
LINUX_

Development Tools, Connections,
Installing, Libraries, and MakeFiles

2

Agenda

1. Development Tools

2. Connecting to Linux

3. Installing Software

4. Libraries

5. Makefiles

Development Tools - Compilers (1)

• Open Source

– C/C++/FORTRAN
• GNU C compiler (gcc)

• GNU C++ compiler (g++)

• G77

– Java
• Sun and IBM JDK

• gcj – GNU java compiler

• Jikes - java source to bytecode compiler.

– Pascal
• http://www.freepascal.org/

– C#
• Mono 2.8

3

Development Tools – Compilers (2)

• Shareware

– C
• Compaq C - http://www.compaq.com/

– C++
• Intel - http://www.intel.com/cd/software/products/asmo-na/eng/compilers/277618.htm

• KAI (Kuck and Associates)

• Fujitsu C/C++ Empress

– FORTRAN
• Portland Group Compilers

• HP/Compaq Fortran

• Fujitsu FORTRAN Empress

– Java
• Tower Technology: TowerJ - Compiles JAVA to native code. Will

also compile JAVA byte code to native binary code.
4

Development Tools – Debuggers

• gdb - GNU debugger. Command driven text/console interface.

• xxgdb - X window system interface to the GNU debugger.

• DDD - Data Display Debugger. GUI interface for gdb and dbx.

• GVD - GtkAda/GNAT Graphical GDB Debugger Interface.

• KDbg - K Desktop Graphical GDB Debugger Interface.

• ups - X11 Source Debugger Interface. Native debugger and not a
front-end to gdb.

• RHIDE - Console mode with windows like Borland 3.1 toolset.

• Insight - GUI interface to gdb. Works with Source-Navigator IDE.

• Xwpe - Borland C++ console mode IDE clone.

• Etnus TotalView - Specialized in debugging multi-threaded
software with memory leak detection. Also MPI/OpenMP
debugging facilities.

5

Development Tools – IDE

• Eclipse.org - IBM open source JAVA and C/C++ (with CDT plug-in) IDE. Extensible
IDE consortium - Borland, IBM, Red Hat, Rational. Lots of industry backing. Also
see EclipsePluginCentral.com Plugins available for Subversion SCM, XML
documents, HEX, ...

• Anjuta - C, C++. Written for GTK/Gnome. Solid, simple, intuitive, bug free IDE for
C/C++ development on Linux. Search/Indexing, edit, compile and debug.

• KDevelop.org - C++ KDE IDE

• Sun Studio - C/C++, FORTRAN IDE for Linux.

• Source Navigator - C/C++, FORTRAN, COBOL, Tcl, JAVA, asm editor, cross
reference tool, class browser and IDE.

• wxStudio - C++ cross platform IDE. Written for wxWindows cross platform GUI
framework.

• Moonshine - C/C++. IDE supports Qt. More of an editor than anything else.

• DiaSCE - C/C++ Gnome code editor. Integrated with Glade GTK GUI builder.

• MonoDevel 2.4 – IDE for developing .NET applications.

6

http://www.eclipseplugincentral.com/
http://anjuta.sourceforge.net/
http://www.kdevelop.org/
http://developers.sun.com/sunstudio/index.jsp
http://sourcenav.sourceforge.net/
http://wxstudio.sourceforge.net/
http://www.suite3220.com/index.html
http://diasce.es.gnome.org/

Development Tools – CM

7

• Subversion / Trac - Subversion is a version control CVS replacement.

• IBM/Rational: Clearcase - Commercial product.

• RCS - Revision Control System.

• CVS - Concurrent Versions System.

• Bonsai/LXR/Glimpse - Web front-end CVS browsing and indexing engine for CVS.

• Ximian Red Carpet - Automated Software Maintenance and Version Management.

• PVCS - Version Manager. Commercial product.

• BitKeeper - Commercial product.

• Perforce - Commercial product.

• Serena - Change management software. Source code, web content, Commercial product.

• Alodon Lifecycle Manager - Enterprise Software Configuration, Change Management,
deployment.

• SourcePuller - Bitkeeper compatable source code management client.

• GIT - Distributed source code management. Written in "C" and developed by Linus Torvalds
for use with the Linux Kernel. Concept roots inspired by Bit Keeper.

• Mercurial - Almost the same as GIT but written in Python and based on a different data
management system. Supports Maven build system.

Connecting to Linux/UNIX System (1)

• The most widely used
protocols:

– Telnet

– SSH protocol – Putty,
WinSCP

– – FTP‏ sftp, FileZilla

8

Connecting to Linux/UNIX System (2)

• Uploading files with
psftp:

– Connecting to a host
open [host]

– Downloading files
mget [file name]

– Uploading files
mput [file name]

9

Connecting to Linux/UNIX - Visually

• Three ways to connect to Linux visually

– Using SSH and X11 Forwarding.

– Using SSH and exporting your DISPLAY.

– Using VNC

• Software needed for graphical network
connections:

– SSH client – putty

– Xserver – Xming, Xcead, Cygwin

– VNC Server – vncserver

– VNC Viewer – tightvnc, vncviewer, realvnc...
10

Connecting to Linux/UNIX - Xserver

In this example, the X server
takes input from a keyboard
and mouse and displays to a
screen. A web browser and a
terminal emulator run on
the user's workstation, and a
system updater runs on a
remote server but under the
control of the user's
machine. Note that the
remote application runs just
as it would locally.

11

Connecting to Linux/UNIX with X11 Forwarding

• Start the X Server on the
local Windows machine

• Allow remote hosts to
connect to the X Server
xhost + [host]
xhost – [host]

• Start putty

• Enable X11 forwarding

• Connect to the remote host
and start any visual
application
Tip: Test your connection
with xclock or xeyes

12

Connecting to Linux/UNIX with X11

• Start the X Server on the local
Windows machine

• Allow remote hosts to
connect to the X Server
xhost + [host]
xhost – [host]

• Start putty

• Connect to the remote host

• Export your display
export DISPLAY=10.0.0.66:0.0

• Start any visual aplication
Tip: Test your connection
with xclock or xeyes

13

Connecting to Linux/UNIX with VNC

• Virtual Network Computing (VNC)‏

• Remote graphical protocol optimized for slow networks (uses
compression)‏.

• TightVNC (better compression) clients and servers are
preferred (and backward compatible) to RealVNC (original
older protocol)‏.

• Servers and clients are available for many platforms.

• vncserver is a client to the X server.

• vncpasswd sets the password of the vncserver.

• vncviewer connects to the vncserver and provides
visualization.

14

Window Managers for X (1)

twm (default for VNC) KDE

15

Window Managers for X (2)

XFCE gnome

16

Installing Software – From Source

• Download the archive with the source files.
– wget http://www.muppetlabs.com/~breadbox/pub/software/cgames-

2.2.tar.gz

• Extract the downloaded archive.
– tar –xzf <file-name>

• Change to the extracted folder.
– cd <directory-name>

• Configure the installation.
– ./configure --prefix=/where/to/install/the/command

• Compile the source.
– make

• Install the application
– make install

17

Installing Software - RPM

• rpm -Uvh vim-6.2-i386.rpm - upgrade package vim

• rpm -ivh vim-6.2-i386.rpm - install package vim

• rpm -e vim - remove package vim

• rpm -qa "vi*" - show all packages starting with vi

• rpm -qi vim - show info about package vim

• rpm -ql vim - list files about package vim

• rpm -qf `which vi` - shows package of command vi

• rpm -qR vim - shows packages on which package vim depends

18

Installing Software – From Repository

• Repository - A repository is a central place where data is
stored and maintained.

• apt-get – The default repository manager for Debian based
distributions.
– apt-get update [package] – check for new releases

– apt-get upgrade [package] – install new or updated packages if there
are any

– apt-get install <package> - install a single package from the repository

• yum - The default repository manager for RedHat based
distributions.
– yum upgrade - install new or updated packages if there are any

– yum install <package> - install a single package from the repository

– yum list installed – show all installed packages

19

Compiling Your Code

• Compiling C/C++ source

– gcc/g++ [–o <exec_name>] [-c] [-fopenmp] *.c *.h

– o – specify the name of the executable file. By
default it will be “a.out”.

– fopenmp – include the OpenMP libraries and
interpret the omp pragmas.

– c – only compile the code without linking it.

• Start your executable.

– ./<exec_name> <parameters>

20

Libraries

• This methodology, also known as "shared components" or
"archive libraries", groups together multiple compiled object
code files into a single file known as a library.

• Typically C functions/C++ classes and methods which can be
shared by more than one application are broken out of the
application's source code, compiled and bundled into a
library.

• Components which are large can be created for dynamic use,
thus the library remain separate from the executable
reducing it's size and thus disk space used.

• The library components are then called by various
applications for use when needed.

21

Libraries - Types

• There are two Linux C/C++ library types which can be created:

– Static libraries (.a) - Library of object code which is linked
with, and becomes part of the application.

– Dynamically linked shared object libraries (.so) - There is
only one form of this library but it can be used in two
ways.

• Dynamically linked at run time but statically aware.
The libraries must be available during compile/link
phase. The shared objects are not included into the
executable component but are tied to the execution.

• Dynamically loaded/unloaded and linked during
execution (i.e. browser plug-in) using the dynamic
linking loader system functions.

22

Library Naming Conventions

• Libraries are typically names with the prefix
"lib". This is true for all the C standard
libraries. When linking, the command line
reference to the library will not contain the
library prefix or suffix.

• Thus the following link command:

– gcc src-file.c -lm -lpthread

• The libraries referenced in this example for inclusion
during linking are the math library and the thread
library. They are found in /usr/lib/libm.a and
/usr/lib/libpthread.a.

23

Static Libraries (.a)

• How to generate a library:

– Compile: gcc -Wall -c ctest1.c ctest2.c

– Create library "libctest.a": ar -cvq libctest.a
ctest1.o ctest2.o

– List files in library: ar -t libctest.a

– Linking with the library:

• gcc -o <exec-name> prog.c libctest.a

• gcc -o <exec-name> prog.c -L/path/to/lib –lctest

• The Linux/Unix ".a" library is conceptually the
same as the Visual C++ static ".lib" libraries.

24

Static Libraries (.a) - Example Sources

25

//File ctest2.c

void ctest2(int *i)

{

*i=100;

}

//File prog.c

#include <stdio.h>

void ctest1(int *);

void ctest2(int *);

int main(){

int x;

ctest1(&x);

printf("Valx=%d\n",x);

return 0;

}

//File ctest1.c

void ctest1(int *i)

{

*i=5;

}

Dynamically Linked "Shared Object" Libraries: (.so) (1)

• Generating a shared object: (Dynamically linked
object library file.) is a two step process.

– Create object code

– Create library

– Optional: create default version using a symbolic link.

• Creating the library libctest.so.1.0 and symbolic
links to it.

– gcc -Wall -fPIC -c *.c

– gcc -shared -Wl,-soname,libctest.so.1 -o libctest.so.1.0 *.o

– mv libctest.so.1.0 /opt/lib

– ln -sf /opt/lib/libctest.so.1.0 /opt/lib/libctest.so

– ln -sf /opt/lib/libctest.so.1.0 /opt/lib/libctest.so.1
26

Dynamically Linked "Shared Object" Libraries: (.so) (2)

27

• Compile main program and link with shared object
library:

– gcc -Wall -I/path/to/include-files -L/path/to/libraries
prog.c -lctest -o prog

• Where the name of the library is libctest.so. This is
why the symbolic link must be created or you will get
the error "/usr/bin/ld: cannot find -lctest".

• The libraries will NOT be included in the executable
but will be dynamically linked during runtime
execution.

Dynamically Linked "Shared Object" Libraries: (.so) (3)

28

• List Dependencies - The shared library dependencies
of the executable can be listed with the command:
ldd name-of-executable

• Example: ldd prog
libctest.so.1 => /opt/lib/libctest.so.1 (0x00002aaaaaaac000)

libc.so.6 => /lib64/tls/libc.so.6 (0x0000003aa4e00000)

/lib64/ld-linux-x86-64.so.2 (0x0000003aa4c00000)

• Run Program:

– Set path: export
LD_LIBRARY_PATH=/opt/lib:$LD_LIBRARY_PATH

– Run: ./prog

Library Path

• In order for an executable to find the required
libraries to link with during runtime, one must
configure the system so that the libraries can be
found. Methods available:

– Add library directories to be included during dynamic
linking to the file /etc/ld.so.conf. After that you must run
(as root)ldconfig in order the changes to take effect.

– Add directory to library cache: (as root)ldconfig -n /opt/lib

– Specify the environment variable LD_LIBRARY_PATH to
point to the directory paths containing the shared object
library. This will specify to the run time loader that the
library paths will be used during execution to resolve
dependencies.

29

Library Info

• The command "nm" lists symbols contained in the object file
or shared library.

• Use the command nm -D libctest.so.1.0
– 0000000000100988 A __bss_start

– 000000000000068c T ctest1

– 00000000000006a0 T ctest2

– w __cxa_finalize

– 00000000001007b0 A _DYNAMIC

– …

• Symbol Types
– A - The symbol's value is absolute, and will not be changed by further

linking.

– T - Normal code section.

– W - Doubly defined symbol. If found, allow definition in another
library to resolve dependency.

30

Dynamic (un)loading of Shared Libraries

• These libraries are dynamically loaded / unloaded and linked
during execution. Usefull for creating a "plug-in" architecture.

• Load and unload the library libctest.so dynamically:

• Compile: gcc -rdynamic -o progdl progdl.c -ldl

31

#include <stdio.h>

#include <dlfcn.h>

#include "ctest.h“

void main(int argc, char **argv) {

void *lib_handle; double (*fn)(int *);

lib_handle = dlopen("/opt/lib/libctest.so",

RTLD_LAZY);

fn = dlsym(lib_handle, "ctest1");

(*fn)(&x);

dlclose(lib_handle);

}

Makefiles

• Makefiles are special format files that
together with the make utility will help you to
automagically build and manage your
projects.

• make - this program will look for a file named
makefile or Makefile in your directory, and
then execute it.

• If you have several makefiles, then you can
execute them with the command:

– make -f MyMakefile
32

Makefiles – Basics (1)

33

• Compiling by hand - The trivial way to compile
the files and obtain an executable, is by
running the command:

– g++ main.cpp hello.cpp factorial.cpp -o hello

/bgsys/drivers/ppcfloor/comm/default/bin/mpicxx" --

host=powerpc64-unknown-linux-gnu ARCH=bluegenep --

prefix=/shared1/vgancheva/Maria/shared-scalasca/ CFLAGS="-O3 -g -

qmaxmem=-1 -I/bgsys/drivers/ppcfloor/comm/include -

L/bgsys/drivers/ppcfloor/comm/lib -qarch=450 -qtune=450"

FFLAGS="-O3 -g -qmaxmem=-1 -I/bgsys/drivers/ppcfloor/comm/include

-L/bgsys/drivers/ppcfloor/comm/lib -qarch=450 -qtune=450"

LDFLAGS="-g -Wl,-allow-multiple-definition"

CONFIG_LIBC=/lib/libc.so.6 --libdir=/lib/ PREP="scalasca -

instrument"

Makefiles – Basics (2)

34

• The basic Makefile is composed of:

target: dependencies

[tab] system command

• Simple example is:

all:

g++ main.cpp hello.cpp factorial.cpp -o hello

• To run this makefile on your files, type make.

• Our target is called all. This is the default
target for makefiles.

Makefiles – Dependencies

35

• Sometimes it is useful to use different targets. This is because
if you modify a single file in your project, you don't have to
recompile everything, only what you modified.

• Here is an example:

all: hello

hello: main.o factorial.o hello.o

g++ main.o factorial.o hello.o -o hello

main.o: main.cpp

g++ -c main.cpp

factorial.o: factorial.cpp

g++ -c factorial.cpp

hello.o: hello.cpp

g++ -c hello.cpp

clean:

rm -rf *o hello

Makefiles – Variables and Comments

• You can also use variables when writing Makefiles. It
comes in handy in situations where you want to
change the compiler, or the compiler options.

36

I am a comment, and I want to say that the variable CC

will be

the compiler to use.

CC=g++

Hey!, I am comment number 2. I want to say that CFLAGS

will be the

options I'll pass to the compiler.

CFLAGS=-c -Wall

all: hello

hello: main.o factorial.o hello.o

$(CC) main.o factorial.o hello.o -o hello

…

37

References

• http://www.yolinux.com/TUTORIALS/LibraryA
rchives-StaticAndDynamic.html

• http://www.eyrie.org/~eagle/notes/rpath.ht
ml

• http://www.yolinux.com/TUTORIALS/LinuxTut
orialSoftwareDevelopment.html

• http://mrbook.org/tutorials/make/

http://www.yolinux.com/TUTORIALS/LibraryArchives-StaticAndDynamic.html
http://www.yolinux.com/TUTORIALS/LibraryArchives-StaticAndDynamic.html
http://www.yolinux.com/TUTORIALS/LibraryArchives-StaticAndDynamic.html
http://www.yolinux.com/TUTORIALS/LibraryArchives-StaticAndDynamic.html
http://www.eyrie.org/~eagle/notes/rpath.html
http://www.eyrie.org/~eagle/notes/rpath.html
http://www.yolinux.com/TUTORIALS/LinuxTutorialSoftwareDevelopment.html
http://www.yolinux.com/TUTORIALS/LinuxTutorialSoftwareDevelopment.html
http://mrbook.org/tutorials/make/

Thank you for your attention!

