TECHNICAL UNIVERSITY OF SOFIA

COMPUTER SYSTEMS DEPARTMENT

BLUEGENE
SUPERCOMPUTER

. ARCHITECTURE
®

HPC vs. HTC COMPARISON

High Performance Computing (HPC) Model
Parallel, tightly coupled applications
Single Instruction, Multiple Data (SIMD) architecture
Programming model: typically MPI

Apps need tremendous amount of computational power
over short time period

High Throughput Computing (HTC) Model

Large number of independent tasks

Multiple Instruction, Multiple Data (MIMD)
architecture

Programming model: non-MPI

Apps need large amount of computational power over long
time period

Traditionally run on large clusters

HTC and HPC modes co-exist on Blue Gene
Determined when resource pool (partition) is allocated

BLUE GENE FOR HTC
MOTIVATION

High processing capacity with minimal floor space

High compute node density — 2,048 processors in one
Blue Gene rack

Scalability from 1 to 64 racks (2,048 to 131,072
processors)

Resource consolidation
Multiple HTC and HPC workloads on a single system
Optimal use of compute resources

Low power consumption

Twice the performance per watt of a high frequency
mMiCroprocessor

Low cooling requirements enable extreme scale-up
Centralized system management
Blue Gene Navigator

GENERIC HTC FLOW ON BLUEGENE

CONDOR AND IBM BLUE (GENE
COLLABORATION

Both IBM and Condor teams engaged in adapting code to
bring Condor and Blue Gene technologies together;

Initial Collaboration (Blue Gene/L)

Prototype/research Condor running HTC workloads on Blue
Gene/]if

Condor developed dispatcher/launcher running HTC jobs

Prototyge work for Condor being performed on Rochester On-
Demand Center Blue Gene system

Mid-term Collaboration (Blue Gene/L)

](?J)i)nd(ér Sul? orts HPC workloads along with HT'C workloads on
ue Gene
Long-term Collaboration (Next Generation Blue Gene)

I/0 Node exploitation with Condor
Partner in design of HTC services for Next Generation Blue Gene

Standardized launcher, boot/allocation services, job
submission/tracking via database, etc.

Studﬁf ways to automatically switch between HTC/HPC
workloads on a partition

Data persistence (persisting data in memory across executables)
Data affinity scheduling
Petascale environment issues

CONDOR ARCHITECTURE

Central Manager
o ‘v

— -

Exeeute Machine

N
IS
IS
.
............... M EEEEEERER

>t :'h:
Submit Machine-*"| “I--.E

Job

CONDOR WITH BLUE GENE/L

Central Manager

IBM’S BLUE GENE/P SUPERCOMPUTER

Applying Innovation that Matters to High Performance Computing
— Ultrascale performance

— High reliability

— Easy manageability

— Ease of programming, familiar open/standard operating Environment

— Simple porting of parallel codes

— Space saving design

— Low power requirements

— Limited performance and memory per core

What is Blue Gene?

* Massively Parallel Architecture

— A computer system with many independent arithmetic units or entire
microprocessors, that are connected together to be one very large computer

— Opposed to Clusters / Shared Memory Processing

« Two solutions available by now, one in the roadmap

Blue Gene/Q
Power Multi-Core
Scalable to 10+ PF

Blue Gene/P
PPC 450 @ 850MHz
Scalable to 3+ PF

Blue Gene/lL
PPC 440 @ T00MHz
Scalable to 360+ TF

2004 2007 2011

Blue Gene/P Packaging

System

Blue Gene/P Packaging 72 Racks

Cabled 8x8x16
Rack

32 Node Cards

Node Card

(32 chips 4x4x2)
32 compute, 0-2 10
14 TF/s

27TB

Compute
Card Tl

1chip,20 @& |
DRAMs

435 GF/s

Chip 64 GB

4 processors

oy

13.6 GF/s
20 (or4.0)GB
13.6 GF/s DDR
8 MB
EDRAM

Blue Gene/P Compute Card

Blue Gene/P Compute Card m

* System-on-a-Chip (SoC)

* PowerPC 450 CPU

— 850 MHz Frequency
—Quad Core

* 2 GB RAM

* Network Connections

Blue Gene/P ASIC

Blue Gene/P ASIC

Dataresc @ & Blcyce BlueGene/P node
Dala wiite @ 8 Elcycle
Instructon @ 2 Bicycle 168.1:“:'@ read (each). 1EBicycle wrie (2ach)
PPC 450 Prefetchieg § k (% k
FFU g = 4MB ;
» ‘ of 2
3 {3 Controler
| poC 450 irg | £ e
L1 a3
EPU B g -__\r =
‘ ' y:/) s
PPCASO| | | Loweunng g
FPU il ams
P s EDRAM FXIRSE
3 15 [®] Controler
PEC 450 mg| £ € :
L1 L2 p:
FRU B
4 symmetnc ports for » internal bys 188/cycle
Tree, wrus and glotal DORZ ORAM
bame's 106Gb bus
Ethernet
OMA modue allows
Femcte orect ’ ‘
“put” & “get Conbol Odrecions® 3pois'f 4 pats, Toisob 216Bbus@
L 4hitsieyrie bitsleyele bédirachonzl ¥ peoe spesd
NEWOIR. diroobiond | bideelionial PSICAL: iyer

Blue Gene/P Node Card

Blue Gene/P Node Card 32 Compute
nodes

Optional IO card (one \Local DC-DC
of 2 possible) with regulators

10Gb optical link required, 8 with
redundanc

Blue Gene/P Rack Content
Blue Gene/P Rack Content m

« 32 Compute Nodes populate a

Node Card
- Node cards may be hot plugged for L S0=dc Ahpply
S > St o
* 0-2 1/0 Nodes populated on a Node ‘ Node cards

C d I'd : Blue Gene/L micplane
3 : Ethernet switch card

— Flexible ratio of compute to 1/0 njpodes Gigabit Ethernet

- 1/0 Nodes are identical to Compute | /O cables (green)
Nodes other than placement in the -
Node Card which defines network ; s
connections e

Fan modules

* 16 Node Cards form a Midplane g

* 2 Midplanes form a rack N
— 1024 Compute Nodes per rack RN P

- 810 64 1/0O nodes per rack: 80Gb to
640Gb Ethernet bw/rack

Hot«air plenum

Torus X-Y-Z

Torus X-Y-Z

Node, Link, Service Card Names

N11
N§10
o9

08

3
N15
14
13
N12

_______ NLERRRS AN RN JUARRLLS|RRN]ha _______w___________::
T LT LT T ____E_:__E [RRRLS TR A
LT TR T T AT T g
T T T ___:.__.__:_. T
T LT T T [T O T

[T

¥ __:z.::__:==_E=_=E _.__t.____::»

QITTTER TTETTER T DI (LT TER T TTTHES 11T ==:===. =
=_== ______:_:___:,____E TR E.E.:..E

"
_______,3 3 ?__3_3

=_=_;_=__= =_==__==: _____:_____.:====.==_=
___== ___:: =_=.___=== _____=_=_==.____:_.____: =l
T TN i AT [T O T __E,: i
____:;____:_ _===_==_= _===_==_:_===_ i

LT G L ____.=_=_==___:_:_____:_ 4

: “:_:: ____3 =,_==__=== _:__=_=_=: ____..:.____z.u_

(T T T | I T T
LT TR T | A o T T

Node Card
Node Card s R BLUE - GENE|

Link Card

uoo

Link Card

5 n % !

peo 153 A
v I
'] |

Service Card

Service Card

Rack Row Indicator (0-F)
Rack Column Indicator (0-F

Control Network

Clock Input

CLOCK CARD

Output 9
Output 8
Output 7
Output 6

Output 5

Output 4

Output 3

Output 2

Output 1

Output 0

Input

BLUE GENE/P SYSTEM COMPONENTS
Blue Gene/P System Components m

= Blue Gene/P Rack(s) = Host System
— 1024 Quad-Core Compute Nodes per Rack > — Service and Front End Nodes: System p
1e7 Thisec peak _ Software Stack: SLES10, DB2, XLF/C
— 2 GB main memory per Node > 2 TB main Compilers, HPC Cluster SW
memory per Rack — Ethernet Switches: Force10, Myrinet
— Up to 64 I/O Nodes per Rack > 80 GB/sec _ Storage System: IBM. DDN

peak
— Scalable to 256 racks > 3.5 PF/sec

BLUE GENE BLOCKS
HIERARCHICAL ORGANIZATION

* Compute Nodes dedicated to running user application, and almost nothing
else - simple compute node kernel (CNK)

= |[/O Nodes run Linux and provide a more complete range of OS services -
files, sockets, process launch, signaling, debugging, and termination

= Service Node performs system management services (e.g., partitioning,
heart beating, monitoring errors) - transparent to application software

10 Gb Ethernet

BLUE GENE/P FuLL CONFIGURATION

s T
— T
— T

File System

BG/P

/O nodes| 10GigE

8to64 | perlON
024 per Rack) per Rack
| | Front-end nodes

Federated 10Gigabit Ethernet Switch

Service node

Control network

BLUE GENE/P INTERCONNECTION
NETWORKS

* 3-Dimensional Torus
.L-L’ .é-f’ — Interconnects all compute nodes
- Wirtual cut-through hardware routing
/ — 3.4 Ghis on all 12 node links (5.1 GBis per node)
— 0.5 ys latency between nearest neighbors, 5 Js to the farthest
— MPI: 3 ps latency for one hop, 10 ps to the farthest
— Communications backbone for computations
— 1.7/3.9 TBfs hisection bandwidth, 183TB/s tatal handwidth

* Collective Network

— One-to-all broadcast functionality

— Reduction operations functionality

— 6.8 Ghis of bandwidth per link

- Latency of one way free traversal 1.3 ps, MPI & ps
- ~B2TH/s total binary tree handwidth (72k maching)
- Interconnects all compute and /O nodes (1152)

* Low Latency Global Barrier and Interrupt

@\ ﬂ — Latency of one way to reach all 72K nodes 0.65 ps (MPI 1.6 ps)
/@ * Dther networks
. — 10Gh Functional Ethernet
@’ — 1/0 nodes only
@ \@ _ 1Gb Private Control Ethemet

- Provides JTAG access to hardware. Accessible only from Service Mode system

-
.

BLUE GENE NETWORKS

— Torus — 10Gb Functional Ethemet
. Compute nodes only . I/O nodes only
. Direct access by app — 1Gb Private Control Ethernet
. DMA : Provides JTAG, iZc, etc, access to
: hardware. Accessible only from
— Collective Service Node system
. Compute and /O node attached — Clock network
* 16 routes allow multiple network - Single clock source for all racks

configurations to be formed

Contains an ALU for collective
operation offload

Direct access by app

— Barrier

Compute and I/O nodes

Low latency barrier across system
(= Tusec for 72 rack)

Used to synchronize timebases
Direct access by app

THREE-DIMENSIONAL TORUS NETWORK:
POINT-TO-POINT

* The torus network is used for general-purpose, point-to-point message passing and
multicast operations to a selected “class” of nodes

* The topology is a three-dimensional torus constructed with point-to-point, serial
links between routers that are embedded within the Blue Gene/P ASICs.

* Torus direct memory access (DMA), which provides memory access for reading,
writing,or doing both independently of the processing unit

* Each CNodes (ASIC) has six nearest-neighbor connections, some of which can
traverse relatively long cables.

— All the ﬁartitimns do not have a Torus shape (only multiple midplans partition (x 512 nodes);
others have a mesh shape, i.e. the opposite sides of the 3D cube are not linked)

* The target hardware bandwidth for each torus link is 425 MBps in each direction of
the link for a total of 5.1 GBps bidirectional bandwidth per node.

— Interconnection of all Compute Nodes (73,728 for a 72 rack system)
— Virtual cut-through hardware routing

— 3.4 Gbps on all 12 node links (5.1 GBps per node)

— 1.7/3.6 TBps bisection bandwidth, 67 TBps total bandwidth

TORUS VS MESH

* The basic block is the midplane,
shape 8x8x8= 512 Computes
Nodes (2048 cores)

* Only multiple midplanes
partition is a Torus; i.e. each

CNode has 6 nearest- |-
neighbours

= All the other partition is a mesh]

» Capability from LoadLeveler to
request a Torus or a Mesh with

the field: u ‘|2:r,
— # @ bg_connection= torus/mesh

* The default is a mesh

COLLECTIVE NETWORK: GLOBAL
OPERATIONS

* The global collective network is a high-bandwidth, one-to-all
network that is used for collective communication operations, such
as broadcast and reductions, and to move process and application
data from the 1/O Nodes to the Compute Nodes

» Each Compute and I/O Node has three links to the global collective
network at 850 MBps per direction for a total of 5.1 GBps
bidirectional bandwidth per node

* Latency on the global collective network is less than 2 ps from the
hottom to top of the Collective, with an additional 2 ps latency to
broadcast to all

* The global collective network supports the following features:

* One-to-all broadcast functionality

Reduction operations functionality

6.8 Ghps of bandwidth per link; latency of network traversal 2 ps
62 TBps total binary network bandwidth

Interconnects all compute and /O Nodes (1088)

L]
L]
L]
L]

OTHER NETWORKS

= Global Interrupt: Low latency barriers and interrupts

— The global interrupt network is a separate set of wires based on asynchronous logic, which forms another
network that enables fast signaling of global interrupts and barriers (global AND or OR).

— Round-trip latency to perform a global barrier over this network for a 72 K node partition is approximately 1.3
microseconds.

— From MPIL: 1 rack B racks 40 racks T2racks
(Argonne) {Argonne)
2.3 usec 2.5 usec 2.7 usec 3.0 usec

= 10 Gigabit Ethernet: File /O and host interface

— This network consists of all I/'O Nodes and discrete nodes that are connected to the external10 Gigabit
Ethernet switch.

— The Compute Nodes are not directly connected to this network. All traffic is passed from the Compute Node
over the global collective network to the I'O Node and then onto the 10 Gigabit Ethernet network.

= Control Network: Boot, monitoring, and diagnostics

— This network consists of a JTAG interface to a 1 GEthernet interface with direct access to shared SRAM in
every Compute and 1/0 Node.

— Itis used for system boot, debug, and monitoring.

— It allows the Service Node to provide runtime non-invasive RAS support as well as non-invasive access to
performance counters.

PARTITIONING

* Partition = Subdivision of a single Blue Gene system
* Partitions are software defined

* Torus, Collective and Barrier networks are completely
isolated from traffic from other partitions

* A single job runs on a partition

— Jobs never share resources or interfere with each other

* Custom kernels may be booted in a partition

SUB-MIDPLANE PARTITIONS

* Sub-Midplane Partition

— Partition that is smaller than a midplane
- <512 Nodes = 2048 Cores
— Smallest partition is 72 node card (16 nodes)

— Multiple node cards may form a partition
* Limitations
— Mesh (nhot a true Torus)

— Each partition must have at least one I/O node
— Node cards combined into a partition must be adjacent

= Sub-midplane partition sizes are powers of 2
— 16 node, 32 node, 64 node, 128 node and 256 node

MULTI-MIDPLANE PARTITIONS

* One or more midplanes can be grouped into a large
partition

* Limitations
— Midplanes must be organized to form a torus

+ Constant number of midplanes in X, Y and Z
— Torus connections may pass through unused midplanes

» Traffic switched around those midplanes — no “noise” introduced
* Unused midplanes can often be combined into partitions

— Inter-rack cables are a limited resource
— Inter-rack cables carry full network bandwidth

* A single midplane may always be used as a torus
— No cables required

SPEC/FEATURE COMPARISON

Property BG/L BG/P M
MNode Processors 2* 440 PowerPC 4 * 450 PowerPC
Processor Frequency 0.7GHz 0.85GHz
Coherency Software managed SMP
L1 Cache (private) 32KB/procassor 32KB/processor
Er?::dp‘?erties L2 Cache (private) 14 stream prefetching 14 stream prefetching
L3 Cache size (shared) 4MB 8MB
Main Store/Node 512MB and 1GE versions 2B (studying 4GB) versions
Main Store Bandwidth 5.6GB/s (168 wide) 13.6 GB/s (2*16B wide)
Feak Performance 5 6GFnode 13.6 GF/node
Bandwidth 6*2*175MBJs = 2.1GB/s 6*2*425MBJs = 5.1GB/s
T Hardware Latency (Nearest 200ns (328 packet) 64ns (328 packet)
orus Neighbor SUS 512ns
Network ghbor) 1.6us (2568 packet) 512ns (2568 packet)
Hardware Latency . _ _
6 4us (B4 hops) 3.0us (64 hops)
(Worst Case)
Bandwidth 2*350MB/s = TOOMEB/s 2*0.85GBs=17GE/s
Collective
Hardware Latenc
Network . Y 5 Ous 2 Bus
(Round Trip Worst Case)
Paak Perf 360TF 1PF
eak Performance
S'_-,'stem. (64K nodes) (72K nodes)
Properties
Total Power 1. 5MW > 2. 0MW

BLUE (FENE/P SOFTWARE

Blue Gene/P Software Stack

Service Node

BG Nav
mpimn
Bridge API
SLURM / COBALT
PAPI

MMCS
Proxy
Firmware

Front-end Node

Performance tools
gce (gf7,g++), glibc
binutils, gdb

Ethemet

C-Node

MPICH2
BG msg
GNU rts

I/O Node
ciod
Linune
ramdisk
gdb

Bootloader CMNK

Bootloader

torus

I/O Node
ciod
Limwn
ramdisk
gdb

CNK

Bootloader

Bootloader

freo

STACK

Open source

BG specific and custom

CNK

Bootloader

C-Node
MPICH2
BG msg
GHNU ris

CNK

Bootloader

I/0 NODE KERNEL

* SMP Linux R <
* No persistent store A?
— Network filesystems only ﬁnJl_HA_’_

— No swap

= 10Gb Ethernet interface

= Several CNK System calls are function shipped to here
— Linux compatibility by executing these syscalls on Linux
— Function shipping occurs over Collective Network

— The ciod daemon manages a fixed set of compute nodes in a
processing set (pset)

— Linux provides the portable filesystem and network layer interfaces

PROCESSING SETS (PSETS)

* |10 node dedicated to a fixed group of compute nodes

* Compute to I/O ratio is fixed within a partition
~128:1. 64:1, 32:1, 16:1

I
I — =
T el
" . ", T
L - . ——

- el -H-'-\. e
I
I
1
I
I
1
I
I
I

SYSCALL FUNCTION SHIPPING

= |/O System Calls are forwarded by = Application performs an fscanf()

the Compute Node to the /O Node library call
= Removes need for filesystem in — library uses read() syscall

CNK — CNK forwards read() as message
« Manageable 1152 I/0 nodes as over collective network

system

= Ciod performs read syscall under
Linux

— syscall performs Linux read via
filesystem over 10Gh Ethernet

= Ciod reply to CNK contains read
results

— results returned to library, then app

collective network

10G0 Ethernet

COMPUTE I/0 DAEMON (CIOD)

ciod on the /O Node serves these roles

— Interface for job launch and kill

— /O syscall requests from CNs within the pset
— Debug requests from a parallel debugger

= Syscall compatibility

— ciod forks an “ioproxy” process for each CNK
in the pset (actually each virtual node)

— This process’ context represents that compute
node

+ open files, locks, working dir, I/O blocking state,
etc

= Service connection
— may be admin enabled
— telnet to port 7201 and type “help”

DA astrearm

CioStream

COMPUTE NODE SOFTWARE STACK

* Compute Node R
Kernel (CNK) PRI
controls all access
to hardware, and WP OperMP | ESSL
enables bypass for
application use SPI 0
* User-space |
libraries and
applications can e R 7
directly access vl i syscal Ineriace
torus and tree Davices
AR o el |
‘ ication code : i i
can use both o | sty || TR SRR i :
. Oomwauon
processors in a — ,

compute node

* Application code
can directly touch
hardware only
through SPI

Gommon Node
Servicas

COMPUTE NODE KERNEL (CNK)

* CNK is a lightweight kernel and is NOT Linux

* Goals
— Be as Linux compatible as possible

~ Provide entire node’s resources to the application...and get out of the
way!

* OS noise is minimal by design
- TLBs are by default statically mapped - no page faults
— Only the user application is running - no system daemons

~ No source of normal interrupts except for:

+ Timer interrupts as requested by the application
+ Torus DMA completion interrupts

CNK MODES OF EXECUTION

CNK provides a fixed process model

- SMP: single process with four threads and all memory

— DUAL: two processes with two threads each and half memory

— VN: "virtual node mode” with four processes and quarter memory each

— e.g. mpirun —mode SMP to select the execution mode

Shared memory can be used between these processes

Threading interfaces are fixed
— Each thread is fixed to a cpu
— More threads than cpus are not allowed

— Special /0 threads do exist (more later)

* Memory usage is fairly rigid due to focus on pinned memory

CNK SYSTEM CALLS

* Direct Implementation

— exit, time, getpid, getuid, alarm, kill, times, brk, getgid, geteuid, getegid,
getppid, sigaction, setrlimit, getrlimit, getrusage, gettimeofday,
setitimer, getitimer, sigreturn, uname, sigprocmask, sched_yield,
nanosleep, set_tid_address, exit_group

* Implementation through forward to I/O Node

— open, close, read, write, link, unlink, chdir, chmod, Ichown, Iseek,
utime, access, rename, mkdir, rmdir, dup, fentl, umask, dup2, symlink,
readlink, truncate, ftruncate, fchmod, fchown, statfs, fstatfs, socketcall,
stat, Istat, fstat, fsync, liseek, getdents, readv, writev, sysctl, chown,
getcwd, truncate64, ftruncate64, stat64, Istat64, fstatb4, getdents64,
fcntle4

* Restricted Implementation

— mmap, munmap, clone, futex

CNK MMAP AND CLONE RESTRICTIONS

* These syscalls are partially implemented to enable the GLIBC pthread
library and dynamic linker to function

* mmap is limited
— anonymous memory maps (malloc uses this)
— maps of /dev/shm for shm_open()
— file maps using MAP_COPY
— mmap may choose different placement under CNK than Linux
— mmap will not protect mapped files as readonly

— mmap does NOT provide demand paging - files are comp|etely read during the
map

= clone() may only create a total of 4 threads
— In VNM no additional clones allowed per process
— In DUAL one clone allowed per process
— In SMP three additional clones allowed
— Fork is not supported

GLIBC PTHREAD SUPPORT

* New Posix Thread Library (NPTL) unchanged from Linux

* Attempt to create more threads than allowed results in
EAGAIN error

— Linux rarely fails with this error (but can)

= Stack overflow is caught by debug address exception
— Unlike Linux which uses guard pages

— May be unavailable when under debugger
— XLSMPOPTS runtime variable controls the stack size

CNK DYNAMIC LINKING & PYTHON (2.5)

* Dynamic linking provided by GLIBC Id.so
* Uses limited mmap implemented by CNK
* Placement of objects less efficient than static linking

* As in Linux, static linked apps can still use dlopen() to
dynamically load additional code at runtime

* Goal is to enable use of Python to drive apps

~ pynamic has been demonstrated

CNK FULL SOCKET SUPPORT

= CNK provides socket support via the standard Linux socketcall()
system call. The socketcall() is a kernel entry point for the socket
system calls. It determines which socket function to call and points
to a block that contains the actual parameters, which are passed
through to the appropriate call.

= The CNK function-ships the socketcall() parameters to the CIOD,
which then performs the requested operation. The CIOD is a user-
level process that controls and services applications in the
compute node and interacts with the Midplane Management Control
System (MMCS)

= This socket support allows the creation of both outbound and
inbound socket connections using standard Linux APIls. For
example, an outbound socket can be created by calling socket(),
followed by connect(). An inbound socket can be created by calling
socket()followed by bind(), listen(), and accept().

BLUE GENE/P SOFTWARE TOOLS

IBM Software Stack

XL (FORTRAN, C, and C++) Compilers
— Externals preserved

— Optimized for specific BG functions
— OpenMP support

LoadLeveler Job Scheduler

— Same externals for job submission and system query
functions

— Backfill scheduling to achieve maximum system
utilization
GPFS Parallel Filesystem

— Prowides high performance file access, as in current
pSeries and xSeries clusters

— Runs on I'0 nodes and disk servers

MASS/MASSVIESSL Scientific Libraries

— Optimization library and intrinsics for better
application performance

— Serial Static Library supporting 32-bit applications
— Callable from FORTRAN, C, and C++
MPI Library

— Message passing interface library, based on
MPICHZ, tuned for the Blue Gene architecture

Other Software Support

Parallel File Systems

— Lustre at LLNL, PVFS2 at ANL

Job Schedulers

— SLURM at LLNL, Cobalt at ANL

— Altair PBS Pro, Platform LSF (for BG/L only)
— Condor HTC (porting for BG/F)

Parallel Debugger

— Etnus TotalView Debugger

— Allinea DDT and OPT (porting for BG/F)
Libraries

— FFT Library - Tuned functions by TU-Vienna
— VNI (porting for BG/F)

Performance Tools

— HPC Toolkit: MP_Profiler, Xprofiler, HPM,
FeekPerf, PAFI

— Tau, Paraver, Kojak, SCALASCA

BLUE GENE/P SOFTWARE ECOSYSTEM 1

= |BM Software Stack

— XL Compilers

+ Externals preserved

* New options to optimize for specific Blue Gene functions
— TWS LoadLeveler

+ Same externals for job submission and system query functions
+ Backfill scheduling to achieve maximum system utilization

— Engineering Scientific Subroutine Library (ESSL)Y/MASSYV

* Optimization library and intrinsic for better application performance
+ Serial static library supporting 32 bit applications
+ Callable from FORTRAN, C, and C++

— GPFS (General Parallel File System)

+ Provides high performance file access as in current System p and System x
clusters

* Runs on |/O Nodes and disk servers

BLUE (FENE/P SOFTWARE ECOSYSTEM 2

IBM Software Stack ...
- MPI

» Message passage library tuned for Blue Gene architecture
Performance Tools

— HPC Toolkit

Hardware

— DataDirect Networks (DDN), IBM System DCS9550; storage
— Myricom, Force10; switches

3rd party ISV suppliers

— Visual Numerics (VNI) developers of IMSL

— TotalView Technologies Inc. developers of TotalView Debugger

— Allinea developers of allinea ddt and allinea opt

— Tsunami Development LLC developers of the Tsunami Imaging Suite
— Condor developers of software tools

— Gene Network Sciences (GNS) developers of biosimulation models

WHAT’S NEW WITH BG/P

Torus DMA and numerous communication library optimizations
pthreads and OpenMP support

CNK application compatibility with Linux

— Dynamic linking

— Use of mmap for shared memory

— Protected readonly data and application code

— Protection for stack overflow

— Full socket support (client and server)

— Better Linux compatibility in ciod on the I/O node

MPMD

— mpiexec supports multiple executables

— Some restrictions: executable specified per pset; no DMA (next driver)

Numerous control system enhancements

PROGRAMMING MODELS & DEVELOPMENT
ENVIRONMENT

* Familiar Aspects
— SPMD model - Fortran, C, C++ with MPI (MPI1 + subset of MPI2)

Full language support

« Automatic SIMD FPU exploitation
— Linux development environment

User interacts with system through front-end nodes running Linux — compilation | job submission,
debugging

Compute Node Kernel provides look and feel of a Linux environment

— POSIX system calls (with some restrictions)

— BG/P adds pthread support, additional socket support,

Tools — support for debuggers, MFPI tracer, profiler, hardware performance monitors, visualizer
(HPC Toolkit), PAPI

Dynamic libraries

Python 2.5

* Aggregate Remote Memory Copy (ARMCI), Global Arrays (GA), UPC, ...

= Restrictions (lead to significant scalability benefits)

— Space sharing - one parallel job (user) per partition of machine, one process per processor of
compute node

— Virtual memory constrained to physical memory size

Implies no demand paging, but on-demand linking

— MEMD model limitations

EXECUTION MODES

= Possibilities
— Single Node / Multi Node
— 1, 2 or 4 Processes per Node

— 1, 2 or 4 Threads per Process

= Notation
— Virtual Mode VN 4 MPI Processes Per Node
— Dual Mode DUAL 2 MPI Processes + 2 Threads Per Process

— Shared Memory SMP 1 MPI Process + 4 Threads Per Process
* Limitation

— One user process or thread per core

BLUE GENE/P EXECUTION MODES

Quad Mode

*Previously called Virtual
Node Mode

=All four cores run one MPI
process each

*No threading

=Memory / MPI process = 'a
node memory

*MPI programming model

Application

Memory address space

Dual Mode

Two cores run one MPI
process each

Each process may spawn
one thread on core not used
by other process

Memory / MPI process = %
node memory

*Hybrid MPl/OpenMP
programming model

Application

Memory address space

SMP Mode

=0One core runs one MPI
process

=Process may spawn threads
on each of the other cores
=Memory / MPI process = full
node memory

=Hybrid MPl/OpenMP
programming model

Application

Memory address space

PROGRAMMING MODELS

= MPI Only - “Virtual Node Mode” with enhancements
— Separate MPI process for each processor in the compute node

— DMA support for each MPI process

» Ensure network does not block when processor is computing
* Drive network harder

— Sharing of read-only or write-once data on each node

+ Need programming language extension to identify read-only data
+ Allow applications to overcome memory limits of virtual node mode

= MPI + OpenMP (or pthread)
— OpenMP within each node — relies on cache coherence support

— Only master thread on each node initiates communication

+ Get benefits of message aggregation
+ Exploit multiple processors to service MPI call

SYMETRICAL MULTI-PROCESSING MODE
(SMP)

* SMP

* 1 Process/Node

main() Thread 0 Throad 1 Theead 2
(Processor 0) (Processor 1) [Processor 2) (Processor 3)
Stanoard C Runtima

Application

* 4 Threads/Process
= 2 GB/Process

* pthreads and g
OpenMP are a
[}
¢
v

supported

* 4MB default stack
for all new threads

DUAL MODE

* Dual

= 2 Processes/Node
* 2 Threads/Process
= 1 GB/Process

* pthreads and
OpenMP are
supported

* 4MB default stack fc
all new threads

men(|

Thicad 0 mani Thoazd
{Procaser 1) [Pracessor 2) (Procossor 3)

Rurtme

(Processor 0)
Sandard C
from Lieux

Application

stancard
otread Sardad C

orary from
Linux

Kernel Space
o
o

VIRTUAL NODE MODE

*VN
* 4 Processes/Node §1 | oty | s | iy | oy
8
3 Standard C M:‘c.c smﬁc sammc
* 1 Thread/Process 8 A || e | R | Ak
* 512 MB/process %, \
P %f %.'\ P
* 512 MB/process 9 OVKs ol g G
o - Thresd
versus Shared g | | oo Lk ;'::::,H L
Memory support B e L
VAl m Threag Manaje:

HiGH THROUGHPUT COMPUTING (HTC)
MODE

* Many applications that run on Blue Gene today are
“embarrassingly (pleasantly) parallel”

— They do not fully exploit the torus for MPI communication, since that
is not needed for their problem

— They just want a very large number of small tasks, with a
coordinator of results

* High Throughput Computing Mode on Blue Gene
— Enables a new class of workloads that use many single-node jobs

— Leverages the low-cost, low-energy, small footprint of a rack of
1,024 compute nodes

» Capacity machine (“cluster buster”): run 4,096 jobs on a single rack in
virtual node mode (\VVN)

Hi1GH PERFORMANCE VS HIGH
THROUGHPUT MODES

* High Performance Computing (HPC) Mode — Best for Capability Computing

— Parallel, tightly coupled applications
« Single Instruction, Multiple Data (SIMD) architecture
— Programming model: typically MPI

— Apps need tremendous amount of computational power over short time period

* High Throughput Computing (HTC) Mode — Best for Capacity Computing

— Large number of independent tasks
« Multiple Instruction, Multiple Data (MIMD) architecture
— Programming model: non-MPI

— Applications need large amount of computational power over long time period
— Traditionally run on large clusters

* HTC and HPC modes co-exist on Blue Gene
— Determined when resource pool (partition) is allocated

o THANK YOU!!!

