform

Matrix B = new Matrix();

float den = A.M11 * A.M22 - A.M12 * A.M21;

float a = (A.M22 * ptLR.X - A.M21 * ptLR.Y +

 A.M21 * A.M42 - A.M22 * A.M41) / den;

float b = (A.M11 * ptLR.Y - A.M12 * ptLR.X +

 A.M12 * A.M41 - A.M11 * A.M42) / den;

 B.M11 = a / (a + b - 1);

 B.M22 = b / (a + b - 1);

 B.M33 = 1;

 B.M14 = B.M11 - 1;

 B.M24 = B.M22 - 1;

 B.M44 = 1;

// Product of three transforms

return S * B * A;

}

I	won’t	show	you	the	NonAffineTransform	program	here	because	it’s	pretty	much	the	same	as	

the	AffineTransform	program	but	with	a	fourth	Dragger	component	whose	Position	property	

is	passed	to	the	second	ComputeMatrix	method.	

898	

	

	 	 	 	 	 	The	big	difference	with	the	new	program	is	that	nonaffine	transforms	are	much	more	fun!	

899		

	

	 	 	 	 	

	 	

	 	 	

	 	 	 	

	 	

	 	 	

	 	

	

	 	 	 	 	

	 	 	

	

Chapter	23	

Touch and Play
Often	when	learning	a	new	programming	environment,	a	collection	of	techniques	are	

acquired	that	don’t	necessary	add	up	to	the	skills	required	to	create	a	complete	program.	This	

chapter	is	intended	to	compensate	for	that	problem	by	presenting	two	rather	archetypal	

programs	for	the	phone	called	PhingerPaint	and	PhreeCell.	The	first	is	a	simple	drawing	

program;	the	second	is	a	version	of	the	classic	solitaire	game.	A	third	program	called	

SpinPaint	shares	some	code	with	PhingerPaint	but	provides	a	much	different	experience.	

All	these	programs	use	components,	process	touch	input	in	various	degrees	of	sophistication,	

and	dynamically	manipulate	Texture2D	objects.	While	these	programs	are	certainly	not	of	

commercial	quality,	I	think	they	provide	at	least	a	little	better	sense	of	what	a	“real	program”	

looks	like.	

More
Game
Components

When	first	exploring	the	subject	of	dynamic	Texture2D objects	in	Chapter	21,	I	described	

some	simple	fingerpainting	programs.	PhingerPaint	is	slightly	more	sophisticated	than	those,	

as	this	screen	shot	suggests:	

900	

	

	 	 	 	

	 	 	

	 	 	

	 	

	 	 	 	 	 	

	 	 	

	

	 	

	 	

	 	 	 	 	

	 	

	 	 	 	

	 	

	 	 	

	

	

PhingerPaint	has	a	total	of	14	instances	of	two	classes	named	ColorBlock	and	Button	that	

derive	from	DrawableGameComponent.	To	select	a	drawing	color,	you	touch	one	of	the	

colored	squares	at	top.	You	can	also	use	the	buttons	on	the	bottom	to	clear	the	entire	canvas	

or	save	the	artwork	to	the	phone’s	photo	library	in	a	special	album	reserved	for	applications	

called	Saved	Pictures.	From	there	you	can	email	the	picture,	or	you	can	move	it	to	your	PC	

during	the	next	time	you	synchronize	your	phone.	(What	you	can’t	do	is	continue	working	on	

the	picture	during	another	session.	Perhaps	someday	I’ll	add	that	feature.)	

Button	behaves	very	much	like	a	traditional	graphical	button.	It	normally	displays	white	text	

with	a	white	border,	but	when	you	put	your	finger	on	the	surface,	the	colors	invert	to	display	

black	text	on	a	white	background.	If	you	slide	your	finger	off,	the	colors	flip	back	to	normal,	

but	the	button	is	still	keeping	track	of	that	finger.	Slide	your	finger	back	and	the	colors	

reverse	themselves	again.	Lifting	your	finger	from	the	button	causes	it	to	fire	a	Click	event.	

Because	I’ll	be	using	Button	in	more	than	one	program,	it’s	part	of	the	Petzold.Phone.Xna	

library.	Here’s	the	beginning	of	the	class	with	the	private	fields,	the	public	event,	the	

constructor,	and	public	properties:	

XNA Project: File: (excerpt)

public class Button : DrawableGameComponent, IProcessTouch

{

SpriteBatch spriteBatch;

Texture2D tinyTexture;

Vector2 textPosition;

 bool isPressed;

 int? touchId = null;

 public event EventHandler Click;

 public Button(Game game, string text)

: base(game)

 {

Text = text;

 }

 public Rectangle Destination { set; get; }

 public SpriteFont SpriteFont { set; get; }

 public string Text { set; get; }

 …

}

Normally	the	game	component	constructor	has	an	argument	of	type	Game,	which	is	the	

parent	of	the	component,	and	from	which	the	GameComponent	base	class	extracts	the	

GraphicsDevice.	I	added	a	constructor	argument	of	type	string	for	the	button	text,	but	that	

text	can	also	be	set	later	through	the	public	Text	property.	

901	

	

	 	 	

	 	 	 	

	

	 	 	 	

	 	

	

	 	

	 	

	 	

	

	 	 	 	

	 	 	 	

	 	

	

I	decided	that	the	parent	Game	derivative	should	be	responsible	for	setting	the	font	for	the	

Button	and	the	allimportant	Destination property,	which	is	the	location	and	size	of	the	Button

relative	to	the	screen.	

The	LoadContent	override	in	the	game	component	performs	a	similar	function	as	in	the	game	

class.	The	Button	class	creates	a	tiny	1×1	pixel	white	Texture2D for	displaying	the	button	

border	and	the	reversevideo	background.	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(this.GraphicsDevice);

 tinyTexture = new Texture2D(this.GraphicsDevice, 1, 1);

 tinyTexture.SetData<uint>(new uint[] { Color.White.PackedValue });

 base.LoadContent();

}

The	public	SpriteFont	and	Destination	properties	of	Button	might	be	set	at	any	time	after	the	

Button	class	is	created.	For	this	reason	it’s	the	Update	method	that	accesses	this	information	to	

determine	the	text	size	and	the	position	of	the	text:	

XNA Project: File: (excerpt)

public override void Update(GameTime gameTime)

{

if (SpriteFont != null && !String.IsNullOrEmpty(Text))

 {

Vector2 textSize = SpriteFont.MeasureString(Text);

textPosition =

new Vector2((int)(Destination.Left + (Destination.Width - textSize.X) /

2),

(int)(Destination.Top + (Destination.Height - textSize.Y) /

2));

 }

base.Update(gameTime);

}

The	Button	class	implements	the	IProcessTouch	interface	that	I	discussed	in	the	previous	

chapter,	which	means	it	has	a	ProcessTouch	method	that	is	called	from	the	Game1	class	with	

each	TouchLocation	object.	For	an	initial	finger	press,	ProcessTouch	checks	if	the	position	of	

the	touch	point	is	within	the	Destination	rectangle.	If	so,	then	it	saves	the	touch	ID	and	

essentially	owns	that	ID	until	the	finger	is	released.	

902	

	

	 	 	

	

	 	

	

XNA Project: File: (excerpt)

public bool ProcessTouch(TouchLocation touch)

{

bool touchHandled = false;

bool isInside = Destination.Contains((int)touch.Position.X,

 (int)touch.Position.Y);

switch (touch.State)

 {

case TouchLocationState.Pressed:

if (isInside)

 {

 isPressed = true;

 touchId = touch.Id;

 touchHandled = true;

}

break;

case TouchLocationState.Moved:

if (touchId.HasValue && touchId.Value == touch.Id)

 {

 isPressed = isInside;

 touchHandled = true;

}

break;

case TouchLocationState.Released:

if (touchId.HasValue && touchId.Value == touch.Id)

 {

if (isInside && Click != null)

 Click(this, EventArgs.Empty);

 touchId = null;

 isPressed = false;

 touchHandled = true;

}

break;

}

return touchHandled;

}

If	the	finger	is	released	when	it	is	inside	the	Destination	rectangle,	then	Button	fires	a	Click

event.	

The	Draw	override	draws	the	button,	which	is	basically	a	border	consisting	of	a	white	

rectangle	with	a	somewhat	smaller	black	rectangle	on	top,	with	the	text	string:	

XNA Project: File: (excerpt)

public override void Draw(GameTime gameTime)

{

903	

	

	 	

 spriteBatch.Begin();

if (isPressed)

 {

// Draw reverse-video background

spriteBatch.Draw(tinyTexture, Destination, Color.White);

 }

else

 {

// Draw button border and background

Rectangle rect = Destination;

 spriteBatch.Draw(tinyTexture, rect, Color.White);

 rect.Inflate(-3, -3);

 spriteBatch.Draw(tinyTexture, rect, Color.Black);

 }

// Draw button text

if (SpriteFont != null && !String.IsNullOrEmpty(Text))

spriteBatch.DrawString(SpriteFont, Text, textPosition,

 isPressed ? Color.Black : Color.White);

 spriteBatch.End();

base.Draw(gameTime);

}

ColorBlock,	on	the	other	hand,	is	part	of	the	PhingerPaint	program,	and	it	does	not	implement	

the	IProcessTouch	interface.	Here	it	is	in	its	entirety:	

XNA Project: File: (complete)

using System;

using Microsoft.Xna.Framework;

using Microsoft.Xna.Framework.Graphics;

using Microsoft.Xna.Framework.Input.Touch;

namespace PhingerPaint

{

public class ColorBlock : DrawableGameComponent

 {

SpriteBatch spriteBatch;

Texture2D block;

public ColorBlock(Game game) : base(game)

{

}

public Color Color { set; get; }

public Rectangle Destination { set; get; }

public bool IsSelected { set; get; }

904

	

	

	 	 	

	 	 	

	 	 	

	 	 	

	 	

	

	

	

public override void Initialize()

{

base.Initialize();

}

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(this.GraphicsDevice);

 block = new Texture2D(this.GraphicsDevice, 1, 1);

 block.SetData<uint>(new uint[] { Color.White.PackedValue });

base.LoadContent();

}

public override void Update(GameTime gameTime)

{

base.Update(gameTime);

}

public override void Draw(GameTime gameTime)

{

Rectangle rect = Destination;

 spriteBatch.Begin();

 spriteBatch.Draw(block, rect, IsSelected ? Color.White :

Color.DarkGray);

 rect.Inflate(-6, -6);

 spriteBatch.Draw(block, rect, Color);

 spriteBatch.End();

base.Draw(gameTime);

}

 }

}

ColorBlock	relies	on	three	public	properties—Color,	Destination,	and	IsSelected—to	govern	its	

appearance.	Notice	during	the	LoadContent	method	that	it	too	creates	a	Texture2D	that	is	

exactly	one	pixel	in	size.	This	block	object	is	drawn	twice	in	the	Draw method.	First	it’s	drawn	

to	the	entire	dimensions	of	the	Destination	rectangle	as	either	dark	gray	or	white,	depending	

on	the	value	of	IsSelected.	Then	it’s	contracted	in	size	by	six	pixels	on	all	sides	and	drawn	

again	based	on	the	Color	property.	

The
PhingerPaint
Canvas

The	components	created	by	PhingerPaint	are	stored	as	fields	along	with	some	of	the	other	

expected	information:	

905	

	

	 	 	

	

	

	

	 	 	 	

	 	

	

	

	

	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

Texture2D canvas;

Vector2 canvasSize;

Vector2 canvasPosition;

uint[] pixels;

List<float> xCollection = new List<float>();

Button clearButton, saveButton;

string filename;

List<ColorBlock> colorBlocks = new List<ColorBlock>();

Color drawingColor = Color.Blue;

int? touchIdToIgnore;

 …

}

The	List stores	the	12	ColorBlock	components	and	drawingColor	is	the	currently	selected	color.	

The	main	canvas	is,	of	course,	the	Texture2D	object	called	canvas	and	the	pixels	array	stores	

the	texture’s	pixels.	The	xCollection	object	is	repeatedly	reused	in	calls	to	the	

RoundCappedLine	class	that	I	discussed	in	Chapter	21.	

The	constructor	sets	the	back	buffer	for	portrait	mode,	but	it	sets	the	height	to	768	rather	

than	800.	This	leaves	enough	space	for	the	status	bar	so	the	back	buffer	is	allowed	to	display	

in	its	full	size:	

XNA Project: File: (excerpt)

public Game1()

{

 graphics = new GraphicsDeviceManager(this);

 Content.RootDirectory = "Content";

// Frame rate is 30 fps by default for Windows Phone.

 TargetElapsedTime = TimeSpan.FromTicks(333333);

// Set to portrait mode but leave room for status bar

 graphics.PreferredBackBufferWidth = 480;

 graphics.PreferredBackBufferHeight = 768;

}

The	Initialize	override	is	responsible	for	creating	the	Button	and	ColorBlack	components,	

partially	initializing	them,	and	adding	them	to	the	Components	collection	of	the	Game	class.	

This	ensures	that	they	get	their	own	calls	to	Initialize,	LoadContent,	Update,	and	Draw.	

906	

	

	 	 	 	 	 	 	

	 	

	 	 	

XNA Project: File: (excerpt)

protected override void Initialize()

{

// Create Button components

 clearButton = new Button(this, "clear");

 clearButton.Click += OnClearButtonClick;

 this.Components.Add(clearButton);

 saveButton = new Button(this, "save");

 saveButton.Click += OnSaveButtonClick;

 this.Components.Add(saveButton);

// Create ColorBlock components

Color[] colors = { Color.Red, Color.Green, Color.Blue,

Color.Cyan, Color.Magenta, Color.Yellow,

Color.Black, new Color(0.2f, 0.2f, 0.2f),

new Color(0.4f, 0.4f, 0.4f),

new Color(0.6f, 0.6f, 0.6f),

new Color(0.8f, 0.8f, 0.8f), Color.White };

 foreach (Color clr in colors)

 {

ColorBlock colorBlock = new ColorBlock(this);

colorBlock.Color = clr;

colorBlocks.Add(colorBlock);

this.Components.Add(colorBlock);

 }

 base.Initialize();

}

The	remainder	of	the	initialization	of	the	components	occurs	during	the	LoadContent	override	

when	the	font	can	be	loaded	for	the	Button components.	It	seems	a	little	odd	to	set	a	back	

buffer	to	an	explicit	size	in	the	constructor,	and	yet	calculate	dimensions	more	abstractly	in	

the	LoadContent	method,	but	it’s	usually	best	to	keep	code	as	generalized	and	as	flexible	as	

possible.	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

Rectangle clientBounds = this.GraphicsDevice.Viewport.Bounds;

SpriteFont segoe14 = this.Content.Load<SpriteFont>("Segoe14");

// Set up Button components

 clearButton.SpriteFont = segoe14;

 saveButton.SpriteFont = segoe14;

Vector2 textSize = segoe14.MeasureString(clearButton.Text);

907	

	

	 	

	 	 	 	

	 	 	 	

	 	 	

	 	

	 	 	 	 	

	 	 	

	 	 	

	

 int buttonWidth = (int)(2 * textSize.X);

 int buttonHeight = (int)(1.5 * textSize.Y);

 clearButton.Destination =

new Rectangle(clientBounds.Left + 20,

clientBounds.Bottom - 2 - buttonHeight,

buttonWidth, buttonHeight);

 saveButton.Destination =

new Rectangle(clientBounds.Right - 20 - buttonWidth,

clientBounds.Bottom - 2 - buttonHeight,

buttonWidth, buttonHeight);

 int colorBlockSize = clientBounds.Width / (colorBlocks.Count / 2) - 2;

 int xColorBlock = 2;

 int yColorBlock = 2;

 foreach (ColorBlock colorBlock in colorBlocks)

 {

colorBlock.Destination = new Rectangle(xColorBlock, yColorBlock,

colorBlockSize, colorBlockSize);

xColorBlock += colorBlockSize + 2;

if (xColorBlock + colorBlockSize > clientBounds.Width)

{

 xColorBlock = 2;

 yColorBlock += colorBlockSize + 2;

}

 }

 canvasPosition = new Vector2(0, 2 * colorBlockSize + 6);

 canvasSize = new Vector2(clientBounds.Width,

 clientBounds.Height - canvasPosition.Y

 - buttonHeight - 4);

}

The	LoadContent	method	concludes	by	calculating	a	location	and	size	for	the	Texture2D	used	

as	a	canvas.	But	LoadContent	doesn’t	take	the	final	step	in	actually	creating	that	Texture2D

because	the	LoadContent	method	might	soon	be	followed	by	a	call	to	the	OnActivated

override	which	signals	either	that	the	program	is	starting	up,	or	it’s	returning	from	a	

tombstoned	state.	

It	is	important	for	PhingerPaint	to	implement	tombstoning	because	users	tend	to	become	

enraged	when	their	creative	efforts	disappear	from	the	screen.	For	that	reason	the	

OnDeactivated	override	saves	the	image	to	the	PhoneApplicationService in	PNG	format,	and	

the	OnActivated override	gets	it	back	out.	I	chose	PNG	for	this	process	because	it’s	a	lossless	

compression	format,	and	I	felt	that	the	image	should	be	restored	exactly	to	its	original	state.	

To	slightly	ease	the	process	of	saving	and	loading	Texture2D	object,	I	used	the	methods	in	the	

Texture2DExtensions	class	in	the	Petzold.Phone.Xna	library	that	I	described	in	the	previous	

908

	

	

	 	

	

	

chapter.	The	OnActivated	method	calls	LoadFromPhoneService	to	obtain	a	saved	Texture2D,	

and	if	that’s	not	available,	only	then	does	it	create	a	new	one	and	clear	it.	

The	use	of	the	PhoneApplicationService	class	requires	references	to	the	System.Windows	and	

Microsoft.Phone	assemblies,	and	a	using	directive	for	Microosft.Phone.Shell.	

XNA Project: File: (excerpt)

protected override void OnActivated(object sender, EventArgs args)

{

// Recover from tombstoning

bool newlyCreated = false;

 canvas = Texture2DExtensions.LoadFromPhoneServiceState(this.GraphicsDevice,

"canvas");

if (canvas == null)

{

// Otherwise create new Texture2D

canvas = new Texture2D(this.GraphicsDevice, (int)canvasSize.X,

 (int)canvasSize.Y);

newlyCreated = true;

}

// Create pixels array

 pixels = new uint[canvas.Width * canvas.Height];

 canvas.GetData<uint>(pixels);

if (newlyCreated)

ClearPixelArray();

// Get drawing color from State, initialize selected ColorBlock

if (PhoneApplicationService.Current.State.ContainsKey("color"))

drawingColor = (Color)PhoneApplicationService.Current.State["color"];

foreach (ColorBlock colorBlock in colorBlocks)

colorBlock.IsSelected = colorBlock.Color == drawingColor;

base.OnActivated(sender, args);

}

The	OnDeactivated	override	stores	the	Texture2D	using	the	SaveToPhoneServiceState

extension	method:	

XNA Project: File: (excerpt)

protected override void OnDeactivated(object sender, EventArgs args)

{

PhoneApplicationService.Current.State["color"] = drawingColor;

 canvas.SaveToPhoneServiceState("canvas");

base.OnDeactivated(sender, args);

}

909	

	

	 	 	

	 	

	 	 	 	

	 	 	 	

	 	 	 	 	 	 	

	 	 	

	 	 	

	 	 	

	

	 	 	

	

If	the	program	is	starting	up,	OnActivated calls	a	method	named	ClearPixelArray:	

XNA Project: File: (excerpt)

void ClearPixelArray()

{

for (int y = 0; y < canvas.Height; y++)

for (int x = 0; x < canvas.Width; x++)

{

 pixels[x + canvas.Width * y] = Color.GhostWhite.PackedValue;

}

 canvas.SetData<uint>(pixels);

}

void OnClearButtonClick(object sender, EventArgs e)

{

 ClearPixelArray();

}

You’ll	also	notice	the	Click event	handler	for	the	“clear”	Button	also	calls	this	method.	As	you’ll	

recall,	the	Button	class	fires	the	Click	event	based	on	touch	input,	and	Button gets	touch	input	

when	the	parent	Game	class	calls	the	ProcessTouch	method	from	its	own	Update	override.	

This	means	that	this	OnClearButtonClick	method	is	actually	called	during	a	call	to	the	Update

override	of	this	class.	

When	the	user	presses	the	Button	labeled	“save”	the	program	must	display	some	kind	of	

dialog	box	to	let	the	user	type	in	a	filename.	An	XNA	program	can	get	keyboard	input	in	one	

of	two	ways:	a	lowlevel	approach	involving	Keyboard	and	a	highlevel	approach	by	calling	

the	Guide.BeginShowKeyboardInput	method	in	the	Microsoft.Xna.Framework.GamerServices

namespace.	I	chose	the	highlevel	option.	Guide.BeginShowKeyboardInput	wants	some	

initialization	information	and	a	callback	function,	so	the	method	fabricates	a	unique	filename	

from	the	current	date	and	time:	

XNA Project: File: (excerpt)

void OnSaveButtonClick(object sender, EventArgs e)

{

DateTime dt = DateTime.Now;

 filename =

String.Format("PhingerPaint-{0:D2}-{1:D2}-{2:D2}-{3:D2}-{4:D2}-{5:D2}",

dt.Year % 100, dt.Month, dt.Day, dt.Hour, dt.Minute,

dt.Second);

Guide.BeginShowKeyboardInput(PlayerIndex.One, "phinger paint save file",

"enter filename:", filename, KeyboardCallback,

null);

}

910	

	

	

	

	

	 	

	 	 	

	 	

	 	

	

	 	

	 	 	

	 	

	 	 	 	 	 	

	

The	Guide.BeginShowKeyboardInput	call	causes	the	program	to	receive	a	call	to	

OnDeactivated,	after	which	the	following	screen	is	displayed:	

The	only	parts	of	this	screen	you	can	customize	are	the	text	strings	in	the	headings	and	the	

initial	text	in	the	textentry	box.	The	screen	looks	much	better	in	portrait	mode	than	in	

landscape	mode.	In	landscape	mode,	all	the	text	headings,	the	textentry	box,	and	the	on

screen	keyboard	are	reoriented	but	the	two	buttons	are	not,	and	the	combination	looks	very	

peculiar.	One	look	at	it	and	you	might	never	call	Guide.BeginShowKeyboardInput	from	a	

landscapemode	program!	

When	either	the	“OK”	or	“Cancel”	button	is	clicked,	the	program	is	reactivated	and	the	

callback	function	in	PhingerPaint	is	called:	

XNA Project: File: (excerpt)

void KeyboardCallback(IAsyncResult result)

{

 filename = Guide.EndShowKeyboardInput(result);

}

Your	program	should	assume	that	this	callback	function	is	being	called	asynchronously	(as	the	

argument	implies)	so	you	shouldn’t	do	a	whole	lot	here	except	call	

Guide.EndShowKeyboardInput	and	save	the	return	value	in	a	field.	If	the	user	pressed	the	“OK”	

911	

	

	 	

	 	

	 	

	

	 	

	 	

	 	 	 	

	 	 	

	 	 	

	 	 	 	

	 	

	 	

	 	 	 	

button,	then	the	return	value	is	the	final	text	entered	into	the	textentry	field.	If	the	user	

pressed	“Cancel”	or	the	Back	button,	then	Guide.EndShowKeyboardInput	returns	null.	

A	good	place	to	do	something	with	that	return	value	is	during	the	next	call	to	the	program’s	

Update	override:	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

// If the Save File dialog box has returned, save the image

 if (!String.IsNullOrEmpty(filename))

 {

canvas.SaveToPhotoLibrary(filename);

filename = null;

 }

 …

}

Notice	that	the	logic	checks	if	the	filename	field	is	nonnull	and	nonempty	but	at	the	end	it	

sets	the	filename	field	back	to	null	to	ensure	that	it’s	saved	only	once.	

SaveToPhotoLibrary	is	not	a	real	method	of	the	Texture2D class!	It’s	another	extension	method	

in	the	Texture2DExtensions class	in	the	Petzold.Phone.Xna	library.	

XNA Project: Petzold.Phone.Xna File: Texture2DExtensions.cs (excerpt)

public static void SaveToPhotoLibrary(this Texture2D texture, string filename)

{

MemoryStream memoryStream = new MemoryStream();

 texture.SaveAsJpeg(memoryStream, texture.Width, texture.Height);

 memoryStream.Position = 0;

MediaLibrary mediaLibrary = new MediaLibrary();

 mediaLibrary.SavePicture(filename, memoryStream);

 memoryStream.Close();

}

This	is	the	standard	code	for	saving	a	Texture2D	to	the	Saved	Pictures	album	of	the	phone’s	

photo	library.	Although	PhingerPaint	uses	the	PNG	format	when	saving	the	image	during	

tombstoning,	pictures	saved	to	the	photo	library	must	be	JPEG.	The	SaveAsJpeg	method	saves	

the	whole	image	to	a	MemoryStream,	and	then	the	MemoryStream	position	is	reset	and	it’s	

passed	to	the	SavePicture	method	of	MediaLibrary with	a	filename.	

912	

	

	 	 	 	

	 	

	 	

	

	 	

	 	 	 	

	 	

	 	 	 	

	

	 	 	 	

	

	 	 	 		

If	you’re	deploying	to	an	actual	phone,	and	you’re	running	the	desktop	Zune	software	so	

Visual	Studio	can	communicate	with	the	phone,	this	code	will	raise	an	exception.	When	Zune	

is	running	it	wants	exclusive	access	to	the	phone’s	media	library.	You’ll	need	to	terminate	the	

Zune	program	and	instead	run	the	WPDTPTConnect	tool,	either	WPDTPTConnect32.exe	or	

WPDTPTConnect64.exe	depending	on	whether	you	run	32bit	or	64bit	Windows.	

Of	course,	most	of	the	Update	override	is	devoted	to	handling	touch	input.	I	chose	to	use	the	

lowlevel	touch	input	so	you	can	draw	with	multiple	fingers	on	the	canvas.	The	Button

basically	handles	its	own	touch	input	based	on	the	IProcessTouch	interface	but	ColorBlock	is	

handled	differently.	The	Update method	in	the	game	class	itself	handles	the	ColorBlock

components	as	well	as	the	Texture2D	canvas.	

The	ColorBlock	components	are	treated	more	simply	than	the	Button.	Just	a	touch	on	a	

ColorBlock	selects	that	item	and	switches	the	program	to	that	color.	The	touch	ID	is	retained	

and	not	allowed	to	be	used	for	anything	else.	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

…

TouchCollection touches = TouchPanel.GetState();

 foreach (TouchLocation touch in touches)

 {

// Ignore further activity of ColorBlock push

if (touchIdToIgnore.HasValue && touch.Id == touchIdToIgnore.Value)

 continue;

// Let Button components have first dibs on touch

bool touchHandled = false;

foreach (GameComponent component in this.Components)

 if (component is IProcessTouch &&

 (component as IProcessTouch).ProcessTouch(touch))

 {

 touchHandled = true;

 break;

 }

if (touchHandled)

 continue;

// Check for tap on ColorBlock

if (touch.State == TouchLocationState.Pressed)

{

Vector2 position = touch.Position;

ColorBlock newSelectedColorBlock = null;

 foreach (ColorBlock colorBlock in colorBlocks)

913	

	

	 	 	 	 	 	 	

	

	 	

	 	 	

	

 {

Rectangle rect = colorBlock.Destination;

 if (position.X >= rect.Left && position.X < rect.Right &&

 position.Y >= rect.Top && position.Y < rect.Bottom)

{

 drawingColor = colorBlock.Color;

 newSelectedColorBlock = colorBlock;

 }

 }

 if (newSelectedColorBlock != null)

 {

 foreach (ColorBlock colorBlock in colorBlocks)

 colorBlock.IsSelected = colorBlock == newSelectedColorBlock;

 touchIdToIgnore = touch.Id;

}

 else

 {

 touchIdToIgnore = null;

 }

}

…

 }

 …

}

The	remainder	of	the	touch	processing	is	for	actual	drawing,	and	it’s	only	interested	in	State

values	of	TouchLocationState.Moved.	That	state	allows	a	call	to	the	TryGetPreviousLocation

method,	and	the	two	points	can	then	be	passed	to	the	constructor	of	the	RoundCappedLine

class	in	Petzold.Phone.Xna.	That	provides	ranges	of	pixels	to	color	for	each	little	piece	of	a	

total	brushstroke:	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

…

// Process touch input

 bool canvasNeedsUpdate = false;

TouchCollection touches = TouchPanel.GetState();

 foreach (TouchLocation touch in touches)

 {

…

// Check for drawing movement

else if (touch.State == TouchLocationState.Moved)

{

TouchLocation prevTouchLocation;

 touch.TryGetPreviousLocation(out prevTouchLocation);

914

	

	 	

	

	

	

Vector2 point1 = prevTouchLocation.Position - canvasPosition;

Vector2 point2 = touch.Position - canvasPosition;

// Sure hope touchLocation.Pressure comes back!

 float radius = 12;

RoundCappedLine line = new RoundCappedLine(point1, point2, radius);

 int yMin = (int)(Math.Min(point1.Y, point2.Y) - radius);

 int yMax = (int)(Math.Max(point1.Y, point2.Y) + radius);

 yMin = Math.Max(0, Math.Min(canvas.Height, yMin));

 yMax = Math.Max(0, Math.Min(canvas.Height, yMax));

 for (int y = yMin; y < yMax; y++)

 {

 xCollection.Clear();

 line.GetAllX(y, xCollection);

 if (xCollection.Count == 2)

 {

 int xMin = (int)(Math.Min(xCollection[0], xCollection[1]) +

0.5f);

 int xMax = (int)(Math.Max(xCollection[0], xCollection[1]) +

0.5f);

 xMin = Math.Max(0, Math.Min(canvas.Width, xMin));

 xMax = Math.Max(0, Math.Min(canvas.Width, xMax));

 for (int x = xMin; x < xMax; x++)

 {

 pixels[y * canvas.Width + x] = drawingColor.PackedValue;

 }

 canvasNeedsUpdate = true;

 }

 }

}

 }

 if (canvasNeedsUpdate)

canvas.SetData<uint>(pixels);

 base.Update(gameTime);

}

It’s	always	very	satisfying	when	everything	has	prepared	the	Draw override	for	a	very	simple	

job.	The	ColorBlock	and	Button	components	draw	themselves,	so	the	Draw	method	here	need	

only	render	the	canvas:	

915	

	

	

	 	 	

	 	 	

	 	 	

	 	 	 	

	

	 	 	

	

	 	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 this.GraphicsDevice.Clear(Color.Black);

 spriteBatch.Begin();

 spriteBatch.Draw(canvas, canvasPosition, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}

A
Little
Tour
Through
SpinPaint

SpinPaint	has	an	unusual	genesis.	I	wrote	the	first	version	one	morning	while	attending	a	two

day	class	on	programming	for	Microsoft	Surface—those	coffeetable	computers	designed	for	

public	places.	That	version	was	written	for	the	Windows	Presentation	Foundation	and	could	

be	used	by	several	people	sitting	around	the	machine.	

I	originally	wanted	to	have	a	Silverlight	version	of	SpinPaint	in	Chapter	14	of	this	book	to	

demonstrate	WriteableBitmap,	but	the	performance	was	just	terrible.	I	wrote	the	first	XNA	

version	for	the	Zune	HD	before	I	had	an	actual	Windows	Phone,	and	then	I	ported	that	

version	to	the	one	I’ll	show	you	here.	

SpinPaint	comes	up	with	a	white	disk	that	rotates	12	times	per	minute.	You’ll	also	notice	that	

the	title	of	the	program	cycles	through	a	series	of	colors	every	10	seconds:	

916	

	

	

	 	 	 	 	 	

	 	

	

	

When	you	touch	the	disk,	it	paints	with	that	title	color	as	if	your	finger	is	a	brush	and	the	disk	

is	moving	below	it,	but	the	painted	line	is	also	flipped	around	the	horizontal	and	vertical	axes:	

As	you	continue	to	paint,	you	can	get	some	fancy	designs:	

917	

	

	

	 	 	

	

	 	 	

	 	 	

	 	 	 	 	 	

	 	 	 	 	 	 	

	

	 	

Obviously	you’ll	want	to	press	the	“save”	button	to	save	the	result	to	the	phone’s	photo	

library,	and	later	email	it	to	your	friends.	

As	with	the	PhingerPaint	program,	you	can	use	up	to	four	fingers	for	simultaneous	drawing,	

and	that’s	why	both	programs	use	the	lowlevel	touch	input	rather	than	the	gesture	interface.	

The
SpinPaint
Code

SpinPaint	needs	to	handle	touch	in	a	very	special	way.	Not	only	can	fingers	move	on	the	

screen,	but	the	disk	rotates	underneath	the	fingers,	so	even	if	a	finger	isn’t	moving	it’s	still	

going	to	be	drawing.	Unlike	PhingerPaint,	this	program	needs	to	keep	track	of	each	finger.	

For	that	reason,	it	defines	a	Dictionary	with	an	integer	key	(which	is	the	touch	ID)	that	

maintains	objects	of	type	TouchInfo,	a	small	class	internal	to	Game1	that	stores	two	touch	

positions:	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

// Fields involved with spinning disk texture

Texture2D diskTexture;

uint[] pixels;

918	

	

	 	 	 	

	

	 	 	 	 	

	

	 	 	

	 	 	

Vector2 displayCenter;

Vector2 textureCenter;

int radius;

Color currentColor;

// Touch information and line-drawing fields

class TouchInfo

 {

public Vector2 PreviousPosition;

public Vector2 CurrentPosition;

 }

Dictionary<int, TouchInfo> touchDictionary = new Dictionary<int, TouchInfo>();

float currentAngle;

float previousAngle;

List<float> xCollection = new List<float>();

// Buttons and titles

Button clearButton, saveButton;

SpriteFont segoe14;

SpriteFont segoe48;

string titleText = "spin paint";

Vector2 titlePosition;

string filename;

 …

}

The	constructor	sets	the	back	buffer	for	portrait	mode,	but	like	PhingerPaint	it	sets	the	height	

to	768	rather	than	800	to	make	room	for	the	status	bar:	

XNA Project: File: (excerpt)

public Game1()

{

 graphics = new GraphicsDeviceManager(this);

 Content.RootDirectory = "Content";

// Frame rate is 30 fps by default for Windows Phone.

 TargetElapsedTime = TimeSpan.FromTicks(333333);

// Portrait, but allow room for status bar at top

 graphics.PreferredBackBufferWidth = 480;

 graphics.PreferredBackBufferHeight = 768;

}

Making	room	for	the	status	bar	means	that	you’re	seeing	the	full	back	buffer	dimensions	on	

the	screen.	

The	two	Button	components	are	created	during	the	Initialize	method.	They	have	their	Text

properties	assigned	and	Click	event	handlers	attached	but	nothing	else	quite	yet:	

919	

	

	

	 	 	 	 	

	

	 	 	

	 	

XNA Project: File: (excerpt)

protected override void Initialize()

{

// Create button components

 clearButton = new Button(this, "clear");

 clearButton.Click += OnClearButtonClick;

 this.Components.Add(clearButton);

 saveButton = new Button(this, "save");

 saveButton.Click += OnSaveButtonClick;

 this.Components.Add(saveButton);

 base.Initialize();

}

Notice	the	allimportant	step	of	adding	the	components	to	the	Components	collection	of	the	

Game	class.	If	you	forget	to	do	that,	they	won’t	show	up	at	all	and	you’ll	probably	find	

yourself	very	baffled.	(I	speak	from	experience.)	

The	program	can’t	position	the	buttons	until	it	knows	how	large	they	should	be,	and	that	

information	isn’t	available	until	fonts	are	loaded,	and	that	doesn’t	happen	until	the	

LoadContent	override.	Here	is	where	the	buttons	are	assigned	both	a	font	and	a	destination:	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

// Get display information

Rectangle clientBounds = this.GraphicsDevice.Viewport.Bounds;

 displayCenter = new Vector2(clientBounds.Center.X, clientBounds.Center.Y);

// Load fonts and calculate title position

 segoe14 = this.Content.Load<SpriteFont>("Segoe14");

 segoe48 = this.Content.Load<SpriteFont>("Segoe48");

 titlePosition = new Vector2((int)((clientBounds.Width -

 segoe48.MeasureString(titleText).X) / 2), 20);

// Set button fonts and destinations

 clearButton.SpriteFont = segoe14;

 saveButton.SpriteFont = segoe14;

Vector2 textSize = segoe14.MeasureString(clearButton.Text);

 int buttonWidth = (int)(2 * textSize.X);

 int buttonHeight = (int)(1.5 * textSize.Y);

 clearButton.Destination =

new Rectangle(clientBounds.Left + 20,

clientBounds.Bottom - 20 - buttonHeight,

buttonWidth, buttonHeight);

920	

	

	 	 	

	 	 	

	

	 	

	 	 	 	

	 	 	

 saveButton.Destination =

new Rectangle(clientBounds.Right - 20 - buttonWidth,

clientBounds.Bottom - 20 - buttonHeight,

buttonWidth, buttonHeight);

}

The	LoadContent	method	doesn’t	create	the	Texture2D used	for	painting	because	that	job	

needs	to	be	incorporated	into	the	tombstoning	logic.	

As	in	PhingerPaint,	the	OnDeactivated	override	saves	the	image	in	PNG	format,	and	the	

OnActivated	override	gets	it	back	out.	Both	methods	call	methods	in	the	TextureExtensions

class	in	the	Petzold.Phone.Xna	library.	If	there’s	nothing	to	retrieve,	then	the	program	is	

starting	up	fresh	and	a	new	Texture2D	needs	to	be	created.	

XNA Project: File: (excerpt)

protected override void OnActivated(object sender, EventArgs args)

{

// Recover from tombstoning

bool newlyCreated = false;

 diskTexture = Texture2DExtensions.LoadFromPhoneServiceState(this.GraphicsDevice,

"disk");

// Or create the Texture2D

if (diskTexture == null)

{

Rectangle clientBounds = this.GraphicsDevice.Viewport.Bounds;

int textureDimension = Math.Min(clientBounds.Width, clientBounds.Height);

diskTexture = new Texture2D(this.GraphicsDevice, textureDimension,

 textureDimension);

newlyCreated = true;

}

 pixels = new uint[diskTexture.Width * diskTexture.Height];

 radius = diskTexture.Width / 2;

 textureCenter = new Vector2(radius, radius);

if (newlyCreated)

 {

ClearPixelArray();

 }

else

 {

diskTexture.GetData<uint>(pixels);

 }

base.OnActivated(sender, args);

}

protected override void OnDeactivated(object sender, EventArgs args)

{

 diskTexture.SaveToPhoneServiceState("disk");

921

	

	

	

	

	 	

	

base.OnDeactivated(sender, args);

}

If	a	new	Texture2D	is	created,	then	it	is	initialized	with	a	pixels	array	that	contains	a	circular	

area	set	to	white	except	for	a	couple	light	gray	lines	that	help	suggest	to	the	user	that	the	disk	

is	really	spinning.	

XNA Project: File: (excerpt)

void ClearPixelArray()

{

for (int y = 0; y < diskTexture.Height; y++)

for (int x = 0; x < diskTexture.Width; x++)

if (IsWithinCircle(x, y))

 {

Color clr = Color.White;

// Lines that criss cross quadrants

if (x == diskTexture.Width / 2 || y == diskTexture.Height / 2)

 clr = Color.LightGray;

 pixels[y * diskTexture.Width + x] = clr.PackedValue;

 }

 diskTexture.SetData<uint>(pixels);

}

bool IsWithinCircle(int x, int y)

{

 x -= diskTexture.Width / 2;

 y -= diskTexture.Height / 2;

return x * x + y * y < radius * radius;

}

void OnClearButtonClick(object sender, EventArgs args)

{

 ClearPixelArray();

}

The	ClearPixelArray is	also	called	when	the	user	presses	the	“clear”	button.	

The	logic	for	the	“save”	button	is	virtually	identical	to	that	in	PhingerPaint:	

XNA Project: File: (excerpt)

void OnSaveButtonClick(object sender, EventArgs args)

{

DateTime dt = DateTime.Now;

string filename =

String.Format("spinpaint-{0:D2}-{1:D2}-{2:D2}-{3:D2}-{4:D2}-{5:D2}",

922	

	

	 	 	

	 	 	 	 	

	

	

dt.Year % 100, dt.Month, dt.Day, dt.Hour, dt.Minute,

dt.Second);

Guide.BeginShowKeyboardInput(PlayerIndex.One, "spin paint save file",

"enter filename:", filename, KeyboardCallback,

null);

}

void KeyboardCallback(IAsyncResult result)

{

 filename = Guide.EndShowKeyboardInput(result);

}

Also	as	in	PhingerPaint,	the	file	is	saved	to	the	photo	library	during	the	Update	override:	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

// Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

// If the Save File dialog has returned, save the image

 if (!String.IsNullOrEmpty(filename))

 {

diskTexture.SaveToPhotoLibrary(filename);

filename = null;

 }

 …

}

The
Actual
Drawing

The	remainder	of	the	Update	override	does	the	really	hard	stuff:	drawing	on	the	disk	based	on	

touch	input	and	the	disk’s	revolution.	

Update	processing	begins	with	the	calculation	of	a	current	angle	of	the	spinning	disk	and	a	

current	color	to	paint	it:	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

…

// Disk rotates every 5 seconds

 double seconds = gameTime.TotalGameTime.TotalSeconds;

 currentAngle = (float)(2 * Math.PI * seconds / 5);

// Colors cycle every 10 seconds

923	

	

	 	 	

	

	 	

	 	

	

	 	

	 	 	 	

	 	 	

	 	

 float fraction = (float)(6 * (seconds % 10) / 10);

 if (fraction < 1)

currentColor = new Color(1, fraction, 0);

 else if (fraction < 2)

currentColor = new Color(2 - fraction, 1, 0);

 else if (fraction < 3)

currentColor = new Color(0, 1, fraction - 2);

 else if (fraction < 4)

currentColor = new Color(0, 4 - fraction, 1);

 else if (fraction < 5)

currentColor = new Color(fraction - 4, 0, 1);

 else

currentColor = new Color(1, 0, 6 - fraction);

// First assume no finger movement

 foreach (TouchInfo touchInfo in touchDictionary.Values)

touchInfo.CurrentPosition = touchInfo.PreviousPosition;

 …

}

While	any	finger	is	currently	touching	the	screen,	the	program	maintains	a	TouchInfo	object	

with	CurrentPosition	and	PreviousPosition.	These	positions	are	always	relative	to	the	Texture2D

canvas	not	taking	account	of	spinning.	For	that	reason,	this	section	of	the	Update	override	

concludes	with	the	CurrentPosition	field	being	set	from	the	PreviousPosition	field	under	the	

assumption	that	no	fingers	have	moved.	

At	this	point,	Update	is	now	ready	to	look	at	touch	input,	first	calling	the	ProcessTouch

method	in	each	button	and	then	finding	new	positions	of	existing	fingers	or	new	touches.	

Translating	touch	input	relative	to	the	screen	to	touch	input	relative	to	the	Texture2D	is	the	

responsibility	of	the	little	TranslateToTexture	method	that	follows	Update	here.	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

…

// Get all touches

TouchCollection touches = TouchPanel.GetState();

 foreach (TouchLocation touch in touches)

 {

// Let Button components have first dibs on touch

bool touchHandled = false;

foreach (GameComponent component in this.Components)

{

 if (component is IProcessTouch &&

 (component as IProcessTouch).ProcessTouch(touch))

924

	

	

	 	

	 	 	

	 	

	 	

	

 {

 touchHandled = true;

 break;

 }

}

if (touchHandled)

 continue;

// Set TouchInfo items from touch information

int id = touch.Id;

switch (touch.State)

{

 case TouchLocationState.Pressed:

 if (!touchDictionary.ContainsKey(id))

 touchDictionary.Add(id, new TouchInfo());

 touchDictionary[id].PreviousPosition =

TranslateToTexture(touch.Position);

 touchDictionary[id].CurrentPosition =

TranslateToTexture(touch.Position);

 break;

 case TouchLocationState.Moved:

 if (touchDictionary.ContainsKey(id))

 touchDictionary[id].CurrentPosition =

 TranslateToTexture(touch.Position);

 break;

 case TouchLocationState.Released:

 if (touchDictionary.ContainsKey(id))

 touchDictionary.Remove(id);

 break;

}

 }

 …

}

Vector2 TranslateToTexture(Vector2 point)

{

 return point - displayCenter + textureCenter;

}

To	take	account	of	the	spinning	of	the	disk,	the	fields	include	previousAngle	and	currentAngle.	

Update	now	calculates	two	matrices	called	previousRotation	and	currentRotation	based	on	

these	two	fields.	Notice	that	these	matrices	are	obtained	from	calls	to	Matrix.CreateRotationZ

but	they	are	bracketed	with	multiplications	by	translation	transforms	that	adjust	the	rotation	

so	it	is	relative	to	the	center	of	the	Texture2D:	

925

	

	 	

	

	 	 	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

…

// Calculate transforms for rotation

Matrix translate1 = Matrix.CreateTranslation(-textureCenter.X, -textureCenter.Y,

0);

Matrix translate2 = Matrix.CreateTranslation(textureCenter.X, textureCenter.Y,

0);

Matrix previousRotation = translate1 *

Matrix.CreateRotationZ(-previousAngle) *

translate2;

Matrix currentRotation = translate1 *

 Matrix.CreateRotationZ(-currentAngle) *

translate2;

 …

}

Once	those	transforms	are	determined,	then	they	can	be	applied	to	the	PreviousPosition	and	

CurrentPosition	fields	of	the	TouchInfo	object	using	the	state	Vector2.Transform	method,	and	

then	passed	to	RoundCappedLine to	obtain	the	information	necessary	to	draw	a	line	on	the	

Texture2D:	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

…

 bool textureNeedsUpdate = false;

 foreach (TouchInfo touchInfo in touchDictionary.Values)

 {

// Now draw from previous to current points

Vector2 point1 = Vector2.Transform(touchInfo.PreviousPosition,

previousRotation);

Vector2 point2 = Vector2.Transform(touchInfo.CurrentPosition,

currentRotation);

float radius = 6;

RoundCappedLine line = new RoundCappedLine(point1, point2, radius);

int yMin = (int)(Math.Min(point1.Y, point2.Y) - radius);

int yMax = (int)(Math.Max(point1.Y, point2.Y) + radius);

yMin = Math.Max(0, Math.Min(diskTexture.Height, yMin));

yMax = Math.Max(0, Math.Min(diskTexture.Height, yMax));

for (int y = yMin; y < yMax; y++)

{

926	

	

	 	 	

	

 xCollection.Clear();

 line.GetAllX(y, xCollection);

 if (xCollection.Count == 2)

 {

 int xMin = (int)(Math.Min(xCollection[0], xCollection[1]) + 0.5f);

 int xMax = (int)(Math.Max(xCollection[0], xCollection[1]) + 0.5f);

 xMin = Math.Max(0, Math.Min(diskTexture.Width, xMin));

 xMax = Math.Max(0, Math.Min(diskTexture.Width, xMax));

 for (int x = xMin; x < xMax; x++)

 {

 if (IsWithinCircle(x, y))

 {

// Draw pixel in four quadrants

 int xFlip = diskTexture.Width - x;

 int yFlip = diskTexture.Height - y;

 pixels[y * diskTexture.Width + x] =

currentColor.PackedValue;

 pixels[y * diskTexture.Width + xFlip] =

currentColor.PackedValue;

 pixels[yFlip * diskTexture.Width + x] =

currentColor.PackedValue;

 pixels[yFlip * diskTexture.Width + xFlip] =

currentColor.PackedValue;

 }

 }

 textureNeedsUpdate = true;

 }

}

 }

 if (textureNeedsUpdate)

 {

// Update the texture from the pixels array

this.GraphicsDevice.Textures[0] = null;

diskTexture.SetData<uint>(pixels);

 }

// Prepare for next time through

 foreach (TouchInfo touchInfo in touchDictionary.Values)

touchInfo.PreviousPosition = touchInfo.CurrentPosition;

 previousAngle = currentAngle;

 base.Update(gameTime);

}

The	actual	Draw	override	is	amazingly	tiny.	All	it	renders	is	the	rotating	diskTexture	and	the	

application	name	with	its	changing	color	that	appears	at	the	top	of	the	screen:	

927

	

	 	 	 	

	

	 	 	 	 	

	 	 	

	 	

	 	 	

	 	 	 	 	

	 	 	 	 	 	

	 	

	 	 	

	 	

	 	

	 	

	

	 	 	

	

	 	

	 	 	 	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.Draw(diskTexture, displayCenter, null, Color.White,

 currentAngle, textureCenter, 1, SpriteEffects.None, 0);

 spriteBatch.DrawString(segoe48, titleText, titlePosition, currentColor);

 spriteBatch.End();

 base.Draw(gameTime);

}

PhreeCell
and
a
Deck
of
Cards

I	originally	thought	that	my	PhreeCell	solitaire	game	would	have	no	features	beyond	what	

was	strictly	necessary	to	play	the	game.	My	wife—who	has	played	FreeCell	under	Windows	

and	who	only	rarely	can’t	complete	a	deal—made	it	clear	that	PhreeCell	would	need	two	

features	that	I	hadn’t	planned	on	implementing:	First	and	most	importantly,	there	had	to	be	

some	kind	of	positive	feedback	from	the	program	acknowledging	that	the	player	has	won.	I	

implemented	this	as	a	DrawableGameComponent	derivative	called	

CongratulationsComponent.	

The	second	essential	feature	was	something	I	called	“auto	move.”	If	a	card	can	be	legally	

moved	to	the	suit	piles	at	the	upper	right	of	the	board,	and	there	was	no	reason	to	do	

otherwise,	then	the	card	is	automatically	moved.	Other	than	that,	PhreeCell	has	no	amenities.	

There	is	no	animated	“deal”	at	the	beginning	of	play,	you	cannot	simply	“click”	to	indicate	a	

destination	spot,	and	there	is	no	way	to	move	multiple	cards	in	one	shot.	There	is	no	undo	

and	no	hints.	

My	coding	for	PhreeCell	began	not	with	an	XNA	program	but	with	a	Windows	Presentation	

Foundation	program	to	generate	a	single	1040	×	448	bitmap	containing	all	52	playing	cards,	

each	of	which	is	96	pixels	wide	and	112	pixels	tall.	This	program	uses	mostly	TextBlock	objects	

to	adorn	a	Canvas	with	numbers,	letters,	and	suit	symbols.	It	then	passes	the	Canvas	to	a	

RenderTargetBitmap	and	saves	the	result	out	to	a	file	named	cards.png.	In	the	XNA	PhreeCell	

project,	I	added	this	file	to	the	program’s	content.	

Within	the	PhreeCell	project,	each	card	is	an	object	of	type	CardInfo:	

XNA Project: File:

using System;

using Microsoft.Xna.Framework;

928	

	

	 	 	

	

	 	

	 	

	

namespace PhreeCell

{

class CardInfo

 {

static string[] ranks = { "Ace", "Deuce", "Three", "Four",

"Five", "Six", "Seven", "Eight",

"Nine", "Ten", "Jack", "Queen", "King" };

static string[] suits = { "Spades", "Clubs", "Hearts", "Diamonds" };

public int Suit { protected set; get; }

public int Rank { protected set; get; }

public Vector2 AutoMoveOffset { set; get; }

public TimeSpan AutoMoveTime { set; get; }

public float AutoMoveInterpolation { set; get; }

public CardInfo(int suit, int rank)

{

 Suit = suit;

 Rank = rank;

}

// used for debugging purposes

public override string ToString()

{

return ranks[Rank] + " of " + suits[Suit];

}

 }

}

At	first,	this	class	simply	had	Suit	and	Rank 	properties.	I	added	the	static	string	arrays	and	

ToString	for	display	purposes	while	debugging,	and	I	added	the	three	AutoMove	fields	when	I	

implemented	that	feature.	CardInfo	itself	has	no	information	about	where	the	card	is	actually	

located	during	play.	That’s	retained	elsewhere.	

The
Playing
Field

Here’s	the	opening	PhreeCell	screen:	

929	

	

	

	 	 	

	

	 	

	

	 	 	 	

	 	

	 	

	

	 	

I’ll	assume	you’re	familiar	with	the	rules.	All	52	cards	are	dealt	face	up	in	8	columns	that	I	refer	

to	in	the	program	as	“piles.”	At	the	upper	left	are	four	spots	for	holding	individual	cards.	I	

refer	to	these	four	areas	as	“holds.”	At	the	upperright	are	four	spots	for	stacking	ascending	

cards	of	the	same	suit;	these	are	called	“finals.”	The	red	dot	in	the	middle	is	the	replay	button.	

For	convenience,	I	split	the	Game1	class	into	two	files.	The	first	is	the	normal	Game1.cs	file;	

the	second	is	named	Game1.Helpers.cs.	The	Game1.cs	file	contains	only	those	methods	

typically	found	in	a	small	game	that	also	implements	tombstoning	logic.	Game1.Helpers.cs	

has	everything	else.	I	created	the	file	by	adding	a	new	class	to	the	project.	In	both	files,	the	

Game1 class	derives	from	Game,	and	in	both	files	the	partial	keyword	indicates	that	the	class	

is	split	between	multiple	files.	The	Helpers	file	has	no	instance	fields—just	const	and	static

readonly.	The	Game1.cs	file	has	one	static field	and	all	the	instance	fields:	

XNA Project: File: (excerpt showing fields)

public partial class Game1 : Microsoft.Xna.Framework.Game

{

static readonly TimeSpan AutoMoveDuration = TimeSpan.FromSeconds(0.25);

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

CongratulationsComponent congratsComponent;

Texture2D cards;

Texture2D surface;

Rectangle[] cardSpots = new Rectangle[16];

Matrix displayMatrix;

Matrix inverseMatrix;

CardInfo[] deck = new CardInfo[52];

List<CardInfo>[] piles = new List<CardInfo>[8];

CardInfo[] holds = new CardInfo[4];

List<CardInfo>[] finals = new List<CardInfo>[4];

bool firstDragInGesture = true;

930	

	

	 	 	

	

	 	

	 	

	 	

	 	 	

	 	 	

	

	

	

	 	 	

	 	 	 	 	 	 	

	 		

	 	 	 	

	 	 	 	 	 	

	 	

	 	 	

	

	

	 	 	

CardInfo touchedCard;

Vector2 touchedCardPosition;

object touchedCardOrigin;

int touchedCardOriginIndex;

 …

}

The	program	uses	only	two	Texture2D	objects:	The	cards	object	is	the	bitmap	containing	all	

52	cards;	individual	cards	are	displayed	by	defining	rectangular	subsets	of	this	bitmap.	The	

surface	is	the	dark	blue	area	you	see	in	the	screen	shot	that	also	includes	the	white	rectangles	

and	the	red	button.	The	coordinates	of	those	16	white	rectangles—there	are	eight	more	

under	the	top	card	in	each	pile—are	stored	in	the	cardSpots	array.	

The	displayMatrix	field	is	normally	the	identity	matrix.	However,	if	you’re	a	Free	Cell	player	

you	know	that	sometimes	the	piles	of	cards	can	grow	long.	In	this	case,	the	displayMatrix

performs	vertical	scaling	to	compress	the	entire	playing	area.	The	inverseMatrix	is	the	inverse	

of	that	matrix	and	is	necessary	to	convert	screenrelative	touch	input	to	points	on	the	

compressed	bitmap.	

The	next	block	of	fields	are	the	basic	data	structures	used	by	the	program.	The	deck	array	

contains	all	52	CardInfo	objects	created	early	in	the	program	and	reused	until	the	program	is	

terminated.	During	play,	copies	of	those	cards	are	also	in	piles,	holds,	and	finals.	I	originally	

thought	finals would	be	an	array	like	holds	because	only	the	top	card	need	be	displayed,	but	I	

discovered	that	the	automove	feature	potentially	required	more	cards	to	be	visible.	

The	other	fields	are	connected	with	touching	and	moving	cards	with	the	fingers.	The	

touchedCardPosition field	is	the	current	position	of	the	moving	card.	The	touchedCardOrigin

field	stores	the	object	where	the	moving	card	came	from	and	is	either	the	holds	or	piles	array,	

while	touchedCardOriginIndex	is	the	array	index.	These	are	used	to	return	the	card	to	its	

original	spot	if	the	user	tries	to	move	the	card	illegally.	

The	Game1	constructor	indicates	that	the	game	wants	a	playing	area	of	800	pixels	wide	and	

480	pixels	high	without	the	status	bar.	Three	types	of	gestures	are	also	enabled:	

XNA Project: File: (excerpt)

public Game1()

{

 graphics = new GraphicsDeviceManager(this);

 graphics.IsFullScreen = true;

 Content.RootDirectory = "Content";

// Frame rate is 30 fps by default for Windows Phone.

 TargetElapsedTime = TimeSpan.FromTicks(333333);

 graphics.IsFullScreen = true;

931	

	

	 	 	 	 	

	

	

	

	 	 	 	

 graphics.PreferredBackBufferWidth = 800;

 graphics.PreferredBackBufferHeight = 480;

// Enable gestures

TouchPanel.EnabledGestures = GestureType.Tap |

GestureType.FreeDrag |

GestureType.DragComplete;

 }

The	Initialize	method	creates	the	CardInfo	objects	for	the	decks	array,	and	initializes	the	piles

and	finals	arrays	with	List	objects.	It	also	creates	the	CongratulationsComponent	and	adds	it	to	

the	Components	collection:	

XNA Project: File: (excerpt)

protected override void Initialize()

{

// Initialize deck

for (int suit = 0; suit < 4; suit++)

for (int rank = 0; rank < 13; rank++)

{

CardInfo cardInfo = new CardInfo(suit, rank);

 deck[suit * 13 + rank] = cardInfo;

}

// Create the List objects for the 8 piles

for (int pile = 0; pile < 8; pile++)

piles[pile] = new List<CardInfo>();

// Create the List objects for the 4 finals

for (int final = 0; final < 4; final++)

finals[final] = new List<CardInfo>();

// Create congratulations component

 congratsComponent = new CongratulationsComponent(this);

 congratsComponent.Enabled = false;

this.Components.Add(congratsComponent);

base.Initialize();

}

The	LoadContent	method	loads	the	bitmap	containing	the	card	images,	and	also	calls	two	

methods	in	the	portion	of	the	Game1	class	implemented	in	Game1.Helpers.cs:	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

// Load large bitmap containing cards

932

	

	 	 	 	 	 	

	

	 	

	 	

	 	 	 	 	

	 	 	 	 	 	

	 	 	

 cards = this.Content.Load<Texture2D>("cards");

// Create the 16 rectangular areas for the cards and the bitmap surface

 CreateCardSpots(cardSpots);

 surface = CreateSurface(this.GraphicsDevice, cardSpots);

}

In	a	commercial	program,	I	would	definitely	design	a	second	set	of	cards	specifically	for	the	

small	display;	these	would	certainly	be	more	attractive	than	cards	that	are	scaled	to	60%	of	

their	designed	size.	

The	Game1.Helpers.cs	file	begins	with	a	bunch	of	constant	fields	that	define	all	the	pixel	

dimensions	of	the	playing	field:	

XNA Project: File: (excerpt showing fields)

public partial class Game1 : Microsoft.Xna.Framework.Game

{

const int wCard = 80; // width of card

const int hCard = 112; // height of card

// Horizontal measurements

const int wSurface = 800; // width of surface

const int xGap = 16; // space between piles

const int xMargin = 8; // margin on left and right

// gap between "holds" and "finals"

const int xMidGap = wSurface - (2 * xMargin + 8 * wCard + 6 * xGap);

// additional margin on second row

const int xIndent = (wSurface - (2 * xMargin + 8 * wCard + 7 * xGap)) / 2;

// Vertical measurements

const int yMargin = 8; // vertical margin on top row

const int yGap = 16; // vertical margin between rows

const int yOverlay = 28; // visible top of cards in piles

const int hSurface = 2 * yMargin + yGap + 2 * hCard + 19 * yOverlay;

// Replay button

const int radiusReplay = xMidGap / 2 - 8;

static readonly Vector2 centerReplay =

new Vector2(wSurface / 2, xMargin + hCard / 2);

…

}

Notice	that	wSurface—the	width	of	the	playing	field—is	defined	to	be	800	pixels	because	

that’s	the	width	of	the	large	phone	display.	However,	the	vertical	dimension	might	need	to	be	

greater	than	480.	It	is	possible	for	there	to	be	20	overlapping	cards	in	the	piles	area.	To	

933

	

	 	 	 	

	

	 	 	

	

	

	

	 	 	 	

accommodate	that	possibility,	hSurface is	calculated	as	a	maximum	possible	height	based	on	

these	20	overlapping	cards.	

The	CreateCardSpots	method	uses	those	constants	to	calculate	16	Rectangle	objects	indicating	

where	the	cards	are	positioned	on	the	playing	fields.	The	top	row	has	the	holds	and	finals,	and	

the	bottom	row	is	for	the	piles:	

XNA Project: File: (excerpt)

static void CreateCardSpots(Rectangle[] cardSpots)

{

// Top row

int x = xMargin;

int y = yMargin;

for (int i = 0; i < 8; i++)

 {

cardSpots[i] = new Rectangle(x, y, wCard, hCard);

x += wCard + (i == 3 ? xMidGap : xGap);

 }

// Bottom row

 x = xMargin + xIndent;

 y += hCard + yGap;

for (int i = 8; i < 16; i++)

 {

cardSpots[i] = new Rectangle(x, y, wCard, hCard);

x += wCard + xGap;

 }

}

The	CreateSurface	method	creates	the	bitmap	used	for	the	playing	field.	The	size	of	the	

bitmap	is	based	on	hSurface (set	as	a	constant	800)	and	wSurface,	which	is	much	more	than	

480.	To	draw	the	white	rectangles	and	red	replay	button,	it	directly	manipulates	pixels	and	

sets	those	to	the	bitmap:	

XNA Project: File: (excerpt)

static Texture2D CreateSurface(GraphicsDevice graphicsDevice, Rectangle[] cardSpots)

{

uint backgroundColor = new Color(0, 0, 0x60).PackedValue;

uint outlineColor = Color.White.PackedValue;

uint replayColor = Color.Red.PackedValue;

Texture2D surface = new Texture2D(graphicsDevice, wSurface, hSurface);

uint[] pixels = new uint[wSurface * hSurface];

for (int i = 0; i < pixels.Length; i++)

{

934	

	

	

if ((new Vector2(i % wSurface, i / wSurface) – centerReplay).LengthSquared()

<

 radiusReplay * radiusReplay)

 pixels[i] = replayColor;

else

 pixels[i] = backgroundColor;

 }

foreach (Rectangle rect in cardSpots)

 {

// tops of rectangles

for (int x = 0; x < wCard; x++)

{

 pixels[(rect.Top - 1) * wSurface + rect.Left + x] = outlineColor;

 pixels[rect.Bottom * wSurface + rect.Left + x] = outlineColor;

}

// sides of rectangles

for (int y = 0; y < hCard; y++)

{

 pixels[(rect.Top + y) * wSurface + rect.Left - 1] = outlineColor;

 pixels[(rect.Top + y) * wSurface + rect.Right] = outlineColor;

}

 }

 surface.SetData<uint>(pixels);

return surface;

}

The	other	static	methods	in	the	Game1	class	are	fairly	selfexplanatory.	

XNA Project: File: (excerpt)

static void ShuffleDeck(CardInfo[] deck)

{

Random rand = new Random();

for (int card = 0; card < 52; card++)

 {

int random = rand.Next(52);

CardInfo swap = deck[card];

deck[card] = deck[random];

deck[random] = swap;

 }

}

static bool IsWithinRectangle(Vector2 point, Rectangle rect)

{

return point.X >= rect.Left &&

point.X <= rect.Right &&

point.Y >= rect.Top &&

point.Y <= rect.Bottom;

}

935	

	

	 	 	 	 	

	 	 	

	 	 	 	 	

	

	 	 	

	 	

	 	 	

	 	

	 	

	

	 	 	 	

	 	 	

	 	

static Rectangle GetCardTextureSource(CardInfo cardInfo)

{

return new Rectangle(wCard * cardInfo.Rank,

hCard * cardInfo.Suit, wCard, hCard);

}

static CardInfo TopCard(List<CardInfo> cardInfos)

{

if (cardInfos.Count > 0)

return cardInfos[cardInfos.Count - 1];

return null;

}

GetCardTextureSource	is	used	in	conjunction	with	the	large	cards bitmap.	It	simply	returns	a	

Rectangle	object	corresponding	to	a	particular	card.	TopCard	returns	the	last	item	in	a	

List<CardInfo>	collection,	which	is	useful	for	obtaining	the	topmost	card	in	one	of	the	piles	or	

finals	collections.	

At	the	conclusion	of	the	LoadContent override,	the	game	is	almost	ready	to	call	the	Replay

method,	which	shuffles	the	deck	and	“deals”	cards	into	the	piles	collections.	However,	there	is	

tombstoning	to	deal	with.	This	program	was	originally	built	around	the	piles,	holds,	and	finals

arrays	and	collections	before	tombstoning	was	implemented.	I	was	pleased	when	I	realized	

that	these	three	items	were	the	only	part	of	the	program	that	needed	to	be	saved	and	

retrieved	during	tombstoning.	However,	it	bothered	me	that	these	three	objects	contained	

references	to	the	52	instances	of	CardInfo	stored	in	deck,	and	I	wanted	to	maintain	that	

relationship,	so	I	ended	up	saving	and	retrieving	not	instances	of	CardInfo,	but	an	integer	

index	0	through	52.	This	required	a	bit	of	rather	boring	code:	

XNA Project: File: (excerpt)

protected override void OnDeactivated(object sender, EventArgs args)

{

PhoneApplicationService appService = PhoneApplicationService.Current;

// Save piles integers

List<int>[] piles = new List<int>[8];

for (int i = 0; i < piles.Length; i++)

 {

piles[i] = new List<int>();

foreach (CardInfo cardInfo in this.piles[i])

 piles[i].Add(13 * cardInfo.Suit + cardInfo.Rank);

 }

 appService.State["piles"] = piles;

// Save finals integers

List<int>[] finals = new List<int>[4];

936	

	

for (int i = 0; i < finals.Length; i++)

{

finals[i] = new List<int>();

foreach (CardInfo cardInfo in this.finals[i])

 finals[i].Add(13 * cardInfo.Suit + cardInfo.Rank);

 }

 appService.State["finals"] = finals;

// Save holds integers

int[] holds = new int[4];

for (int i = 0; i < holds.Length; i++)

 {

if (this.holds[i] == null)

 holds[i] = -1;

else

 holds[i] = 13 * this.holds[i].Suit + this.holds[i].Rank;

 }

 appService.State["holds"] = holds;

base.OnDeactivated(sender, args);

}

protected override void OnActivated(object sender, EventArgs args)

{

PhoneApplicationService appService = PhoneApplicationService.Current;

if (appService.State.ContainsKey("piles"))

 {

// Retrieve piles integers

List<int>[] piles = appService.State["piles"] as List<int>[];

for (int i = 0; i < piles.Length; i++)

{

foreach (int cardindex in piles[i])

this.piles[i].Add(deck[cardindex]);

}

// Retrieve finals integers

List<int>[] finals = appService.State["finals"] as List<int>[];

for (int i = 0; i < finals.Length; i++)

{

foreach (int cardindex in finals[i])

this.finals[i].Add(deck[cardindex]);

}

// Retrieve holds integers

int[] holds = appService.State["holds"] as int[];

for (int i = 0; i < holds.Length; i++)

{

if (holds[i] != -1)

937	

	

	 	 	 	 	 	

	

	

	 	 	 	

	 	 	 	 	

	 	

	 	 	

	

	

this.holds[i] = deck[holds[i]];

}

CalculateDisplayMatrix();

 }

else

 {

Replay();

 }

base.OnActivated(sender, args);

}

The	great	news	is	that	at	the	very	end	of	the	OnActivated	override,	the	Replay	method	is	

called	to	actually	start	the	game.	

Play
and
Replay

Replay	is	in	the	Game1.Helper.cs	class:	

XNA Project: File: (excerpt)

void Replay()

{

for (int i = 0; i < 4; i++)

holds[i] = null;

foreach (List<CardInfo> final in finals)

final.Clear();

foreach (List<CardInfo> pile in piles)

pile.Clear();

 ShuffleDeck(deck);

// Apportion cards to piles

for (int card = 0; card < 52; card++)

 {

piles[card % 8].Add(deck[card]);

 }

 CalculateDisplayMatrix();

}

The	method	clears	out	the	holds	array,	and	the	finals	and	piles	collections,	randomizes	the	

deck	of	cards,	and	apportions	them	into	the	eight	collections	in	piles.	The	method	is	

concluded	with	a	call	to	CalculateDisplayMatrix.	This	is	not	the	only	time	this	method	is	called.	

It’s	also	called	from	OnActivated	when	the	program	is	recovering	from	tombstoning.	

Thereafter,	any	time	a	card	is	moved	from,	or	added	to,	one	of	the	piles	collections,	the	

display	matrix	is	recalculated	just	in	case.	

938	

	

	

	

	 	

	

	

	 	

		

This	matrix	is	responsible	for	the	height	of	the	playing	area	if	more	space	is	required	for	

viewing	all	the	cards	in	the	piles	area.	The	program	doesn’t	handle	this	issue	very	elegantly.	It	

simply	makes	the	entire	playing	field	a	little	shorter,	including	all	the	cards	and	even	the	

replay	button:	

I’m	not	entirely	happy	with	this	solution,	but	here’s	the	CalculateDisplayMatrix	method	that	

does	it:	

XNA Project: File: (excerpt)

void CalculateDisplayMatrix()

{

// This will be 480 based on preferred back buffer settings

int viewportHeight = this.GraphicsDevice.Viewport.Height;

// Figure out the total required height and scale vertically

int maxCardsInPiles = 0;

foreach (List<CardInfo> pile in piles)

maxCardsInPiles = Math.Max(maxCardsInPiles, pile.Count);

int requiredHeight = 2 * yMargin + yGap + 2 * hCard +

yOverlay * (maxCardsInPiles - 1);

// Set the matrix for compressed Y if needed to show all cards

if (requiredHeight > viewportHeight)

displayMatrix = Matrix.CreateScale(1, (float)viewportHeight /

requiredHeight, 1);

else

displayMatrix = Matrix.Identity;

// Find the inverse matrix for hit-testing

 inverseMatrix = Matrix.Invert(displayMatrix);

}

939	

	

	 	 	

	 	 	 	

	 	 	

The	displayMatrix	is	used	in	the	Begin	call	of	SpriteBatch	so	it’s	applied	to	everything	in	one	

grand	swoop.	Although	just	a	little	bit	out	of	my	customary	sequence,	you	are	now	ready	to	

look	at	the	Draw	method	in	the	Game1	class.	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 spriteBatch.Begin(SpriteSortMode.Immediate, null, null, null, null, null,

displayMatrix);

 spriteBatch.Draw(surface, Vector2.Zero, Color.White);

// Draw holds

 for (int hold = 0; hold < 4; hold++)

 {

CardInfo cardInfo = holds[hold];

if (cardInfo != null)

{

Rectangle source = GetCardTextureSource(cardInfo);

Vector2 destination = new Vector2(cardSpots[hold].X, cardSpots[hold].Y);

 spriteBatch.Draw(cards, destination, source, Color.White);

}

 }

// Draw piles

 for (int pile = 0; pile < 8; pile++)

 {

Rectangle cardSpot = cardSpots[pile + 8];

for (int card = 0; card < piles[pile].Count; card++)

{

CardInfo cardInfo = piles[pile][card];

Rectangle source = GetCardTextureSource(cardInfo);

Vector2 destination = new Vector2(cardSpot.X, cardSpot.Y + card *

yOverlay);

 spriteBatch.Draw(cards, destination, source, Color.White);

}

 }

// Draw finals including all previous cards (for auto-move)

 for (int pass = 0; pass < 2; pass++)

 {

for (int final = 0; final < 4; final++)

{

 for (int card = 0; card < finals[final].Count; card++)

 {

CardInfo cardInfo = finals[final][card];

 if (pass == 0 && cardInfo.AutoMoveInterpolation == 0 ||

 pass == 1 && cardInfo.AutoMoveInterpolation != 0)

 {

Rectangle source = GetCardTextureSource(cardInfo);

940	

	

	 	 	

	

	 	 	

	 	

	 	

	

	 	 	 	

	 	

	 	 	

	 	

	 	

	 	 	 	

	 	

	

	

	 	 	 	

	

	 	 	

Vector2 destination =

new Vector2(cardSpots[final + 4].X,

 cardSpots[final + 4].Y) +

 cardInfo.AutoMoveInterpolation *

cardInfo.AutoMoveOffset;

 spriteBatch.Draw(cards, destination, source, Color.White);

 }

 }

}

 }

// Draw touched card

 if (touchedCard != null)

 {

Rectangle source = GetCardTextureSource(touchedCard);

spriteBatch.Draw(cards, touchedCardPosition, source, Color.White);

 }

 spriteBatch.End();

 base.Draw(gameTime);

}

After	calling	Begin	on	the	SpriteBatch	object	and	displaying	the	surface bitmap	for	the	playing	

field,	the	method	is	ready	for	drawing	cards.	It	begins	with	the	easy	one—the	four	possible	

cards	in	the	holds	array.	The	little	GetCardTextureSource	method	returns	a	Rectangle	for	the	

position	of	the	card	within	the	cards	bitmap,	and	the	cardSpot	array	provides	the	point	where	

each	card	is	to	appear.	

The	next	section	is	a	little	more	complicated.	When	displaying	the	cards	in	the	piles	area,	the	

cardSpot	location	must	be	offset	to	accommodate	the	overlapping	cards.	The	really	

problematic	area	is	the	finals,	and	it’s	problematic	because	of	the	automove	feature.	As	you’ll	

see,	when	a	card	is	eligible	for	automove,	it	is	removed	from	its	previous	holds	array	or	piles

collection	and	put	into	a	finals	collection.	However,	the	location	of	the	card	must	be	animated	

from	its	previous	position	to	its	new	position.	This	is	the	purpose	of	the	AutoMoveOffset	and	

AutoMoveInterpolation	properties	that	are	part	of	CardInfo.	

However,	the	Draw	method	wants	to	display	each	of	the	four	finals	collections	sequentially	

from	left	to	right,	and	then	within	each	collection	from	the	beginning	(which	is	always	an	ace)	

to	the	end,	which	is	the	topmost	card.	I	discovered	this	didn’t	always	work,	and	an	animated	

card	sometimes	seemed	briefly	to	slide	under	a	card	in	one	of	the	other	finals	stacks.	That’s	

why	the	loop	to	display	the	finals collections	has	two	passes—one	for	the	nonanimated	cards	

and	another	for	any	animated	automove	cards.	(Although	the	program	only	animates	one	

card	at	a	time,	an	earlier	version	animated	multiple	cards.)	

Draw finishes	with	the	card	that	the	user	might	be	currently	dragging.	

941	

	

	 	 	 	

	 	

	 		

	 	 	

	

	 	 	

	 	

	

	 	 	

	 	

	

The	Update method	is	concerned	almost	exclusively	with	implementing	the	animation	for	the	

automove	feature	and	processing	touch.	The	larger	section	with	the	nested	foreach	loops	

moves	cards	that	have	already	been	tagged	for	automove	and	hence	have	already	been	

moved	into	the	finals	collections.	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

// Process auto-move card and perhaps initiate next auto-move

 bool checkForNextAutoMove = false;

 foreach (List<CardInfo> final in finals)

foreach (CardInfo cardInfo in final)

{

 if (cardInfo.AutoMoveTime > TimeSpan.Zero)

 {

 cardInfo.AutoMoveTime -= gameTime.ElapsedGameTime;

 if (cardInfo.AutoMoveTime <= TimeSpan.Zero)

 {

 cardInfo.AutoMoveTime = TimeSpan.Zero;

 checkForNextAutoMove = true;

 }

 cardInfo.AutoMoveInterpolation = (float)cardInfo.AutoMoveTime.Ticks

/

 AutoMoveDuration.Ticks;

 }

}

 if (checkForNextAutoMove && !AnalyzeForAutoMove() && HasWon())

 {

congratsComponent.Enabled = true;

 }

 …

}

Cards	are	actually	tagged	for	automove	in	the	final	section	of	that	code	with	a	call	to	the	

AnalyzeforAutoMove	method	in	the	Game1.Helpers.cs	file.	(AnalyzeForAutoMove	is	also	called	

later	in	the	Update	override	after	a	card	has	been	moved	manually.)	This	method	loops	

through	the	holds	and	the	piles	and	calls	CheckForAutoMove	for	each	topmost	card.	If	

CheckForAutoMove	returns	true,	then	that	method	has	already	transferred	the	card	to	the	

appropriate	finals collection	and	it	must	be	removed	from	where	it	was.	Three	properties	of	

CardInfo	are	then	initialized	for	the	actual	movement	shown	above	in	Update:	

942	

	

	 	 	

	 	

	 	 	

XNA Project: File: (excerpt)

bool AnalyzeForAutoMove()

{

for (int hold = 0; hold < 4; hold++)

 {

CardInfo cardInfo = holds[hold];

if (cardInfo != null && CheckForAutoMove(cardInfo))

{

 holds[hold] = null;

 cardInfo.AutoMoveOffset += new Vector2(cardSpots[hold].X,

cardSpots[hold].Y);

 cardInfo.AutoMoveInterpolation = 1;

 cardInfo.AutoMoveTime = AutoMoveDuration;

return true;

}

 }

for (int pile = 0; pile < 8; pile++)

 {

CardInfo cardInfo = TopCard(piles[pile]);

if (cardInfo != null && CheckForAutoMove(cardInfo))

{

 piles[pile].Remove(cardInfo);

 cardInfo.AutoMoveOffset += new Vector2(cardSpots[pile + 8].X,

 cardSpots[pile + 8].Y + piles[pile].Count *

yOverlay);

 cardInfo.AutoMoveInterpolation = 1;

 cardInfo.AutoMoveTime = AutoMoveDuration;

return true;

}

 }

return false;

}

The	logic	to	determine	what	cards	(if	any)	should	be	automoved	turned	out	to	be	one	of	the	

lengthier	parts	of	the	program.	The	complication	is	that	no	card	should	be	moved	to	the	

finals	collection	if	it	can	still	be	used	strategically.	For	example,	a	4	of	hearts	shouldn’t	be	

moved	to	a	finals	collection	if	a	3	of	spades	or	3	of	clubs	is	still	somewhere	in	the	piles	or	

holds	collections.	

XNA Project: File: (excerpt)

bool CheckForAutoMove(CardInfo cardInfo)

{

if (cardInfo.Rank == 0) // ie, ace

 {

for (int final = 0; final < 4; final++)

if (finals[final].Count == 0)

943	

	

 {

 finals[final].Add(cardInfo);

 cardInfo.AutoMoveOffset = -new Vector2(cardSpots[final + 4].X,

 cardSpots[final + 4].Y);

return true;

}

 }

else if (cardInfo.Rank == 1) // ie, deuce

 {

for (int final = 0; final < 4; final++)

{

CardInfo topCardInfo = TopCard(finals[final]);

if (topCardInfo != null &&

 topCardInfo.Suit == cardInfo.Suit &&

 topCardInfo.Rank == 0)

 {

 finals[final].Add(cardInfo);

 cardInfo.AutoMoveOffset = -new Vector2(cardSpots[final + 4].X,

 cardSpots[final + 4].Y);

return true;

}

}

 }

else

 {

int slot = -1;

int count = 0;

for (int final = 0; final < 4; final++)

{

CardInfo topCardInfo = TopCard(finals[final]);

if (topCardInfo != null)

{

if (topCardInfo.Suit == cardInfo.Suit &&

 topCardInfo.Rank == cardInfo.Rank - 1)

 {

 slot = final;

 }

else if (topCardInfo.Suit < 2 != cardInfo.Suit < 2 &&

 topCardInfo.Rank >= cardInfo.Rank - 1)

 {

 count++;

 }

 }

}

if (slot >= 0 && count == 2)

{

 cardInfo.AutoMoveOffset = -new Vector2(cardSpots[slot + 4].X,

 cardSpots[slot + 4].Y);

 finals[slot].Add(cardInfo);

return true;

}

 }

944

	

	 	 	 	

	 	 	

	 	

	 	 	

	 	 	 	

return false;

}

Back	in	the	Update override,	following	the	animation	for	automove	cards,	Update	checks	if	

the	user	is	trying	to	“pick	up”	a	card	by	touching	it.	Picking	up	that	particular	card	might	be	

legal	or	not.	If	a	card	is	already	being	moved	and	the	user	is	trying	to	“set	down”	the	card,	

then	that	too	might	be	illegal.	The	legality	is	established	by	calls	to	TryPickUpCard	and	

TryPutDownCard.	Notice	that	the	finger	position	is	adjusted	by	inverseMatrix	so	it	agrees	with	

the	actual	locations	of	the	cards.	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

…

 while (TouchPanel.IsGestureAvailable)

 {

GestureSample gesture = TouchPanel.ReadGesture();

// Adjust position and delta for compressed image

Vector2 position = Vector2.Transform(gesture.Position, inverseMatrix);

Vector2 delta = position - Vector2.Transform(gesture.Position -

gesture.Delta,

inverseMatrix);

switch (gesture.GestureType)

{

 case GestureType.Tap:

// Check if Replay is pressed

 if ((gesture.Position - centerReplay).Length() < radiusReplay)

 {

 congratsComponent.Enabled = false;

 Replay();

}

 break;

 case GestureType.FreeDrag:

// Continue to move a dragged card

 if (touchedCard != null)

 {

 touchedCardPosition += delta;

 }

// Try to pick up a card

 else if (firstDragInGesture)

 {

 TryPickUpCard(position);

 }

 firstDragInGesture = false;

 break;

 case GestureType.DragComplete:

 if (touchedCard != null && TryPutDownCard(touchedCard))

945	

	

	 	

		

	 	 	

	

	 	 	 	 	 	 	

	 	

	

 {

 CalculateDisplayMatrix();

if (!AnalyzeForAutoMove() && HasWon())

 {

 congratsComponent.Enabled = true;

}

 }

 firstDragInGesture = true;

 touchedCard = null;

 break;

}

 }

 base.Update(gameTime);

}

Those	two	methods	TryPickUpCard	and	TryPutDownCard	are	both	implemented	in	the	

Game1.Helpers.cs	file	and	really	establish	the	rules	of	the	game.	

TryPickUpCard	is	the	simpler	of	the	two	methods.	It	only	gets	passed	a	touch	position	

somewhere	on	the	screen	and	must	determine	which	card	is	being	touched.	Only	a	card	in	

one	of	the	holds	collections	or	on	top	of	one	of	the	piles	collection	is	eligible	to	be	picked	up,	

but	otherwise	the	method	doesn’t	bother	with	determining	if	the	user	can	actually	do	

something	useful	with	that	card:	

XNA Project: File: (excerpt)

bool TryPickUpCard(Vector2 position)

{

for (int hold = 0; hold < 4; hold++)

 {

if (holds[hold] != null && IsWithinRectangle(position, cardSpots[hold]))

{

Point pt = cardSpots[hold].Location;

 touchedCard = holds[hold];

 touchedCardOrigin = holds;

 touchedCardOriginIndex = hold;

 touchedCardPosition = new Vector2(pt.X, pt.Y);

 holds[hold] = null;

return true;

}

 }

for (int pile = 0; pile < 8; pile++)

 {

if (piles[pile].Count > 0)

{

Rectangle pileSpot = cardSpots[pile + 8];

 pileSpot.Offset(0, yOverlay * (piles[pile].Count - 1));

946

	

	 	 	

	 	 	 	

	

	

	 	

	 	

if (IsWithinRectangle(position, pileSpot))

 {

Point pt = pileSpot.Location;

int pileIndex = piles[pile].Count - 1;

 touchedCard = piles[pile][pileIndex];

 touchedCardOrigin = piles;

 touchedCardOriginIndex = pile;

 touchedCardPosition = new Vector2(pt.X, pt.Y);

 piles[pile].RemoveAt(pileIndex);

return true;

}

}

 }

return false;

}

Once	a	card	has	been	picked	up,	TryPickUpCard	has	already	set	the	fields	involving	the	

touched	card	that	are	then	used	in	the	Update	method	for	subsequently	dragging	that	card	

around	the	screen.	

The	TryPutDownCard	allows	cards	to	be	deposited	in	a	piles	collection	or	the	holds	array	or	a	

finals	collection	but	must	enforce	the	rules.	If	the	drop	is	not	legal,	then	the	card	is	simply	

restored	to	its	original	spot	directly	without	any	animation:	

XNA Project: File: (excerpt)

bool TryPutDownCard(CardInfo touchedCard)

{

Vector2 cardCenter = new Vector2(touchedCardPosition.X + wCard / 2,

 touchedCardPosition.Y + hCard / 2);

for (int cardSpot = 0; cardSpot < 16; cardSpot++)

 {

Rectangle rect = cardSpots[cardSpot];

// Greatly expand the card-spot rectangle for the piles

if (cardSpot >= 8)

rect.Inflate(0, hSurface - rect.Bottom);

if (IsWithinRectangle(cardCenter, rect))

{

// Check if the hold is empty

if (cardSpot < 4)

 {

int hold = cardSpot;

if (holds[hold] == null)

{

 holds[hold] = touchedCard;

return true;

947	

	

 }

 }

else if (cardSpot < 8)

 {

int final = cardSpot - 4;

if (TopCard(finals[final]) == null)

{

if (touchedCard.Rank == 0) // ie, an ace

 {

 finals[final].Add(touchedCard);

return true;

}

 }

else if (touchedCard.Suit == TopCard(finals[final]).Suit &&

touchedCard.Rank == TopCard(finals[final]).Rank + 1)

 {

 finals[final].Add(touchedCard);

return true;

}

 }

else

 {

int pile = cardSpot - 8;

if (piles[pile].Count == 0)

 {

 piles[pile].Add(touchedCard);

return true;

}

else

 {

CardInfo topCard = TopCard(piles[pile]);

if (touchedCard.Suit < 2 != topCard.Suit < 2 &&

 touchedCard.Rank == topCard.Rank - 1)

 {

 piles[pile].Add(touchedCard);

return true;

}

 }

 }

// The card was in a card-spot rectangle but wasn't a legal drop

break;

}

 }

// Restore the card to its original place

if (touchedCardOrigin is CardInfo[])

{

(touchedCardOrigin as CardInfo[])[touchedCardOriginIndex] = touchedCard;

 }

else

948

	

	 	 	

	 	 	 	

	

 {

((touchedCardOrigin as

List<CardInfo>[])[touchedCardOriginIndex]).Add(touchedCard);

 }

return false;

}

But	all	that	work	is	justified	by	a	return	value	of	true from	the	following	method	that	simply	

determines	if	the	top	card	in	each	of	the	finals	collections	is	a	king:	

XNA Project: File: (excerpt)

bool HasWon()

{

bool hasWon = true;

foreach (List<CardInfo> cardInfos in finals)

hasWon &= cardInfos.Count > 0 && TopCard(cardInfos).Rank == 12;

return hasWon;

}

The	Update	method	uses	that	to	enable	the	CongratulationsComponent,	shown	here	in	its	

entirety:	

XNA Project: PhreeCell File: CongratulationsComponent.cs

using System;

using Microsoft.Xna.Framework;

using Microsoft.Xna.Framework.Graphics;

namespace PhreeCell

{

public class CongratulationsComponent : DrawableGameComponent

 {

const float SCALE_SPEED = 0.5f; // half-size per second

const float ROTATE_SPEED = 3 * MathHelper.TwoPi; // 3 revolutions per

second

SpriteBatch spriteBatch;

SpriteFont pericles108;

string congratulationsText = "You Won!";

float textScale;

float textAngle;

Vector2 textPosition;

Vector2 textOrigin;

public CongratulationsComponent(Game game) : base(game)

{

}

949

	

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(this.GraphicsDevice);

 pericles108 = this.Game.Content.Load<SpriteFont>("Pericles108");

 textOrigin = pericles108.MeasureString(congratulationsText) / 2;

Viewport viewport = this.GraphicsDevice.Viewport;

 textPosition = new Vector2(Math.Max(viewport.Width, viewport.Height) /

2,

Math.Min(viewport.Width, viewport.Height) /

2);

base.LoadContent();

}

protected override void OnEnabledChanged(object sender, EventArgs args)

{

 Visible = Enabled;

if (Enabled)

 {

 textScale = 0;

 textAngle = 0;

 }

}

public override void Update(GameTime gameTime)

{

if (textScale < 1)

 {

 textScale +=

 SCALE_SPEED * (float)gameTime.ElapsedGameTime.TotalSeconds;

 textAngle +=

 ROTATE_SPEED * (float)gameTime.ElapsedGameTime.TotalSeconds;

 }

else if (textAngle != 0)

 {

 textScale = 1;

 textAngle = 0;

 }

base.Update(gameTime);

}

public override void Draw(GameTime gameTime)

{

 spriteBatch.Begin();

 spriteBatch.DrawString(pericles108, congratulationsText, textPosition,

Color.White, textAngle, textOrigin, textScale,

SpriteEffects.None, 0);

 spriteBatch.End();

base.Draw(gameTime);

}

 }

}

950	

	

	 	

	

	 	 	 	

It’s	not	much:	It	just	expands	some	spinning	text	and	then	deposits	it	in	the	center	of	the	

screen:	

At	this	point,	you	can	press	the	red	button	to	play	again.	Good	luck!	

951	

	

	 	 	 	 	

	 	

	 	 	

	 	

	 	

	 	

	

	 	

	

	 	 	

	

	

Chapter	24	

Tilt and Play
If	the	primary	means	of	user	interface	in	a	Windows	Phone	7	is	touch,	then	what	is	the	second	

most	important?	It	depends	on	the	application,	of	course,	but	in	many	Silverlight	applications,	

I	suspect	the	keyboard	will	still	play	a	big	role.	In	many	XNA	programs,	however,	the	second	

most	important	means	of	userinterface	is	probably	the	accelerometer—particularly	in	

arcadetype	games	where	moving	the	phone	itself	can	take	the	place	of	traditional	hand	

controllers.	For	example,	a	game	that	drives	a	car	around	a	race	track	or	through	a	town	can	

respond	to	left	and	right	tilts	of	the	phone	by	turning	the	car,	and	perhaps	front	to	back	tilts	

can	control	the	gas	pedal.	

3D
Vectors

As	you	saw	in	Chapter	5,	the	data	from	the	phone’s	accelerometer	is	essentially	a	3D	vector	

(x,
y,
z)	in	a	coordinate	system	that	is	fixed	relative	to	the	phone.	The	accelerometer	

coordinate	system	remains	fixed	regardless	whether	you	hold	the	phone	in	portrait	mode:	

Or	left	landscape:	

952	

	

	

	

	

	 	

	 	

	

	 	

	

Or	right	landscape:	

Notice	that	Y	coordinates	increase	going	up	the	phone,	just	like	a	real	Cartesian	coordinate	

system	and	the	XNA	3D	coordinate	system,	but	not	like	XNA	2D	coordinates	where	values	of	

Y	increase	going	down.	

If	the	phone	is	held	still,	the	acceleration	vector	points	to	the	part	of	the	phone	that	is	closest	

to	the	earth.	For	example,	if	the	acceleration	vector	is	approximately	(0.7,–0.7,
0)	then	the	

phone	is	being	held	like	this:	

953	

	

	

	

	 	 	

	

	 	 	

	

	

	

	 	

	 	 	

	 	

	 	 	

	 	

	 	 	 	

	 	

	 	 	 		

The	value	of	0.7	in	the	example	is,	of	course,	the	approximate	square	root	of	½.	If	you	

calculate	the	magnitude	of	the	acceleration	vector	using	the	Pythagorean	Theorem	

the	result	should	be	about	1	if	the	phone	is	held	still.	A	phone	lying	on	a	level	surface	has	an	

acceleration	vector	of	approximately	(0,
0,
–1),	which	is	the	same	value	displayed	by	the	

phone	emulator.	

I	say	“approximately”	because	the	phone’s	accelerometer	is	not	a	very	precise	piece	of	

hardware.	The	magnitude	of	the	vector	is	supposed	to	be	in	units	of	the	gravity	on	the	surface	

of	the	earth,	traditionally	denoted	as	g,	and	approximately	32	feet	per	second	squared.	

However,	you’ll	often	see	as	much	as	a	5%	error	in	the	figure.	

You’ll	also	notice	that	the	X,	Y,	and	Z	components	of	the	accelerometer	reading	for	a	phone	

lying	on	a	level	surface	might	also	be	several	percentage	points	in	error.	If	you’re	writing	a	

program	that	uses	the	accelerometer	for	a	carpenter’s	level,	you’ll	want	to	include	an	option	

to	“calibrate”	the	accelerometer,	which	really	means	to	adjust	all	future	readings	based	on	the	

reading	when	the	user	presses	the	“calibrate”	button.	

954	

	

	 	 	 	

	

	

	 	

	 	 	

	 	 	

	

	 	 	

	

	

	

	

	

	

	 	

	 	

	

	

The	data	from	the	accelerometer	is	also	often	very	jittery,	as	you	undoubtedly	discovered	

when	running	the	two	accelerometer	programs	shown	in	Chapter	5.	Data	smoothing	is	also	a	

big	part	of	accelerometer	usage.	

In	this	chapter	I’ll	be	using	a	very	simple	lowpass	filtering	technique	for	smoothing	the	data	

and	I	won’t	get	into	calibration	issues.	A	library	that	can	help	you	out	with	both	of	these	issues	

can	be	found	in	Dave	Edson’s	blog	entry	“Using	the	Accelerometer	on	Windows	Phone	7”	at	

http://windowsteamblog.com/windows_phone/b/wpdev/archive/2010/09/08/usingthe

accelerometeronwindowsphone7.aspx.	

All	the	programs	in	this	chapter	require	references	to	the	Microsoft.Devices.Sensors	assembly	

and	using	directives	for	the	Microsoft.Devices.Sensors	namespace.	

A
Better
Bubble
Visualization

The	AccelerometerVisualization	program	is	a	modest	step	up	from	the	XnaAccelerometer	

program	in	Chapter	5.	That	earlier	program	just	showed	a	floating	“bubble”	without	any	kind	

of	scale	or	numeric	values.	This	one	adds	a	scale	(consisting	of	concentric	circles)	and	some	

textual	information:	

AccelerometerVisualization	also	implements	perhaps	the	most	basic	type	of	smoothing:	a	low

pass	filter	that	averages	the	current	value	with	a	previously	smoothed	value.	The	raw	

accelerometer	reading	is	indicated	by	the	label	“Raw”	while	the	smoothed	value	is	“Avg”	

(“average”).	Minimum	and	maximum	values	are	also	displayed.	These	are	calculated	using	the	

static	Vector3.Min	and	Vector3.Max	methods	that	find	the	minimum	and	maximum	values	of	

the	X,	Y,	and	Z	components	separately.	The	red	ball	is	scaled	to	the	magnitude	of	the	vector	

and	turns	green	when	the	accelerometer	vector	Z	component	is	positive.	

955	

	

	 	 	

	

	 	

	

	 	

	 	 	 	 	

	 	

	

	 	

	 	 	

	 	

Here	are	the	program’s	fields:	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

const int BALL_RADIUS = 8;

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

Viewport viewport;

SpriteFont segoe14;

StringBuilder stringBuilder = new StringBuilder();

int unitRadius;

Vector2 screenCenter;

Texture2D backgroundTexture;

Vector2 backgroundTextureCenter;

Texture2D ballTexture;

Vector2 ballTextureCenter;

Vector2 ballPosition;

float ballScale;

bool isZNegative;

Vector3 accelerometerVector;

object accerlerometerVectorLock = new object();

Vector3 oldAcceleration;

Vector3 minAcceleration = Vector3.One;

Vector3 maxAcceleration = -Vector3.One;

…

}

Although	the	program	displays	something	akin	to	a	“bubble”	that	moves	in	the	opposite	

direction	as	gravity	and	the	acceleration	vector,	it’s	referred	to	in	this	program	as	a	“ball”.	The	

field	named	oldAcceleration	is	used	for	smoothing	the	values;	whenever	the	display	is	

updated,	oldAcceleration	is	the	previously	smoothed	(“Avg”)	value.	

By	default,	XNA	programs	adjust	themselves	to	both	leftlandscape	and	rightlandscape	

orientations.	This	default	behavior	is	something	that	application	programs	almost	never	need	

to	worry	about—except when	dealing	with	the	accelerometer.	In	leftlandscape	mode,	the	

accelerometer	X	axis	increases	going	up	the	screen,	and	the	accelerometer	Y	axis	increases	

going	left	across	the	screen.	In	rightlandscape	mode,	the	accelerometer	X	axis	increases	

going	down	the	screen,	and	the	accelerometer	Y	axis	increases	going	right	across	the	screen.	

If	you	want	to	limit	the	confusion,	the	constructor	of	the	Game1	class	is	the	place	to	set	the	

SupportedOrientations	property	of	the	GraphicsDeviceManager	object	(referenced	by	the	

graphics	field)	to	DisplayOrientation.LandscapeLeft.	My	program	doesn’t	do	that,	and	the	

956	

	

	 	 	

	 	 	

	 	 	

	 	

display	accomodates	LandscapeRight	orientations.	However,	it	does	use	the	constructor	to	set	

the	back	buffer	size	to	allow	room	for	the	phone	status	bar:	

XNA Project: AccelerometerVisualization File: Game1.cs (excerpt)

public Game1()

{

 graphics = new GraphicsDeviceManager(this);

 Content.RootDirectory = "Content";

// Frame rate is 30 fps by default for Windows Phone.

 TargetElapsedTime = TimeSpan.FromTicks(333333);

// Landscape but leave room for the status bar

 graphics.PreferredBackBufferWidth = 728;

 graphics.PreferredBackBufferHeight = 480;

}

The	Initialize	override	creates	the	Accelerometer	object,	sets	an	event	handler,	and	starts	it	up:	

XNA Project: AccelerometerVisualization File: Game1.cs (excerpt)

protected override void Initialize()

{

Accelerometer accelerometer = new Accelerometer();

 accelerometer.ReadingChanged += OnAccelerometerReadingChanged;

 try

 {

accelerometer.Start();

 }

 catch

 {

 }

 base.Initialize();

}

The	ReadingChanged	handler	is	called	asynchronously,	so	the	proper	behavior	is	simply	to	

save	the	value	in	code	protected	by	a	lock	block:	

XNA Project: AccelerometerVisualization File: Game1.cs (excerpt)

void OnAccelerometerReadingChanged(object sender, AccelerometerReadingEventArgs

args)

{

lock (accerlerometerVectorLock)

 {

957	

	

	

	

	

	

	

accelerometerVector = new Vector3((float)args.X, (float)args.Y,

(float)args.Z);

}

}

If	you	perform	some	experiments	with	this	ReadingChanged	handler,	you’ll	discover	that	it’s	

called	close	to	50	times	per	second,	rather	more	frequently	than	the	video	refresh	rate,	so	you	

might	want	to	implement	smoothing	right	in	this	handler.	(I	do	just	that	in	some	later	

programs	in	this	chapter.)	

The	LoadContent	override	in	this	program	is	primarily	responsible	for	preparing	the	two	

textures—the	large	backgroundTexture	field	that	covers	the	entire	surface	with	the	concentric	

circles,	and	the	ballTexture	that	floats	around.	The	code	that	draws	lines	and	circles	on	

backgroundTexture	is	rather	ad hoc,	involving	simple	loops	and	a	couple	methods	to	set	pixel	

colors.	

XNA Project: AccelerometerVisualization File: Game1.cs (excerpt)

protected override void LoadContent()

{

// Create a new SpriteBatch, which can be used to draw textures.

 spriteBatch = new SpriteBatch(this.GraphicsDevice);

// Get screen and font information

 viewport = this.GraphicsDevice.Viewport;

 screenCenter = new Vector2(viewport.Width / 2, viewport.Height / 2);

 segoe14 = this.Content.Load<SpriteFont>("Segoe14");

// This is the pixel equivalent of a vector magnitude of 1

 unitRadius = (viewport.Height - BALL_RADIUS) / 2;

// Create and draw background texture

 backgroundTexture =

new Texture2D(this.GraphicsDevice, viewport.Height, viewport.Height);

 backgroundTextureCenter =

new Vector2(viewport.Height / 2, viewport.Height / 2);

Color[] pixels = new Color[backgroundTexture.Width * backgroundTexture.Height];

// Draw horizontal line

 for (int x = 0; x < backgroundTexture.Width; x++)

SetPixel(backgroundTexture, pixels,

 x, backgroundTexture.Height / 2, Color.White);

// Draw vertical line

 for (int y = 0; y < backgroundTexture.Height; y++)

SetPixel(backgroundTexture, pixels,

 backgroundTexture.Width / 2, y, Color.White);

// Draw circles

958	

	

 DrawCenteredCircle(backgroundTexture, pixels, unitRadius, Color.White);

 DrawCenteredCircle(backgroundTexture, pixels, 3 * unitRadius / 4, Color.Gray);

 DrawCenteredCircle(backgroundTexture, pixels, unitRadius / 2, Color.White);

 DrawCenteredCircle(backgroundTexture, pixels, unitRadius / 4, Color.Gray);

 DrawCenteredCircle(backgroundTexture, pixels, BALL_RADIUS, Color.White);

// Set the pixels to the background texture

 backgroundTexture.SetData<Color>(pixels);

// Create and draw ball texture

 ballTexture = new Texture2D(this.GraphicsDevice,

 2 * BALL_RADIUS, 2 * BALL_RADIUS);

 ballTextureCenter = new Vector2(BALL_RADIUS, BALL_RADIUS);

 pixels = new Color[ballTexture.Width * ballTexture.Height];

 DrawFilledCenteredCircle(ballTexture, pixels, BALL_RADIUS);

 ballTexture.SetData<Color>(pixels);

}

void DrawCenteredCircle(Texture2D texture, Color[] pixels, int radius, Color clr)

{

Point center = new Point(texture.Width / 2, texture.Height / 2);

 int halfPoint = (int)(0.707 * radius + 0.5);

 for (int y = -halfPoint; y <= halfPoint; y++)

 {

int x1 = (int)Math.Round(Math.Sqrt(radius * radius - Math.Pow(y, 2)));

int x2 = -x1;

SetPixel(texture, pixels, x1 + center.X, y + center.Y, clr);

SetPixel(texture, pixels, x2 + center.X, y + center.Y, clr);

// Since symmetric, just swap coordinates for other piece

SetPixel(texture, pixels, y + center.X, x1 + center.Y, clr);

SetPixel(texture, pixels, y + center.X, x2 + center.Y, clr);

 }

}

void DrawFilledCenteredCircle(Texture2D texture, Color[] pixels, int radius)

{

Point center = new Point(texture.Width / 2, texture.Height / 2);

 for (int y = -radius; y < radius; y++)

 {

int x1 = (int)Math.Round(Math.Sqrt(radius * radius - Math.Pow(y, 2)));

for (int x = -x1; x < x1; x++)

 SetPixel(texture, pixels, x + center.X, y + center.Y, Color.White);

 }

}

void SetPixel(Texture2D texture, Color[] pixels, int x, int y, Color clr)

{

 pixels[y * texture.Width + x] = clr;

}

959

	

	

	 	

	

	

	

	 	 	 	

	 	

It	was	this	logic	that	prompted	me	to	explicitly	set	the	back	buffer	width	to	728.	When	set	at	

the	default	800	pixels,	the	actual	display	is	compressed	by	about	10%	to	make	room	for	the	

status	bar.	Because	the	lines	and	circles	I’m	drawing	are	only	onepixel	wide	and	obviously	

don’t	implement	antialiasing,	they	lost	a	bit	of	sharpness	when	the	display	was	compressed.	

Several	interesting	things	happen	in	the	Update	override.	The	method	is	basically	responsible	

for	grabbing	the	accelerometer	vector	and	displaying	it	in	both	graphical	and	visual	forms.	In	

this	method,	the	raw	value	is	named	newAcceleration,	while	the	smoothed	value	is	

avgAcceleration:	

XNA Project: AccelerometerVisualization File: Game1.cs (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

Vector3 newAcceleration = Vector3.Zero;

 lock (accerlerometerVectorLock)

 {

newAcceleration = accelerometerVector;

 }

 maxAcceleration = Vector3.Max(maxAcceleration, newAcceleration);

 minAcceleration = Vector3.Min(minAcceleration, newAcceleration);

// Low-pass filter smoothing

Vector3 avgAcceleration = 0.5f * oldAcceleration + 0.5f * newAcceleration;

 stringBuilder.Remove(0, stringBuilder.Length);

 stringBuilder.AppendFormat("Raw: ({0:F2}, {1:F2}, {2:F2}) = {3:F2}\n",

 newAcceleration.X, newAcceleration.Y,

 newAcceleration.Z, newAcceleration.Length());

 stringBuilder.AppendFormat("Avg: ({0:F2}, {1:F2}, {2:F2}) = {3:F2}\n",

 avgAcceleration.X, avgAcceleration.Y,

 avgAcceleration.Z, avgAcceleration.Length());

 stringBuilder.AppendFormat("Min: ({0:F2}, {1:F2}, {2:F2}) = {3:F2}\n",

 minAcceleration.X, minAcceleration.Y,

 minAcceleration.Z, minAcceleration.Length());

 stringBuilder.AppendFormat("Max: ({0:F2}, {1:F2}, {2:F2}) = {3:F2}",

 maxAcceleration.X, maxAcceleration.Y,

 maxAcceleration.Z, maxAcceleration.Length());

 ballScale = avgAcceleration.Length();

 int sign = this.Window.CurrentOrientation ==

DisplayOrientation.LandscapeLeft ? 1 : -1;

 ballPosition =

new Vector2(screenCenter.X + sign * unitRadius * avgAcceleration.Y /

ballScale,

 screenCenter.Y + sign * unitRadius * avgAcceleration.X /

960	

	

	

	 	

	

	 	

	 	 	 	 	 	

	

	

	 	 	

	

		

	 	 	

	

	 	

	 	

	 	 	 	

	

	 	

	 	

	 	

ballScale);

 isZNegative = avgAcceleration.Z < 0;

 oldAcceleration = avgAcceleration;

 base.Update(gameTime);

}

The	accelerometerVector	field	is	saved	by	the	ReadingChanged	handler	in	a	second	thread	

using	a	lock block	so	accessing	it	from	the	program’s	main	thread	requires	another	lock	block	

using	the	same	object:	

lock (accerlerometerVectorLock)

{

 newAcceleration = accelerometerVector;

}

The	smoothed	value	is	then	calculated	from	this	raw	value	and	oldAcceleration:	

Vector3 avgAcceleration = 0.5f * oldAcceleration + 0.5f * newAcceleration;

After	Update	uses	this	avgAcceleration for	display	purposes,	it	replaces	the	oldAcceleration

field:	

oldAcceleration = avgAcceleration;

This	is	a	type	of	smoothing	known	as	a	low-pass filter.	Highfrequency	jitter	is	eliminated	by	

averaging	the	value	with	earlier	values.	If	v0 is	the	current	raw	vector	reading	

(newAcceleration),	and	v–1	is	the	previous	raw	reading,	and	v–2	is	the	raw	reading	before	that,	

then	the	smoothed	value	is:	

But	all	these	old	values	don’t	need	to	be	saved	because	they’ve	already	contributed	to	the	

calculation	of	oldAcceleration.	

The	influence	of	each	reading	is	iteratively	halved	as	it	recedes	further	into	the	past.	In	theory,	

no	reading	ever	stops	affecting	the	smoothed	value,	but	one	second	after	a	particular	reading	

(or	30	calls	to	the	Update	override)	the	denominator	on	that	reading	is	approximately	one	

million,	so	the	influence	is	very	small.	

You	can	adjust	the	weights	between	the	old	and	the	new	but	they	must	sum	to	1.	For	

example,	this	provides	less	smoothing	by	placing	less	weight	on	the	earlier	values:	

Vector3 avgAcceleration = 0.25f * oldAcceleration + 0.75f * newAcceleration;

This	one	provides	more	smoothing:	

Vector3 avgAcceleration = 0.75f * oldAcceleration + 0.25f * newAcceleration;

961	

	

	

	 	 	

	 	 	

	 	 	

	 	 	

	 	 	 	 	

	

	

	

	 	

	 	

	 	 	 	

	 	 	 	

	 	 	

In	the	blog	entry	I	mentioned	earlier,	Dave	Edson	expresses	the	lowpass	filter	slightly	

differently.	Using	my	variable	names,	his	formula	is	

Vector3 avgAcceleration = oldAcceleration + alpha * (newAcceleration – oldAcceleration);

where	alpha	ranges	from	0	(smoothed	to	oblivion)	to	1	(no	smoothing	at	all).	That	blog	entry	

also	discusses	alternatives	to	lowpass	filtering	when	a	program	might	be	interested	in	sudden	

changes	or	jerks.	

The	other	interesting	activity	of	Update	involves	compensating	for	the	two	different	landscape	

orientations,	which	of	course	are	ultimately	based	on	the	accelerometer	vector.	Suppose	the	

phone	is	in	LandscapeLeft	mode:	

Increasing	Y	values	of	the	accelerometer	correspond	with	decreasing	X	values	of	the	graphical	

display,	and	increasing	X	values	of	the	accelerometer	correspond	with	decreasing	Y	values	of	

the	graphical	display.	However,	the	intent	here	is	to	show	a	bubble	that	rises	against	gravity,	

so	

Increase	in	accelerometer	Y	ￆ increase	in	graphical	X	

Increase	in	accelerometer	X	ￆ increase	in	graphical	Y	

Now	turn	the	phone	over	so	it	goes	into	LandscapeRight	mode:	

962	

	

	

	

	 	 	 	

	 	 	 	

	

	

	 	 	 	

	

	 	 	

	

	 	 	

	 	 	 	 	

	 	 	

	

	 	

	 	 	

Now,	

Increase	in	accelerometer	Y	ￆ decrease	in	graphical	X	

Increase	in	accelerometer	X	ￆ decrease	in	graphical	Y	

In	the	Update	override	a	sign	value	is	first	calculated	that	is	1	for	LandscapeLeft	mode	and	–1	

for	LandscapeRight:	

int sign = this.Window.CurrentOrientation == DisplayOrientation.LandscapeLeft ? 1 : -1;

If	the	X	and	Y	components	of	the	smoothed	acceleration	vector	are	both	zero	the	ball	should	

be	positioned	at	the	point	(screenCenter.X,	screenCenter.Y).	Easy	enough.	The	offsets	from	that	

center	should	be	based	on	the	sign	value	and	the	distance	from	the	center	to	the	outside	

radius:	

ballPosition =

new Vector2(screenCenter.X + sign * unitRadius * avgAcceleration.Y,

 screenCenter.Y + sign * unitRadius * avgAcceleration.X);

I	was	dissatisfied	with	this	calculation,	however.	Because	of	the	slight	inaccuracies	of	the	

accelerometer	values,	sometimes	the	ball	went	completely	outside	the	outer	circle	and	off	the	

screen.	I	decided	to	compensate	for	that	by	dividing	by	the	length	of	the	smoothed	vector.	

This	was	already	being	used	for	scaling	the	ball:	

ballScale = avgAcceleration.Length();

So	I	incorporated	that	into	the	position	calculation:	

ballPosition =

new Vector2(screenCenter.X + sign * unitRadius * avgAcceleration.Y / ballScale,

 screenCenter.Y + sign * unitRadius * avgAcceleration.X / ballScale);

The	Draw	override	draws	the	background,	the	ball,	and	the	four	lines	of	text:	

XNA Project: AccelerometerVisualization File: Game1.cs (excerpt)

963	

	

	 	 	

	 	 	 	

	

	 	 	

	 	 	 	

	 	 	

	 	 	

	 	 	 	

	 	

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.Draw(backgroundTexture, screenCenter, null, Color.White, 0,

 backgroundTextureCenter, 1, SpriteEffects.None, 0);

 spriteBatch.Draw(ballTexture, ballPosition, null,

 isZNegative ? Color.Red : Color.Lime, 0,

 ballTextureCenter, ballScale, SpriteEffects.None, 0);

 spriteBatch.DrawString(segoe14, stringBuilder, Vector2.Zero, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}

If	you	shake	the	phone,	it’s	hard	to	see	how	the	ball	moves	but	you	can	see	the	influence	in	

the	minimum	and	maximum	values.	If	your	phone	hardware	is	like	my	phone	hardware,	you’ll	

never	get	the	X,	Y,	and	Z	components	of	the	raw	acceleration	vector	outside	the	range	of	–2	

and	2,	with	a	total	magnitude	of	3.46.	This	seems	to	be	a	hardware	limitation.	

The
Graphical
Rendition

The	programs	in	this	chapter	use	smoothed	accelerometer	readings	for	moving	and	orienting	

objects.	It’s	also	possible	to	use	sudden	changes	in	the	accelerometer	readings,	for	example,	

to	“throw”	a	pair	of	dice.	The	first	step	is	to	understand	how	the	accelerometer	readings	

change	when	you	make	sudden	movements	to	the	phone,	and	for	that	a	historical	graph	

might	be	helpful.	

This	is	provided	in	the	AccelerometerGraph	program.	Here’s	a	typical	display:	

964	

	

	

	 	 	 	 	 	 	 	

	 	 	 	

	 	

	

	 	

	 	 	

	 	 	 	

	 	

	 	 	

	

	

	

	 	

	 	 	

	 	

	 	 	 	 	

	 	 	 	

	

Because	the	intention	of	this	program	is	to	show	you	what’s	really	coming	through,	it	doesn’t	

perform	any	smoothing.	Red	is	X,	green	is	Y,	and	blue	is	Z.	(The	mnemonic	is	RGB	==	XYZ.)	

From	the	perspective	in	portrait	mode,	the	graph	moves	up	the	screen	and	new	values	are	

added	at	the	bottom.	Vertically,	each	pixel	represents	a	video	display	refresh	“tick”—1/30th	

second.	The	heavier	horizontal	lines	represent	seconds.	The	lighter	horizontal	lines	are	fifths	of	

a	second	(six	pixels).	The	vertical	line	in	the	center	represents	an	acceleration	component	

value	of	0.	The	two	other	heavier	vertical	lines	represent	values	of	1	(at	the	right)	and	–1	at	

the	left.	The	left	edge	is	–2	and	the	right	edge	is	2.	From	what	you	saw	in	the	previous	

program,	this	should	be	adequate	for	displaying	the	complete	range	of	possible	values.	

As	you	let	the	program	run,	the	old	data	seems	to	crawl	up	the	screen,	and	perhaps	one’s	

immediate	instinct	is	to	code	it	like	that:	Create	a	Texture2D	the	size	of	the	screen	and	during	

every	Update	call	just	shift	all	the	pixels	by	the	width	of	the	Texture2D	so	the	top	row	

disappears	and	the	new	row	can	be	added	at	the	end.	But	that’s	a	lot	of	pixel	shifting	30	times	

a	second.	

It	makes	more	sense	to	insert	the	new	data	at	a	variable	row	number	that	is	incremented	with	

every	Update call.	(Let’s	call	this	the	insert row.)	In	the	Draw	method,	you	can	then	draw	the	

Texture2D	twice	divided	into	two	parts.	The	first	part	is	displayed	at	the	top	of	the	screen	and	

begins	with	the	row	following	the	insert	row	and	goes	to	the	end	of	the	Texture2D.	The	

second	part	is	drawn	underneath	the	first	part,	and	begins	at	the	top	of	the	Texture2D	and	

ends	with	the	insert	row.	

965	

	

	 	 	

	 	 	 	

	 	

	 	 	

	 	 	 		

	 	 	 	 	

	 	

	

Because	old	data	must	be	erased	at	the	insert	row	to	make	way	for	new	data,	it	makes	sense	

to	handle	the	fixed	lines	of	the	graph	separately.	That	portion	repeats	itself	vertically	every	30	

pixels	so	it	can	be	a	smaller	bitmap	that	is	displayed	a	bunch	of	times.	In	the	fields	of	

AccelerometerGraph,	backgroundTexture	has	a	height	of	30	and	graphTexture	(which	shows	

the	red,	green,	and	blue	lines)	has	a	height	the	size	of	the	screen.	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

int displayWidth, displayHeight;

Texture2D backgroundTexture;

Texture2D graphTexture;

uint[] pixels;

int totalTicks;

int oldInsertRow;

Vector3 oldAcceleration;

Vector3 accelerometerVector;

object accelerometerVectorLock = new object();

public Game1()

 {

graphics = new GraphicsDeviceManager(this);

Content.RootDirectory = "Content";

// Frame rate is 30 fps by default for Windows Phone.

TargetElapsedTime = TimeSpan.FromTicks(333333);

graphics.SupportedOrientations = DisplayOrientation.Portrait;

graphics.PreferredBackBufferWidth = 480;

graphics.PreferredBackBufferHeight = 768;

 }

 …

}

The	constructor	ends	by	setting	the	orientation	to	portrait	and	defining	a	backbuffer	height	

that	allows	the	status	bar	to	be	displayed.	

As	usual,	the	Initialize method	starts	up	the	accelerometer:	

XNA Project: File: (excerpt)

protected override void Initialize()

{

Accelerometer accelerometer = new Accelerometer();

 accelerometer.ReadingChanged += OnAccelerometerReadingChanged;

966	

	

	 	

	 	 	

	

	 	 	

 try

 {

accelerometer.Start();

 }

 catch

 {

 }

 base.Initialize();

}

void OnAccelerometerReadingChanged(object sender, AccelerometerReadingEventArgs

args)

{

 lock (accelerometerVectorLock)

 {

accelerometerVector = new Vector3((float)args.X, (float)args.Y,

(float)args.Z);

}

}

The	LoadContent	method	is	mostly	dedicated	to	creating	and	initializing	the	

backgroundTexture	that	contains	the	horizontal	and	vertical	lines.	Although	the	code	here	is	

fairly	generalized,	the	height	of	backgroundTexture	will	be	calculated	as	30	pixels	and	

horizontal	lines	are	drawn	every	6	pixels.		

XNA Project: File: (excerpt)

protected override void LoadContent()

{

// Create a new SpriteBatch, which can be used to draw textures.

 spriteBatch = new SpriteBatch(GraphicsDevice);

 displayWidth = this.GraphicsDevice.Viewport.Width;

 displayHeight = this.GraphicsDevice.Viewport.Height;

// Create background texture and initialize it

 int ticksPerSecond = 1000 / this.TargetElapsedTime.Milliseconds;

 int ticksPerFifth = ticksPerSecond / 5;

 backgroundTexture = new Texture2D(this.GraphicsDevice, displayWidth,

ticksPerSecond);

 pixels = new uint[backgroundTexture.Width * backgroundTexture.Height];

 for (int y = 0; y < backgroundTexture.Height; y++)

for (int x = 0; x < backgroundTexture.Width; x++)

{

Color clr = Color.Black;

 if (y == 0 || x == backgroundTexture.Width / 2 ||

 x == backgroundTexture.Width / 4 ||

 x == 3 * backgroundTexture.Width / 4)

 {

967

	

	 	 	 	 	

	 	 	

	

	 	 	

	

	 	 	 	 	

	

	 	 	 	

	 	 	

	

	 	

	 	 	 	 	 	

	 	 	

	

	

	 	 	

	 	 	 	

	

	

 clr = new Color(128, 128, 128);

 }

 else if (y % ticksPerFifth == 0 ||

 ((x - backgroundTexture.Width / 2) %

 (backgroundTexture.Width / 16) == 0))

 {

 clr = new Color(64, 64, 64);

 }

 pixels[y * backgroundTexture.Width + x] = clr.PackedValue;

}

 backgroundTexture.SetData<uint>(pixels);

// Create graph texture

 graphTexture = new Texture2D(this.GraphicsDevice, displayWidth, displayHeight);

 pixels = new uint[graphTexture.Width * graphTexture.Height];

// Initialize

 oldInsertRow = graphTexture.Height - 2;

}

At	the	end,	LoadContent	creates	the	large	graphTexture	the	size	of	the	screen	and	recreates	

the	pixels	array	field	specifically	for	this	bitmap.	

LoadContent	concludes	by	setting	oldInsertRow	to	the	penultimate	row	of	the	Texture2D.	As	

you’ll	see,	the	first	calculation	of	insertRow	performed	in	Update	will	set	insertRow	to	the	last	

row	of	the	bitmap.		

Each	call	to	Update	results	in	three	straight	lines	being	drawn	on	graphTexture,	one	red,	one	

green,	and	one	blue.	If	you	think	of	each	line	being	drawn	from	coordinates	(x1,	y1)	to	(x2,	y2),	

then	unless	something	happens	that	causes	Update	to	lose	ticks,	y2	should	equal	y1	+	1.	The	X	

values	of	each	colored	line	are	based	on	the	X,	Y,	and	Z	components	of	the	old	and	new	

acceleration	vectors.	

The	problem	is	that	y1	might	be	at	the	bottom	of	the	Texture2D	and	y2 might	be	at	the	top.	In	

the	following	code,	I	found	it	easier	to	work	with	three	Y	values:	oldInsertRow	is	what	I	refer	to	

above	as	y1,	but	both	newInsertRow	and	insertRow	represent	y2.	The	difference	is	that	

insertRow	is	always	within	the	range	of	the	Texture2D	(that	is,	it’s	less	than	the	height	of	the	

bitmap)	but	newInsertRow	could	be	outside	the	range.	The	advantage	of	newInsertRow	is	that	

it’s	always	guaranteed	to	be	greater	than	oldInsertRow,	and	this	makes	the	linedrawing	

algorithms	a	little	easier	rather	than	dealing	with	a	line	that	begins	at	the	bottom	of	the	

bitmap	and	ends	at	the	top.	

The	primary	objective	of	Update	is	the	call	to	DrawLines	with	oldInsertRow,	newInsertRow,	and	

the	old	and	new	acceleration	vectors:	

968

	

 XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

// Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

Vector3 acceleration;

 lock (accelerometerVectorLock)

 {

acceleration = accelerometerVector;

}

 totalTicks = (int)Math.Round(gameTime.TotalGameTime.TotalSeconds /

 this.TargetElapsedTime.TotalSeconds);

 int insertRow = (totalTicks + graphTexture.Height - 1) % graphTexture.Height;

// newInsertRow is always guaranteed to be greater than oldInsertRow,

// but might also be greater than the graphTexture height!

 int newInsertRow = insertRow < oldInsertRow ? insertRow + graphTexture.Height :

insertRow;

// Zero out pixels first

 for (int y = oldInsertRow + 1; y <= newInsertRow; y++)

for (int x = 0; x < graphTexture.Width; x++)

 pixels[(y % graphTexture.Height) * graphTexture.Width + x] = 0;

// Draw three lines based on old and new acceleration values

 DrawLines(graphTexture, pixels, oldInsertRow, newInsertRow,

oldAcceleration, acceleration);

 this.GraphicsDevice.Textures[0] = null;

 if (newInsertRow >= graphTexture.Height)

 {

graphTexture.SetData<uint>(pixels);

}

 else

 {

Rectangle rect = new Rectangle(0, oldInsertRow,

graphTexture.Width, newInsertRow - oldInsertRow

+ 1);

graphTexture.SetData<uint>(0, rect,

pixels, rect.Y * rect.Width, rect.Height *

rect.Width);

 }

 oldInsertRow = insertRow;

 oldAcceleration = acceleration;

 base.Update(gameTime);

}

969	

	

	 	 	 	

	 	 	 	 	

	 	 	

	

	

	

	 	 	

	 	 	 	 	 	 	 	

	 	

Towards	the	end	of	the	Update	override,	the	graphTexture is	updated	from	the	pixels	array.	If	

newInsertRow is	not	outside	the	range	of	the	bitmap,	then	only	two	rows	(or	so)	need	to	be	

updated;	otherwise,	the	simpler	bruteforce	form	of	the	SetData call	is	used.	

The	actual	linedrawing	consists	of	a	couple	methods.	The	DrawLines	method	simply	breaks	

the	acceleration	vectors	into	three	components	and	makes	three	calls	to	a	DrawLine	method	

that	calculates	X	values	from	the	acceleration	vector	components:	

XNA Project: File: (excerpt)

void DrawLines(Texture2D texture, uint[] pixels, int oldRow, int newRow,

Vector3 oldAcc, Vector3 newAcc)

{

 DrawLine(texture, pixels, oldRow, newRow, oldAcc.X, newAcc.X, Color.Red);

 DrawLine(texture, pixels, oldRow, newRow, oldAcc.Y, newAcc.Y, Color.Green);

 DrawLine(texture, pixels, oldRow, newRow, oldAcc.Z, newAcc.Z, Color.Blue);

}

void DrawLine(Texture2D texture, uint[] pixels, int oldRow, int newRow,

float oldAcc, float newAcc, Color clr)

{

 DrawLine(texture, pixels,

 texture.Width / 2 + (int)(oldAcc * texture.Width / 4), oldRow,

 texture.Width / 2 + (int)(newAcc * texture.Width / 4), newRow, clr);

}

The	other	DrawLine	method	implements	a	simple	linedrawing	algorithm	by	looping	through	

the	pixels	based	on	the	greater	of	the	X	differential	or	the	Y	differential.	I	experimented	with	

implementing	antialiasing	here,	but	I	never	got	it	to	look	quite	right.	

XNA Project: File: (excerpt)

void DrawLine(Texture2D texture, uint[] pixels,

int x1, int y1, int x2, int y2, Color clr)

{

if (x1 == x2 && y1 == y2)

{

return;

}

else if (Math.Abs(y2 - y1) > Math.Abs(x2 - x1))

 {

int sign = Math.Sign(y2 - y1);

for (int y = y1; y != y2; y += sign)

{

float t = (float)(y - y1) / (y2 - y1);

int x = (int)(x1 + t * (x2 - x1) + 0.5f);

 SetPixel(texture, pixels, x, y, clr);

970	

	

	 	

	 	

	 	 	 	

	

	 	 	

	

}

 }

else

 {

int sign = Math.Sign(x2 - x1);

for (int x = x1; x != x2; x += sign)

{

float t = (float)(x - x1) / (x2 - x1);

int y = (int)(y1 + t * (y2 - y1) + 0.5f);

 SetPixel(texture, pixels, x, y, clr);

}

 }

}

// Note adjustment of Y and use of bitwise OR!

void SetPixel(Texture2D texture, uint[] pixels, int x, int y, Color clr)

{

 pixels[(y % texture.Height) * texture.Width + x] |= clr.PackedValue;

}

The	SetPixel	method	makes	the	adjustment	for	Y	coordinates	that	might	be	beyond	the	actual	

rows	of	the	bitmap.	Also	notice	the	use	of	the	OR	operation.		If	a	blue	line	and	a	red	line	

partially	overlap,	for	example,	then	the	overlapping	part	of	the	line	will	be	rendered	as	

magenta.	

Finally,	the	Draw	method	draws	both	Texture2D objects	using	similar	logic	that	repeatedly	

draws	the	texture	until	the	screen	is	full:	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 spriteBatch.Begin();

// Draw background texture

 int displayRow = -totalTicks % backgroundTexture.Height;

 while (displayRow < displayHeight)

 {

spriteBatch.Draw(backgroundTexture, new Vector2(0, displayRow),

Color.White);

displayRow += backgroundTexture.Height;

 }

// Draw graph texture

 displayRow = -totalTicks % graphTexture.Height;

 while (displayRow < displayHeight)

 {

spriteBatch.Draw(graphTexture, new Vector2(0, displayRow), Color.White);

971	

	

	 	

		

	 	 	 	

	

	

	

	 	 	

	 	

	

	

	 	 	

	

displayRow += graphTexture.Height;

 }

 spriteBatch.End();

 base.Draw(gameTime);

}

Follow
the
Rolling
Ball

The	final	four	programs	in	this	chapter	treat	the	surface	of	the	phone	as	a	plane	on	which	a	

ball	is	free	to	roll.	

The	creation	of	the	ball	itself	is	performed	in	a	static	method	in	the	Petzold.Phone.Xna	library	

called	Texture2DExtensions.CreateBall:	

XNA Project: Petzold.Phone.Xna File: Texture2DExtensions.cs (excerpt)

public static Texture2D CreateBall(GraphicsDevice graphicsDevice, int radius)

{

Texture2D ball = new Texture2D(graphicsDevice, 2 * radius, 2 * radius);

Color[] pixels = new Color[ball.Width * ball.Height];

int radiusSquared = radius * radius;

for (int y = -radius; y < radius; y++)

 {

int x2 = (int)Math.Round(Math.Sqrt(Math.Pow(radius, 2) - y * y));

int x1 = -x2;

for (int x = x1; x < x2; x++)

 pixels[(int)(ball.Width * (y + radius) + x + radius)] = Color.White;

 }

 ball.SetData<Color>(pixels);

return ball;

}

But	that’s	the	easy	part.	The	harder	part	is	nailing	down	the	physics	of	a	ball	rolling	on	an	

inclined	plane.	It	will	help	first	to	examine	the	relationship	between	the	accelerometer	vector	

and	the	angles	that	describe	how	the	phone	is	tilted.	

Suppose	your	phone	is	sitting	flat	on	a	level	surface	such	as	a	desk.	Here’s	a	view	of	the	

bottom	of	the	phone:	

Now	pick	up	the	left	side	of	the	phone:	

972	

	

	

	

	

	 	

	 	 	

	

	 	 	

	

	

	

	

	

	

	

	

	

	

	

	

	 	

	

	

	

	

	

	

	

	

Į

The	phone	makes	an	angle	Į	with	the	level	surface.	Can	the	value	of	Į	be	calculated	from	the	

accelerometer	vector?	

When	the	phone	is	lying	flat	on	the	table,	the	acceleration	vector	is	(0,	0,	–1).	When	you	tip	

the	phone	as	shown,	perhaps	the	acceleration	vector	becomes	(0.34,	0,	–0.94).	(Just	offhand,	it	

hardly	seems	likely	that	the	squares	of	those	numbers	add	up	to	1,	but	they	do.)	

The	accelerometer	vector	always	points	towards	the	earth,	that	is,	at	right	angles	to	the	level	

surface:	

You	can	construct	a	right	triangle	where	the	accelerometer	vector	is	the	hypotenuse	and	the	

two	other	sides	are	parallel	to	the	X	and	Z	axes	of	the	phone:	

Those	two	sides	have	lengths	that	are	equal	to	the	X	and	Z	components	of	the	acceleration	

vector:	

973	

0.94	

0.34	

	

	

	

	 	

	

	

	

	

	

	 	 	 	 	 	

	 	 	

	 	 	

	

	 	 	

	

	

	

	

	 	

	 	

	

	

		

	 	 	 	

	

	 	

	 	 	 	

	 	 	

	

	

	

	

It	can	also	be	shown	through	the	use	of	similar	triangles	that	the	angle	opposite	the	shorter	

leg	of	this	triangle	is	the	same	angle	Į	that	the	phone	makes	with	the	level	surface:	

This	means	that	the	sine	of	Į	is	0.34	and	the	cosine	of	Į	is	0.94,	and	Į	is	20°.	

0.94	

0.34	

Į

In	summary,	the	leftright	tilt	of	the	phone	is	equal	to	the	inverse	sine	of	the	X	component	of	

the	acceleration	vector;	similarly,	the	topbottom	tilt	is	equal	to	the	inverse	sine	of	the	Y	

component.	

Now	let’s	roll	a	ball	down	that	phone.	A	ball	rolling	down	an	inclined	plane	obviously	

experiences	less	acceleration	than	a	ball	in	free	fall:	

Į

Galileo	used	balls	rolling	down	long	inclined	planes	to	slow	down	the	process	of	acceleration	

and	study	it	in	more	detail.	

The	calculation	of	the	acceleration	of	the	rolling	ball	is	a	bit	messy	(see,	for	example,	A.	P.	

French,	Newtonian Mechanics,	W.	W.	Norton,	1971,	pages	652653)	but	in	the	absence	of	

friction	it	turns	out	to	be	simply:	

where	g	is	the	normal	acceleration	of	32	feet	per	second	squared	due	to	gravity.	But	even	this	

is	an	excessive	amount	of	detail	for	implementing	a	rolling	ball	in	a	simple	Windows	Phone	7	

application.	All	that	is	really	necessary	to	know	is	that	the	acceleration	is	proportional	to	the	

sine	of	Į.	And	that	is	extremely	fortuitous	because	it	means	that	acceleration	of	a	rolling	ball	

across	the	width	of	the	phone	(in	portrait	mode)	is	proportional	to	the	X	component	of	the	

accelerometer	vector!	For	a	ball	that	rolls	along	a	plane,	then	the	acceleration	is	a	two

974	

	

	 	 	 	

	 	

	 	

	 	

	 	 	

	

	 	 	

	 	 	

	 	 	

	

dimensional	vector	that	can	be	calculated	directly	from	the	X	and	Y	components	of	the	

accelerometer	vector.	

The	TiltAndRoll	program	seems	to	roll	a	ball	around	the	surface	of	the	screen	based	on	the	

tilting	of	the	screen.	When	the	ball	strikes	one	of	the	edges,	it	does	not	bounce	but	instead	

loses	all	its	velocity	in	the	direction	perpendicular	to	the	edge.	The	ball	continues	to	roll	along	

the	edge	if	the	tilt	of	the	phone	justifies	it.	

The	TiltAndRoll	program	calculates	a	twodimensional	acceleration	vector	from	the	three

dimensional	accelerometer	vector	and	multiplies	it	by	a	constant	named	GRAVITY	that	is	in	

units	of	pixels	per	second	squared.	You	can	determine	what	GRAVITY	should	theoretically	

equal	by	multiplying	32	feet	per	second	squared	by	12	inches	per	foot	and	then	by	264	pixels	

per	inch	and	2/3	and	you’ll	get	something	like	68,000,	but	in	practical	use	that	causes	the	ball	

to	accelerate	much	too	quickly.	I’ve	chosen	something	quite	a	bit	lower,	so	as	to	make	the	

effect	almost	as	if	the	ball	is	moving	through	a	thick	liquid:	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

const float GRAVITY = 1000; // pixels per second squared

const int BALL_RADIUS = 16;

const int BALL_SCALE = 16;

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

Viewport viewport;

Texture2D ball;

Vector2 ballCenter;

Vector2 ballPosition;

Vector2 ballVelocity = Vector2.Zero;

Vector3 oldAcceleration, acceleration;

object accelerationLock = new object();

public Game1()

 {

graphics = new GraphicsDeviceManager(this);

Content.RootDirectory = "Content";

// Frame rate is 30 fps by default for Windows Phone.

TargetElapsedTime = TimeSpan.FromTicks(333333);

// Restrict orientation to portrait

graphics.SupportedOrientations = DisplayOrientation.Portrait;

graphics.PreferredBackBufferWidth = 480;

graphics.PreferredBackBufferHeight = 768;

 }

 …

}

975	

	

	 	 	 	

	

	 	 		

	 	 	

	 	

	 	

	 	

	 	 	 	

	 	

	

Of	coure,	you	can	increase	the	value	of	GRAVITY	if	you’d	like.	

To	simplify	the	calculations,	the	constructor	fixes	a	portrait	orientation.	The	X	and	Y	

components	of	the	accelerometer	vector	will	match	the	coordinates	of	the	display	except	that	

the	accelerometer	Y	and	the	display	Y	increase	in	opposite	directions.	

The	Initialize method	starts	up	the	accelerometer,	and	the	ReadingChanged	event	handler	

itself	handles	the	smoothing	of	the	values:	

XNA Project: File: (excerpt)

protected override void Initialize()

{

Accelerometer accelerometer = new Accelerometer();

 accelerometer.ReadingChanged += OnAccelerometerReadingChanged;

 try { accelerometer.Start(); }

 catch {}

 base.Initialize();

}

void OnAccelerometerReadingChanged(object sender, AccelerometerReadingEventArgs

args)

{

 lock (accelerationLock)

 {

acceleration = 0.5f * oldAcceleration +

 0.5f * new Vector3((float)args.X, (float)args.Y,

(float)args.Z);

oldAcceleration = acceleration;

 }

}

You’ll	notice	the	constants	above	define	both	a	BALL_RADIUS	and	a	BALL_SCALE.	Because	the	

Texture2DExtensions.CreateBall	method	does	not	attempt	to	implement	antialiasing,	a	

smoother	image	results	if	the	ball	is	made	larger	than	the	displayed	size	and	XNA	performs	

some	smoothing	when	rendering	it.	Although	the	ball	is	created	with	a	total	radius	of	the	

product	of	BALL_RADIUS	and	BALL_SCALE,	it	is	later	displayed	with	a	scaling	factor	of	1	/	

BALL_SCALE.	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

// Create a new SpriteBatch, which can be used to draw textures.

 spriteBatch = new SpriteBatch(GraphicsDevice);

976	

	

	

	 	 	

	 	

	

 viewport = this.GraphicsDevice.Viewport;

 ball = Texture2DExtensions.CreateBall(this.GraphicsDevice,

BALL_RADIUS * BALL_SCALE);

 ballCenter = new Vector2(ball.Width / 2, ball.Height / 2);

 ballPosition = new Vector2(viewport.Width / 2, viewport.Height / 2);

}

The	ballPosition	initialized	in	LoadContent	is	a	point	stored	as	a	Vector2	object.	Velocity	is	also	

stored	as	a	Vector2	object	but	this	is	a	real	vector	in	units	of	pixels	per	second.	The	velocity	

will	tend	to	remain	constant	through	the	effect	of	inertia	unless	the	ball	hits	one	of	the	edges	

or	the	phone	is	tilted.	All	these	calculations	occur	in	the	Update	override:	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

// Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

// Calculate new velocity and position

Vector2 acceleration2D = Vector2.Zero;

 lock (accelerationLock)

 {

acceleration2D = new Vector2(acceleration.X, -acceleration.Y);

 }

 float elapsedSeconds = (float)gameTime.ElapsedGameTime.TotalSeconds;

 ballVelocity += GRAVITY * acceleration2D * elapsedSeconds;

 ballPosition += ballVelocity * elapsedSeconds;

// Check for hitting edge

 if (ballPosition.X - BALL_RADIUS < 0)

 {

ballPosition.X = BALL_RADIUS;

ballVelocity.X = 0;

 }

 if (ballPosition.X + BALL_RADIUS > viewport.Width)

 {

ballPosition.X = viewport.Width - BALL_RADIUS;

ballVelocity.X = 0;

 }

 if (ballPosition.Y - BALL_RADIUS < 0)

 {

ballPosition.Y = BALL_RADIUS;

ballVelocity.Y = 0;

 }

 if (ballPosition.Y + BALL_RADIUS > viewport.Height)

 {

ballPosition.Y = viewport.Height - BALL_RADIUS;

ballVelocity.Y = 0;

977

	

	

	

	 	

	 	

	

	

	 	

	 	

	 		

	 	 	 	

	

	 	 	 	

	 	

	

	

	 	 	

	 	

	 	 	 	

	 	 	

 }

 base.Update(gameTime);

}

The	two	crucial	calculations	are	these:	

ballVelocity += GRAVITY * acceleration2D * elapsedSeconds;

ballPosition += ballVelocity * elapsedSeconds;

The	acceleration2D	vector	is	simply	the	accelerometer	vector	with	the	Z	coordinate	ignored	

and	the	Y	coordinate	negated.	The	velocity	vector	is	adjusted	by	the	acceleration	vector	times	

the	elapsed	time	in	seconds.	The	ball	position	is	then	adjusted	by	the	resultant	ball	velocity	

vector,	also	times	the	elapsed	time	in	seconds.	

It	is	the	beauty	of	vectors	that	we	really	don’t	have	to	know	whether	the	phone	is	tilted	in	the	

same	direction	as	the	velocity	(and	hence	will	tend	to	increase	that	velocity)	or	tilted	in	the	

opposite	direction	(in	which	case	it	tends	to	dampen	the	velocity),	or	tilted	at	some	other	

angle	that	has	no	relation	to	the	velocity	vector.	

The	if	statements	that	conclude	Update	processing	check	if	the	ball	has	gone	beyond	one	of	

the	edges,	in	which	case	it	is	brought	back	into	view	and	that	component	of	the	velocity	is	set	

to	zero.	These	are	not	if	and	else	statements	because	the	ball	might	simultaneously	go	outside	

the	bounds	of	two	edges	and	this	case	needs	to	be	handled;	if	so,	the	ball	will	then	come	to	

rest	in	the	corner.	

The	Draw	method	just	draws	the	ball	with	the	scaling	factor:	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.Draw(ball, ballPosition, null, Color.Pink, 0,

 ballCenter, 1f / BALL_SCALE, SpriteEffects.None, 0);

 spriteBatch.End();

 base.Draw(gameTime);

}

The	TiltAndBounce	program	is	very	much	like	TiltAndRoll	except	that	the	ball	bounces	off	the	

edges,	which	means	that	when	a	ball	hits	one	of	the	edges	of	the	screen,	one	of	the	

components	of	its	velocity	is	negated.	In	a	simple	scheme,	if	the	velocity	is	(x,
y)	when	the	

ball	hits	the	right	or	left	edge	of	the	screen	(for	example)	then	the	velocity	becomes	(–x,
y)	as	

it	bounces	off.	But	that’s	unrealistic.	You	probably	want	the	ball	to	lose	some	of	its	velocity	in	

978

	

	 	 	 	

	 	 	

	 	

	 	

the	bounce.	For	that	reason,	the	fields	in	the	TiltAndBounce	program	include	a	bounce	

attenuation	factor	of	2/3:	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

const float GRAVITY = 1000; // pixels per second squared

const float BOUNCE = 2f / 3; // fraction of velocity

const int BALL_RADIUS = 16;

const int BALL_SCALE = 16;

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

Viewport viewport;

Texture2D ball;

Vector2 ballCenter;

Vector2 ballPosition;

Vector2 ballVelocity = Vector2.Zero;

Vector3 oldAcceleration, acceleration;

 object accelerationLock = new object();

…

}

A	ball	with	velocity	(x,
y)	bouncing	off	the	right	or	left	edge	of	the	screen	has	a	postbounce	

velocity	of	(–BOUNCE·x,
y).	

The	constructor	is	the	same	as	TiltAndRoll	as	is	the	Initialize	override,	the	ReadingChanged

method,	LoadContent,	and	Draw.	The	only	difference	is	the	Update	method	where	the	logic	

for	hitting	the	edge	now	implements	bouncing:	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

// Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

// Calculate new velocity and position

Vector2 acceleration2D = Vector2.Zero;

 lock (accelerationLock)

 {

acceleration2D = new Vector2(acceleration.X, -acceleration.Y);

 }

 float elapsedSeconds = (float)gameTime.ElapsedGameTime.TotalSeconds;

 ballVelocity += GRAVITY * acceleration2D * elapsedSeconds;

 ballPosition += ballVelocity * elapsedSeconds;

979	

	

	

	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	

	 	

	 	 	

	

	 	 	 	

	 	 	

// Check for bouncing off edge

 bool needAnotherLoop = false;

 do

 {

needAnotherLoop = false;

if (ballPosition.X - BALL_RADIUS < 0)

{

 ballPosition.X = -ballPosition.X + 2 * BALL_RADIUS;

 ballVelocity.X *= -BOUNCE;

 needAnotherLoop = true;

}

else if (ballPosition.X + BALL_RADIUS > viewport.Width)

{

 ballPosition.X = -ballPosition.X - 2 * (BALL_RADIUS - viewport.Width);

 ballVelocity.X *= -BOUNCE;

 needAnotherLoop = true;

}

else if (ballPosition.Y - BALL_RADIUS < 0)

{

 ballPosition.Y = -ballPosition.Y + 2 * BALL_RADIUS;

 ballVelocity.Y *= -BOUNCE;

 needAnotherLoop = true;

}

else if (ballPosition.Y + BALL_RADIUS > viewport.Height)

{

 ballPosition.Y = -ballPosition.Y - 2 * (BALL_RADIUS - viewport.Height);

 ballVelocity.Y *= -BOUNCE;

 needAnotherLoop = true;

}

 }

 while (needAnotherLoop);

 base.Update(gameTime);

}

In	the	previous	program,	it	was	possible	for	the	ball	to	go	beyond	two	edges	simultaneously,	

but	those	could	be	handled	with	a	series	of	if	statements.	However,	the	bounce	logic	actually	

changes	the	position	of	the	ball,	which	could	cause	the	ball	to	go	beyond	another	edge.	For	

this	reason,	this	logic	needs	to	test	the	position	of	the	ball	repeatedly	until	there	are	no	more	

adjustments	to	be	made.	

It’s	even	possible	to	extend	this	bouncing	logic	into	a	simple	game.	The	EdgeSlam	program	is	

very	similar	to	TiltAndBounce	except	that	one	of	the	four	sides	is	highlighted	with	a	white	bar.	

The	objective	is	to	maneuver	the	ball	against	that	side.	As	soon	as	the	ball	strikes	that	side,	

another	side	is	randomly	highlighted.	You	get	1	point	for	every	correct	side	you	hit,	and	5	

points	penalty	for	hitting	a	wrong	side.	The	score	is	displayed	in	the	center	of	the	screen.	

980	

	

	 	 	 	

	

	 	 	

It	turns	out	that	the	game	is	fairly	easy	to	play	until	you	make	a	mistake,	at	which	point	

compensating	for	that	mistake	usually	makes	things	worse.	(It’s	much	like	life	in	that	respect.)	

The	fields	include	the	same	constants	you	saw	earlier	with	two	more	for	the	scoring:	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

const float GRAVITY = 1000; // pixels per second squared

const float BOUNCE = 2f / 3; // fraction of velocity

const int BALL_RADIUS = 16;

const int BALL_SCALE = 16;

const int HIT = 1;

const int PENALTY = -5;

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

Viewport viewport;

Vector2 screenCenter;

SpriteFont segoe96;

int score;

StringBuilder scoreText = new StringBuilder();

Vector2 scoreCenter;

Texture2D tinyTexture;

int highlightedSide;

Random rand = new Random();

Texture2D ball;

Vector2 ballCenter;

Vector2 ballPosition;

Vector2 ballVelocity = Vector2.Zero;

Vector3 oldAcceleration, acceleration;

object accelerationLock = new object();

public Game1()

 {

graphics = new GraphicsDeviceManager(this);

Content.RootDirectory = "Content";

// Frame rate is 30 fps by default for Windows Phone.

TargetElapsedTime = TimeSpan.FromTicks(333333);

// Restrict orientation to portrait

graphics.SupportedOrientations = DisplayOrientation.Portrait;

graphics.PreferredBackBufferWidth = 480;

graphics.PreferredBackBufferHeight = 768;

 }

 …

}

981	

	

	 	 	 	 	

	 	 	 	

	

	

	 	

	

	 	 	

The	SpriteFont	is	used	to	display	the	score	in	big	numbers	in	the	center	of	the	screen.	The	

tinyTexture	is	used	to	highlight	a	random	side,	indicated	by	the	value	of	highlightedSide.	

The	Initialize	override	and	accelerometer	ReadingChanged	methods	are	the	same	as	the	ones	

you’ve	seen	already.	LoadContent	creates	tinyTexture	and	loads	a	font	as	well	as	creating	the	

ball:	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

// Create a new SpriteBatch, which can be used to draw textures.

 spriteBatch = new SpriteBatch(GraphicsDevice);

 viewport = this.GraphicsDevice.Viewport;

 screenCenter = new Vector2(viewport.Width / 2, viewport.Height / 2);

 ball = Texture2DExtensions.CreateBall(this.GraphicsDevice,

BALL_RADIUS * BALL_SCALE);

 ballCenter = new Vector2(ball.Width / 2, ball.Height / 2);

 ballPosition = screenCenter;

 tinyTexture = new Texture2D(this.GraphicsDevice, 1, 1);

 tinyTexture.SetData<Color>(new Color[] { Color.White });

 segoe96 = this.Content.Load<SpriteFont>("Segoe96");

}

The	Update	method	starts	off	just	like	the	one	in	TiltAndBounce	but	the	big	do	loop	is	a	little	

more	complex.	When	the	ball	strikes	one	of	the	edges	the	score	needs	to	be	adjusted	

depending	on	whether	the	particular	side	was	highlighted	or	not:	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

// Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

// Calculate new velocity and position

Vector2 acceleration2D = Vector2.Zero;

 lock (accelerationLock)

 {

acceleration2D = new Vector2(acceleration.X, -acceleration.Y);

 }

 float elapsedSeconds = (float)gameTime.ElapsedGameTime.TotalSeconds;

 ballVelocity += GRAVITY * acceleration2D * elapsedSeconds;

982	

	

 ballPosition += ballVelocity * elapsedSeconds;

// Check for bouncing off edge

 bool needAnotherLoop = false;

 bool needAnotherSide = false;

 do

 {

needAnotherLoop = false;

if (ballPosition.X - BALL_RADIUS < 0)

{

 score += highlightedSide == 0 ? HIT : PENALTY;

 ballPosition.X = -ballPosition.X + 2 * BALL_RADIUS;

 ballVelocity.X *= -BOUNCE;

 needAnotherLoop = true;

}

else if (ballPosition.X + BALL_RADIUS > viewport.Width)

{

 score += highlightedSide == 2 ? HIT : PENALTY;

 ballPosition.X = -ballPosition.X - 2 * (BALL_RADIUS - viewport.Width);

 ballVelocity.X *= -BOUNCE;

 needAnotherLoop = true;

}

else if (ballPosition.Y - BALL_RADIUS < 0)

{

 score += highlightedSide == 1 ? HIT : PENALTY;

 ballPosition.Y = -ballPosition.Y + 2 * BALL_RADIUS;

 ballVelocity.Y *= -BOUNCE;

 needAnotherLoop = true;

}

else if (ballPosition.Y + BALL_RADIUS > viewport.Height)

{

 score += highlightedSide == 3 ? HIT : PENALTY;

 ballPosition.Y = -ballPosition.Y - 2 * (BALL_RADIUS - viewport.Height);

 ballVelocity.Y *= -BOUNCE;

 needAnotherLoop = true;

}

needAnotherSide |= needAnotherLoop;

}

 while (needAnotherLoop);

 if (needAnotherSide)

 {

scoreText.Remove(0, scoreText.Length);

scoreText.Append(score);

scoreCenter = segoe96.MeasureString(scoreText) / 2;

highlightedSide = rand.Next(4);

 }

 base.Update(gameTime);

}

983

	

	 	 	 	 	

	 	 	

	 	

	 	 	 	

	 	 	

	

	

	 	 	

If	in	the	course	of	the	bounce	processing	the	needAnotherSide	variable	is	set	to	true,	then	the	

Update override	concludes	by	updating	the	StringBuilder	named	scoreText for	the	score	and	

choosing	another	random	side	to	highlight.	The	scoreText	field	is	not	set	until	the	first	score;	I	

originally	had	logic	to	initialize	it	to	zero,	but	the	game	starts	off	with	the	ball	in	the	center	of	

the	screen,	and	the	ball	inside	the	circle	of	the	zero	looked	very	odd!	

The	Draw	override	determines	where	to	position	the	tinyTexture	based	on	highlightedSide	and	

is	also	responsible	for	displaying	the	score:	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

Rectangle rect = new Rectangle();

 switch (highlightedSide)

 {

case 0: rect = new Rectangle(0, 0, 3, viewport.Height); break;

case 1: rect = new Rectangle(0, 0, viewport.Width, 3); break;

case 2: rect = new Rectangle(viewport.Width - 3, 0, 3, viewport.Height);

break;

case 3: rect = new Rectangle(3, viewport.Height - 3, viewport.Width, 3);

break;

 }

 spriteBatch.Draw(tinyTexture, rect, Color.White);

 spriteBatch.DrawString(segoe96, scoreText, screenCenter,

Color.LightBlue, 0,

 scoreCenter, 1, SpriteEffects.None, 0);

 spriteBatch.Draw(ball, ballPosition, null, Color.Pink, 0,

 ballCenter, 1f / BALL_SCALE, SpriteEffects.None, 0);

 spriteBatch.End();

 base.Draw(gameTime);

}

Navigating
a
Maze

One	natural	for	a	rolling	ball	is	a	maze	game,	and	of	course	this	involves	several	problems,	

including	creating	a	random	maze	and	writing	logic	that	keeps	the	ball	within	the	confines	of	

the	maze.		

984	

	

	 	

	

	 	

	 	 	

	 	 	

	 	

	

After	researching	mazegeneration	algorithms	a	bit,	I	settled	on	perhaps	the	simplest,	called	

“recursive	division,”	which	creates	a	maze	that	tends	to	look	something	like	this:	

As	you	can	see,	this	is	not	a	very	interesting	maze,	but	its	most	advantageous	feature	is	that	

any	area	within	the	maze	is	accessible	from	any	other	area.	

Conceptually,	the	area	is	divided	into	a	grid	of	cells.	In	this	example,	there	are	five	cells	

horizontally	and	eight	cells	vertically,	for	a	total	of	40.	Each	of	these	cells	can	have	a	“wall”	on	

up	to	three	of	its	four	sides.	Here’s	the	simple	public	structure	in	the	Petzold.Phone.Xna	library	

that	encapsulates	the	cell:	

Project: Petzold.Phone.Xna File: MazeCell.cs

namespace Petzold.Phone.Xna

{

public struct MazeCell

 {

public bool HasLeft { internal set; get; }

public bool HasTop { internal set; get; }

public bool HasRight { internal set; get; }

public bool HasBottom { internal set; get; }

public MazeCell(bool left, bool top, bool right, bool bottom) : this()

{

 HasLeft = left;

 HasTop = top;

 HasRight = right;

985	

	

	 	 	

	 	 	 	

	 	 	

	 	

	 	 	

	

	 	 	

	 	

	 	 	 	

	 	 	 	

 HasBottom = bottom;

}

 }

}

All	the	cells	along	the	top	edge	have	their	HasTop	properties	set	to	true,	all	the	cells	along	the	

left	edge	have	their	HasLeft	properties	set	to	true	and	similarly	for	the	right	and	bottom	

The	array	of	MazeCell objects	that	comprise	a	maze	is	created	and	maintained	by	MazeGrid,	

which	has	a	single	constructor	that	accepts	a	width	and	height	in	number	of	cells	(for	

example,	5	and	8	in	the	above	example).	Here’s	the	MazeGrid	constructor,	three	public	

properties,	as	well	as	the	Random	object:	

Project: Petzold.Phone.Xna File: MazeGrid.cs (excerpt)

public class MazeGrid

{

Random rand = new Random();

 public MazeGrid(int width, int height)

 {

Width = width;

Height = height;

Cells = new MazeCell[Width, Height];

for (int y = 0; y < Height; y++)

 for (int x = 0; x < Width; x++)

{

 Cells[x, y].HasLeft = x == 0;

 Cells[x, y].HasTop = y == 0;

 Cells[x, y].HasRight = x == Width - 1;

 Cells[x, y].HasBottom = y == Height - 1;

 }

MazeChamber rootChamber = new MazeChamber(0, 0, Width, Height);

DivideChamber(rootChamber);

 }

 public int Width { protected set; get; }

 public int Height { protected set; get; }

 public MazeCell[,] Cells { protected set; get; }

 …

}

The	constructor	concludes	by	creating	an	object	of	type	MazeChamber	the	same	size	as	itself	

and	calling	DivideChamber,	which	is	a	recursive	method	I’ll	show	you	shortly.	In	this	maze

generation	algorithm,	a	chamber	is	a	rectangular	grid	of	cells	with	an	interior	that	is	devoid	of	

walls.	Each	chamber	is	then	divided	in	two	with	a	wall	placed	randomly	within	the	chamber	

(but	generally	going	across	the	shortest	dimension)	with	a	single	randomly	selected	gap.	This	

986

	

	 	 	 	

	

	

process	creates	two	chambers	accessible	to	each	other	through	that	gap,	and	the	subdivision	

continues	until	the	chambers	become	the	size	of	the	cell.	

MazeChamber	is	internal	to	the	Petzold.Phone.Xna	library.	Here’s	the	entire	class	with	its	own	

Random	field:	

Project: Petzold.Phone.Xna File: MazeChamber.cs

using System;

namespace Petzold.Phone.Xna

{

internal class MazeChamber

 {

static Random rand = new Random();

public MazeChamber(int x, int y, int width, int height)

 : base()

{

 X = x;

 Y = y;

 Width = width;

 Height = height;

}

public int X { protected set; get; }

public int Y { protected set; get; }

public int Width { protected set; get; }

public int Height { protected set; get; }

public MazeChamber Chamber1 { protected set; get; }

public MazeChamber Chamber2 { protected set; get; }

public int Divide(bool divideWidth)

{

if (divideWidth)

 {

int col = rand.Next(X + 1, X + Width - 1);

 Chamber1 = new MazeChamber(X, Y, col - X, Height);

 Chamber2 = new MazeChamber(col, Y, X + Width - col, Height);

return col;

 }

else

 {

int row = rand.Next(Y + 1, Y + Height - 1);

 Chamber1 = new MazeChamber(X, Y, Width, row - Y);

 Chamber2 = new MazeChamber(X, row, Width, Y + Height - row);

return row;

 }

}

 }

}

987	

	

	 	 	 	

	 	 	

The	Divide method	performs	the	actual	separation	of	one	chamber	into	two	based	on	a	

randomly	selected	row	or	column	and	creates	the	two	new	MazeChamber	objects.	The	

recursive	DivideChamber	method	in	MazeGrid	is	responsible	for	calling	that	Divide	method	

and	defining	the	walls	of	the	resultant	cells	except	for	the	single	gap:	

Project: Petzold.Phone.Xna File: MazeGrid.cs (excerpt)

void DivideChamber(MazeChamber chamber)

{

if (chamber.Width == 1 && chamber.Height == 1)

 {

return;

}

bool divideWidth = chamber.Width > chamber.Height;

if (chamber.Width == 1 || chamber.Height >= 2 * chamber.Width)

 {

divideWidth = false;

}

else if (chamber.Height == 1 || chamber.Width >= 2 * chamber.Height)

 {

divideWidth = true;

}

else

 {

divideWidth = Convert.ToBoolean(rand.Next(2));

 }

int rowCol = chamber.Divide(divideWidth);

if (divideWidth)

 {

int col = rowCol;

int gap = rand.Next(chamber.Y, chamber.Y + chamber.Height);

for (int y = chamber.Y; y < chamber.Y + chamber.Height; y++)

{

 Cells[col - 1, y].HasRight = y != gap;

 Cells[col, y].HasLeft = y != gap;

}

 }

else

 {

int row = rowCol;

int gap = rand.Next(chamber.X, chamber.X + chamber.Width);

for (int x = chamber.X; x < chamber.X + chamber.Width; x++)

{

 Cells[x, row - 1].HasBottom = x != gap;

 Cells[x, row].HasTop = x != gap;

}

 }

988	

	

	 	

	

	 	 	

	 	 	 	 	

	 	 	 	

		

 DivideChamber(chamber.Chamber1);

 DivideChamber(chamber.Chamber2);

}

I	also	realized	that	I	needed	to	generalize	the	bouncing	logic,	and	for	that	I	needed	a	good	

way	to	represent	a	geometric	line	segment	that	would	allow	calculating	intersections	and	

performing	other	useful	operations.	This	is	a	structure	I	called	Line2D.		The	line	segment	is	

defined	with	two	points	that	also	define	a	Vector	property	and	a	Normal property,	which	is	

perpendicular	to	the	Vector,	so	that	conceptually	the	line	has	a	direction	and	can	also	have	an	

“inside”	and	an	“outside.”	

Project: Petzold.Phone.Xna File: Line2D.cs

using System;

using Microsoft.Xna.Framework;

namespace Petzold.Phone.Xna

{

// represents line as pt1 + t(pt2 - pt1)

public struct Line2D

 {

public Line2D(Vector2 pt1, Vector2 pt2) : this()

{

 Point1 = pt1;

 Point2 = pt2;

 Vector = Point2 - Point1;

 Normal = Vector2.Normalize(new Vector2(-Vector.Y, Vector.X));

}

public Vector2 Point1 { private set; get; }

public Vector2 Point2 { private set; get; }

public Vector2 Vector { private set; get; }

public Vector2 Normal { private set; get; }

public float Angle

{

get

 {

return (float)Math.Atan2(this.Point2.Y - this.Point1.Y,

this.Point2.X - this.Point1.X);

 }

}

public Line2D Shift(Vector2 shift)

{

return new Line2D(this.Point1 + shift, this.Point2 + shift);

}

public Line2D ShiftOut(Vector2 shift)

{

989

	

Line2D shifted = Shift(shift);

Vector2 normalizedVector = Vector2.Normalize(Vector);

float length = shift.Length();

return new Line2D(shifted.Point1 - length * normalizedVector,

 shifted.Point2 + length * normalizedVector);

}

public Vector2 Intersection(Line2D line)

{

float tThis, tThat;

 IntersectTees(line, out tThis, out tThat);

return Point1 + tThis * (Point2 - Point1);

}

public Vector2 SegmentIntersection(Line2D line)

{

float tThis, tThat;

 IntersectTees(line, out tThis, out tThat);

if (tThis < 0 || tThis > 1 || tThat < 0 || tThat > 1)

return new Vector2(float.NaN, float.NaN);

return Point1 + tThis * (Point2 - Point1);

}

void IntersectTees(Line2D line, out float tThis, out float tThat)

{

float den = line.Vector.Y * this.Vector.X - line.Vector.X *

this.Vector.Y;

 tThis = (line.Vector.X * (this.Point1.Y - line.Point1.Y) -

 line.Vector.Y * (this.Point1.X - line.Point1.X)) / den;

 tThat = (this.Vector.X * (this.Point1.Y - line.Point1.Y) -

this.Vector.Y * (this.Point1.X - line.Point1.X)) / den;

}

public override string ToString()

{

return String.Format("{0} --> {1}", this.Point1, this.Point2);

}

public static bool IsValid(Vector2 vector)

{

return !Single.IsNaN(vector.X) && !Single.IsInfinity(vector.X) &&

!Single.IsNaN(vector.Y) && !Single.IsInfinity(vector.Y);

}

 }

}

990	

	

	 	

	 	 	 	

	

	 	 	 	

	 	 	

	

	

Because	the	line	is	internally	defined	with	parametric	formulas,	it	is	fairly	easy	to	find	

intersections	by	equating	the	implicit	t	values	associated	with	a	point	on	the	line.	

All	these	preliminaries	are	in	preparation	for	the	TiltMaze	project.	Here	are	the	fields	that	

include	a	tinyTexture used	to	display	the	walls	of	the	grid.	The	List	collection	of	Line2D	objects	

named	borders	is	an	extremely	important	part	of	this	program.	The	Line2D	objects	in	the	

borders	collection	define	the	outlines	of	the	walls	that	separate	cells.	Each	wall	has	a	width	

defined	by	the	WALL_WIDTH	constant:	

XNA Project: File: (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

const float GRAVITY = 1000; // pixels per second squared

const float BOUNCE = 2f / 3; // fraction of velocity

const int BALL_RADIUS = 16;

const int BALL_SCALE = 16;

const int WALL_WIDTH = 32;

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

Viewport viewport;

Texture2D tinyTexture;

MazeGrid mazeGrid = new MazeGrid(5, 8);

List<Line2D> borders = new List<Line2D>();

Texture2D ball;

Vector2 ballCenter;

Vector2 ballPosition;

Vector2 ballVelocity = Vector2.Zero;

Vector3 oldAcceleration, acceleration;

object accelerationLock = new object();

public Game1()

 {

graphics = new GraphicsDeviceManager(this);

Content.RootDirectory = "Content";

// Frame rate is 30 fps by default for Windows Phone.

TargetElapsedTime = TimeSpan.FromTicks(333333);

// Restrict to portrait mode

graphics.SupportedOrientations = DisplayOrientation.Portrait;

graphics.PreferredBackBufferWidth = 480;

graphics.PreferredBackBufferHeight = 768;

 }

 …

}

991	

	

	 	

	

	 	 	

	 	 	

	 	

	 	 	 	

As	usual,	the	Initialize	override	defines	the	Accelerometer	object	and	the	ReadingChanged

handler	saves	the	smoothed	value.	

XNA Project: File: (excerpt)

protected override void Initialize()

{

Accelerometer accelerometer = new Accelerometer();

 accelerometer.ReadingChanged += OnAccelerometerReadingChanged;

 try { accelerometer.Start(); }

 catch { }

 base.Initialize();

}

void OnAccelerometerReadingChanged(object sender, AccelerometerReadingEventArgs

args)

{

 lock (accelerationLock)

 {

acceleration = 0.5f * oldAcceleration +

 0.5f * new Vector3((float)args.X, (float)args.Y,

(float)args.Z);

oldAcceleration = acceleration;

 }

}

Much	of	the	LoadContent method	is	devoted	to	building	the	borders	collection,	and	I	am	

exceptionally	unhappy	about	this	code.	(It’s	very	high	on	my	list	of	revisions	as	soon	as	I	find	

the	time.)	The	code	looks	at	each	cell	separately	and	then	each	side	of	that	cell	separately.	If	a	

particular	side	of	a	cell	has	a	wall,	then	the	border	interior	to	that	cell	is	defined	by	three	

Line2D	objects:	

XNA Project: File: (excerpt)

protected override void LoadContent()

{

// Create a new SpriteBatch, which can be used to draw textures.

 spriteBatch = new SpriteBatch(GraphicsDevice);

 viewport = this.GraphicsDevice.Viewport;

// Create texture for the walls of the maze

 tinyTexture = new Texture2D(this.GraphicsDevice, 1, 1);

 tinyTexture.SetData<Color>(new Color[] { Color.White });

// Create ball

 ball = Texture2DExtensions.CreateBall(this.GraphicsDevice,

BALL_RADIUS * BALL_SCALE);

992	

	

 ballCenter = new Vector2(ball.Width / 2, ball.Height / 2);

 ballPosition = new Vector2((viewport.Width / mazeGrid.Width) / 2,

 (viewport.Height / mazeGrid.Height) / 2);

// Initialize borders collection

 borders.Clear();

// Create Line2D objects for walls of the maze

 int cellWidth = viewport.Width / mazeGrid.Width;

 int cellHeight = viewport.Height / mazeGrid.Height;

 int halfWallWidth = WALL_WIDTH / 2;

 for (int x = 0; x < mazeGrid.Width; x++)

for (int y = 0; y < mazeGrid.Height; y++)

{

MazeCell mazeCell = mazeGrid.Cells[x, y];

Vector2 ll = new Vector2(x * cellWidth, (y + 1) * cellHeight);

Vector2 ul = new Vector2(x * cellWidth, y * cellHeight);

Vector2 ur = new Vector2((x + 1) * cellWidth, y * cellHeight);

Vector2 lr = new Vector2((x + 1) * cellWidth, (y + 1) * cellHeight);

Vector2 right = halfWallWidth * Vector2.UnitX;

Vector2 left = -right;

Vector2 down = halfWallWidth * Vector2.UnitY;

Vector2 up = -down;

 if (mazeCell.HasLeft)

 {

 borders.Add(new Line2D(ll + down, ll + down + right));

 borders.Add(new Line2D(ll + down + right, ul + up + right));

 borders.Add(new Line2D(ul + up + right, ul + up));

 }

 if (mazeCell.HasTop)

 {

 borders.Add(new Line2D(ul + left, ul + left + down));

 borders.Add(new Line2D(ul + left + down, ur + right + down));

 borders.Add(new Line2D(ur + right + down, ur + right));

}

 if (mazeCell.HasRight)

 {

 borders.Add(new Line2D(ur + up, ur + up + left));

 borders.Add(new Line2D(ur + up + left, lr + down + left));

 borders.Add(new Line2D(lr + down + left, lr + down));

 }

 if (mazeCell.HasBottom)

 {

 borders.Add(new Line2D(lr + right, lr + right + up));

 borders.Add(new Line2D(lr + right + up, ll + left + up));

 borders.Add(new Line2D(ll + left + up, ll + left));

 }

}

}

993

	

	 	 	 	 	

	 	 	 	

	 		

	 	 	

	

	

	

	 	 	

	 	

	

The	problem	is	that	too	many	Line2D objects	enter	the	borders	collection.	When	walls	

combine	from	the	same	cell	or	adjoining	cell,	many	of	these	Line2D	objects	become	

superfluous	because	they	are	actually	inside	a	composite	wall.	

That’s	not	a	really	big	problem	in	itself,	but	these	superfluous	Line2D objects	seem	to	affect	

the	functionality	of	the	program.	This	is	evident	when	a	ball	rolls	down	a	long	wall.	At	various	

points	it	seems	to	snag	a	bit	as	if	it’s	encountering	one	of	these	phantom	borders	and	

bouncing	off.	

The	problem	evidently	also	involves	some	of	the	logic	in	the	Update method.		As	I	indicated	

earlier,	I	needed	to	find	a	method	to	bounce	off	walls	that	was	more	generalized,	and	this	

represents	one	approach.	But	again,	I’m	not	happy	about	it.	It	relies	upon	the	borders

collection	and	introduces	its	own	little	errors:	

XNA Project: File: (excerpt)

protected override void Update(GameTime gameTime)

{

// Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

this.Exit();

// Calculate new velocity and position

Vector2 acceleration2D = Vector2.Zero;

 lock (accelerationLock)

 {

acceleration2D = new Vector2(acceleration.X, -acceleration.Y);

 }

 float elapsedSeconds = (float)gameTime.ElapsedGameTime.TotalSeconds;

 ballVelocity += GRAVITY * acceleration2D * elapsedSeconds;

Vector2 oldPosition = ballPosition;

 ballPosition += ballVelocity * elapsedSeconds;

 bool needAnotherLoop = false;

 do

 {

needAnotherLoop = false;

foreach (Line2D line in borders)

{

Line2D shiftedLine = line.ShiftOut(BALL_RADIUS * line.Normal);

Line2D ballTrajectory = new Line2D(oldPosition, ballPosition);

Vector2 intersection = shiftedLine.SegmentIntersection(ballTrajectory);

 float angleDiff = MathHelper.WrapAngle(line.Angle -

ballTrajectory.Angle);

 if (Line2D.IsValid(intersection) && angleDiff > 0 &&

Line2D.IsValid(Vector2.Normalize(ballVelocity)))

 {

994	

	

	

	 	

	 	

	 	 	

	

	 	 	 	

	 	

	 	 	 	

	 	 	 	

	

 float beyond = (ballPosition - intersection).Length();

 ballVelocity = BOUNCE * Vector2.Reflect(ballVelocity, line.Normal);

 ballPosition = intersection + beyond *

Vector2.Normalize(ballVelocity);

 needAnotherLoop = true;

 break;

 }

}

 }

 while (needAnotherLoop);

 base.Update(gameTime);

}

For	each	Line2D	object	in	the	borders	collection,	the	code	calls	a	ShiftOut	method	in	the	

structure	that	creates	another	line	on	the	outside	of	the	wall	that	is	BALL_RADIUS	from	the	

border	line	and	extends	BALL_RADIUS	on	either	side.	I	use	this	new	Line2D object	as	a	

boundary	line	through	which	the	center	of	the	ball	cannot	pass	and	which	provides	a	surface	

from	which	the	center	of	the	ball	can	bounce.	

There	are	actually	two	problems	with	this	approach:	First,	it	doesn’t	work	for	the	corners.	If	I	

really	want	to	prevent	the	center	of	the	ball	from	passing	a	boundary,	that	boundary	should	

be	a	quarter	arc	at	the	corners	of	the	walls.	Secondly,	for	Line2D	objects	embedded	in	the	

walls,	this	new	Line2D	sticks	out	from	the	wall	and	causes	the	snagging	effect	I	mentioned	

earlier.	

The	Draw override	doesn’t	use	the	borders collection	at	all	but	performs	a	similar	type	of	logic	

that	draws	sometimes	overlapping	rectangular	textures:	

XNA Project: File: (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

// Draw the walls of the maze

 int cellWidth = viewport.Width / mazeGrid.Width;

 int cellHeight = viewport.Height / mazeGrid.Height;

 int halfWallWidth = WALL_WIDTH / 2;

 for (int x = 0; x < mazeGrid.Width; x++)

for (int y = 0; y < mazeGrid.Height; y++)

{

MazeCell mazeCell = mazeGrid.Cells[x, y];

 if (mazeCell.HasLeft)

 {

Rectangle rect = new Rectangle(x * cellWidth,

995

	

	 	 	 	 	 	 	 	

	 	 	

	 	

	

	

y * cellHeight - halfWallWidth,

halfWallWidth, cellHeight +

WALL_WIDTH);

 spriteBatch.Draw(tinyTexture, rect, Color.Green);

 }

 if (mazeCell.HasRight)

 {

Rectangle rect = new Rectangle((x + 1) * cellWidth - halfWallWidth,

y * cellHeight - halfWallWidth,

halfWallWidth, cellHeight +

WALL_WIDTH);

 spriteBatch.Draw(tinyTexture, rect, Color.Green);

 }

 if (mazeCell.HasTop)

 {

Rectangle rect = new Rectangle(x * cellWidth - halfWallWidth,

y * cellHeight,

cellWidth + WALL_WIDTH,

halfWallWidth);

 spriteBatch.Draw(tinyTexture, rect, Color.Green);

 }

 if (mazeCell.HasBottom)

 {

Rectangle rect = new Rectangle(x * cellWidth - halfWallWidth,

(y + 1) * cellHeight - halfWallWidth,

cellWidth + WALL_WIDTH,

halfWallWidth);

 spriteBatch.Draw(tinyTexture, rect, Color.Green);

 }

}

// Draw the ball

 spriteBatch.Draw(ball, ballPosition, null, Color.Pink, 0,

 ballCenter, 1f / BALL_SCALE, SpriteEffects.None, 0);

 spriteBatch.End();

 base.Draw(gameTime);

}

Of	course,	I	know	what	I	need	to	do:	I	need	to	go	more	global	in	constructing	these	walls.	I	

need	to	know	at	every	intersection	how	many	walls	meet	at	that	point	and	define	only	the	

true	outlines	of	these	walls.	

Just	as	many	programming	projects	are	never	definitively	finished,	I	suspect	this	book	is	not	

yet	finished	either.	

996	

	

	 	 	 	

	

	 	 	

	

	 	

 		

	

About the Author

Charles	Petzold	has	been	writing	about	programming	for	Windowsbased	operating	systems	

for	24	years.	His	books	include	Programming Windows	(5th	edition,	Microsoft	Press,	1998)	and	

six	books	about	.NET	programming,	including	3D Programming for Windows: Three-

Dimensional Graphics Programming for the Windows Presentation Foundation	(Microsoft	

Press,	2007).	He	is	also	the	author	of	two	unique	books	that	explore	the	intersection	of	

computing	technology,	mathematics,	and	history:	Code: The Hidden Language of Computer

Hardware and Software	(Microsoft	Press,	1999)	and	The Annotated Turing: A Guided Tour

though Alan Turing's Historic Paper on Computability and the Turing Machine	(Wiley,	2008).	

Petzold	lives	in	New	York	City.	His	website	is	www.charlespetzold.com.	

997	

	Cover Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	Introduction
	Organization
	My Assumptions About You
	System Requirements
	Using the Phone Emulator
	Code Samples
	Last-Minute Items
	The Essential People
	Errata & Book Support
	We Want to Hear from You
	Stay in Touch

	Part 1: The Basics
	Chapter 1: Hello, Windows Phone 7
	Targeting Windows Phone 7
	The Hardware Chassis
	Sensors and Services
	File | New | Project
	A First Silverlight Phone Program
	The Standard Silverlight Files
	Color Themes
	Points and Pixels
	The XAP is a ZIP
	An XNA Program for the Phone

	Chapter 2: Getting Oriented
	Silverlight and Dynamic Layout
	Orientation Events
	XNA Orientation
	Simple Clocks (Very Simple Clocks)

	Chapter 3: An Introduction to Touch
	Low-Level Touch Handling in XNA
	The XNA Gesture Interface
	Low-Level Touch Events in Silverlight
	The Manipulation Events
	Routed Events
	Some Odd Behavior

	Chapter 4: Bitmaps, Also Known as Textures
	XNA Texture Drawing
	The Silverlight Image Element
	Images Via the Web
	Image and ImageSource
	Loading Local Bitmaps from Code
	Capturing from the Camera
	The Phone's Photo Library

	Chapter 5: Sensors and Services
	Accelerometer
	A Simple Bubble Level
	Geographic Location
	Using a Map Service

	Chapter 6: Issues in Application Architectire
	Basic Navigation
	Passing Data to Pages
	Sharing Data Among Pages
	Retaining Data across Instances
	The Multitasking Ideal
	Task Switching on the Phon
	Page State
	Isolated Storage
	Xna Tombstoning and Settings
	Testing and Experimentation

	Part 2: Silverlight
	Chapter 7: XAML Power and Limitations
	A Textblock in Code
	Property Inheritance
	Property-Element Syntax
	Colors and Brushes
	Content and Content Properties
	The Resources Collection
	Sharing Brushes
	x:Key and x:Name
	An Introduction to Styles
	Style Inheritance
	Themes
	Gradient Accents

	Chapter 8: Elements and Properties
	Basic Shapes
	Transforms
	Animating at the Speed of Video
	Handling Manipulation Events
	The Border Element
	TextBlock Properties and Inlines
	More on Images
	Playing Movies
	Modes of Opacity
	Non-Tiled Tile Brushes

	Chapter 9: The Intricacies of Layout
	The Single-Cell Grid
	The StackPanel Stack
	Text Concatenation with StackPanel
	Nested Panels
	Visibility and Layout
	Two ScrollViewer Applications
	The Mechanism of Layout
	Inside the Panel
	A Single-Cell Grid Clone
	A Custom Vertical StackPanel
	The Retro Canvas
	Canvas and ZIndex
	The Canvas and Touch
	The Mighty Grid

	Chapter 10: The App Bar and Controls
	ApplicationBar Icons
	Jot and Application Settings
	Jot and Touch
	Jot and the ApplicationBar
	Elements and Controls
	RangeBase and Slider
	The Basic Button
	The Concept of Content
	Theme Styles and Precedence
	The Button Hierarchy
	Toggling a Stopwatch
	Buttons and Styles
	TextBox and Keyboard Input

	Chapter 11: Dependency Properties
	The Problem Illustrated
	The Dependency Property Difference
	Deriving from UserControl
	A New Type of Toggle
	Panels with Properties
	Attached Properties

	Chapter 12: Data Bindings
	Source and Target
	Target and Mode
	Binding Converters
	Relative Source
	The “this” Source
	Notification Mechanisms
	A Simple Binding Server
	Setting the DataContext
	Simple Decision Making
	Converters with Properties
	Give and Take
	TextBox Binding Updates

	Chapter 13: Vector Graphics
	The Shapes Library
	Canvas and Grid
	Overlapping and ZIndex
	Polylines and Custom Curves
	Caps, Joins, and Dashes
	Polygon and Fill
	The Stretch Property
	Dynamic Polygons
	The Path Element
	Geometries and Transforms
	Grouping Geometries
	The Versatile PathGeometry
	The ArcSegment
	Bézier Curves
	The Path Markup Syntax
	How This Chapter Was Created

	Chapter 14: Raster Graphics
	The Bitmap Class Hierarchy
	WriteableBitmap and UIElement
	The Pixel Bits
	Vector Graphics on a Bitmap
	Images and Tombstoning
	Saving to the Picture Library
	Becoming a Photo Extras Application

	Chapter 15: Animations
	Frame-Based vs. Time-Based
	Animation Targets
	Click and Spin
	Some Variations
	XAML-Based Animations
	A Cautionary Tale
	Key Frame Animations
	Trigger on Loaded
	Animating Attached Properties (or Not)
	Splines and Key Frames
	The Bouncing Ball Problem
	The Easing Functions
	Animating Perspective Transforms
	Animations and Property Precedence

	Chapter 16: The Two Templates
	ContentControl and DataTemplate
	Examining the Visual Tree
	ControlTemplate Basics
	The Visual State Manager
	Sharing and Reusing Styles and Templates
	Custom Controls in a Library
	Variations on the Slider
	The Ever-Handy Thumb
	Custom Controls

	Chapter 17: Items Controls
	Items Controls and Visual Trees
	Customizing Item Displays
	ListBox Selection
	Binding to ItemsSource
	Databases and Business Objects
	Fun with DataTemplates
	Sorting
	Changing the Panel
	The DataTemplate Bar Chart
	A Card File Metaphor

	Chapter 18: Pivot and Panorama
	Compare and Contrast
	Music by Composer
	The XNA Connection
	The XNA Music Classes: MediaLibrary
	Displaying the Albums
	The XNA Music Classes: MediaPlayer

	Part 3: XNA
	Chapter 19: Principles of Movement
	The Naïve Approach
	A Brief Review of Vectors
	Moving Sprites with Vectors
	Working with Parametric Equations
	Fiddling with the Transfer Function
	Scaling the Text
	Two Text Rotation Programs

	Chapter 20: Textures and Sprites
	The Draw Variants
	Another Hello Program?
	Driving Around the Block
	Movement Along a Polyline
	The Elliptical Course
	A Generalized Curve Solution

	Chapter 21: Dynamic Textures
	The Render Target
	Preserving Render Target Contents
	Drawing Lines
	Manipulating the Pixel Bits
	The Geometry of Line Drawing
	Modifying Existing Images

	Chapter 22: From Gestures to Transforms
	Gestures and Properties
	Scale and Rotate
	Matrix Transforms
	The Pinch Gesture
	Flick and Inertia
	The Mandelbrot Set
	Pan and Zoom
	Game Components
	Affine and Non-Affine Transforms

	Chapter 23: Touch and Play
	More Game Components
	The PhingerPaint Canvas
	A Little Tour Through SpinPaint
	The SpinPaint Code
	The Actual Drawing
	PhreeCell and a Deck of Cards
	The Playing Field
	Play and Replay
	Chapter 24: Tilt and Play
	3D Vectors
	A Better Bubble Visualization
	The Graphical Rendition
	Follow the Rolling Ball
	Navigating a Maze

	About the Author

	About the Author

