
9.03.12 доц. д-р Стоян Бонев 1

Проектиране и Тестиране на Софтуер
ТУ, кат. КС, летен семестър 2012

Лекция 1b

Тема:

Проектиране и Работа с
Подпрограми

(част 2)

9.03.12 доц. д-р Стоян Бонев 2

Съдържание:

• Еволюция на концепцията ПП
• Проектиране и програмиране на

ефикасни, сигурни, надеждни и
качествени ПП

9.03.12 доц. д-р Стоян Бонев 3

ПП

Еволюция
 на

концепцията ПП

9.03.12 доц. д-р Стоян Бонев 4

Развитие на ПП в C/C++

• Функции, връщащи псевдоним Functions
returning reference

• Предефинирани функции Overloaded functions
• Функции с подразбиращи се стойности на

аргументите Default-argument functions
• Вградени функции Inline functions
• Взаимоотношение (relation) функция-макрос
• Първични функции Generic functions

9.03.12 доц. д-р Стоян Бонев 5

Функции, връщащи псевдоним
 Наричат се псевдофункции. Позволено е

да се ползват от двете страни на
оператор за присвояване:

отляво:
setx() = <израз>

отдясно:
y = …setx()… - операнд в израз

отляво и отдясно:
setx() = …setx()…

9.03.12 доц. д-р Стоян Бонев 6

Функции, връщащи псевдоним

 int x;
 int& setx();

void main() { setx() = 218; cout << x; }

 int& setx()
 {
 return x;
 }

9.03.12 доц. д-р Стоян Бонев 7

Функции, връщащи псевдоним
#include <iostream>
using namespace std;
int x; int& setx();
void main()
{
int y;
y = setx(); cout << '\n' << y;
setx() = 218; cout << '\n' << x;
y = setx(); cout << '\n' << y;
setx() = setx() + 12; cout<<‘\n’x<<y;

}
int& setx() { return x; }

9.03.12 доц. д-р Стоян Бонев 8

Предефинирани функции/методи

 C++: Yes

 C#: Yes

 Java: Yes

9.03.12 доц. д-р Стоян Бонев 9

Предефинирани функции

 void prch();
 void prch(char);
 void prch(int);
 void prch(char, int);

9.03.12 доц. д-р Стоян Бонев 10

Предефинирани функции
 void prch()
{ cout<<‘\n’; for(int i=0;i<80;i++) cout<<‘*’;}

//--

9.03.12 доц. д-р Стоян Бонев 11

Предефинирани функции
 void prch()
{ cout<<‘\n’; for(int i=0;i<80;i++) cout<<‘*’;}

//--
 void prch(char ch)
{ cout<<‘\n’; for(int i=0;i<80;i++) cout<<ch;}

//--

9.03.12 доц. д-р Стоян Бонев 12

Предефинирани функции
 void prch()
{ cout<<‘\n’; for(int i=0;i<80;i++) cout<<‘*’;}

//--
 void prch(char ch)
{ cout<<‘\n’; for(int i=0;i<80;i++) cout<<ch;}

//--
 void prch(int n)
{ cout<<‘\n’; for(int i=0;i<n;i++) cout<<‘*’;}
//--

9.03.12 доц. д-р Стоян Бонев 13

Предефинирани функции
 void prch()
{ cout<<‘\n’; for(int i=0;i<80;i++) cout<<‘*’;}

//--
 void prch(char ch)
{ cout<<‘\n’; for(int i=0;i<80;i++) cout<<ch;}

//--
 void prch(int n)
{ cout<<‘\n’; for(int i=0;i<n;i++) cout<<‘*’;}
//--
 void prch(char ch, int n)
{ cout<<‘\n’; for(int i=0;i<n;i++) cout<<ch;}

9.03.12 доц. д-р Стоян Бонев 14

Нееднозначно активиране

Sometimes there may be two or more
possible matches for an invocation of a
method, but the compiler cannot
determine the most specific match.
This is referred to as ambiguous
invocation. Ambiguous invocation is a
compilation error.

9.03.12 доц. д-р Стоян Бонев 15

Нееднозначно активиране
public class AmbiguousOverloading {
 public static void main(String[] args) {
 System.out.println(max(1, 2));
 }

 public static double max(int num1, double num2) {
 if (num1 > num2)
 return num1;
 else
 return num2;
 }

 public static double max(double num1, int num2) {
 if (num1 > num2)
 return num1;
 else
 return num2;
 }
}

9.03.12 доц. д-р Стоян Бонев 16Java Programming, Fifth Edition 16

Learning About Ambiguity
(continued)

• Overload methods
– Correctly provide different argument lists for

methods with same name
• Illegal methods

– Methods with identical names that have
identical argument lists but different return
types

– int aMethod(int x)
– void aMethod(int x)

9.03.12 доц. д-р Стоян Бонев 17

Функции/методи с подразбиращи
се стойности на аргументите

 C++: Yes

 C#: Yes

 Java: No

9.03.12 доц. д-р Стоян Бонев 18

Функции с подразбиращи се
стойности на аргументите

C++, Fortran95, Ada, PHP: формалните параметри имат стойности по подразбиране

 float ave(int=20, int=30, int=40);
//---
main() {

cout << ‘\n’ << ave();
cout << ‘\n’ << ave(100);
cout << ‘\n’ << ave(100, 200);
cout << ‘\n’ << ave(5, 6, 8);
 }

//---
float ave(int x, int y, int z)

{
 return (x+y+z)/3.;
}

9.03.12 доц. д-р Стоян Бонев 19

C# Функции/методи с подразбиращи
се стойности на аргументите

class Program
{
 static double ave(int a=20, int b=30, int c=40)
 {
 return (a+b+c)/3.0;
 }

 static void Main(string[] args)
 {
 Console.WriteLine("ave={0} {1} {2} {3}",

ave(),ave(100),ave(100,200),ave(100,200,300));
 }
}

9.03.12 доц. д-р Стоян Бонев 20

Вградени функции

 inline float area(float r) {return PI*r*r;}

9.03.12 доц. д-р Стоян Бонев 21

Взаимоотношение
функция-макрос

#define AREA(x) PI*x*x

// по-надеждно
#define AREA(x) PI*(x)*(x)

// най-надеждно
#define AREA(x) (PI*(x)*(x))

9.03.12 доц. д-р Стоян Бонев 22

Първични, родови функции

 template <class Type>
 Type max (Type a, Type b)

{ return (a>b)? a: b; }

 int x=20, y=30; cout << max(x, y);
 float p=3., q=5.; cout << max(p,q);

9.03.12 доц. д-р Стоян Бонев 23

ПП

Проектиране и
програмиране на

сигурни, надеждни
и качествени ПП

9.03.12 доц. д-р Стоян Бонев 24

Защо ПП?

9.03.12 доц. д-р Стоян Бонев 25

Причини за работа с ПП

• Намалява сложността
– Това е една от главните причини. Top-down design.
– “Properly designed functions permit to ignore how a job’s done. Knowing what

is done is sufficient.”
– “A function provides a convenient way to encapsulate some computation, which

can then be used without worrying about its implementation. ”
 B.Kernighan & D.Ritchie

• Избягва дублиране на код
– ПП се създават, за да бъдат извиквани многократно.
– Това е може би най-популярната причина.

9.03.12 доц. д-р Стоян Бонев 26

Създава четлив и разбираем код

• Създава четлив и разбираем код
If (Node != NULL) then
 While (Node.Next!=NULL) do

Node = Node.Next;
 LeafName = Node.Name;
end while

else
 LeafName = “empty”;
Endif
==================================
Leafname = GetLeafName(Node);

9.03.12 доц. д-р Стоян Бонев 27

Създава четлив и разбираем код
res=1;
for (int I=1;I<=N;I++)

res = res * I;
==================================
res = fact(N);
++

int m, n, r;
while ((r=m%n) != 0)

{
m=n; n=r;

}
==================================
res = gcd(m, n);

9.03.12 доц. д-р Стоян Бонев 28

Още Причини за работа с ПП
• Опростява сложни логически изрази

– Среща се дефиниция на функция, която се вика веднъж, само
защото прави по-ясен сегмент от първичен код.

isalpha(c)
c>=’a’ && c<=’z’ || c>=’A’ && c<=’Z’

leapyear(y)
y%4 == 0 && y%100 != 0 || y%400 == 0

• Скрива опериране с указатели
• Подобрява преносимостта
• Подобрява х-ки на продукта по памет

9.03.12 доц. д-р Стоян Бонев 29

Х-ки на качествени ПП

• What is a high-quality routine?
• Design and implementation of efficient,

secure and reliable routines
– Criteria
– Requirements

9.03.12 доц. д-р Стоян Бонев 30

Steve McConnell

CODE COMPLETE
Chapter 7

2nd Edition, 2005

9.03.12 доц. д-р Стоян Бонев 31

Качествени ПП

• What is a high-quality routine?
– This is a harder question?

• It is easier to show what a high quality
routine is not
– See next slide

9.03.12 доц. д-р Стоян Бонев 32

C++ пример на ПП с ниско качество
void HandleStuff(CORP_DATA & inputRec, int crntQtr, EMP_DATA empRec,
 double & estimRevenue, double ytdRevenue, int screenX, int screenY,COLOR_TYPE & newColor,

COLOR_TYPE & prevColor, StatusType & status,
int expenseType)

{
int i;
for (i=0; i<100; i++) {
 inputRec.revenue[i] = 0;
 inputRec.expense[i] = corpExpense[crtQtr][i];
 }
UpdateCorpDataBase(empRec);
estimRevenue = ytdRevenue * 4.0 / (double) crntQtr;
newColor = prevColor;
status = SUCCESS;
if (expenseType == 1) {
 for (i=0; i<12; i++)
 profit[i] = revenue[i] - expense.type1[i];
 }
else if (expenseType == 2) {
 profit[i] = revenue[i] - expense.type2[i];
 }
else if (expenseType == 3)
 profit[i] = revenue[i] - expense.type3[i];

 }

9.03.12 доц. д-р Стоян Бонев 33

C++ пример на ПП с ниско качество

What’s wrong with this routine?
You are expected to try to find or

register or formulate problems with
it (3-5 min).

Once you’ve come up with your own
list, look at the list with criticisms
presented on next page.

9.03.12 доц. д-р Стоян Бонев 34

C++ пример на ПП с ниско качество
• The routine has a bad name. HandleStuff tells you nothing about the routine purpose.
• The routine isn’t documented
• The routine has a bad layout (white spaces and indentation)
• The routine’s input variable InputRec, is changed. If it’s input variable, its value should

not be modified and its name should not be like InputRec
• The routine reads and writes global variables. It read from corpExpense and writes to

profit. It should communicate with other routines more directly than by reading/writing
global data.

• The routine doesn’t have a single purpose. One routine, one task. It initializes some
variables, writes to a data base, does some calculations – none of which seems to relate to
each other in any way. A routine should have a single, clearly defined purpose.

• The routine doesn’t defend itself against bad data. Attention – division by zero error is
possible

• The routine uses magic numbers (100, 12, 4.0, 2 ,3) instead symbolic constants
• The routine uses only two fields of the CORP_DATA type of parameter. No need to

transfer all the structure as a parameter.
• Some of the routine’s parameters aren’t used. ScreenX and ScreenY are not referenced

within the routine.
• One of the routine’s parameters is passed incorrectly: prevColor is labeled as a reference

(&) parameter even though it isn’t assigned a value within the routine
• The routine has too many parameters. Recommended up to 7. This routine has 11

parameters.
• Routine’s parameters are poorly ordered and not documented.

9.03.12 доц. д-р Стоян Бонев 35

Проектиране на ПП

Design at the Routine level

9.03.12 доц. д-р Стоян Бонев 36

Design at the Routine level

• Важни критерии/изисквания при
проектиране на ПП:

• Coupling /връзки м/у ПП/
– Loosely coupled routines

• Cohesion /вътрешна структура на ПП/
– Strongly cohesive routines

9.03.12 доц. д-р Стоян Бонев 37

Coupling: Keep Coupling Loose
• Coupling describes how tightly a routine is related to other routines.

The goal is to create routines with small, direct, visible, and flexible
relations to other routines, which is known as "loose coupling."

• Good coupling between routines is loose enough that one routine can
easily be used by other routines. Model railroad cars are coupled by
opposing hooks that latch when pushed together. Connecting two
cars is easy—you just push the cars together. Imagine how much
more difficult it would be if you had to screw things together, or
connect a set of wires, or if you could connect only certain kinds of
cars to certain other kinds of cars. The coupling of model railroad
cars works because it's as simple as possible.

• In software, make the connections among routines as simple as
possible.

9.03.12 доц. д-р Стоян Бонев 38

Coupling
• Try to create routines that depend little on other routines.

Make them detached, as business associates are, rather
than attached, as Siamese twins are.

• A routine like sin() is loosely coupled because
everything it needs to know is passed in to it with one
value representing an angle in degrees.

• A routine InitVars(var1,var2,var3,…,varN)
is more tightly coupled because, with all the variables it
must pass, the calling routine practically knows what is
happening inside InitVars().

9.03.12 доц. д-р Стоян Бонев 39

Cohesion
• For routines, cohesion refers to how closely the

operations in a routine are related.
• Some programmers prefer the term "strength": how

strongly related are the operations in a routine?
• A function like Cosine() is perfectly cohesive

because the whole routine is dedicated to performing one
function.

• A function like CosineAndTan() has lower
cohesion because it tries to do more than one thing. The
goal is to have each routine do one thing well and not do
anything else

9.03.12 доц. д-р Стоян Бонев 40

Cohesion

• Discussions about cohesion typically refer
to several levels of cohesion

9.03.12 доц. д-р Стоян Бонев 41

Cohesion
• Functional cohesion is the strongest and best

kind of cohesion, occurring when a routine
performs one and only one operation. Examples
of highly cohesive routines include sin(), GetCustomerName(), EraseFile(), CalculateLoanPayment(), and AgeFromBirthdate().

• Of course, this evaluation of their cohesion
assumes that the routines do what their names say
they do—if they do anything else, they are less
cohesive and poorly named

9.03.12 доц. д-р Стоян Бонев 42

Cohesion
• Sequential cohesion exists when a routine contains operations that

must be performed in a specific order, that share data from step to
step, and that don't make up a complete function when done together.

• An example of sequential cohesion is a routine that, given a birth
date, calculates an employee's age and time to retirement. If the
routine calculates the age and then uses that result to calculate the
employee's time to retirement, it has sequential cohesion. If the
routine calculates the age and then calculates the time to retirement
in a completely separate computation that happens to use the same
birth-date data, it has only communicational cohesion.

• How would you make the routine functionally cohesive? You'd
create separate routines to compute an employee's age given a birth
date and compute time to retirement given a birth date. The time-to-
retirement routine could call the age routine. They'd both have
functional cohesion.

9.03.12 доц. д-р Стоян Бонев 43

Cohesion
• Communicational cohesion occurs when operations in a routine

make use of the same data and aren't related in any other way. If a
routine prints a summary report and then reinitializes the summary
data passed into it, the routine has communicational cohesion: the
two operations are related only by the fact that they use the same
data.

• To give this routine better cohesion, the summary data should be
reinitialized close to where it's created, which shouldn't be in the
report-printing routine. Split the operations into individual routines.
The first prints the report. The second reinitializes the data, close to
the code that creates or modifies the data. Call both routines from the
higher-level routine that originally called the communicationally
cohesive routine

9.03.12 доц. д-р Стоян Бонев 44

Cohesion

• The remaining kinds of cohesion are
generally unacceptable. They result in code
that's poorly organized, hard to debug, and
hard to modify

9.03.12 доц. д-р Стоян Бонев 45

Cohesion
• Procedural cohesion occurs when operations in a routine are done

in a specified order. An example is a routine that gets an employee
name, then an address, and then a phone number. The order of these
operations is important only because it matches the order in which
the user is asked for the data on the input screen. Another routine
gets the rest of the employee data. The routine has procedural
cohesion because it puts a set of operations in a specified order and
the operations don't need to be combined for any other reason.

• To achieve better cohesion, put the separate operations into their own
routines. Make sure that the calling routine has a single, complete
job: GetEmployee() rather than GetFirstPartOfEmployeeData(). You'll probably need to
modify the routines that get the rest of the data too. It's common to
modify two or more original routines before you achieve functional
cohesion in any of them.

9.03.12 доц. д-р Стоян Бонев 46

Cohesion
• Logical cohesion occurs when several operations are stuffed into the same routine

and one of the operations is selected by a control flag that's passed in. It's called logical
cohesion because the control flow or "logic" of the routine is the only thing that ties
the operations together—they're all in a big if statement or case statement together. It
isn't because the operations are logically related in any other sense. Considering that
the defining attribute of logical cohesion is that the operations are unrelated, a better
name might "illogical cohesion."

• One example would be an InputAll() routine that inputs customer names,
employee timecard information, or inventory data depending on a flag passed to the
routine. Other examples would be ComputeAll(), EditAll(), PrintAll(), and SaveAll(). The main problem with such routines is that
you shouldn't need to pass in a flag to control another routine's processing. Instead of
having a routine that does one of three distinct operations, depending on a flag passed
to it, it's cleaner to have three routines, each of which does one distinct operation. If
the operations use some of the same code or share data, the code should be moved into
a lower-level routine and the routines should be packaged into a class.

• It's usually all right, however, to create a logically cohesive routine if its code consists
solely of a series of if or case statements and calls to other routines. In such a case, if
the routine's only function is to dispatch commands and it doesn't do any of the
processing itself, that's usually a good design. The technical term for this kind of
routine is "event handler."

9.03.12 доц. д-р Стоян Бонев 47

Cohesion

• Coincidental cohesion occurs when the
operations in a routine have no discernible
relationship to each other. Other good names are
"no cohesion" or "chaotic cohesion." The low-
quality C++ routine at the beginning of this
chapter had coincidental cohesion. It's hard to
convert coincidental cohesion to any better kind
of cohesion—you usually need to do a deeper
redesign and reimplementation.

9.03.12 доц. д-р Стоян Бонев 48

Cohesion

• None of these terms are magical or sacred.
Learn the ideas rather than the
terminology. It's nearly always possible to
write routines with functional cohesion, so
focus your attention on functional cohesion
for maximum benefit.

9.03.12 доц. д-р Стоян Бонев 49

Good Routine Names
ПП с подходящи имена

• A good name for a routine clearly
describes everything the routine does

9.03.12 доц. д-р Стоян Бонев 50

ПП с подходящи имена

• Describe everything the routine does. In the
routine's name, describe all the outputs and side effects. If
a routine computes report totals and opens an output file,
ComputeReportTotals() is not an adequate name
for the routine.
ComputeReportTotalsAndOpenOutputFile()
is an adequate name but is too long and silly. If you have
routines with side effects, you'll have many long, silly
names. The cure is not to use less-descriptive routine
names; the cure is to program so that you cause things to
happen directly rather than with side effects.

9.03.12 доц. д-р Стоян Бонев 51

ПП с подходящи имена

• Avoid meaningless, vague, or wishy-
washy verbs Some verbs are elastic, stretched
to cover just about any meaning. Routine names
like HandleCalculation(),
PerformServices(), OutputUser(),
ProcessInput(), and
DealWithOutput() don't tell you what the
routines do. At the most, these names tell you
that the routines have something to do with
calculations, services, users, input, and output.

9.03.12 доц. д-р Стоян Бонев 52

ПП с подходящи имена
• Don't differentiate routine names solely by

number One developer wrote all his code in one big
function. Then he took every 15 lines and created
functions named Part1, Part2, and so on. After that,
he created one high-level function that called each part.
This method of creating and naming routines is especially
egregious (and rare, I hope). But programmers sometimes
use numbers to differentiate routines with names like OutputUser, OutputUser1, and OutputUser2. The numerals at the ends of these
names provide no indication of the different abstractions
the routines represent, and the routines are thus poorly
named.

9.03.12 доц. д-р Стоян Бонев 53

ПП с подходящи имена
• Make names of routines as long as
necessary Research shows that the optimum average
length for a variable name is 9 to 15 characters. Routines
tend to be more complicated than variables, and good
names for them tend to be longer. On the other hand,
routine names are often attached to object names, which
essentially provides part of the name for free. Overall, the
emphasis when creating a routine name should be to
make the name as clear as possible, which means you
should make its name as long or short as needed to make
it understandable.

9.03.12 доц. д-р Стоян Бонев 54

ПП с подходящи имена
• To name a function, use a
description of the return value A
function returns a value, and the function
should be named for the value it returns.
For example, cos(),
customerId.Next(),
printer.IsReady(), and
pen.CurrentColor() are all good
function names that indicate precisely what
the functions return

9.03.12 доц. д-р Стоян Бонев 55

ПП с подходящи имена
• To name a procedure, use a strong verb followed by an object A procedure with functional

cohesion usually performs an operation on an object. The name
should reflect what the procedure does, and an operation on an object
implies a verb-plus-object name. PrintDocument(), CalcMonthlyRevenues(), CheckOrderlnfo(), and RepaginateDocument() are samples of good procedure names.

• In object-oriented languages, you don't need to include the name of
the object in the procedure name because the object itself is included
in the call. You invoke routines with statements like document.Print(), orderInfo.Check(), and monthlyRevenues.Calc().

• Names like document.PrintDocument() are redundant and
can become inaccurate when they're carried through to derived
classes.

9.03.12 доц. д-р Стоян Бонев 56

ПП с подходящи имена
• Use opposites precisely Using naming conventions

for opposites helps consistency, which helps readability.
Opposite-pairs like first/last are commonly understood.
Opposite-pairs like FileOpen() and _lclose()
are not symmetrical and are confusing. Here are some
common opposites:

add/remove increment/decrement open/close
Begin/end insert/delete show/hide
create/destroy lock/unlock source/target
first/last min/max start/stop
get/put next/previous up/down
get/set old/new

9.03.12 доц. д-р Стоян Бонев 57

ПП с подходящ размер

• How Long Can a Routine Be?

9.03.12 доц. д-р Стоян Бонев 58

ПП с подходящ размер
• The theoretical best maximum length is often described

as one screen or one or two pages of program listing,
approximately 50 to 150 lines. In this spirit, IBM once
limited routines to 50 lines, and TRW limited them to two
pages (McCabe 1976).

• Modern programs tend to have volumes of extremely
short routines mixed in with a few longer routines. Long
routines are far from extinct, however.

• Shortly before finishing this book, I visited two client
sites within a month. Programmers at one site were
wrestling with a routine that was about 4,000 lines of
code long, and programmers at the other site were trying
to tame a routine that was more than 12,000 lines long!

9.03.12 доц. д-р Стоян Бонев 59

ПП с подходящ размер
• A study by Basili and Perricone found that routine size was inversely correlated with

errors: as the size of routines increased (up to 200 lines of code), the number of errors
per line of code decreased (Basili and Perricone 1984).

• Another study found that routine size was not correlated with errors, even though
structural complexity and amount of data were correlated with errors (Shen et al.
1985).

• A 1986 study found that small routines (32 lines of code or fewer) were not correlated
with lower cost or fault rate (Card, Church, and Agresti 1986; Card and Glass 1990).
The evidence suggested that larger routines (65 lines of code or more) were cheaper to
develop per line of code.

• An empirical study of 450 routines found that small routines (those with fewer than
143 source statements, including comments) had 23 percent more errors per line of
code than larger routines but were 2.4 times less expensive to fix than larger routines
(Selby and Basili 1991).

• Another study found that code needed to be changed least when routines averaged 100
to 150 lines of code (Lind and Vairavan 1989).

• A study at IBM found that the most error-prone routines were those that were larger
than 500 lines of code. Beyond 500 lines, the error rate tended to be proportional to the
size of the routine (Jones 1986a).

9.03.12 доц. д-р Стоян Бонев 60

ПП с подходящ размер
• Where does all this leave the question of routine length in OOP?
• A large percentage of routines in object-oriented programs will be

accessor routines, which will be very short.
• From time to time, a complex algorithm will lead to a longer routine,

and in those circumstances, the routine should be allowed to grow
organically up to 100–200 lines. (A line is a noncomment, nonblank
line of source code.)

• That said, if you want to write routines longer than about 200 lines,
be careful. None of the studies that reported decreased cost,
decreased error rates, or both with larger routines distinguished
among sizes larger than 200 lines, and you're bound to run into an
upper limit of understandability as you pass 200 lines of code.

9.03.12 доц. д-р Стоян Бонев 61

ПП и подбор на параметри

• How to Use Routine Parameters

9.03.12 доц. д-р Стоян Бонев 62

ПП и подбор на параметри

Put parameters in input-modify-output
order Instead of ordering parameters randomly or
alphabetically, list the parameters that are input-
only first, input-and-output second, and output-
only third. This ordering implies the IPO sequence
of operations happening within the routine-
inputting data, changing it, and sending back a
result. Here are examples of parameter lists in Ada:

9.03.12 доц. д-р Стоян Бонев 63

ПП и подбор на параметри
• Ada Example of Parameters in Input-Modify-Output Order

procedure InvertMatrix(
originalMatrix: in Matrix;
 resultMatrix: out Matrix);

...
procedure ChangeSentenceCase(

 desiredCase: in StringCase;
sentence: in out Sentence);

...
procedure PrintPageNumber(

pageNumber: in Integer;
status: out StatusType);

• (1)Ada uses in and out keywords to make input and output parameters clear.

9.03.12 доц. д-р Стоян Бонев 64

ПП и подбор на параметри

• This ordering convention conflicts with the
C-library convention of putting the
modified parameter first. The input-
modify-output convention makes more
sense to me, but if you consistently order
parameters in some way, you will still do
the readers of your code a service.

9.03.12 доц. д-р Стоян Бонев 65

ПП и подбор на параметри

• Consider creating your own in and out
keywords Other modern languages don't
support the in and out keywords like
Ada does. In those languages, you might
still be able to use the preprocessor to
create your own in and out
keywords:

9.03.12 доц. д-р Стоян Бонев 66

ПП и подбор на параметри
• C++ Example of Defining Your Own In and Out Keywords

#define IN
#define OUT
void InvertMatrix(

IN Matrix originalMatrix,
OUT Matrix *resultMatrix);

 ...
void ChangeSentenceCase(

IN StringCase desiredCase,
IN OUT Sentence *sentenceToEdit);

 ...
void PrintPageNumber(

IN int pageNumber,
OUT StatusType &status);

In this case, the IN and OUT macro-keywords are used for documentation purposes. To
make the value of a parameter changeable by the called routine, the parameter still
needs to be passed as a pointer or as a reference parameter.

9.03.12 доц. д-р Стоян Бонев 67

ПП и подбор на параметри
• Before adopting this technique, be sure to consider a pair

of significant drawbacks:
• Defining your own IN and OUT keywords extends the

C++ language in a way that will be unfamiliar to most
people reading your code. If you extend the language this
way, be sure to do it consistently, preferably projectwide.

• A second limitation is that the IN and OUT keywords
won't be enforceable by the compiler, which means that
you could potentially label a parameter as IN and then
modify it inside the routine anyway. That could lull a
reader of your code into assuming that code is correct
when it isn't. Using C++'s const keyword will normally
be the preferable means of identifying input-only
parameters.

9.03.12 доц. д-р Стоян Бонев 68

ПП и подбор на параметри
• If several routines use similar parameters, put the

similar parameters in a consistent order
• The order of routine parameters can be a mnemonic, and inconsistent

order can make parameters hard to remember. For example, in C, the fprintf() routine is the same as the printf() routine except
that it adds a file as the first argument. A similar routine, fputs(),
is the same as fputs() except that it adds a file as the last
argument. This is an aggravating, pointless difference that makes the
parameters of these routines harder to remember than they need to
be.

• On the other hand, the routine strncpy() in C takes the
arguments target string, source string, and maximum number of
bytes, in that order, and the routine memcpy() takes the same
arguments in the same order. The similarity between the two routines
helps in remembering the parameters in either routine

9.03.12 доц. д-р Стоян Бонев 69

ПП и подбор на параметри
• Use all the parameters
• If you pass a parameter to a routine, use it. If you aren't using it,

remove the parameter from the routine interface. Unused parameters
are correlated with an increased error rate. In one study, 46 percent
of routines with no unused variables had no errors, and only 17 to 29
percent of routines with more than one unreferenced variable had no
errors (Card, Church, and Agresti 1986).

• This rule to remove unused parameters has one exception. If you're
compiling part of your program conditionally, you might compile out
parts of a routine that use a certain parameter. Be nervous about this
practice, but if you're convinced it works, that's OK too. In general, if
you have a good reason not to use a parameter, go ahead and leave it
in place. If you don't have a good reason, make the effort to clean up
the code.

9.03.12 доц. д-р Стоян Бонев 70

ПП и подбор на параметри

• Put status or error variables last
• By convention, status variables and

variables that indicate an error has
occurred go last in the parameter list. They
are incidental to the main purpose of the
routine, and they are output-only
parameters, so it's a sensible convention.

9.03.12 доц. д-р Стоян Бонев 71

ПП и подбор на параметри

• Don't use routine parameters as
working variables

• It's dangerous to use the parameters
passed to a routine as working variables.
Use local variables instead. For example,
in the following Java fragment, the
variable inputVal is improperly used to
store intermediate results of a computation

9.03.12 доц. д-р Стоян Бонев 72

Java Example of Improper Use of
Input Parameters

int Sample(int inputVal) {
 inputVal = inputVal * CurrentMultiplier(inputVal);
 inputVal = inputVal + CurrentAdder(inputVal);
 ...
 return inputVal; <-- 1
}
• (1)At this point, inputVal no longer contains the value that was input.
• In this code fragment, inputVal is misleading because by the time execution reaches

the last line, inputVal no longer contains the input value; it contains a computed value
based in part on the input value, and it is therefore misnamed. If you later need to
modify the routine to use the original input value in some other place, you'll probably
use inputVal and assume that it contains the original input value when it actually
doesn't

9.03.12 доц. д-р Стоян Бонев 73

Java Example of Good Use of Input
Parameters

A better approach is to avoid current and future problems by using working variables explicitly. :

int Sample(int inputVal) {

 int workingVal = inputVal;
 workingVal = workingVal * CurrentMultiplier(workingVal);
 workingVal = workingVal + CurrentAdder(workingVal);
 ...
 <-- 1
 ...
 return workingVal;
}

• (1)If you need to use the original value of inputVal here or somewhere else, it's still available.

– Introducing the new variable workingVal clarifies the role of inputVal and
eliminates the chance of erroneously using inputVal at the wrong time.

– Assigning the input value to a working variable emphasizes where the value
comes from. It eliminates the possibility that a variable from the parameter
list will be modified accidentally. In C++, this practice can be enforced by
the compiler using the keyword const. If you designate a parameter as const,
you're not allowed to modify its value within a routine.

9.03.12 доц. д-р Стоян Бонев 74

ПП и подбор на параметри
Document interface assumptions about parameters If you assume the

data being passed to your routine has certain characteristics, document the
assumptions as you make them. It's not a waste of effort to document your
assumptions both in the routine itself and in the place where the routine is
called. Don't wait until you've written the routine to go back and write the
comments—you won't remember all your assumptions. Even better than
commenting your assumptions, use assertions to put them into code.

What kinds of interface assumptions about parameters should you document?
• Whether parameters are input-only, modified, or output-only
• Units of numeric parameters (inches, feet, meters, and so on)
• Meanings of status codes and error values if enumerated types aren't used
• Ranges of expected values
• Specific values that should never appear

9.03.12 доц. д-р Стоян Бонев 75

ПП и подбор на параметри
Limit the number of a routine's parameters to about seven Seven

is a magic number for people's comprehension. Psychological research has
found that people generally cannot keep track of more than about seven
chunks of information at once (Miller 1956). This discovery has been
applied to an enormous number of disciplines, and it seems safe to
conjecture that most people can't keep track of more than about seven
routine parameters at once.

In practice, how much you can limit the number of parameters depends on how
your language handles complex data types. If you program in a modern
language that supports structured data, you can pass a composite data type
containing 13 fields and think of it as one mental "chunk" of data. If you
program in a more primitive language, you might need to pass all 13 fields
individually.

If you find yourself consistently passing more than a few arguments, the
coupling among your routines is too tight. Design the routine or group of
routines to reduce the coupling. If you are passing the same data to many
different routines, group the routines into a class and treat the frequently
used data as class data.

9.03.12 доц. д-р Стоян Бонев 76

ПП и подбор на параметри
Consider an input, modify, and output

naming convention for parameters If you
find that it's important to distinguish among
input, modify, and output parameters, establish a
naming convention that identifies them. You
could prefix them with i_, m_, and o_. If
you're feeling verbose, you could prefix them
with Input_, Modify_, and Output_.

9.03.12 доц. д-р Стоян Бонев 77

ПП и подбор на параметри
Make sure actual parameters match formal parameters Formal

parameters, also known as "dummy parameters," are the variables
declared in a routine definition. Actual parameters are the variables,
constants, or expressions used in the actual routine calls.

A common mistake is to put the wrong type of variable in a routine call
—for example, using an integer when a floating point is needed.
(This is a problem only in weakly typed languages like C when
you're not using full compiler warnings. Strongly typed languages
such as C++ and Java don't have this problem.) When arguments are
input only, this is seldom a problem; usually the compiler converts
the actual type to the formal type before passing it to the routine. If it
is a problem, usually your compiler gives you a warning. But in
some cases, particularly when the argument is used for both input
and output, you can get stung by passing the wrong type of
argument.

Develop the habit of checking types of arguments in parameter lists and
heeding compiler warnings about mismatched parameter types.

9.03.12 доц. д-р Стоян Бонев 78

Special Considerations in the use of
Functions

Modern languages such as C++, Java, and Visual
Basic support both functions and procedures. A
function is a routine that returns a value; a
procedure is a routine that does not. In C++, all
routines are typically called "functions";
however, a function with a void return type is
semantically a procedure. The distinction
between functions and procedures is as much a
semantic distinction as a syntactic one, and
semantics should be your guide.

9.03.12 доц. д-р Стоян Бонев 79

When to Use a Function and
When to Use a Procedure

Purists argue that a function should return only one
value, just as a mathematical function does. This
means that a function would take only input
parameters and return its only value through the
function itself. The function would always be
named for the value it returned, as sin(),
CustomerID(), and ScreenHeight()
are. A procedure, on the other hand, could take
input, modify, and output parameters—as many
of each as it wanted to.

9.03.12 доц. д-р Стоян Бонев 80

Special Considerations in the use of
Functions

A common programming practice is to have a function that operates as a
procedure and returns a status value. Logically, it works as a procedure, but
because it returns a value, it's officially a function. For example, you might
have a routine called FormatOutput() used with a report object in
statements like this one:

if (report.FormatOutput(formattedReport) = Success)
then ...

In this example, report.FormatOutput() operates as a procedure in that it has an
output parameter, formattedReport, but it is technically a function because the
routine itself returns a value. Is this a valid way to use a function? In defense
of this approach, you could maintain that the function return value has nothing
to do with the main purpose of the routine, formatting output, or with the
routine name, report.FormatOutput(). In that sense it operates more
as a procedure does even if it is technically a function. The use of the return
value to indicate the success or failure of the procedure is not confusing if the
technique is used consistently.

9.03.12 доц. д-р Стоян Бонев 81

Special Considerations in the use of
Functions

The alternative is to create a procedure that has a status variable as an explicit parameter, which promotes code like this
fragment:

report.FormatOutput(formattedReport, outputStatus)
if (outputStatus = Success) then ...
I prefer the second style of coding, not because I'm hard-

nosed about the difference between functions and
procedures but because it makes a clear separation between
the routine call and the test of the status value. To
combine the call and the test into one line of code
increases the density of the statement and,
correspondingly, its complexity. The following use of a
function is fine too:

outputStatus = report.FormatOutput(formattedReport)
if (outputStatus = Success) then ...

In short, use a function if the primary purpose of the routine is to return
the value indicated by the function name. Otherwise, use a procedure.

9.03.12 доц. д-р Стоян Бонев 82

Special Considerations in the use of
Functions

Setting the Function's Return Value
Using a function creates the risk that the function will return an incorrect return

value. This usually happens when the function has several possible paths and
one of the paths doesn't set a return value. To reduce this risk, do the
following:

Check all possible return paths When creating a function, mentally
execute each path to be sure that the function returns a value under all
possible circumstances. It's good practice to initialize the return value at the
beginning of the function to a default value—this provides a safety net in the
event that the correct return value is not set.

Don't return references or pointers to local data As soon as the
routine ends and the local data goes out of scope, the reference or pointer to
the local data will be invalid. If an object needs to return information about
its internal data, it should save the information as class member data. It
should then provide accessor functions that return the values of the member
data items rather than references or pointers to local data.

9.03.12 доц. д-р Стоян Бонев 83

Макроси и вградени функции

• Macro Routines and Inline Routines

9.03.12 доц. д-р Стоян Бонев 84

Макроси и вградени функции
• Fully parenthesize macro expressions Because macros and their arguments are

expanded into code, be careful that they expand the way you want them to. One
common problem lies in creating a macro like this one:

• C++ Example of a Macro That Doesn't Expand Properly
#define Cube(a) a*a*a

If you pass this macro nonatomic values for a, it won't do the multiplication properly.
If you use the expression Cube(x+1), it expands to x+1 * x + 1 * x + 1, which,
because of the precedence of the multiplication and addition operators, is not what you
want. A better, but still not perfect, version of the macro looks like this:

• C++ Example of a Macro That Still Doesn't Expand Properly
#define Cube(a) (a)*(a)*(a)

This is close, but still no cigar. If you use Cube() in an expression that has operators
with higher precedence than multiplication, the (a)*(a)*(a) will be torn apart. To
prevent that, enclose the whole expression in parentheses:

• C++ Example of a Macro That Works
#define Cube(a) ((a)*(a)*(a))

9.03.12 доц. д-р Стоян Бонев 85

Макроси и вградени функции
• Surround multiple-statement macros with curly braces A macro can have multiple statements, which is a problem if

you treat it as if it were a single statement. Here's an example of a macro that's headed for trouble:
•
• C++ Example of a Nonworking Macro with Multiple Statements• #define LookupEntry(key, index) \
• index = (key - 10) / 5; \
• index = min(index, MAX_INDEX); \
• index = max(index, MIN_INDEX);
• ...

• for (entryCount = 0; entryCount < numEntries; entryCount++)
• LookupEntry(entryCount, tableIndex[entryCount]);
•

• This macro is headed for trouble because it doesn't work as a regular function would. As it's shown, the only part of
the macro that's executed in the for loop is the first line of the macro:

• index = (key - 10) / 5;

9.03.12 доц. д-р Стоян Бонев 86

Макроси и вградени функции
• To avoid this problem, surround the macro with curly braces:

• C++ Example of a Macro with Multiple Statements That Works• #define LookupEntry(key, index) { \
• index = (key - 10) / 5; \
• index = min(index, MAX_INDEX); \
• index = max(index, MIN_INDEX); \
• }
•

• The practice of using macros as substitutes for function calls is generally
considered risky and hard to understand—bad programming practice—so
use this technique only if your specific circumstances require it.

9.03.12 доц. д-р Стоян Бонев 87

Макроси и вградени функции

• Name macros that expand to code like
routines so that they can be replaced
by routines if necessary The convention in
C++ for naming macros is to use all capital
letters. If the macro can be replaced by a routine,
however, name it using the naming convention
for routines instead. That way you can replace
macros with routines and vice versa without
changing anything but the routine involved.

9.03.12 доц. д-р Стоян Бонев 88

Макроси и вградени функции
• Limitations on the Use of Macro Routines
• Modern languages like C++ provide numerous

alternatives to the use of macros:
• const for declaring constant values
• inline for defining functions that will be compiled as

inline code
• template for defining standard operations like min,

max, and so on in a type-safe way
• enum for defining enumerated types
• typedef for defining simple type substitutions

9.03.12 доц. д-р Стоян Бонев 89

Макроси и вградени функции
• Inline Routines
• C++ supports an inline keyword. An inline routine allows the programmer to treat

the code as a routine at code-writing time, but the compiler will generally convert each
instance of the routine into inline code at compile time. The theory is that inline can
help produce highly efficient code that avoids routine-call overhead.

• Use inline routines sparingly Inline routines violate encapsulation because C++
requires the programmer to put the code for the implementation of the inline routine in
the header file, which exposes it to every programmer who uses the header file.

• Inline routines require a routine's full code to be generated every time the routine is
invoked, which for an inline routine of any size will increase code size. That can create
problems of its own.

• The bottom line on inlining for performance reasons is the same as the bottom line on
any other coding technique that's motivated by performance: profile the code and
measure the improvement. If the anticipated performance gain doesn't justify the
bother of profiling the code to verify the improvement, it doesn't justify the erosion in
code quality either

9.03.12 доц. д-р Стоян Бонев 90

Благодаря
За

Вниманието

	Проектиране и Тестиране на Софтуер ТУ, кат. КС, летен семестър 2012
	Съдържание:
	ПП
	Развитие на ПП в C/C++
	Функции, връщащи псевдоним
	Slide 6
	Slide 7
	Предефинирани функции/методи
	Предефинирани функции
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Нееднозначно активиране
	Slide 15
	Learning About Ambiguity (continued)
	Функции/методи с подразбиращи се стойности на аргументите
	Функции с подразбиращи се стойности на аргументите
	C# Функции/методи с подразбиращи се стойности на аргументите
	Вградени функции
	Взаимоотношение функция-макрос
	Първични, родови функции
	Slide 23
	Защо ПП?
	Причини за работа с ПП
	Създава четлив и разбираем код
	Slide 27
	Още Причини за работа с ПП
	Х-ки на качествени ПП
	Steve McConnell
	Качествени ПП
	C++ пример на ПП с ниско качество
	Slide 33
	Slide 34
	Проектиране на ПП
	Design at the Routine level
	Coupling: Keep Coupling Loose
	Coupling
	Cohesion
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Good Routine Names ПП с подходящи имена
	ПП с подходящи имена
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	ПП с подходящ размер
	Slide 58
	Slide 59
	Slide 60
	ПП и подбор на параметри
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Java Example of Improper Use of Input Parameters
	Java Example of Good Use of Input Parameters
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Special Considerations in the use of Functions
	When to Use a Function and When to Use a Procedure
	Slide 80
	Slide 81
	Slide 82
	Макроси и вградени функции
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	

