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Abstract
A Mesh of Trees (MoT) on-chip interconnection network

has been proposed recently to provide high throughput be-

tween memory units and processors for single-chip paral-

lel processing [5]. In this paper, we report our findings in

bringing this concept to silicon. Specifically, we conduct

cycle-accurate verilog simulations to verify the analytical

results claimed in [5]. We synthesize and obtain the layout

of the MoT interconnection networks of various sizes. To

further improve throughput, we investigate different arbitra-

tion primitives to handle load and store, the two most com-

mon memory operations. We also study the use of pipeline

registers in large networks when there are long wires. Sim-

ulation based on full network layout demonstrates that sig-

nificant throughput improvement can be achieved over the

original proposed MoT interconnection network.

The importance of this work lies in its validation of per-

formance features of the MoT interconnection network, as

they were previously shown to be competitive with tradi-

tional network solutions. The MoT network is currently

used in an eXplicit Multi-Threading (XMT) on-chip parallel

processor, which is engineered to support parallel program-

ming. In that context, a 32-terminal MoT network could

support up to 512 on-chip XMT processors. Our 8-terminal

network that could serve 8 processor clusters (or 128 total

processors), was also accepted recently for fabrication.

1. Introduction
There is a recent surge of interest in single-chip paral-

lel processors. As more and more components are inte-

grated in such systems, it becomes a severe challenge to

design and implement the on-chip interconnection network.

Throughput and latency are among the most important per-

formance characteristics of such network that carries mem-

ory requests from processors to memory modules and re-

sponses from memory modules to the processors.

Traditional interconnection networks such as hypercube

and butterfly have been used in parallel computing systems

∗Partially supported by grant 0325393 from the National Science Foun-

dation.
†University of Maryland Institute for Advanced Computer Studies

(UMIACS), and Electrical and Computer Engineering Department

(e.g. [9, 11, 12, 21]). However, their performance is limited

in case of the described high traffic load of a parallel pro-

cessor. Similarly, a more recent on-chip network [3] could

provide high performance for local traffic, when processors

have private caches and there are only a few globally shared

memory units. However its 2D-mesh topology would throt-

tle the throughput in a fully shared memory configuration

with uniform traffic distribution. The main problem of these

networks is that packets experience contention at high traf-

fic rates, and this reduces the performance.

A mesh-of-tree (MoT) based network has been recently

proposed to solve this problem by separating routing and

arbitration operations. It guarantees interference-free com-

munication and promises to deliver high throughput that is

close to the theoretical maximum [5] (see Section 2). We

discuss the impact of this promise on single-chip parallel

processing later in Section 4.3.

Although the performance promise of MoT has been

demonstrated, there are two major steps that remained to be

done. First, the MoT network as a whole needed to be val-

idated for accuracy (see Section 3.1). Second, it considers

only short packets such as the most common load operation

and not longer packets such as the store operation that is es-

sential for completeness (see Section 3.2). Therefore, it was

not yet established in [5] that the MoT network’s promise

can be accomplished in silicon.

This paper bridges these gaps and brings the concept of

MoT network closer to reality. Cycle-accurate verilog simu-

lations validate the claims in [5]; and physical design of var-

ious MoT networks evaluates layout-accurate performance.

An extended arbitration mechanism supports store opera-

tion with high throughput. Finally, pipelined long wires

improve throughput by increasing operating frequency. As

part of the PRAM-on-Chip project, each terminal of MoT

network could serve a processor cluster of up to 16 pro-

cessors [20]. Our 8-terminal network that could serve 128

processors has been accepted for fabrication.

2. Background

In this section, we briefly review the network topology

and the arbitration primitives in MoT network. Additional



details on background, network features and operation have

been discussed in [5].
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Figure 1. Mesh of Trees with 4 Clusters and 4
Memory Modules.

The MoT network consists of two main structures, a set

of fan-out (routing) trees and a set of fan-in (arbitration)

trees. Figure 1 shows the communication paths from pro-

cessor clusters to memory modules for three memory re-

quests. Paths of memory requests (0,2) (2,1) and (3,2) are

highlighted. Empty circles and squares represent routing

(Fig 2.a) and arbitration (Fig 2.b) primitives respectively.

There is a unique path between Each memory request will

travel from the source through a fan-out tree and then a fan-

in tree before it reaches the destination. In fan-out trees,

routing decision is trivial from the binary representation of

the destination address. There is no routing decision in the

fan-in trees, since each packet in a fan-in tree has the same

destination.

Contention could occur, when two packets from different

sources to different destinations compete for a shared re-

source. Fan-out trees eliminate competition between pack-

ets from different sources, and fan-in trees eliminate com-

petition between packets to different destinations. This sep-

aration avoids contention and improves throughput.

Flow control is handled locally, through handshakes be-

tween successive switching primitives. A slightly modified

version of a relay station [6] is used to prevent data loss

when the successor primitive is full. Figure 2 illustrates the

switching primitives in our MoT network. Each node in the

fan-out and fan-in trees of the network will be implemented

using the fan-out (Figure 2(a)) or fan-in (Figure 2(b)) prim-

itives. The pipeline primitive (Figure 2(c)) is used to divide

long wires into multiple short segments.

Main results of [5] show that MoT sustains high through-

put and low latency at high traffic rates. The peak through-

put, or the network capacity, for a MoT network is 1.0
packets-per-cycle (ppc) at each port; and the bisection band-

width is equal to N ppc, where N is the number of ports.

For example, in a 64-terminal MoT, the average throughput

of all terminals reaches 0.98ppc under sustained uniform

traffic that is injected at 100% network capacity Average

packet latency is 14 cycles at a low traffic rate such as 10%
of network capacity, and 23 cycles at a high traffic rate such

as 90% of network capacity.

3. Design and Implementation Flow

In this section we first explain the importance of val-

idating the previous results on MoT network with cycle-

accurate Verilog simulator. We then modify the arbitration

primitive to support the store operation. We describe the

physical design of the MoT network as a further step to-

wards evaluating its layout-accurate performance. Finally,

pipelines are inserted to deal with the long wire delays.

3.1. Cycle-Accurate Validation

In [5], the performance model of the MoT network has

been evaluated using a custom-made simulator, written in

C++ using SystemC libraries. There was no earlier study of

a cycle-accurate simulator for verifying the MoT network

model in [5]. To demonstrate accuracy, some butterfly net-

work simulations has been compared with the “booksim”

simulator of [9]. However, the simulator in [5] is optimized

for MoT network, and the simulator in [9] is optimized for

traditional networks such as hypercube and butterfly. There-

fore, the accuracy of the comparison was limited.

Prior to the current paper, switch primitives have been

individually synthesized into generic technology, but the

whole MoT network has not been synthesized and verified.

Therefore, a realistic hardware model was not available for

validation. In this paper we derive a synthesizable verilog

model of the full MoT network using our own high level

synthesis tool. We perform RTL and gate-level netlist sim-

ulations, and validate earlier results.

We assume uniform traffic pattern, which is expected for

the memory architecture described in [16], due to the use of

a hashing mechanism [2, 4, 10, 15].

3.2. Modified Arbitration

The smallest unit of information flowing in the network

is called flit or flow control digit [9]. The performance

model of [5] is based on exchanging single-flit packets be-

tween terminals. In case of a load operation, the processor

sends the address to the memory module, and the memory

module responds with the requested data. In this most com-

mon mode of operation, each packet consists of a single flit

with sufficiently many bits, that contains either the address

or the data.

In case of a store operation the processor sends the ad-

dress and the data to the memory module. A flit could be

sufficiently wide to hold both the address and the data, how-

ever this would waste bandwidth when load instructions

are sent through the network. Alternatively, a store packet

could consist of two flits that are injected consecutively to
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Figure 2. Switch primitives for MoT network. Data paths are marked with thick lines. Control paths

are simplified. Signals: req: Request; ks: Kill-and-Switch; write/read: Write and Read pointers; B:

Storage Buffer; select:Result of Arbitration; destination: Destination address.

the network. In this case additional effort is required to re-

late address and data pairs that belong together, and per-

form the correct operation. We consider the following two

options for handling store operations.

• Both flits of address–data pair can be marked with an

identifier tag, and sent as individual single-flit packets.

The memory commits the operation when the second

flit with the matching tag arrives. This method requires

computation on the processor and the memory module.

The network remains unchanged. This is called fair

bandwidth arbitration [9], since the arbitration primi-

tives perform fair arbitration regardless of the type of

the packet.

• Second flit is chained to the first one, and they follow

each other in the network. The memory receives the

pair consecutively.This method requires computation

in the network. Specifically, the arbitration primitive

must ensure that second flit immediately follows the

first one. This introduces a temporary bias to the arbi-

tration operation. The processor and the memory mod-

ules remain unchanged. This method is called winner-

take-all arbitration [9]. Extra logic in the arbitration

primitive may increase clock period and, therefore, re-

duce throughput. On the other hand, this method re-

duces average packet latency for multi-flit packets in

terms of clock cycles.

We modified the regular arbitration primitive to perform

winner-take-all arbitration. We implement these two ar-

bitration primitives and evaluate their performance with a

cycle-accurate verilog simulator. The results show that

they both provide similar throughput improvement over the

single-flit arbitration used in [5]. The improvement is sig-

nificant especially when load operation dominates. See Sec-

tion 4.1 for details.

3.3. Physical Design

For the layout of the MoT network, we start with RTL-

level verilog description of switch primitives. Our own

high-level synthesizer generates higher level modules, such

as balanced binary trees.

Terminals 4 8 16 32 64

Bits per flit 26 28 30 32 34

Cell Area 0.064 0.314 1.419 6.166 26.289

Wire Area 0.003 0.020 0.135 0.863 5.197

Table 1. Wire and cell area (in mm2).

3.3.1 Network Layout

The wire area of the MoT network grows as O(N2 log2 N),
and the number of tree nodes grow as O(N2), where N is

the number of terminals [5]. This would imply that the wire

area will dominate the cell area, and the floorplanning must

consider wire area constraints. Synthesis results with this

particular technology and standard cell library show that

cell area is larger than the wire area for practical number of

terminals. Table 1 shows these results for different network

configurations that are considered in this paper. Wire area

grows faster and it can exceed cell area for higher number

of terminals and bits per flit. Therefore, our floorplan and

placement strategy in this study is based on the cell area of

the network.

In a network with N terminals, we create N/2 parti-

tions in order to improve layout quality during placement

and routing. Figure 3 shows a network with 8 terminals

that has 4 partitions marked P0 to P3. An initially square

floorplan is separated into partitions, and each partition is

individually placed, routed, and optimized. Depending on

other geometrical factors, such as height and width of ter-

minal modules, two partitions could be separated by a gap.

3.3.2 Terminal Circuits

Ideally, our network would interconnect parallel processors

and memory modules. We use a terminal node to replace

a pair of cluster and memory module. In order to focus on

the interconnection network, these nodes are dummy termi-

nals that generate random requests based on programmable

parameters, and record statistics upon receiving a packet.

The terminal modules do not affect critical delay path of

the network modules. However, since they are generating

packets and recording arrivals at each cycle, their critical

delay path affects the operation frequency of our taped-out

chip. Therefore, we report critical delays for the network

module separately.
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Figure 3. High level chip floorplan for 8-

terminal network. Terminal modules: T0 to
T7. Network partitions: P0 to P3.

3.4. Pipeline Insertion

Long wires of MoT network could increase the clock pe-

riod and reduce the throughput. Inserting pipeline registers

to long wires would improve performance [3,7,13,14]. Ear-

lier work [5] proposed to use a pipeline primitive to cut long

wires in shorter segments. However, the benefits could not

be demonstrated without a physical layout.

Pipeline insertion can be automatized by several ways.

State of the art synthesis tools are capable of inserting re-

peaters. However, they are usually unaware of final wire

lengths. Place and route tools can insert any standard cell

or module to an existing netlist and connect them to rest of

the circuit. However, this requires use of low level com-

mands of the specific tools, and may not be portable. Fur-

thermore, state changes in the circuit cannot be traced back

to RTL-level. This could complicate verification and per-

formance evaluation. Our high level synthesis tool inserts

pipeline registers at RTL level. Then, the network would

have a portable and coherent state machine view through

the entire physical design flow.

It is challenging to estimate the optimal wire length to

fit in a single pipeline stage. It involves multiple physical

design iterations. Furthermore, CAD tools perform several

proprietary and heuristic optimizations. Therefore, it is vir-

tually impossible to estimate the exact wire length between

two consecutive registers before the layout is finalized.

In this prototyping study, we follow a high level heuris-

tic approach to determine the amount of pipelining, guided

by the wire length between the centers of partition Pi and

the second partition Pi+2, denoted as Lpipe in Figure 3.

Thus, we allow the signals to pass over one full partition

Pi+1 without being stored in a pipeline register. For lack of

space, we only note that following this model, an 8-terminal

network would not require pipelining. Furthermore, 16 and

32-terminal networks will ideally operate at the same fre-

quency as the 8-terminal network.

4. Results and Discussion

In this section, we first present simulation results that

validate the claims of [5] and provides average throughput

per cycle. Then, we lay out networks with 4, 8, 16 and

32 terminals, and obtain their clock rate. The combination

of both results will give layout-accurate average through-

put for MoT. Finally, we taped-out the 8-terminal design

for fabrication.

We used IBM CMOS9SF 90nm technology and regu-

lar ARM/Artisan SAGE-X standard cells. Typical operating

conditions (VDD; T ) for this library is given as 1.2V ; 25◦C.

In this paper we report delay estimations for a slow corner

(worst case) operating conditions, such as 1.08V ; 125◦C.

We use NC-Verilog for simulations, Cadence RTL Com-

piler for synthesis, and Cadence SOC Encounter for lay-

out generation. For tape-out, we use Synopsys Hercules for

DRC, and Cadence Virtuoso for final details in layout.

4.1. Simulation Results

Latency and throughput characteristics for a 64-terminal

network is compared with results of [5] in Figure 4. Table 2

compares the average throughput at highest traffic rate, and

latency at three traffic levels. Low, High, and Max repre-

sent flit generation rates of 10%, 90%, 100% of network

capacity. Throughput is averaged over all terminal ports,

and latency is averaged over all recorded packets.
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Figure 4. Throughput, and latency of 64-

terminal MoT at various traffic rates. Ver-
ilog simulations compared to earlier results.

Throughput is measured in terms of flits per

cycle and averaged over all ports.

Compared to results of [5], throughput differs between

1% to 2%. Latency results for 64 terminal MoT network are

17% higher for low-traffic case and 6.5% lower for high-

traffic case. Such deviations are expected due to different

implementation of source queue component as described in

Section 3.1.

We simulate the network with different ratios of 1-flit

and 2-flit packets, to model a mixture of load and store op-

erations. Traffic rate is adjusted for each run so that average



Terminals 4 8 16 32 64

Tput from [5] N/A N/A 0.95 0.96 0.98

Average Tput 0.88 0.91 0.93 0.95 0.96

Latency (low) 8.64 10.8 12.8 14.8 16.9

Latency (high) 18.0 16.9 17.9 19.3 21.6

Latency (max) 26.6 29.8 33.6 38.0 42.7

Table 2. Simulation results for different net-

work configurations. Throughput is mea-
sured in flits per cycle per port, at the max-

imum traffic generation rate of 1 flit per cycle

per port. Latency is measured in cycles.

flit injection rate remains constant at the maximum capac-

ity of the network, namely 1 flit per cycle per port. Higher

traffic rates would saturate the source queue in the terminal.

In that case several packets would be dropped, and the mix-

ture rate could change. For example, a mixture ratio of 30%
means that each cycle there is a 77% probability of generat-

ing a packet. Additionally, the generated packet has two flits

with a probability of 30%, and one flit with a probability of

70%. As a result, the average rate of flit generation is 1.0
per cycle. We simulated fair arbitration and winner-take-all

arbitration methods as described in Section 3.2. The vari-

ation in latency and throughput for 64-terminal network is

shown in Figure 5. The wide flit case assumes that the flit

width is doubled so that any one of load or store operations

fits in a single flit.
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Figure 5. 64-terminal MoT simulation results
for different methods of handling store oper-

ations.

Simulations show that using multiple flits for store in-

structions improves throughput for almost all mixture ra-

tios. There is no significant difference between two meth-

ods of arbitration. Layout of both arbitration primitives

shows that the increase in clock period due to additional

logic is negligible. Latency is improved for low amounts

Config. 4 8 16 32 16 p 32 p

Clock Rate 970 890 680 578 748 764

Bits per flit 26 28 30 32 30 32

Peak Tput 101 199 326 592 359 782

Avg Tput 88.6 180 302 563 334 747

Low trf lat 8.64 10.8 12.8 14.8 13.5 17.8

High trf lat 18.0 16.9 17.9 19.3 18.7 22.6

Cell area 0.08 0.41 1.89 6.5 1.88 7.3

BBbox area 0.16 0.74 3.21 13.4 3.21 13.4

Power 72 268 794 N/A∗ 967 N/A∗

Table 3. Comparison of MoT configurations

after layout. The letter ’p’ indicates pipelined
configuration. “BBox” stands for bounding

box. Clock rates are in MHz; throughput

values are in Gbps; latency values are in cy-
cles; area values are in mm2; power is in mW .
∗Due to constraints on computing resources,

these results are not available.

of store instructions, but this could also be caused by the

source queue implementation. For 64-terminal network,

fair arbitration has slightly lower latency. Additional simu-

lations show that for a 4-terminal network, winner-take-all

has lower latency. We conclude that the number of flits in a

store instruction is not sufficiently high to make a difference

in latency. Further studies with more flits per packet would

be beneficial to evaluate MoT performance for cases where

multiple data words are moved through the network, such

as loading or storing long vectors or streams.

4.2. Layout Results

Following the standard flow of the Cadence tools, we

synthesized, placed and routed networks with different con-

figurations. Table 3 shows the area and performance results.

We extended the 8-terminal configuration with power

routing and I/O pads for fabrication. The final layout is

shown in Figure 6.

PLL

T1 T0

T2T3

T4T5
T7 T6

IN

Figure 6. Final layout of 8-terminal chip.

Table 3 shows that the clock frequency reduces as the

number of terminals increases. This is mainly caused by

longer wires on the critical path. Results of pipelined con-

figurations 16p and 32p show the benefit of pipelining on



frequency and throughput. Average latency increases in

pipelined configurations due to increased number of stages

between some sources and destinations.

Partitioning constraints prevented optimal pipeline

placement on long wires. Therefore, the improved fre-

quency did not reach the the expected level of an 8-terminal

network. Reducing the critical length for pipelining could

improve performance. Pipeline circuits would be placed

within the partitions, instead of between them. Such im-

provements could incur additional area and latency cost.

Evaluation of these trade-offs requires further studies.

Table 3 shows that the cell area of laid-out networks

exceeds estimations (Table 1), since the layout tool op-

timizes for performance by inserting repeaters and using

larger cells.

Cell area of 32p is larger than 32, as expected, due to

additional pipeline stages. In 16p, the area of added pipeline

stages turn out to be comparable to large repeaters on long

wires of 16. Therefore, the area of 16p is approximately

equal to the area of 16.

The area of the bounding box is approximately twice as

much as the cell area, because of the gaps between parti-

tions, and overestimated design margins. We introduced

gaps between partitions in order to level the partitions with

the terminals (Figure 3). The amount of gaps depend on

the area and aspect ratio of terminal circuits. In an ongoing

study, we are investigating the relationship between proces-

sor geometry, and MoT area and performance. In this pro-

totyping study we did not optimize for the area. However,

based on Table 1, we expect the actual area to be close to

the cell area.

Power consumption has been estimated based on the lay-

out, and simulated switching activity with highest traffic

rate. As expected, the power consumption grows quadrati-

cally with the number of terminals, that is, at the same rate

as the number of cells. Pipelining increases power con-

sumption by both adding more cells, and increasing operat-

ing frequency. In this study, we did not optimize for power

consumption. However, typical approaches such as clock-

gating could reduce power consumption.

4.3. Impact on Single-Chip Parallel Pro-
cessing

A clear lesson of several decades of parallel comput-

ing research is that the issue of parallel programming must

be properly resolved. The Parallel Random Access Model

(PRAM) is an easy model for parallel algorithmic thinking

and for programming, as recognized by Culler and Singh

[8], and at least 3 major standard texts on serial algorithms

and data-structures. Earlier attempts to support PRAM by

a multi-chip multiprocessor (e.g. TERA-MTA [2], SB-

PRAM [17], NYU Ultracomputer and the IBM RP3, [1,10])

have been constrained on memory access performance and

had limited success.

The “PRAM-on-Chip” project at the University of Mary-

land seeks to advance implementation of PRAM in a single-

chip parallel processor, using an eXplicit Multi-Threading

(XMT) architecture (see Appendix). The XMT architec-

ture eliminates local private caches in order to avoid cache

coherence issues and uses hashing mechanism to avoid hot

spots [16]. This dramatically increases the load on the in-

terconnection network and makes the network traffic rea-

sonably uniform, rendering the current interconnection net-

works ineffective. MoT network, as we have described in

Section 2, promises high throughput and low latency. This

current work brings the concept of MoT network closer to

silicon and thus has significant impact.

Based on a recent design [20], each terminal port of the

network could serve up to 16 processors and up to two

globally shared cache modules. Our results show that, a

pipelined 16-terminal network, supporting up to 256 pro-

cessors, operates at 748MHz. With 30-bit wide channels,

it provides a peak throughput of 359Gbps, and an average

throughput of 334Gbps under uniform traffic.

5. Conclusion

We perform cycle-accurate Verilog simulation to vali-

date the earlier results on MoT network, which has clear

advantages on throughput and latency over traditional inter-

connection networks. For example, for a 64-terminal net-

work, earlier results overestimated throughput by only 2%,

and latency by 6.5% at high traffic load. We propose two

extensions: support store operations and avoid long wire

delay to further improve throughput of MoT. We conduct

the physical design and obtain layout for MoT network of

various sizes. The layout of 8-terminal network has recently

been accepted by the foundry for fabrication.

While our initial layouts of switch primitives indicate an

average throughput of 4.6Tbps in the ideal case for a 64-

terminal MoT network, practical constraints led us to defer

seeking such rate to future work, perhaps not in a university

environment.
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A. Explicit Multi-Threading Architecture

The eXplicit Multi-Threading (XMT) on-chip general-

purpose computer architecture [16] is aimed at the classic

goal of reducing single task completion time. It is a parallel

algorithmic architecture in the sense that it seeks to provide

good performance for parallel programs derived from Par-

allel Random Access Machine/Model (PRAM) algorithms.

Ease of parallel programming is now widely recognized as

the main stumbling block for extending commodity com-

puter performance growth (e.g., using multi-cores). XMT

provides a unique answer to this challenge. First commit-

ment to silicon of XMT is reported in [20]. A 64-processor,

75MHz computer based on field-programmable gate array

(FPGA) technology was built at the University of Maryland

(UMD).

The PRAM virtual model of computation assumes that

any number of concurrent accesses to a shared memory

take the same time as a single access. In the Arbitrary

Concurrent-Read Concurrent-Write (CRCW) PRAM con-

current access to the same memory location for reads or

writes are allowed. Reads are resolved before writes and

an arbitrary write unknown in advance succeeds. Design

of an efficient parallel algorithm for the Arbitrary CRCW

PRAM model would seek to optimize the total number of

operations the algorithms performs (“work”) and its par-

allel time (“depth”) assuming unlimited hardware. Given

such an algorithm, an XMT program is written in XMTC,

which is a modest single-program multiple-data (SPMD)

multi-threaded extension of C that includes 3 commands:

Spawn, Join and PS, for Prefix-Sum a Fetch-and-Increment-

like command. The program seeks to optimize: (i) the

length of the (longest) sequence of round trips to memory

(LSRTM), (ii) queuing delay to the same shared memory

location (known as QRQW), and (iii) work and depth (as

per the PRAM model). Optimizing these ingredients is a

responsibility shared in a subtle way between the architec-

ture, the compiler, and the programmer/algorithm designer.

See also [19]. For example, the XMT memory architec-

ture requires a separate round-trip to the first level of the

memory hierarchy (MH) over the interconnection network

for each and every memory access; this is unless something

(e.g., prefetch) is done to avoid it; and our LSRTM met-

ric accounts for that. While we took advantage of Burton

Smiths latency hiding pipelining technique for code provid-

ing abundant parallelism, the LSRTM metric guided design

for good performance from any amount of parallelism, even

if it is rather limited. Moving data between MH levels (e.g.,

main memory to first-level cache) is generally orthogonal

and amenable to standard caching approaches. In addition

to XMTC many other application-programming interfaces

(APIs) will be possible; e.g., VHDL/Verilog, MATLAB,

and OpenGL.

The well-developed PRAM algorithmic theory is second



in magnitude only to its serial counterpart, well ahead of

any other parallel approach. Circa 1990 popular serial al-

gorithms textbooks already had a big chapter on PRAM al-

gorithms. Theorists (UV included) also claimed for many

years that the PRAM theory is useful. However, the PRAM

was generally deemed useless (e.g., see the 1993 LOGP pa-

per). Since the mid-1990s, PRAM research was reduced

to a trickle, most of its researchers left it, and later book

editions dropped their PRAM chapter. The 1998 state-of-

the-art is reported in Culler-Singhs parallel computer archi-

tecture book: “.. breakthrough may come from architecture

if we can truly design a machine that can look to the pro-

grammer like a PRAM”. In 2007, we are a step closer as

hardware replaces a simulator and the interconnection net-

work is being realized in ASIC. The current paper is part

of an overall effort to advance the perception of PRAM im-

plementability from impossible to available. The effort pro-

vides freedom and opportunity to pursue PRAM-related re-

search, development and education without waiting for ven-

dors to make the first move. For example, consider [18].

Overview of the XMT Architecture The XMT proces-

sor (see Fig. A.1) includes a master thread control unit

(MTCU), processing clusters (C0...Cn in Fig. A.1) each

comprising several TCUs, a high-bandwidth low-latency in-

terconnection network, memory modules (MMs) each com-

prising on-chip cache and off-chip memory, a global regis-

ter file (GRF) and a prefix-sum unit. Fig. A.1 suppresses

the sharing of a memory controller by several MMs. The

processor alternates between serial mode, where only the

MTCU is active, and parallel mode. The MTCU has a stan-

dard private data cache used only in serial mode and a stan-

dard instruction cache. The TCUs do not have a write data

cache. They and the MTCU all share the MMs. [16] de-

scribes the way in which: (i) the XMT apparatus of the pro-

gram counters and stored program extends the standard von-

Neumann serial apparatus, (ii) virtual threads coming from

an XMTC program (these are not OS threads) are allocated

dynamically at run time, for load balancing, to TCUs, (iii)

hardware implementation of the PS operation and its cou-

pling with a global register file (GRF), (iv) independence

of order semantics (IOS) that allows a thread to advance

at its own speed without busy-waiting for other concurrent

threads and its tie to Arbitrary CW, and (v) a more gen-

eral design ideal, called no-busy-wait finite-state-machines

(NBW FSM), guides the overall design of XMT. In prin-

ciple, the MTCU is an advanced serial microprocessor that

can also execute XMT instructions such as spawn and join.

Typical program execution flow is shown on Fig. A.2. The

MTCU broadcasts the instructions in a parallel section, that

starts with a spawn command and ends with a join com-

mand, on a bus connecting to all TCU clusters. In paral-

lel mode a TCU can execute one thread at a time. TCUs

have their own local registers and they are simple in-order

pipelines including fetch, decode, execute/memory-access

and write back stages. We aspire to have 1024 TCUs in 64

clusters in the future. A cluster has functional units shared

by several TCUs and one load/store port to the interconnec-

tion network, shared by all its TCUs. The global memory

address space is evenly partitioned into the MMs using a

form of hashing. In particular, the cache-coherence prob-

lem, a challenge for scalability, is eliminated: in principle,

there are no local caches at the TCUs. Within each MM,

order of operations to the same memory location is pre-

served; a store operation is acknowledged once the cache

module accepts the request, regardless if it is a cache hit or

miss. Some performance enhancements were already incor-

porated in the XMT computer seeking to optimize LSRTM

and queuing delay: (i) broadcast: in case most threads in a

spawn-join section need to read a variable, it is broadcasted

through the instruction broadcasting bus to TCUs rather

than reading the variable serially from the shared memory.

(ii) Software prefetch mechanism with hardware support to

alleviate the interconnection network round trip delay. A

prefetch instruction brings the data to a prefetch buffer at

the TCUs. (iii) Non-blocking stores where the program al-

lows a TCU to advance once the interconnection network

accepts a store request without waiting for an acknowledge-

ment. (iv) Read-only-buffer: Within a TCU cluster, read

requests to the same memory location from multiple TCUs

operating concurrently can be replaced by a single request

into the interconnection network. This optimization is ap-

plied only to addresses that cannot be written into by any

concurrent thread.

Conclusion Using on-chip low overhead mechanisms in-

cluding a high throughput interconnection network XMT

executes PRAM-like programs efficiently. As XMT

evolved from PRAM algorithm, it gives (i) an easy general-

purpose parallel programming model, while still providing

(ii) good performance with any amount of parallelism pro-

vided by the algorithm (up- and down-scalability), and (iii)

backwards compatibility on serial code using its powerful

MTCU with its local cache. Most other parallel program-

ming approaches need more coarse-grained parallelism, re-

quiring a (painful to program) decomposition step.


