
Упражнение 1
Агент-базирани технологии

1. Ако нямате потребителско име, регистрирайте си в системата Moodle:
http://www.csconf.org/ComputerSystems/

2. Ключовата дума за курса е:
ABT2010

3. След като влезете в курса свалете следните три файла:

4. Разархивирайте ги в подходяща папка.
5. Стартирайте Eclipse (c:\Java\Eclipse)
6. Започнете нов проект

7. Задайте има на проекта

http://www.csconf.org/ComputerSystems/

8. Добавете всички библиотеки (jar) от папката JADE-bin-3.7. Използвайте бутона „Add
Extarnal JARs”

9. Добавете нов клас:

10. Задайте име на пакета и класа:

11. Въведете следния код:

12. Стартиране на агента (Run -> Run Configurations):

13. В опцията „main class“ е jade.Boot и сложете отметка на „Include libraries when
searching for a main class“.

14. В страницата “argument” се записва командата:
-gui jade.Boot [agent_nickname1:java_package1.agent_class1
agent_nickname2:java_package2.agent_class2 ...]

15. Резултата:

Notes on this image

• JADE agent platforms have containers to hold agents. A platform can have many containers,
not necessarily on the same computer. One container on a platform is "privileged". This
main container resides on the host which also runs the platform's RMI server. Agents on
various containers on a platform use the RMI protocol to communicate.

• The image above shows the GUI of the Remote Monitoring Agent (RMA) which appears
when you use the -gui switch. In addition to itself, the RMA shows the presence of two other
agents in the Main Container. The ams is the Agent Management System. An agent itself, it
provides an environment with many services for agents on the platform. The df is the
Directory Facilitator. It is an agent which provides a "yellow pages" for agents known to the
platform.

• Agents residing on a platform must have unique names. A name is a "nickname" and an
address separated by the at (@) sign. For example, RMA@IBM:1099/JADE is an agent with
nickname RMA at the address IBM:1099/JADE. ("IBM" is the name of my Win2000
machine on a LAN.

• The addresses are in RMI format in this case. RMI is used for intra platform communication.

(CORBA or HTTP are used for inter platform communication.) The address consists of a
host name, in this case IBM, and a port on which the RMI naming service is active, in this
case, 1099, the default port for RMI,1099. The name JADE distinguishes JADE RMI
invocations from other possible RMI services. Note that in this case, the host name does not
have a domain attached. If you wanted a full name you can use the -host switch: java
jade.Boot -gui -host jupiter.scs.ryerson.ca, for example. There is also a -port switch if you
don't like 1099.

Задача 1: Реализирайте агент, който извежда информация за агента в следния
формат:

Agent Started: Hello World!
-----About Me:-----
My local name is:<име на агента>
My globally unique name is:<глобално име на агента>
-----About Here:-----
I am running in a location called:<име на контейнера, в който е стартиран>
Which is identified uniquely as:<уникалния индентификатор>
And is contactable at:<адреса>
Using the protocol:<протокола>

Помощ:
1. За да разпечатите информацията след надписа
-----About Me:-----
използвайте методите:
getLocalName()
getName()

2. За да разпечатите информацията след надписа
-----About Here:-----
използвайте класа Location и неговите методи

Abstract interface to represent JADE network locations. This interface can be
used to access information about the various places where a JADE mobile agent
can migrate.

Method Summary
 java.lang.String getAddress()

 Read the address for a location.
 java.lang.String getID()

 Read a unique ID for the location.
 java.lang.String getName()

 Read the name of a location.
 java.lang.String getProtocol()

 Read the protocol for a location.

Making your agent do stuff: Agent Behaviours.
The previous example doesn't actually do anything, all code is just run inside the setup() method.
Typical agents implement cоmplex behaviours, which may involve multiple simultaneous related or
unrelated tasks, rather than forcing you to write multithreaded agents (with all of the problems that
this can cause) jade introduces a system of Behaviours to assist you in building and re-using agent
functionality.

Essentially when using Jade's behaviours each agent can be seen as a set of cooperatively
multithreading processes ,that is to say that each process gets run, and performs a portion of its task
before actively yeilding controll back to the process scheduler. While this may seem old-fashioned
it adds a degree of determinism to writing agents, and allows for a fairly natural decomposition of
the agents overall behaviour.
The skeleton of an typical agent class is shown below:

 import jade.core.Agent;
 import jade.core.behaviours.*;

 public class myAgent extends Agent
 {
 protected void setup()
 {
 addBehaviour(new myBehaviour(this));
 }

 class myBehaviour extends SimpleBehaviour
 {
 public myBehaviour(Agent a) {
 super(a);
 }

 public void action()
 {
 //...this is where the real programming goes !!
 }

 private boolean finished = false;

 public boolean done() {
 return finished;
 }

 } // ----------- End myBehaviour

 }//end class myAgent

Here, the Behaviour is defined to be a subclass of SimpleBehaviour, the most flexible of jade's
predefined Behaviours. It is also positioned to be an internal class to the Agent. It could also have
been implemented as an anonymous class or defined in a separate file. In all cases, it is usual to
pass a reference to the owner agent (this) when creating a Behaviour.

A last point is the provision of a mechanism to terminate the behaviour. In Jade, as long as a
behaviour is not "done", its action method will be called repeatedly after every event - such as
receipt of a message or expiry of a timer delay. The example shows a common technique used to
terminate the behaviour: a FINISHED flag which is tested in the "done" method and can be set in
"action".

Simple0.java
Here is a more typical implementation of the HelloAgent.

 import jade.core.Agent;
 import jade.core.behaviours.*;

 public class Simple0 extends Agent
 {
 protected void setup()
 {
 addBehaviour(new B1(this));
 }
 }

 class B1 extends SimpleBehaviour
 {
 public B1(Agent a) {
 super(a);
 }

 public void action()
 {
 System.out.println("Hello World! My name is " +
 myAgent.getLocalName());
 }

 private boolean finished = false;
 public boolean done() { return finished; }

 } //End class B1

The example also shows two new things:

 myAgent: a local variable of all Behaviour objects which stores the agent reference passed
as a parameter when the behaviour was created.

 The class B1 is specified outside the context of the Agent, but it can use myAgent to access
its owner's attributes and methods.

Hello World! My name is fred
 Hello World! My name is fred
 Hello World! My name is fred
 Hello World! My name is fred

 безкраен цикъл

The problem here is that we haven't explicitely indicated that the action was "done".

Задача 2: Реализирайте горния агент така, че да приключи работа след 5-тото
извикване.

	Notes on this image
	Making your agent do stuff: Agent Behaviours.
	Simple0.java

