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Preface

This book provides a modern, algorithmic introduction to digital image pro-
cessing, designed to be used both by learners desiring a firm foundation on
which to build and practitioners in search of critical analysis and modern im-
plementations of the most important techniques. This updated and enhanced
paperback edition of our comprehensive textbook Digital Image Processing: An
Algorithmic Approach Using Java packages the original material into a series
of compact volumes, thereby supporting a flexible sequence of courses in digital
image processing. Tailoring the contents to the scope of individual semester
courses is also an attempt to provide affordable (and “backpack-compatible”)
textbooks without comprimising the quality and depth of content.

One approach to learning a new language is to become conversant in the core
vocabulary and to start using it right away. At first, you may only know how
to ask for directions, order coffee, and so on, but once you become confident
with the core, you will start engaging others in “conversations” and rapidly
learn how to get things done. This step-by-step approach works equally well
in many areas of science and engineering.

In this first volume, ostentatiously titled Fundamental Techniques, we have
attempted to compile the core “vocabulary” of digital image processing, starting
from the basic concepts and elementary properties of digital images through
simple statistics and point operations, fundamental filtering techniques, local-
ization of edges and contours, and basic operations on color images. Mastering
these most commonly used techniques and algorithms will enable you to start
being productive right away.

The second volume of this series (Core Algorithms) extends the presented
material, being devoted to slightly more advanced techniques and algorithms
that are, nevertheless, part of the standard image processing toolbox. A forth-
coming third volume (Advanced Techniques) will extend this series and add
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important material beyond the elementary level for an advanced undergradu-
ate or even graduate course.

Math, Algorithms, and “Real” Code

While we always concentrate on practical applications and working implemen-
tations, we do so without glossing over the important formal details and mathe-
matics necessary for a deeper understanding of the algorithms. In preparing
this text, we started from the premise that simply creating a recipe book of
imaging solutions would not provide the deeper understanding needed to apply
these techniques to novel problems. Instead, our solutions typically develop
stepwise along three different perspectives: (a) in mathematical form, (b) as
abstract, pseudocode algorithms, and (c) as complete implementations in a real
programming language. We use a common and consistent notation throughout
to intertwine all three perspectives, thus providing multiple but linked views
of the problem and its solution.

Software

The implementations in this series of texts are all based on Java and ImageJ,
a widely used programmer-extensible imaging system developed, maintained,
and distributed by Wayne Rasband of the National Institutes of Health (NIH).1

ImageJ is implemented completely in Java and therefore runs on all major plat-
forms. It is widely used because its “plugin”-based architecture enables it to be
easily extended. Although all examples run in ImageJ, they have been specif-
ically designed to be easily ported to other environments and programming
languages.

We chose Java as an implementation language because it is elegant,
portable, familiar to many computing students, and more efficient than com-
monly thought. Although it may not be the fastest environment for numerical
processing of raster images, we think that Java has great advantages when it
comes to dynamic data structures and compile-time debugging. Note, however,
that we use Java purely as an instructional vehicle because precise semantics
are needed and, thus, everything presented here could be easily implemented
in almost any other modern programming language. Although we stress the
clarity and readability of our software, this is certainly not a book series on
Java programming nor does it serve as a reference manual for ImageJ.

1 http://rsb.info.nih.gov/ij/.
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Preface vii

Online Resources

The authors maintain a Website for this text that provides supplementary
materials, including the complete Java source code for the examples, the test
images used in the figures, and corrections. Visit this site at

www.imagingbook.com

Additional materials are available for educators, including a complete set of fig-
ures, tables, and mathematical elements shown in the text, in a format suitable
for easy inclusion in presentations and course notes. Comments, questions, and
corrections are welcome and should be addressed to

imagingbook@gmail.com
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1
Digital Images

For a long time, using a computer to manipulate a digital image (i. e., digital
image processing) was something performed by only a relatively small group of
specialists who had access to expensive equipment. Usually this combination
of specialists and equipment was only to be found in research labs, and so the
field of digital image processing has its roots in industry and academia. It was
not that many years ago that digitizing a photo and saving it to a file on a
computer was a time-consuming task. This is perhaps difficult to imagine given
today’s powerful hardware and operating system level support for all types of
digital media, but it is always sobering to remember that “personal” computers
in the early 1990s were not powerful enough to even load into main memory
a single image from a typical digital camera of today. Now, the combination
of a powerful computer on every desktop and the fact that nearly everyone
has some type of device for digital image acquisition, be it their cell phone
camera, digital camera, or scanner, has resulted in a plethora of digital images
and, consequently, for many, digital image processing has become as common
as word processing. Powerful hardware and software packages have made it
possible for everyone to manipulate digital images and videos.

All of these developments have resulted in a large community that works
productively with digital images while having only a basic understanding of the
underlying mechanics. And for the typical consumer merely wanting to create a
digital archive of vacation photos, a deeper understanding is not required, just
as a deep understanding of the combustion engine is unnecessary to successfully
drive a car.

Today’s IT professionals, however, must be more than simply familiar with

W. Burger, M.J. Burge, Principles of Digital Image Processing, Undergraduate Topics  
in Computer Science, DOI 10.1007/978-1-84800-191-6_1, Springer-Verlag London Limited, 2009 ©
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digital image processing. They are expected to be able to knowledgeably manip-
ulate images and related digital media and, in the same way, software engineers
and computer scientists are increasingly confronted with developing programs,
databases, and related systems that must correctly deal with digital images.
The simple lack of practical experience with this type of material, combined
with an often unclear understanding of its basic foundations and a tendency
to underestimate its difficulties, frequently leads to inefficient solutions, costly
errors, and personal frustration.

1.1 Programming with Images

Even though the term “image processing” is often used interchangeably with
that of “image editing”, we introduce the following more precise definitions.
Digital image editing, or as it is sometimes referred to, digital imaging, is the
manipulation of digital images using an existing software application such as
Adobe Photoshop or Corel Paint Digital image processing, on the other hand,
is the conception, design, development, and enhancement of digital imaging
programs.

Modern programming environments, with their extensive APIs (applica-
tion programming interfaces), make practically every aspect of computing, be
it networking, databases, graphics, sound, or imaging, easily available to non-
specialists. The possibility of developing a program that can reach into an
image and manipulate the individual elements at its very core is fascinating
and seductive. You will discover that with the right knowledge, an image be-
comes ultimately no more than a simple array of values, and that with the right
tools you can manipulate in any way imaginable.

Computer graphics, in contrast to digital image processing, concentrates
on the synthesis of digital images from geometrical descriptions such as three-
dimensional object models [14,16,41]. While graphics professionals today tend
to be interested in topics such as realism and, especially in terms of computer
games, rendering speed, the field does draw on a number of methods that
originate in image processing, such as image transformation (morphing), re-
construction of 3D models from image data, and specialized techniques such
as image-based and non-photorealistic rendering [33,42]. Similarly, image pro-
cessing makes use of a number of ideas that have their origin in computational
geometry and computer graphics, such as volumetric (voxel) models in medical
image processing. The two fields perhaps work closest when it comes to dig-
ital post-production of film and video and the creation of special effects [43].
This book provides a thorough grounding in the effective processing of not only
images but also sequences of images; that is, videos.

Digital images are the central theme of this book, and unlike just a few
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years ago, this term is now so commonly used that there is really no reason to
explain it further. Yet, this book is not about all types of digital images, and
instead it focuses on raster images that are made up of picture elements, more
commonly known as pixels, arranged in a regular rectangular grid.

Every day, people work with a large variety of digital raster images such as
color photographs of people and landscapes, grayscale scans of printed docu-
ments, building plans, faxed documents, screenshots, medical images such as
x-rays and ultrasounds, and a multitude of others (Fig. 1.1). Despite all the
different sources for these images, they are all, as a rule, ultimately represented
as rectangular ordered arrays of image elements.

1.2 Image Acquisition

The process by which a scene becomes a digital image is varied and complicated,
and, in most cases, the images you work with will already be in digital form,
so we only outline here the essential stages in the process. As most image
acquisition methods are essentially variations on the classical optical camera,
we will begin by examining it in more detail.

1.2.1 The Pinhole Camera Model

The pinhole camera is one of the simplest camera models and has been in use
since the 13th century, when it was known as the “Camera Obscura”. While
pinhole cameras have no practical use today except to hobbyists, they are a
useful model for understanding the essential optical components of a simple
camera.

The pinhole camera consists of a closed box with a small opening on the
front side through which light enters, forming an image on the opposing wall.
The light forms a smaller, inverted image of the scene (Fig. 1.2).

Perspective transformation

The geometric properties of the pinhole camera are very simple. The optical
axis runs through the pinhole perpendicular to the image plane. We assume a
visible object (the cactus in Fig. 1.2) located at a horizontal distance Z from
the pinhole and vertical distance Y from the optical axis. The height of the
projection y is determined by two parameters: the (fixed) depth of the camera
box f and the distance Z of the object from the origin of the coordinate system.
By matching similar triangles we obtain the relations

y = −f
Y

Z
and x = −f

X

Z
(1.1)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 1.1 Digital images: natural landscape (a), synthetically generated scene (b), poster
graphic (c), computer screenshot (d), black and white illustration (e), barcode (f), finger-
print (g), x-ray (h), microscope slide (i), satellite image (j), synthetic radar image (k), astro-
nomical object (l).
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Z
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y
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Figure 1.2 Geometry of the pinhole camera. The pinhole opening serves as the origin (O)
of the three-dimensional coordinate system (X, Y, Z) for the objects in the scene. The optical
axis, which runs through the opening, is the Z axis of this coordinate system. A separate
two-dimensional coordinate system (x, y) describes the projection points on the image plane.
The distance f (“focal length”) between the opening and the image plane determines the scale
of the projection.

between the 3D object coordinates X, Y, Z and the corresponding image coordi-
nates x, y for a given focal length f . Obviously, the scale of the resulting image
changes in proportion to the distance f in a way similar to how the focal length
determines image magnification in an everyday camera. For a fixed scene, a
small f (i. e., short focal length) results in a small image and a large viewing
angle, just as occurs when a wide-angle lens is used. In contrast, increasing the
“focal length” f results in a larger image and a smaller viewing angle, analogous
to the effect of a telephoto lens. The negative sign in Eqn. (1.1) means that
the projected image is flipped in the horizontal and vertical directions, i. e., it
is rotated by 180◦. Equation (1.1) describes what is commonly known as the
“perspective transformation”1 from 3D to a 2D image coordinates. Important
properties of this theoretical model are, among others, that straight lines in
3D space always map to straight lines in the 2D projections and that circles
appear as ellipses.

1 It is hard to imagine today that the rules of perspective geometry, while known
to the ancient mathematicians, were only rediscovered in 1430 by the Renaissance
painter Brunoleschi.
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Figure 1.3 The thin lens model.

1.2.2 The “Thin” Lens Model

While the simple geometry of the pinhole camera makes it useful for under-
standing its basic principles, it is never really used in practice. One of the
problems with the pinhole camera is that it requires a very small opening to
produce a sharp image. This in turn severely limits the amount of light passed
through and thus leads to extremely long exposure times. In reality, glass
lenses or systems of optical lenses are used whose optical properties are greatly
superior in many aspects, but of course are also much more complex. We can
still make our model more realistic, without unduly increasing its complexity,
by replacing the pinhole with a “thin lens” as shown in Fig. 1.3.

In this model, the lens is assumed to be symmetric and infinitely thin, such
that all light rays passing through it are refracted at a virtual plane in the
middle of the lens. The resulting image geometry is practically the same as
that of the pinhole camera. This model is not sufficiently complex to encom-
pass the physical details of actual lens systems, such as geometrical distortions
and the distinct refraction properties of different colors. So while this simple
model suffices for our purposes (that is, understanding the basic mechanics of
image acquisition), much more detailed models incorporating these additional
complexities can be found in the literature (see, for example, [24]).

1.2.3 Going Digital

What is projected on the image plane of our camera is essentially a two-
dimensional, time-dependent, continuous distribution of light energy. In order
to obtain a “digital snapshot” of this continuously changing light distribution
for processing it on our computer, three main steps are necessary:
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incident light

image element I(u, v)

sensor plane

u

v

Figure 1.4 The geometry of the sensor elements is directly responsible for the spatial sam-
pling of the continuous image. In the simplest case, a plane of sensor elements are arranged
in an evenly spaced raster, and each element measures the amount of light that falls on it.

1. The continuous light distribution must be spatially sampled.

2. This resulting “discrete” function must then be sampled in the time domain
to create a single (still) image.

3. Finally, the resulting values must be quantized to a finite set of numeric
values so that they are representable within the computer.

Step 1: Spatial sampling

The spatial sampling of an image (that is, the conversion of the continuous
signal to its discrete representation) depends on the geometry of the sensor ele-
ments of the acquisition device (e. g., a digital or video camera). The individual
sensor elements are usually arranged as a rectangular array on the sensor plane
(Fig. 1.4). Other types of image sensors, which include hexagonal elements and
circular sensor structures, can be found in specialized camera products.

Step 2: Temporal sampling

Temporal sampling is carried out by measuring at regular intervals the amount
of light incident on each individual sensor element. The CCD2 or CMOS3

sensor in a digital camera does this by triggering an electrical charging process,

2 Charge-coupled device.
3 Complementary metal oxyde semiconductor.
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induced by the continuous stream of photons, and then measuring the amount
of charge that built up in each sensor element during the exposure time.

Step 3: Quantization of pixel values

In order to store and process the image values on the computer they are
commonly converted to a range of integer values (for example, 256 = 28 or
4096 = 212). Occasionally a floating-point scale is used in professional appli-
cations such as medical imaging. Conversion is carried out using an analog to
digital converter, which is typically embedded directly in the sensor electronics
or is performed by special interface hardware.

Images as discrete functions

The result of these three stages is a description of the image in the form of a
two-dimensional, ordered matrix of integers (Fig. 1.5). Stated more formally, a
digital image I is a two-dimensional function of integer coordinates N×N that
maps to a range of possible image (pixel) values P, such that

I(u, v) ∈ P and u, v ∈ N.

Now we are ready to transfer the image to our computer and save, compress,
store or manipulate it in any way we wish. At this point, it is no longer impor-
tant to us how the image originated since it is now a simple two-dimensional
array of numbers. But before moving on, we need a few more important defi-
nitions.

1.2.4 Image Size and Resolution

In the following, we assume rectangular images, and while that is a relatively
safe assumption, exceptions do exist. The size of an image is determined di-
rectly from the width M (number of columns) and the height N (number of
rows) of the image matrix I.

The resolution of an image specifies the spatial dimensions of the image in
the real world and is given as the number of image elements per measurement;
for example, dots per inch (dpi) or lines per inch (lpi) for print production,
or in pixels per kilometer for satellite images. In most cases, the resolution of
an image is the same in the horizontal and vertical directions, which means
that the image elements are square. Note that this is not always the case as,
for example, the image sensors of most current video cameras have non-square
pixels!

The spatial resolution of an image may not be relevant in many basic im-
age processing steps, such as point operations or filters. Precise resolution
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→

148 123 52 107 123 162 172 123 64 89 · · ·
147 130 92 95 98 130 171 155 169 163 · · ·
141 118 121 148 117 107 144 137 136 134 · · ·
82 106 93 172 149 131 138 114 113 129 · · ·
57 101 72 54 109 111 104 135 106 125 · · ·

138 135 114 82 121 110 34 76 101 111 · · ·
138 102 128 159 168 147 116 129 124 117 · · ·
113 89 89 109 106 126 114 150 164 145 · · ·
120 121 123 87 85 70 119 64 79 127 · · ·
145 141 143 134 111 124 117 113 64 112 · · ·

...
...

...
...

...
...

...
...

...
...

F (x, y) I(u, v)

Figure 1.5 Transformation of a continuous intensity function F (x, y) to a discrete digital
image I(u, v). The picture below shows the corresponding detail of the discrete intensity
image.

information is, however, important in cases where geometrical elements such as
circles need to be drawn on an image or when distances within an image need
to be measured. For these reasons, most image formats and software systems
designed for professional applications rely on precise information about image
resolution.

1.2.5 Image Coordinate System

In order to know which position on the image corresponds to which image ele-
ment, we need to impose a coordinate system. Contrary to normal mathemat-
ical conventions, in image processing the coordinate system is usually flipped
in the vertical direction; that is, the y-coordinate runs from top to bottom and
the origin lies in the upper left corner (Fig. 1.6). While this system has no
practical or theoretical advantage, and in fact may be a bit confusing in the
context of geometrical transformations, it is used almost without exception in
imaging software systems. The system supposedly has its roots in the original
design of television broadcast systems, where the picture rows are numbered
along the vertical deflection of the electron beam, which moves from the top
to the bottom of the screen. We start the numbering of rows and columns at
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ro

w
s

0

0 u

v

M−1

N−1

I(u, v)

Figure 1.6 Image coordinates. In digital image processing, it is common to use a coordinate
system where the origin (u = 0, v = 0) lies in the upper left corner. The coordinates u, v
represent the columns and the rows of the image, respectively. For an image with dimensions
M × N , the maximum column number is umax = M−1 and the maximum row number is
vmax = N−1.

zero for practical reasons, since in Java array indexing also begins at zero.

1.2.6 Pixel Values

The information within an image element depends on the data type used to
represent it. Pixel values are practically always binary words of length k so
that a pixel can represent any of 2k different values. The value k is called
the bit depth (or just “depth”) of the image. The exact bit-level layout of an
individual pixel depends on the kind of image; for example, binary, grayscale,
or RGB color. The properties of some common image types are summarized
below (also see Table 1.1).

Grayscale images (intensity images)

The image data in a grayscale image consist of a single channel that represents
the intensity, brightness, or density of the image. In most cases, only positive
values make sense, as the numbers represent the intensity of light energy or
density of film and thus cannot be negative, so typically whole integers in the
range of [0 . . . 2k−1] are used. For example, a typical grayscale image uses k = 8
bits (1 byte) per pixel and intensity values in the range of [0 . . . 255], where
the value 0 represents the minimum brightness (black) and 255 the maximum
brightness (white).

For many professional photography and print applications, as well as in
medicine and astronomy, 8 bits per pixel is not sufficient. Image depths of 12,
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Table 1.1 Bit depths of common image types and typical application domains.

Grayscale (Intensity Images):
Chan. Bits/Pix. Range Use

1 1 0. . .1 Binary image: document, illustration, fax
1 8 0. . .255 Universal: photo, scan, print
1 12 0. . .4095 High quality: photo, scan, print
1 14 0. . .16383 Professional: photo, scan, print
1 16 0. . .65535 Highest quality: medicine, astronomy

Color Images:
Chan. Bits/Pix. Range Use

3 24 [0. . .255]3 RGB, universal: photo, scan, print
3 36 [0. . .4095]3 RGB, high quality: photo, scan, print
3 42 [0. . .16383]3 RGB, professional: photo, scan, print
4 32 [0. . .255]4 CMYK, digital prepress

Special Images:
Chan. Bits/Pix. Range Use

1 16 −32768. . .32767 Integer values pos./neg., increased range
1 32 ±3.4 · 1038 Floating-point values: medicine, astronomy
1 64 ±1.8 · 10308 Floating-point values: internal processing

14, and even 16 bits are often encountered in these domains. Note that bit depth
usually refers to the number of bits used to represent one color component, not
the number of bits needed to represent an entire color pixel. For example, an
RGB-encoded color image with an 8-bit depth would require 8 bits for each
channel for a total of 24 bits, while the same image with a 12-bit depth would
require a total of 36 bits.

Binary images

Binary images are a special type of intensity image where pixels can only take
on one of two values, black or white. These values are typically encoded using
a single bit (0/1) per pixel. Binary images are often used for representing line
graphics, archiving documents, encoding fax transmissions, and of course in
electronic printing.

Color images

Most color images are based on the primary colors red, green, and blue (RGB),
typically making use of 8 bits for each color component. In these color images,
each pixel requires 3×8 = 24 bits to encode all three components, and the range
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of each individual color component is [0 . . . 255]. As with intensity images, color
images with 30, 36, and 42 bits per pixel are commonly used in professional ap-
plications. Finally, while most color images contain three components, images
with four or more color components are common in most prepress applications,
typically based on the subtractive CMYK (Cyan-Magenta-Yellow-Black) color
model (see Ch. 8).

Indexed or palette images constitute a very special class of color image. The
difference between an indexed image and a true color image is the number of
different colors (fewer for an indexed image) that can be used in a particular
image. In an indexed image, the pixel values are only indices (with a maximum
of 8 bits) onto a specific table of selected full-color values (see Sec. 8.1.1).

Special images

Special images are required if none of the above standard formats is sufficient
for representing the image values. Two common examples of special images are
those with negative values and those with floating-point values. Images with
negative values arise during image-processing steps, such as filtering for edge
detection (see Sec. 6.2.2), and images with floating-point values are often found
in medical, biological or astronomical applications, where extended numerical
range and precision are required. These special formats are mostly application-
specific and thus may be difficult to use with standard image-processing tools.

1.3 Image File Formats

While in this book we almost always consider image data as being already in
the form of a two-dimensional array—ready to be accessed by a program—,
in practice image data must first be loaded into memory from a file. Files
provide the essential mechanism for storing, archiving, and exchanging image
data, and the choice of the correct file format is an important decision. In
the early days of digital image processing (that is, before around 1985), most
software developers created a new custom file format for almost every new
application they developed. The result was a chaotic jumble of incompatible
file formats that for a long time limited the practical sharing of images between
research groups. Today there exist a wide range of standardized file formats,
and developers can almost always find at least one existing format that is
suitable for their application. Using standardized file formats vastly increases
the ease with which images can be exchanged and the likelihood that the images
will be readable by other software in the longterm. Yet for many projects the
selection of the right file format is not always simple, and compromises must be
made. The following are a few of the typical criteria that need to be considered
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when selecting an appropriate file format:

Type of image: These include black and white images, grayscale images,
scans from documents, color images, color graphics, and special images
such as those using floating-point image data. In many applications, such
as satellite imagery, the maximum image size is also an important factor.

Storage size and compression: Are the storage requirements of the file a
potential problem, and is the image compression method, especially when
considering lossy compression, appropriate?

Compatibility: How important is the exchange of image data? And for
archives, how important is the long-term machine readability of the data?

Application domain: In which domain will the image data be mainly used?
Are they intended for print, Web, film, computer graphics, medicine, or
astronomy?

1.3.1 Raster versus Vector Data

In the following, we will deal exclusively with file formats for storing raster
images; that is, images that contain pixel values arranged in a regular matrix
using discrete coordinates. In contrast, vector graphics represent geometric
objects using continuous coordinates, which are only rasterized once they need
to be displayed on a physical device such as a monitor or printer.

A number of standardized file formats exist for vector images, such as the
ANSI/ISO standardformat CGM (Computer Graphics Metafile), SVG (Scal-
able Vector Graphics)4 as well as proprietary formats such as DXF (Drawing
Exchange Format from AutoDesk), AI (Adobe Illustrator), PICT (QuickDraw
Graphics Metafilefrom Apple) and WMF/EMF (Windows Metafile and En-
hanced Metafile from Microsoft). Most of these formats can contain both vec-
tor data and raster images in the same file. The PS (PostScript) and EPS
(Encapsulated PostScript) formats from Adobe as well as the PDF (Portable
Document Format) also offer this possibility, though they are usually used for
printer output and archival purposes.5

1.3.2 Tagged Image File Format (TIFF)

This is a widely used and flexible file format designed to meet the professional
needs of diverse fields. It was originally developed by Aldus and later extended
4 www.w3.org/TR/SVG/.
5 Special variations of PS, EPS, and PDF files are also used as (editable) ex-

change formats for raster and vector data; for example, both Adobe’s Photoshop
(Photoshop-EPS) and Illustrator (AI).
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Figure 1.7 Structure of a typical TIFF file. A TIFF file consists of a header and a linked
list of image objects, three in this example. Each image object consists of a list of “tags”
with their corresponding entries followed by a pointer to the actual image data.

by Microsoft and currently Adobe. The format supports a range of grayscale,
indexed, and true color images, but also special image types with large-depth
integer and floating-point elements. A TIFF file can contain a number of images
with different properties. The TIFF specification provides a range of different
compression methods (LZW, ZIP, CCITT, and JPEG) and color spaces, so
that it is possible, for example, to store a number of variations of an image in
different sizes and representations together in a single TIFF file. The flexibility
of TIFF has made it an almost universal exchange format that is widely used
in archiving documents, scientific applications, digital photography, and digital
video production.

The strength of this image format lies within its architecture (Fig. 1.7),
which enables new image types and information blocks to be created by defining
new “tags”. In this flexibility also lies the weakness of the format, namely that
proprietary tags are not always supported and so the “unsupported tag” error
is sometimes still encountered when loading TIFF files. ImageJ also reads only
a few uncompressed variations of TIFF formats,6 and bear in mind that most

6 The ImageIO plugin offers support for a wider range of TIFF formats.
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popular Web browsers currently do not support TIFF either.

1.3.3 Graphics Interchange Format (GIF)

The Graphics Interchange Format (GIF) was originally designed by Com-
puServe in 1986 to efficiently encode the rich line graphics used in their dial-up
Bulletin Board System (BBS). It has since grown into one of the most widely
used formats for representing images on the Web. This popularity is largely
due to its early support for indexed color at multiple bit depths, LZW com-
pression, interlaced image loading, and ability to encode simple animations by
storing a number of images in a single file for later sequential display.

GIF is essentially an indexed image file format designed for color and gray
scale images with a maximum depth of 8 bits and consequently it does not
support true color images. It offers efficient support for encoding palettes
containing from 2 to 256 colors, one of which can be marked for transparency.
GIF supports color palletes in the range of 2 . . . 256, enabling pixels to be
encoded using fewer bits. As an example, the pixels of an image using 16
unique colors require only 4 bits to store the 16 possible color values [0 . . . 15].
This means that instead of storing each pixel using one byte, as done in other
bitmap formats, GIF can encode two 4-bit pixels into each 8-bit byte. This
results in a 50% storage reduction over the standard 8-bit indexed color bitmap
format.

The GIF file format is designed to efficiently encode “flat” or “iconic” images
consisting of large areas of the same color. It uses a lossless color quantization
(see Vol. 2 [6, Sec. 5]) as well as lossless LZW compression to efficiently encode
large areas of the same color. Despite the popularity of the format, when
developing new software, the PNG format, presented in the next section, should
be preferred, as it outperforms GIF by almost every metric.

1.3.4 Portable Network Graphics (PNG)

PNG (pronounced “ping”) was originally developed as a replacement for the GIF
file format when licensing issues7 arose because of its use of LZW compression.
It was designed as a universal image format especially for use on the Internet,
and, as such, PNG supports three different types of images:

– true color (with up to 3× 16 bits/pixel)

– grayscale (with up to 16 bits/pixel)

– indexed (with up to 256 colors)

7 Unisys’s U.S. LZW Patent No. 4,558,302 expired on June 20, 2003.
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Additionally, PNG includes an alpha channel for transparency with a maximum
depth of 16 bits. In comparison, the transparency channel of a GIF image is
only a single bit deep. While the format only supports a single image per file, it
is exceptional in that it allows images of up to 230×230 pixels. The format sup-
ports lossless compression by means of a variation of PKZIP (Phil Katz’s ZIP).
No lossy compression is available, as PNG was not designed as a replacement
for JPEG. Ultimately the PNG format meets or exceeds the capabilities of the
GIF format in every way except GIF’s ability to include multiple images in a
single file to create simple animations. Currently, PNG should be considered
the format of choice for representing uncompressed, lossless, true color images
for use on the Web.

1.3.5 JPEG

The JPEG standard defines a compression method for continuous grayscale
and color images, such as those that would arise from nature photography.
The format was developed by the Joint Photographic Experts Group (JPEG)8

with the goal of achieving an average data reduction of a factor of 1:16 and was
established in 1990 as ISO Standard IS-10918. Today it is the most widely used
image file format. In practice, JPEG achieves, depending on the application,
compression in the order of 1 bit per pixel (that is, a compression factor of
around 1:25) when compressing 24-bit color images to an acceptable quality
for viewing. The JPEG standard supports images with up to 256 color compo-
nents, and what has become increasingly important is its support for CMYK
images (see Sec. 8.2.5).

In the case of RGB images, the core of the algorithm consists of three main
steps:

1. Color conversion and down sampling: A color transformation from
RGB into the Y CbCr space (see Sec. 8.2.4) is used to separate the ac-
tual color components from the brightness Y component. Since the human
visual system is less sensitive to rapid changes in color, it is possible to com-
press the color components more, resulting in a significant data reduction,
without a subjective loss in image quality.

2. Cosine transform and quantization in frequency space: The im-
age is divided up into a regular grid of 8 blocks, and for each independent
block, the frequency spectrum is computed using the discrete cosine trans-
formation (see Vol. 2 [6, Ch. 9]). Next, the 64 spectral coefficients of each
block are quantized into a quantization table. The size of this table largely
determines the eventual compression ratio, and therefore the visual quality,

8 www.jpeg.org.
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of the image. In general, the high frequency coefficients, which are essen-
tial for the “sharpness” of the image, are reduced most during this step.
During decompression these high frequency values will be approximated by
computed values.

3. Lossless compression: Finally, the quantized spectral components data
stream is again compressed using a lossless method, such as arithmetic or
Huffman encoding, in order to remove the last remaining redundancy in
the data stream.

In addition to the “baseline” algorithm, several other variants are provided, in-
cluding a (rarely used) uncompressed version. The JPEG compression method
combines a number of different compression methods and is quite complex in
its entirety [30]. Implementing even the baseline version is nontrivial, so appli-
cation support for JPEG increased sharply once the Independent JPEG Group
(IJG)9 made available a reference implementation of the JPEG algorithm in
1991.

Drawbacks of the JPEG compression algorithm include its limitation to
8-bit images, its poor performance on non-photographic images such as line
art (for which it was not designed), its handling of abrupt transitions within
an image, and the striking artifacts caused by the 8 × 8 pixel blocks at high
compression rates. Figure 1.9 shows the results of compressing a section of a
grayscale image using different quality factors (Photoshop QJPG = 10, 5, 1).

JFIF file format

Despite common usage, JPEG is not a file format; it is “only” a method of
compressing image data. The actual JPEG standard only specifies the JPEG
codec (compressor and decompressor) and by design leaves the wrapping, or
file format, undefined.10 (Fig. 1.8). What is normally referred to as a JPEG
file is almost always an instance of a “JPEG File Interchange Format” (JFIF)
file, originally developed by Eric Hamilton and the IJG. The JFIF specifies a
file format based on the JPEG standard by defining the remaining necessary
elements of a file format. The JPEG standard leaves some parts of the codec
undefined for generality, and in these cases JFIF makes a specific choice. As
an example, in step 1 of the JPEG codec, the specific color space used in the
color transformation is not part of the JPEG standard, so it is specified by the
JFIF standard. As such, the use of different compression ratios for color and
luminance is a practical implementation decision specified by JFIF and is not
a part of the actual JPEG codec.
9 www.ijg.org.

10 To be exact, the JPEG standard only defines how to compress the individual
components and the structure of the JPEG stream.
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Figure 1.8 JPEG compression of an RGB image. Using a color space transformation, the
color components Cb, Cr are separated from the Y luminance component and subjected to
a higher rate of compression. Each of the three components are then run independently
through the JPEG compression pipeline and are merged into a single JPEG data stream.
Decompression follows the same stages in reverse order.

Exchangeable Image File Format (EXIF)

The Exchangeable Image File Format (EXIF) is a variant of the JPEG (JFIF)
format designed for storing image data originating on digital cameras, and to
that end it supports storing metadata such as the type of camera, date and
time, photographic parameters such as aperture and exposure time, as well as
geographical (GPS) data. EXIF was developed by the Japan Electronics and
Information Technology Industries Association (JEITA) as a part of the DCF11

guidelines and is used today by practically all manufacturers as the standard
format for storing digital images on memory cards. Internally, EXIF uses TIFF
to store the metadata information and JPEG to encode a thumbnail preview
image. The file structure is designed so that it can be processed by existing
JPEG/JFIF readers without a problem.

JPEG-2000

JPEG-2000, which is specified by an ISO-ITU standard (“Coding of Still Pic-
tures”),12 was designed to overcome some of the better-known weaknesses of
the traditional JPEG codec. Among the improvements made in JPEG-2000

11 Design Rule for Camera File System.
12 www.jpeg.org/JPEG2000.htm.
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(a) Original
(75.08 kB)

(b) QJPG = 10
(11.40 kB)

(c) QJPG = 5
(7.24 kB)

(d) QJPG = 1
(5.52 kB)

Figure 1.9 Artifacts arising from JPEG compression. A section of the original image (a)
and the results of JPEG compression at different quality factors: QJPG = 10 (b), QJPG = 5
(c), and QJPG = 1 (d). In parentheses are the resulting file sizes for the complete (dimensions
274 × 274) image.
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P2
# oie.pgm
17 7
255
0 13 13 13 13 13 13 13 0 0 0 0 0 0 0 0 0
0 13 0 0 0 0 0 13 0 7 7 0 0 81 81 81 81
0 13 0 7 7 7 0 13 0 7 7 0 0 81 0 0 0
0 13 0 7 0 7 0 13 0 7 7 0 0 81 81 81 0
0 13 0 7 7 7 0 13 0 7 7 0 0 81 0 0 0
0 13 0 0 0 0 0 13 0 7 7 0 0 81 81 81 81
0 13 13 13 13 13 13 13 0 0 0 0 0 0 0 0 0

Figure 1.10 Example of a PGM file in human-readable text format (top) and the corre-
sponding grayscale image (below).

are the use of larger, 64 × 64 pixel blocks and replacement of the discrete
cosine transform by the wavelet transform. These and other improvements
enable it to achieve significantly higher compression ratios than JPEG—up to
0.25 bit/pixel on RGB color images. Despite these advantages, JPEG-2000 is
supported by only a few image-processing applications and Web browsers.13

1.3.6 Windows Bitmap (BMP)

The Windows Bitmap (BMP) format is a simple, and under Windows widely
used, file format supporting grayscale, indexed, and true color images. It also
supports binary images, but not in an efficient manner since each pixel is stored
using an entire byte. Optionally, the format supports simple lossless, run-
length-based compression. While BMP offers storage for a similar range of
image types as TIFF, it is a much less flexible format.

1.3.7 Portable Bitmap Format (PBM)

The PBM family14 consists of a series of very simple file formats that are
exceptional in that they can be optionally saved in a human-readable text
format that can be easily read in a program or simply edited using a text
editor. A simple PGM image is shown in Fig. 1.10. The characters P2 in
the first line indicate that the image is a PGM (“plain”) file stored in human-
readable format. The next line shows how comments can be inserted directly
into the file by beginning the line with the # symbol. Line 3 gives the image’s
13 At this time, ImageJ does not offer JPEG-2000 support.
14 http://netpbm.sourceforge.net.



1.3 Image File Formats 21

dimensions, in this case width 17 and height 7, and line 4 defines the maximum
pixel value, in this case 255. The remaining lines give the actual pixel values.
This format makes it easy to create and store image data without any explicit
imaging API, since it requires only basic text I/O that is available in any
programming environment.

In addition, the format supports a much more machine-optimized “raw” out-
put mode in which pixel values are stored as bytes. PBM is widely used under
Unix and supports the following formats: PBM (portable bitmap) for binary
bitmaps, PGM (portable graymap) for grayscale images, and PNM (portable
any map) for color images. PGM images can be opened using ImageJ.

1.3.8 Additional File Formats

For most practical applications, one of the following file formats is sufficient:
TIFF as a universal format supporting a wide variety of uncompressed images
and JPEG/JFIF for digital color photos when storage size is a concern, and
there is either PNG or GIF for when an image is destined for use on the Web. In
addition, there exist countless other file formats, such as those encountered in
legacy applications or in special application areas where they are traditionally
used. A few of the more commonly encountered types are:

– RGB, a simple format from Silicon Graphics.

– RAS (Sun Raster Format), a simple format from Sun Microsystems.

– TGA (Truevision Targa File Format) was the first 24-bit file format for
PCs. It supports numerous image types with 8- to 32-bit depths and is
still used in medicine and biology.

– XBM/XPM (X-Windows Bitmap/Pixmap) is a family of ASCII-encoded
formats used in X-Windows and is similar to PBM/PGM.

1.3.9 Bits and Bytes

Today, opening, reading, and writing image files is mostly carried out by means
of existing software libraries. Yet sometimes you still need to deal with the
structure and contents of an image file at the byte level, for instance when you
need to read an unsupported file format or when you receive a file where the
format of the data is unknown.

Big endian and little endian

In the standard model of a computer, a file consists of a simple sequence of
8-bit bytes, and a byte is the smallest entry that can be read or written to a
file. In contrast, the image elements as they are stored in memory are usually
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larger then a byte; for example, a 32-bit int value (= 4 bytes) is used for an
RGB color pixel. The problem is that storing the four individual bytes that
make up the image data can be done in different ways. In order to correctly
recreate the original color pixel, we must naturally know the order in which
bytes in the file are arranged.

Consider a 32-bit int number z with the binary and hexadecimal value15

z = 00010010
︸ ︷︷ ︸

12H
(MSB)

·00110100·01010110·01111000
︸ ︷︷ ︸

78H
(LSB)

B = 12345678H . (1.2)

Then 00010010B = 12H is the value of the most significant byte (MSB) and
01111000B = 78H the least significant byte (LSB). When the individual bytes
in the file are arranged in order from MSB to LSB when they are saved, we call
the ordering “big endian”, and when in the opposite direction, “little endian”.
Thus the 32-bit value z from Eqn. (1.2) could be stored in one of the following
two modes:

Ordering Byte Sequence 1 2 3 4

Big Endian MSB → LSB 12H 34H 56H 78H

Little Endian LSB → MSB 78H 56H 34H 12H

Even though correctly ordering the bytes should essentially be the responsi-
bility of the operating and file system, in practice it actually depends on the
architecture of the processor.16 Processors from the Intel family (e.g., x86, Pen-
tium) are traditionally little endian, and processors from other manufacturers
(e.g., IBM, MIPS, Motorola, Sun) are big endian.17 Big endian is also called
network byte ordering since in the IP protocol the data bytes are arranged in
MSB to LSB order during transmission.

To correctly interpret image data with multi-byte pixel values, it is necessary
to know the byte ordering used when creating it. In most cases, this is fixed
and defined by the file format, but in some file formats, for example TIFF, it
is variable and depends on a parameter given in the file header (see Table 1.2).

File headers and signatures

Practically all image file formats contain a data header consisting of important
information about the layout of the image data that follows. Values such as
the size of the image and the encoding of the pixels are usually present in the

15 The decimal value of z is 305419896.
16 At least the ordering of the bits within a byte is almost universally uniform.
17 In Java, this problem does not arise since internally all implementations of the

Java Virtual Machine use big endian ordering.
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Table 1.2 Signatures of various image file formats. Most image file formats can be identified
by inspecting the first bytes of the file. These byte sequences, or signatures, are listed in
hexadecimal (0x..) form and as ASCII text ( indicates a nonprintable character).

Format Signature Format Signature

PNG 0x89504e47 PNG BMP 0x424d BM
JPEG/JFIF 0xffd8ffe0 GIF 0x4749463839 GIF89
TIFFlittle 0x49492a00 II* Photoshop 0x38425053 8BPS
TIFFbig 0x4d4d002a MM * PS/EPS 0x25215053 %!PS

file header to make it easier for programmers to allocate the correct amount
of memory for the image. The size and structure of this header are usually
fixed, but in some formats such as TIFF, the header can contain pointers to
additional subheaders.

In order to interpret the information in the header, it is necessary to know
the file type. In many cases, this can be determined by the file name extension
(e.g., .jpg or .tif), but since these extensions are not standardized and can
be changed at any time by the user, they are not a reliable way of determining
the file type. Instead, many file types can be identified by their embedded
“signature”, which is often the first two bytes of the file. Signatures from a
number of popular image formats are given in Table 1.2. Most image formats
can be determined by inspecting the first few bytes of the file. These bytes, or
signatures, are listed in hexadecimal (0x..) form and as ASCII text. A PNG
file always begins with the 4-byte sequence 0x89, 0x50, 0x4e, 0x47, which is the
“magic number” 0x89 followed by the ASCII sequence “PNG”. Sometimes the
signature not only identifies the type of image file but also contains information
about its encoding; for instance, in TIFF the first two characters are either II
for “Intel” or MM for “Motorola” and indicate the byte ordering (little endian or
big endian, respectively) of the image data in the file.

1.4 Exercises

Exercise 1.1
Determine the actual physical measurement in millimeters of an image with
1400 rectangular pixels and a resolution of 72 dpi.

Exercise 1.2
A camera with a focal length of f = 50 mm is used to take a photo of
a vertical column that is 12 m high and is 95 m away from the camera.
Determine its height in the image in mm (a) and the number of pixels (b)
assuming the camera has a resolution of 4000 dots per inch (dpi).
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Exercise 1.3
The image sensor of a certain digital camera contains 2016×3024 pixels. The
geometry of this sensor is identical to that of a traditional 35 mm camera
(with an image size of 24 × 36 mm) except that it is 1.6 times smaller.
Compute the resolution of this digital sensor in dots per inch.

Exercise 1.4
Assume the camera geometry described in Exercise 1.3 combined with a
lens with focal length f = 50 mm. What amount of blurring (in pixels)
would be caused by a uniform, 0.1◦ horizontal turn of the camera during
exposure? Recompute this for f = 300 mm. Decide if the extent of the
blurring also depends on the distance of the object.

Exercise 1.5
Determine the number of bytes necessary to store an uncompressed binary
image of size 4000× 3000 pixels.

Exercise 1.6
Determine the number of bytes necessary to store an uncompressed RGB
color image of size 640 × 480 pixels using 8, 10, 12, and 14 bits per color
channel.

Exercise 1.7
Given a black and white television with a resolution of 625×512 8-bit pixels
and a frame rate of 25 images per second: (a) How may different images
can this device ultimately display, and how long would you have to watch
it (assuming no sleeping) in order to see every possible image at least once?
(b) Perform the same calculation for a color television with 3 × 8 bits per
pixel.

Exercise 1.8
Show that the projection of a 3D straight line in a pinhole camera (assuming
perspective projection as defined in Eqn. (1.1)) is again a straight line in
the resulting 2D image.

Exercise 1.9
Using Fig. 1.10 as a model, use a text editor to create a PGM file, disk.pgm,
containing an image of a bright circle. Open your image with ImageJ and
then try to find other programs that can open and display the image.
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Until a few years ago, the image-processing community was a relatively
small group of people who either had access to expensive commercial image-
processing tools or, out of necessity, developed their own software packages.
Usually such home-brew environments started out with small software compo-
nents for loading and storing images from and to disk files. This was not always
easy because often one had to deal with poorly documented or even proprietary
file formats. An obvious (and frequent) solution was to simply design a new
image file format from scratch, usually optimized for a particular field, appli-
cation, or even a single project, which naturally led to a myriad of different file
formats, many of which did not survive and are forgotten today [30, 32]. Nev-
ertheless, writing software for converting between all these file formats in the
1980s and early 1990s was an important business that occupied many people.
Displaying images on computer screens was similarly difficult, because there
was only marginal support by operating systems, APIs, and display hardware,
and capturing images or videos into a computer was close to impossible on
common hardware. It thus may have taken many weeks or even months before
one could do just elementary things with images on a computer and finally do
some serious image processing.

Fortunately, the situation is much different today. Only a few common
image file formats have survived (see also Sec. 1.3), which are readily handled
by many existing tools and software libraries. Most standard APIs for C/C++,
Java, and other popular programming languages already come with at least
some basic support for working with images and other types of media data.
While there is still much development work going on at this level, it makes our

W. Burger, M.J. Burge, Principles of Digital Image Processing, Undergraduate Topics  
in Computer Science, DOI 10.1007/978-1-84800-191-6_2, Springer-Verlag London Limited, 2009 ©
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job a lot easier and, in particular, allows us to focus on the more interesting
aspects of digital imaging.

2.1 Image Manipulation and Processing

Traditionally, software for digital imaging has been targeted at either manip-
ulating or processing images, either for practitioners and designers or software
programmers, with quite different requirements.

Software packages for manipulating images, such as Adobe Photoshop, Corel
Paint and others, usually offer a convenient user interface and a large number
of readily available functions and tools for working with images interactively.
Sometimes it is possible to extend the standard functionality by writing scripts
or adding self-programmed components. For example, Adobe provides a special
API1 for programming Photoshop “plugins” in C++, though this is a nontrivial
task and certainly too complex for nonprogrammers.

In contrast to the category of tools above, digital image processing software
primarily aims at the requirements of algorithm and software developers, sci-
entists, and engineers working with images, where interactivity and ease of use
are not the main concerns. Instead, these environments mostly offer compre-
hensive and well-documented software libraries that facilitate the implementa-
tion of new image-processing algorithms, prototypes and working applications.
Popular examples are Khoros/VisiQuest,2 IDL,3 MatLab,4 and ImageMagick,5

among many others. In addition to the support for conventional programming
(typically with C/C++), many of these systems provide dedicated scripting
languages or visual programming aides that can be used to construct even
highly complex processes in a convenient and safe fashion.

In practice, image manipulation and image processing are of course closely
related. Although Photoshop, for example, is aimed at image manipulation
by nonprogrammers, the software itself implements many traditional image-
processing algorithms. The same is true for many Web applications using
server-side image processing, such as those based on ImageMagick. Thus image
processing is really at the base of any image manipulation software and certainly
not an entirely different category.

1 www.adobe.com/products/photoshop/.
2 www.accusoft.com/imaging/visiquest/.
3 www.rsinc.com/idl/.
4 www.mathworks.com.
5 www.imagemagick.org.
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2.2 ImageJ Overview

ImageJ, the software that is used for this book, is a combination of both worlds
discussed above. It offers a set of ready-made tools for viewing and interactive
manipulation of images but can also be extended easily by writing new software
components in a “real” programming language. ImageJ is implemented entirely
in Java and is thus largely platform-independent, running without modification
under Windows, MacOS, or Linux. Java’s dynamic execution model allows new
modules (“plugins”) to be written as independent pieces of Java code that can
be compiled, loaded, and executed “on the fly” in the running system without
the need to even restart ImageJ. This quick turnaround makes ImageJ an ideal
platform for developing and testing new image-processing techniques and al-
gorithms. Since Java has become extremely popular as a first programming
language in many engineering curricula, it is usually quite easy for students
to get started in ImageJ without spending much time to learn another pro-
gramming language. Also, ImageJ is freely available, so students, instructors,
and practitioners can install and use the software legally and without license
charges on any computer. ImageJ is thus an ideal platform for education and
self-training in digital image processing but is also in regular use for serious
research and application development at many laboratories around the world,
particularly in biological and medical imaging.

ImageJ was (and still is) developed by Wayne Rasband [34] at the U.S. Na-
tional Institutes of Health (NIH), originally as a substitute for its predecessor,
NIH-Image, which was only available for the Apple Macintosh platform. The
current version of ImageJ, updates, documentation, the complete source code,
test images, and a continuously growing collection of third-party plugins can
be downloaded from the ImageJ Website.6 Installation is simple, with detailed
instructions available online, in Werner Bailer’s programming tutorial [3], and
in the authors’ ImageJ Short Reference [5].

To give a structured orientation on ImageJ, this short reference7 is grouped
into different task areas and concentrates on the key functionalities. Some
specific rarely used functions were deliberately omitted, but they can of course
be found in the ImageJ documentation and the (online) source code.

2.2.1 Key Features

As a pure Java application, ImageJ should run on any computer for which a
current Java runtime environment (JRE) exists. ImageJ comes with its own
Java runtime, so Java need not be installed separately on the computer. Under

6 http://rsb.info.nih.gov/ij/.
7 Available at www.imagingbook.com.
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Figure 2.1 Wayne Rasband (right), author of
ImageJ, at the 1st ImageJ Conference 2006 (pic-
ture courtesy of Marc Seil, CRP Henri Tudor,
Luxembourg).

the usual restrictions, ImageJ can be run as a Java “applet” within a Web
browser, though it is mostly used as a stand-alone application. It is sometimes
also used on the server side in the context of Java-based Web applications
(see [3] for details). In summary, the key features of ImageJ are:

– A set of ready-to-use, interactive tools for creating, visualizing, editing,
processing, analyzing, loading, and storing images, with support for several
common file formats. ImageJ also provides “deep” 16-bit integer images,
32-bit floating-point images, and image sequences (“stacks”).

– A simple plugin mechanism for extending the core functionality of ImageJ
by writing (usually small) pieces of Java code. All coding examples shown
in this book are based on such plugins.

– A macro language and the corresponding interpreter, which make it easy to
implement larger processing blocks by combining existing functions without
any knowledge of Java. Macros are not discussed in this book, but details
can be found in ImageJ’s online documentation.8

2.2.2 Interactive Tools

When ImageJ starts up, it first opens its main window (Fig. 2.2), which includes
the following menu entries:

– File: opening, saving and creating new images.

– Edit: editing and drawing in images.

– Image: modifying and converting images, geometric operations.

8 http://rsb.info.nih.gov/ij/developer/macro/macros.html.
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Figure 2.2 ImageJ main window (under Windows XP).

– Process: image processing, including point operations, filters, and arith-
metic operations between multiple images.

– Analyze: statistical measurements on image data, histograms, and special
display formats.

– Plugin: editing, compiling, executing, and managing user-defined plugins.

The current version of ImageJ can open images in several common formats,
including TIFF (uncompressed only), JPEG, GIF, PNG, and BMP, as well as
the formats DICOM9 and FITS,10 which are popular in medical and astro-
nomical image processing, respectively. As is common in most image-editing
programs, all interactive operations are applied to the currently active image,
i. e., the image most recently selected by the user. ImageJ provides a sim-
ple (single-step) “undo” mechanism for most operations, which can also revert
modifications effected by user-defined plugins.

2.2.3 ImageJ Plugins

Plugins are small Java modules for extending the functionality of ImageJ by
using a simple standardized interface (Fig. 2.3). Plugins can be created, edited,
compiled, invoked, and organized through the Plugin menu in ImageJ’s main
window (Fig. 2.2). Plugins can be grouped to improve modularity, and plugin

9 Digital Imaging and Communications in Medicine.
10 Flexible Image Transport System.
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Figure 2.3 ImageJ software structure (simplified). ImageJ is based on the Java core system
and depends in particular upon Java’s Advanced Windowing Toolkit (AWT) for the imple-
mentation of the user interface and the presentation of image data. Plugins are small Java
classes that extend the functionality of the basic ImageJ system.

commands can be arbitrarily placed inside the main menu structure. Also,
many of ImageJ’s built-in functions are actually implemented as plugins them-
selves.

Technically speaking, plugins are Java classes that implement a particu-
lar interface specification defined by ImageJ. There are two different kinds of
plugins:

– PlugIn: requires no image to be open to start a plugin.

– PlugInFilter: the currently active image is passed to the plugin when
started.

Throughout the examples in this book, we almost exclusively use plugins of
the second type (PlugInFilter) for implementing image-processing operations.
The interface specification requires that any plugin of type PlugInFiltermust
at least implement two methods, setup() and run(), with the following sig-
natures:

int setup (String arg, ImagePlus im )
When the plugin is started, ImageJ calls this method first to verify that
the capabilities of this plugin match the target image. setup() returns a
vector of binary flags (packaged as a 32-bit int value) that describes the
plugin’s properties.
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void run (ImageProcessor ip )
This method does the actual work for this plugin. It is passed a single
argument ip, an object of type ImageProcessor, which contains the image
to be processed and all relevant information about it. The run() method
returns no result value (void) but may modify the passed image and create
new images.

2.2.4 A First Example: Inverting an Image

Let us look at a real example to quickly illustrate this mechanism. The task of
our first plugin is to invert any 8-bit grayscale image to turn a positive image
into a negative. As we shall see later, inverting the intensity of an image is
a typical point operation, which is discussed in detail in Chapter 4. In Im-
ageJ, 8-bit grayscale images have pixel values ranging from 0 (black) to 255
(white), and we assume that the width and height of the image are M and N ,
respectively. The operation is very simple: the value of each image pixel I(u, v)
is replaced by its inverted value,

I(u, v) ← 255− I(u, v),

for all image coordinates (u, v), with u = 0 . . .M−1 and v = 0 . . .N−1.

The plugin class: My_Inverter

We decide to name our first plugin “My_Inverter”, which is both the name of
the Java class and the name of the source file that contains it (Prog. 2.1). The
underscore character (“_”) in the name causes ImageJ to recognize this class
as a plugin and to insert it automatically into the menu list at startup. The
Java source code in file My_Inverter.java contains a few import statements,
followed by the definition of the class My_Inverter, which implements the
PlugInFilter interface (because it will be applied to an existing image).

The setup() method

When a plugin of type PlugInFilter is executed, ImageJ first invokes its
setup() method to obtain information about the plugin itself. In this example,
setup() only returns the value DOES_8G (a static int constant specified by the
PlugInFilter interface), indicating that this plugin can handle 8-bit grayscale
images (Prog. 2.1, line 8). The parameters arg and im of the setup() method
are not used in this case (see also Exercise 2.4).
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1 import ij.ImagePlus;
2 import ij.plugin.filter.PlugInFilter;
3 import ij.process.ImageProcessor;
4
5 public class My_Inverter implements PlugInFilter {
6
7 public int setup (String arg, ImagePlus im) {
8 return DOES_8G; // this plugin accepts 8-bit grayscale images
9 }

10
11 public void run (ImageProcessor ip) {
12 int w = ip.getWidth();
13 int h = ip.getHeight();
14
15 // iterate over all image coordinates
16 for (int u = 0; u < w; u++) {
17 for (int v = 0; v < h; v++) {
18 int p = ip.getPixel(u, v);
19 ip.putPixel(u, v, 255-p); // invert
20 }
21 }
22 }
23
24 } // end of class My_Inverter

Program 2.1 ImageJ plugin for inverting 8-bit grayscale images (file My_Inverter.java).

The run() method

As mentioned above, the run() method of a PlugInFilter plugin receives an
object (ip) of type ImageProcessor, which contains the image to be processed
and all relevant information about it. First, we use the ImageProcessor meth-
ods getWidth() and getHeight() to query the size of the image referenced
by ip (lines 12–13). Then we use two nested for loops (with loop variables u,
v for the horizontal and vertical coordinates, respectively) to iterate over all
image pixels (lines 16–17). For reading and writing the pixel values, we use
two additional methods of the class ImageProcessor:

int getPixel (int u, int v )
Returns the pixel value at position (u, v ) or zero if (u, v ) is outside the
image bounds.

void putPixel (int u, int v, int a )
Sets the pixel value at position (u, v ) to the new value a. Does nothing if
(u, v ) is outside the image bounds.

Details on these and other methods can be found in the ImageJ reference [5]
(available online at the books support site).
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If we are sure that no coordinates outside the image bounds are ever accessed
(as in My_Inverter in Prog. 2.1) and the inserted pixel values are guaranteed
not to exceed the image processor’s range, we can use the slightly faster meth-
ods get() and set() in place of getPixel() and putPixel(), respectively.
The most efficient way to process the image is to avoid read/write methods
altogether and directly access the elements of the corresponding pixel array.11

Editing, compiling, and executing the plugin

The source code of our plugin should be stored in a file

My_Inverter.java

located within <ij>/plugins/12 or an immediate subdirectory. New plugin
files can be created with ImageJ’s Plugins→New... menu. ImageJ even pro-
vides a built-in Java editor for writing plugins, which is available through the
Plugins→Edit... menu but unfortunately is of little use for serious program-
ming. A better alternative is to use a modern editor or a professional Java
programming environment, such as Eclipse,13 NetBeans,14 or JBuilder,15 all of
which are freely available.

For compiling plugins (to Java bytecode), ImageJ comes with its own Java
compiler as part of its runtime environment.16 To compile and execute the new
plugin, simply use the menu

Plugins→Compile and Run...

Compilation errors are displayed in a separate log window. Once the plugin is
compiled, the corresponding .class file is automatically loaded and the plugin
is applied to the currently active image. An error message is displayed if no
images are open or if the current image cannot be handled by that plugin.

At startup, ImageJ automatically loads all correctly named plugins found
in the <ij>/plugins/ directory (or any immediate subdirectory) and installs
them in its Plugins menu. These plugins can be executed immediately without
any recompilation. References to plugins can also be placed manually with the

Plugins→Shortcuts→Install Plugin...

11 See Sec. 7.6 of the ImageJ Short Reference [5].
12 <ij> denotes ImageJ’s installation directory, and <ij>/plugins/ is the default

plugins path, which can be set to any other directory.
13 www.eclipse.org.
14 www.netbeans.org.
15 www.borland.com.
16 Currently only for Windows; for MacOS and Linux, consult the ImageJ installation

manual.
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command at any other position in the ImageJ menu tree. Sequences of plugin
calls and other ImageJ commands may be recorded as macro programs with
Plugins→Macros→Record.

Displaying and “undoing” results

Our first plugin in Prog. 2.1 did not create a new image but “destructively”
modified the target image. This is not always the case, but plugins can also
create additional images or compute only statistics, without modifying the
original image at all. It may be surprising, though, that our plugin contains
no commands for displaying the modified image. This is done automatically
by ImageJ whenever it can be assumed that the image passed to a plugin
was modified.17 In addition, ImageJ automatically makes a copy (“snapshot”)
of the image before passing it to the run() method of a PlugInFilter-type
plugin. This feature makes it possible to restore the original image (with the
Edit→Undo menu) after the plugin has finished without any explicit precautions
in the plugin code.

2.3 Additional Information on ImageJ and Java

In the following chapters, we mostly use concrete plugins and Java code to
describe algorithms and data structures. This not only makes these examples
immediately applicable, but they should also help in acquiring additional skills
for using ImageJ in a step-by-step fashion. To keep the text compact, we often
describe only the run() method of a particular plugin and additional class and
method definitions, if they are relevant in the given context. The complete
source code for these examples can of course be downloaded from the book’s
supporting Website.18

2.3.1 Resources for ImageJ

The short reference in [5] contains an overview of ImageJ’s main capabilities and
a short description of its key classes, interfaces, and methods. The complete
and most current API reference, including source code, tutorials, and many
example plugins, can be found on the official ImageJ Website. Another great
source for any serious plugin programming is the tutorial by Werner Bailer [3].

17 No automatic redisplay occurs if the NO_CHANGES flag is set in the return value of
the plugin’s setup() method.

18 www.imagingbook.com.
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2.3.2 Programming with Java

While this book does not require extensive Java skills from its readers, some
elementary knowledge is essential for understanding or extending the given
examples. There is a huge and still-growing number of introductory textbooks
on Java, such as [2, 11, 13] and many others. For readers with programming
experience who have not worked with Java before, we particularly recommend
some of the tutorials on Sun’s Java Website.19 Also, in Appendix B of this
book, readers will find a small compilation of specific Java topics that cause
frequent problems or programming errors.

2.4 Exercises
Exercise 2.1
Install the current version of ImageJ on your computer and make yourself
familiar with the built-in functions (open, convert, edit, and save images).

Exercise 2.2
Write a new ImageJ plugin that reflects a grayscale image horizontally (or
vertically) using My_Inverter.java (Prog. 2.1) as a template. Test your
new plugin with appropriate images of different sizes (odd, even, extremely
small) and inspect the results carefully.

Exercise 2.3
Create an ImageJ plugin for 8-bit grayscale images of arbitrary size that
paints a white frame (with pixel value 255) 10 pixels wide into the image
(without increasing its size). Make sure that this plugin also works for very
small images.

Exercise 2.4
Write a new ImageJ plugin that shifts an 8-bit grayscale image horizontally
and cyclically until the original state is reached again. To display the mod-
ified image after each shift, a reference to the corresponding ImagePlus ob-
ject is required (ImageProcessor has no display methods). The ImagePlus
object is only accessible to the plugin’s setup() method, which is automat-
ically called before the run() method. Modify the definition in Prog. 2.1 to
keep a reference and to redraw the ImagePlus object as follows:

1 public class XY_plugin implements PlugInFilter {
2
3 ImagePlus im; // instance variable of this plugin object
4
5 public int setup(String arg, ImagePlus im) {
6 this.im = im; // keep a reference to the image im

19 http://java.sun.com/docs/books/tutorial/.
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7 return DOES_8G;
8 }
9

10 public void run(ImageProcessor ip) {
11 ... // use ip to modify the image
12 im.updateAndDraw(); // use im to redisplay the image
13 ...
14 }
15
16 } // end of class XY_plugin



3
Histograms

Histograms are used to depict image statistics in an easily interpreted visual
format. With a histogram, it is easy to determine certain types of problems
in an image, for example, it is simple to conclude if an image is properly
exposed by visual inspection of its histogram. In fact, histograms are so useful
that modern digital cameras often provide a real-time histogram overlay on
the viewfinder (Fig. 3.1) to help prevent taking poorly exposed pictures. It
is important to catch errors like this at the image capture stage because poor
exposure results in a permanent loss of information which it is not possible to
recover later using image-processing techniques. In addition to their usefulness
during image capture, histograms are also used later to improve the visual
appearance of an image and as a “forensic” tool for determining what type of
processing has previously been applied to an image.

3.1 What Is a Histogram?

Histograms in general are frequency distributions, and histograms of images
describe the frequency of the intensity values that occur in an image. This
concept can be easily explained by considering an old-fashioned grayscale image
like the one shown in Fig. 3.2. A histogram h for a grayscale image I with
intensity values in the range I(u, v) ∈ [0, K−1] would contain exactly K entries,
where for a typical 8 bit grayscale image, K = 28 = 256. Each individual
histogram entry is defined as

h(i) = the number of pixels in I with the intensity value i,

W. Burger, M.J. Burge, Principles of Digital Image Processing, Undergraduate Topics  
in Computer Science, DOI 10.1007/978-1-84800-191-6_3, Springer-Verlag London Limited, 2009 ©
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Figure 3.1 Digital camera back display showing a histogram overlay.

Figure 3.2 An 8-bit grayscale image and a histogram depicting the frequency distribution
of its 256 intensity values.

for all 0 ≤ i < K. More formally stated,

h(i) = card
{

(u, v) | I(u, v) = i
}

.1 (3.1)

Therefore h(0) is the number of pixels with the value 0, h(1) the number of
pixels with the value 1, and so forth. Finally h(255) is the number of all
white pixels with the maximum intensity value 255 = K−1. The result of the
histogram computation is a one-dimensional vector h of length K. Figure 3.3
gives an example for an image with K = 16 possible intensity values.

Since a histogram encodes no information about where each of its individ-
ual entries originated in the image, histograms contain no information about
the spatial arrangement of pixels in the image. This is intentional since the
1 card{. . .} denotes the number of elements (“cardinality”) in a set (see also p. 233).
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Figure 3.3 Histogram vector for an image with K = 16 possible intensity values. The
indices of the vector element i = 0 . . . 15 represent intensity values. The value of 10 at index
2 means that the image contains 10 pixels of intensity value 2.

Figure 3.4 Three very different images with identical histograms.

main function of a histogram is to provide statistical information, (e.g., the
distribution of intensity values) in a compact form. Is it possible to reconstruct
an image using only its histogram? That is, can a histogram be somehow “in-
verted”? Given the loss of spatial information, in all but the most trivial cases,
the answer is no. As an example, consider the wide variety of images you could
construct using the same number of pixels of a specific value. These images
would appear different but have exactly the same histogram (Fig. 3.4).

3.2 Interpreting Histograms

A histogram depicts problems that originate during image acquisition, such as
those involving contrast and dynamic range, as well as artifacts resulting from
image-processing steps that were applied to the image. Histograms are often
used to determine if an image is making effective use of its intensity range
(Fig. 3.5) by examining the size and uniformity of the histogram’s distribution.
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alow ahigh

Contrast Range

linear logarithmic

Figure 3.5 The effective intensity range. The graph depicts how often a pixel value occurs
linearly (black bars) and logarithmically (gray bars). The logarithmic form makes even
relatively low occurrences, which can be very important in the image, readily apparent.

3.2.1 Image Acquisition

Exposure

Histograms make classic exposure problems readily apparent. As an example, a
histogram where a large span of the intensity range at one end is largely unused
while the other end is crowded with high-value peaks (Fig. 3.6) is representative
of an improperly exposed image.

(a) (b) (c)

Figure 3.6 Exposure errors are readily apparent in histograms. Underexposed (a), properly
exposed (b), and overexposed (c) photographs.
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(a) (b) (c)

Figure 3.7 How changes in contrast affect a histogram: low contrast (a), normal con-
trast (b), high contrast (c).

Contrast

Contrast is understood as the range of intensity values effectively used within a
given image, that is the difference between the image’s maximum and minimum
pixel values. A full-contrast image makes effective use of the entire range
of available intensity values from a = amin . . . amax = 0 . . .K− 1 (black to
white). Using this definition, image contrast can be easily read directly from
the histogram. Figure 3.7 illustrates how varying the contrast of an image
affects its histogram.

Dynamic range

The dynamic range of an image is, in principle, understood as the number of
distinct pixel values in an image. In the ideal case, the dynamic range encom-
passes all K usable pixel values, in which case the value range is completely
utilized. When an image has an available range of contrast a = alow . . . ahigh,
with

amin < alow and ahigh < amax,

then the maximum possible dynamic range is achieved when all the intensity
values lying in this range are utilized (i. e., appear in the image; Fig. 3.8).

While the contrast of an image can be increased by transforming its existing
values so that they utilize more of the underlying value range available, the dy-
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(a) (b) (c)

Figure 3.8 How changes in dynamic range affect a histogram: high dynamic range (a),
low dynamic range with 64 intensity values (b), extremely low dynamic range with only 6
intensity values (c).

namic range of an image can only be increased by introducing artificial (that is,
not originating with the image sensor) values using methods such as interpola-
tion (see Vol. 2 [6, Sec. 10.3]). An image with a high dynamic range is desirable
because it will suffer less image-quality degradation during image processing
and compression. Since it is not possible to increase dynamic range after im-
age acquisition in a practical way, professional cameras and scanners work at
depths of more than 8 bits, often 12–14 bits per channel, in order to provide
high dynamic range at the acquisition stage. While most output devices, such
as monitors and printers, are unable to actually reproduce more than 256 dif-
ferent shades, a high dynamic range is always beneficial for subsequent image
processing or archiving.

3.2.2 Image Defects

Histograms can be used to detect a wide range of image defects that originate
either during image acquisition or as the result of later image processing. Since
histograms always depend on the visual characteristics of the scene captured
in the image, no single “ideal” histogram exists. While a given histogram may
be optimal for a specific scene, it may be entirely unacceptable for another.
As an example, the ideal histogram for an astronomical image would likely be
very different from that of a good landscape or portrait photo. Nevertheless,
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there are some general rules; for example, when taking a landscape image with
a digital camera, you can expect the histogram to have evenly distributed
intensity values and no isolated spikes.

Saturation

Ideally the contrast range of a sensor, such as that used in a camera, should be
greater than the range of the intensity of the light that it receives from a scene.
In such a case, the resulting histogram will be smooth at both ends because the
light received from the very bright and the very dark parts of the scene will be
less than the light received from the other parts of the scene. Unfortunately,
this ideal is often not the case in reality, and illumination outside of the sensor’s
contrast range, arising for example from glossy highlights and especially dark
parts of the scene, cannot be captured and is lost. The result is a histogram
that is saturated at one or both ends of its range. The illumination values lying
outside of the sensor’s range are mapped to its minimum or maximum values
and appear on the histogram as significant spikes at the tail ends. This typically
occurs in an under- or overexposed image and is generally not avoidable when
the inherent contrast range of the scene exceeds the range of the system’s sensor
(Fig. 3.9 (a)).

(a) (b) (c)

Figure 3.9 Effect of image capture errors on histograms: saturation of high intensities (a),
histogram gaps caused by a slight increase in contrast (b), and histogram spikes resulting
from a reduction in contrast (c).

Spikes and gaps

As discussed above, the intensity value distribution for an unprocessed image is
generally smooth; that is, it is unlikely that isolated spikes (except for possible
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saturation effects at the tails) or gaps will appear in its histogram. It is also
unlikely that the count of any given intensity value will differ greatly from that
of its neighbors (i. e., it is locally smooth). While artifacts like these are ob-
served very rarely in original images, they will often be present after an image
has been manipulated, for instance, by changing its contrast. Increasing the
contrast (see Ch. 4) causes the histogram lines to separate from each other and,
due to the discrete values, gaps are created in the histogram (Fig. 3.9 (b)). De-
creasing the contrast leads, again because of the discrete values, to the merging
of values that were previously distinct. This results in increases in the corre-
sponding histogram entries and ultimately leads to highly visible spikes in the
histogram (Fig. 3.9 (c)).2

Impacts of image compression

Image compression also changes an image in ways that are immediately evident
in its histogram. As an example, during GIF compression, an image’s dynamic
range is reduced to only a few intensities or colors, resulting in an obvious line
structure in the histogram that cannot be removed by subsequent processing
(Fig. 3.10). Generally, a histogram can quickly reveal whether an image has
ever been subjected to color quantization, such as occurs during conversion to
a GIF image, even if the image has subsequently been converted to a full-color
format such as TIFF or JPEG.

Figure 3.11 illustrates what occurs when a simple line graphic with only two
gray values (128, 255) is subjected to a compression method such as JPEG,
that is not designed for line graphics but instead for natural photographs. The
histogram of the resulting image clearly shows that it now contains a large
number of gray values that were not present in the original image, resulting in
a poor-quality image3 that appears dirty, fuzzy, and blurred.

3.3 Computing Histograms

Computing the histogram of an 8-bit grayscale image containing intensity val-
ues between 0 and 255 is a simple task. All we need is a set of 256 counters,
one for each possible intensity value. First, all counters are initialized to zero.

2 Unfortunately, these types of errors are also caused by the internal contrast “opti-
mization” routines of some image-capture devices, especially consumer-type scan-
ners.

3 Using JPEG compression on images like this, for which it was not designed, is
one of the most egregious of imaging errors. JPEG is designed for photographs
of natural scenes with smooth color transitions, and using it to compress iconic
images with large areas of the same color results in strong visual artifacts (see, for
example, Fig. 1.9 on p. 19).
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(a)

(b)

(c)

Figure 3.10 Color quantization effects resulting from GIF conversion. The original image
converted to a 256 color GIF image (left). Original histogram (a) and the histogram after
GIF conversion (b). When the RGB image is scaled by 50%, some of the lost colors are
recreated by interpolation, but the results of the GIF conversion remain clearly visible in the
histogram (c).

(a) (b)

(c) (d)

Figure 3.11 Effects of JPEG compression. The original image (a) contained only two
different gray values, as its histogram (b) makes readily apparent. JPEG compression, a
poor choice for this type of image, results in numerous additional gray values, which are
visible in both the resulting image (c) and its histogram (d). In both histograms, the linear
frequency (black bars) and the logarithmic frequency (gray bars) are shown.
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1 public class Compute_Histogram implements PlugInFilter {
2
3 public int setup(String arg, ImagePlus img) {
4 return DOES_8G + NO_CHANGES;
5 }
6
7 public void run(ImageProcessor ip) {
8 int[] H = new int[256]; // histogram array
9 int w = ip.getWidth();

10 int h = ip.getHeight();
11
12 for (int v = 0; v < h; v++) {
13 for (int u = 0; u < w; u++) {
14 int i = ip.getPixel(u,v);
15 H[i] = H[i] + 1;
16 }
17 }
18 ... //histogram H[] can now be used
19 }
20
21 } // end of class Compute_Histogram

Program 3.1 ImageJ plugin for computing the histogram of an 8-bit grayscale image. The
setup() method returns DOES_8G + NO_CHANGES, which indicates that this plugin requires
an 8-bit grayscale image and will not alter it (line 4). In Java, all elements of a newly
instantiated array (line 8) are automatically initialized, in this case to zero.

Then we iterate through the image I, determining the pixel value p at each
location (u, v), and incrementing the corresponding counter by one. At the
end, each counter will contain the number of pixels in the image that have the
corresponding intensity value.

An image with K possible intensity values requires exactly K counter vari-
ables; for example, since an 8-bit grayscale image can contain at most 256
different intensity values, we require 256 counters. While individual counters
make sense conceptually, an actual implementation would not use K individ-
ual variables to represent the counters but instead would use an array with K

entries (int[256] in Java). In this example, the actual implementation as an
array is straightforward. Since the intensity values begin at zero (like arrays in
Java) and are all positive, they can be used directly as the indices i ∈ [0, N−1]
of the histogram array. Program 3.1 contains the complete Java source code
for computing a histogram within the run() method of an ImageJ plugin.

At the start of Prog. 3.1, the array H of type int[] is created (line 8) and
its elements are automatically initialized4 to 0. It makes no difference, at least
in terms of the final result, whether the array is traversed in row or column
4 In Java, arrays of primitives such as int, double are initialized at creation to 0 in

the case of integer types or 0.0 for floating-point types, while arrays of objects are
initialized to null.
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order, as long as all pixels in the image are visited exactly once. In contrast to
Prog. 2.1, in this example we traverse the array in the standard row-first order
such that the outer for loop iterates over the vertical coordinates v and the
inner loop over the horizontal coordinates u.5 Once the histogram has been
calculated, it is available for further processing steps or for being displayed.

Of course, histogram computation is already implemented in ImageJ and
is available via the method getHistogram() for objects of the class Image-
Processor. If we use this built-in method, the run() method of Prog. 3.1 can
be simplified to

public void run(ImageProcessor ip) {
int[] H = ip.getHistogram(); // built-in ImageJ method
... // histogram H[] can now be used

}

3.4 Histograms of Images with More than 8 Bits

Normally histograms are computed in order to visualize the image’s distribution
on the screen. This presents no problem when dealing with images having
28 = 256 entries, but when an image uses a larger range of values, for instance
16- and 32-bit or floating-point images (see Table 1.1), then the growing number
of necessary histogram entries makes this no longer practical.

3.4.1 Binning

Since it is not possible to represent each intensity value with its own entry in
the histogram, we will instead let a given entry in the histogram represent a
range of intensity values. This technique is often referred to as “binning” since
you can visualize it as collecting a range of pixel values in a container such as
a bin or bucket. In a binned histogram of size B, each bin h(j) contains the
number of image elements having values within the interval aj ≤ a < aj+1,
and therefore (analogous to Eqn. (3.1))

h(j) = card {(u, v) | aj ≤ I(u, v) < aj+1} , for 0 ≤ j < B. (3.2)

Typically the range of possible values in B is divided into bins of equal size
kB = K/B such that the starting value of the interval j is

aj = j · K
B

= j · kB .

5 In this way, image elements are traversed in exactly the same way that they are laid
out in computer memory, resulting in more efficient memory access and with it the
possibility of increased performance, especially when dealing with larger images
(see also Appendix B, p. 242).
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3.4.2 Example

In order to create a typical histogram containing B = 256 entries from a 14-bit
image, you would divide the available value range if j = 0 . . . 214−1 into 256
equal intervals, each of length kB = 214/256 = 64, so that a0 = 0, a1 = 64,
a2 = 128, ... a255 = 16,320 and a256 = aB = 214 = 16,384 = K. This
results in the following mapping from the pixel values to the histogram bins
h(0) . . . h(255):

h(0) ← 0 ≤ I(u, v) < 64
h(1) ← 64 ≤ I(u, v) < 128
h(2) ← 128 ≤ I(u, v) < 192

...
...

...
...

h(j) ← aj ≤ I(u, v) < aj+1

...
...

...
...

h(255) ← 16320 ≤ I(u, v) < 16384

3.4.3 Implementation

If, as in the above example, the value range 0 . . .K−1 is divided into equal
length intervals kB = K/B, there is naturally no need to use a mapping table
to find aj since for a given pixel value a = I(u, v) the correct histogram element
j is easily computed. In this case, it is enough to simply divide the pixel value
I(u, v) by the interval length kB; that is,

I(u, v)
kB

=
I(u, v)
K/B

=
I(u, v) ·B

K
. (3.3)

As an index to the appropriate histogram bin h(j), we require an integer value

j =
⌊I(u, v) · B

K

⌋

, (3.4)

where �·� denotes the floor function.6 A Java method for computing histograms
by “linear binning” is given in Prog. 3.2. Note that all the computations from
Eqn. (3.4) are done with integer numbers without using any floating-point op-
erations. Also there is no need to explicitly call the floor function because the
expression

a * B / K
in line 11 uses integer division and in Java the fractional result of such an oper-
ation is truncated, which is equivalent to applying the floor function (assuming
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1 int[] binnedHistogram(ImageProcessor ip) {
2 int K = 256; // number of intensity values
3 int B = 32; // size of histogram, must be defined
4 int[] H = new int[B]; // histogram array
5 int w = ip.getWidth();
6 int h = ip.getHeight();
7
8 for (int v = 0; v < h; v++) {
9 for (int u = 0; u < w; u++) {

10 int a = ip.getPixel(u, v);
11 int i = a * B / K; // integer operations only!
12 H[i] = H[i] + 1;
13 }
14 }
15 // return binned histogram
16 return H;
17 }

Program 3.2 Histogram computation using “binning” (Java method). Example of comput-
ing a histogram with B = 32 bins for an 8-bit grayscale image with K = 256 intensity levels.
The method binnedHistogram() returns the histogram of the image object ip passed to it
as an int array of size B.

positive arguments).7 The binning method can also be applied, in a similar
way, to floating-point images.

3.5 Color Image Histograms

When referring to histograms of color images, typically what is meant is a
histogram of the image intensity (luminance) or of the individual color channels.
Both of these variants are supported by practically every image-processing
application and are used to objectively appraise the image quality, especially
directly after image acquisition.

3.5.1 Intensity Histograms

The intensity or luminance histogram hLum of a color image is nothing more
than the histogram of the corresponding grayscale image, so naturally all as-
pects of the preceding discussion also apply to this type of histogram. The
grayscale image is obtained by computing the luminance of the individual chan-
nels of the color image. When computing the luminance, it is not sufficient to
simply average the values of each color channel; instead, a weighted sum that

6 �x� rounds x down to the next whole number (see Appendix A, p. 233).
7 For a more detailed discussion, see the section on integer division in Java in Ap-

pendix B (p. 237).
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takes into account color perception theory should be computed. This process
is explained in detail in Chapter 8 (p. 202).

3.5.2 Individual Color Channel Histograms

Even though the luminance histogram takes into account all color channels,
image errors appearing in single channels can remain undiscovered. For ex-
ample, the luminance histogram may appear clean even when one of the color
channels is oversaturated. In RGB images, the blue channel contributes only
a small amount to the total brightness and so is especially sensitive to this
problem.

Component histograms supply additional information about the intensity
distribution within the individual color channels. When computing component
histograms, each color channel is considered a separate intensity image and
each histogram is computed independently of the other channels. Figure 3.12
shows the luminance histogram hLum and the three component histograms hR,
hG, and hB of a typical RGB color image. Notice that saturation problems
in all three channels (red in the upper intensity region, green and blue in the
lower regions) are obvious in the component histograms but not in the lumi-
nance histogram. In this case it is striking, and not at all atypical, that the
three component histograms appear completely different from the correspond-
ing luminance histogram hLum (Fig. 3.12 (b)).

3.5.3 Combined Color Histograms

Luminance histograms and component histograms both provide useful informa-
tion about the lighting, contrast, dynamic range, and saturation effects relative
to the individual color components. It is important to remember that they pro-
vide no information about the distribution of the actual colors in the image
because they are based on the individual color channels and not the combi-
nation of the individual channels that forms the color of an individual pixel.
Consider, for example, when hR, the component histogram for the red channel,
contains the entry

hR(200) = 24.

Then it is only known that the image has 24 pixels that have a red intensity
value of 200. The entry does not tell us anything about the green and blue
values of those pixels, which could be any valid value (∗); that is,

(r, g, b) = (200, ∗, ∗).
Suppose further that the three component histograms included the following
entries:

hR(50) = 100, hG(50) = 100, hB(50) = 100.
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(a) (b) hLum

(c) R (d) G (e) B

(f) hR (g) hG (h) hB

Figure 3.12 Histograms of an RGB color image: original image (a), luminance histogram
hLum (b), RGB color components as intensity images (c–e), and the associated component
histograms hR, hG, hB (f–h). The fact that all three color channels have saturation problems
is only apparent in the individual component histograms. The spike in the distribution
resulting from this is found in the middle of the luminance histogram (b).

Could we conclude from this that the image contains 100 pixels with the color
combination

(r, g, b) = (50, 50, 50)

or that this color occurs at all? In general, no, because there is no way of
ascertaining from these data if there exists a pixel in the image in which all
three components have the value 50. The only thing we could really say is that
the color value (50, 50, 50) can occur at most 100 times in this image.

So, although conventional (intensity or component) histograms of color im-
ages depict important properties, they do not really provide any useful infor-
mation about the composition of the actual colors in an image. In fact, a
collection of color images can have very similar component histograms and still
contain entirely different colors. This leads to the interesting topic of the com-
bined histogram, which uses statistical information about the combined color
components in an attempt to determine if two images are roughly similar in
their color composition. Features computed from this type of histogram often
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form the foundation of color-based image retrieval methods. We will return to
this topic in Chapter 8, where we will explore color images in greater detail.

3.6 Cumulative Histogram

The cumulative histogram, which is derived from the ordinary histogram, is
useful when performing certain image operations involving histograms; for in-
stance, histogram equalization (see Sec. 4.5). The cumulative histogram H is
defined as

H(i) =
i
∑

j=0

h(j) for 0 ≤ i < K. (3.5)

A particular value H(i) is thus the sum of all the values h(j), with j ≤ i, in the
original histogram. Alternatively, we can define H recursively (as implemented
in Prog. 4.2 on p. 66):

H(i) =

{

h(0) for i = 0

H(i−1) + h(i) for 0 < i < K.
(3.6)

The cumulative histogram H(i) is a monotonically increasing function with a
maximum value

H(K−1) =
K−1
∑

j=0

h(j) = M ·N ; (3.7)

that is, the total number of pixels in an image of width M and height N . Figure
3.13 shows a concrete example of a cumulative histogram.

The cumulative histogram is useful not primarily for viewing but as a sim-
ple and powerful tool for capturing statistical information from an image. In
particular, we will use it in the next chapter to compute the parameters for
several common point operations (see Sections 4.4–4.6).

3.7 Exercises
Exercise 3.1
In Prog. 3.2, B and K are constants. Consider if there would be an advan-
tage to computing the value of B/K outside of the loop, and explain your
reasoning.

Exercise 3.2
Develop an ImageJ plugin that computes the cumulative histogram of an
8-bit grayscale image and displays it as a new image, similar to H(i) in
Fig. 3.13.
Hint: Use the ImageProcessormethod int[] getHistogram() to retrieve
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i

i

h(i)

0

0

255

255

H(i)

Figure 3.13 The ordinary histogram h(i) and its associated cumulative histogram H(i).

the original image’s histogram values and then compute the cumulative
histogram “in place” according to Eqn. (3.6). Create a new (blank) image
of appropriate size (e. g., 256× 150) and draw the scaled histogram data as
black vertical bars such that the maximum entry spans the full height of
the image. Program 3.3 shows how this plugin could be set up and how a
new image is created and displayed.

Exercise 3.3
Develop a technique for nonlinear binning that uses a table of interval limits
aj (Eqn. (3.2)).

Exercise 3.4
Develop an ImageJ plugin that uses the Java methods Math.random() or
Random.nextInt(int n) to create an image with random pixel values that
are uniformly distributed in the range [0, 255]. Analyze the image’s his-
togram to determine how equally distributed the pixel values truly are.

Exercise 3.5
Develop an ImageJ plugin that creates a random image with a Gaussian
(normal) distribution with mean value μ = 128 and standard deviation
σ = 50. Use the standard Java method double Random.nextGaussian()
to produce normally-distributed random numbers (with μ = 0 and σ = 1)
and scale them appropriately to pixel values. Analyze the resulting image
histogram to see if it shows a Gaussian distribution too.
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1 public class Create_New_Image implements PlugInFilter {
2 String title = null;
3
4 public int setup(String arg, ImagePlus im) {
5 title = im.getTitle();
6 return DOES_8G + NO_CHANGES;
7 }
8
9 public void run(ImageProcessor ip) {

10 int w = 256;
11 int h = 100;
12 int[] hist = ip.getHistogram();
13
14 // create the histogram image:
15 ImageProcessor histIp = new ByteProcessor(w, h);
16 histIp.setValue(255); // white = 255
17 histIp.fill(); // clear this image
18
19 // draw the histogram values as black bars in ip2 here,
20 // for example, using histIp.putpixel(u,v,0)
21 // ...
22
23 // display the histogram image:
24 String hTitle = "Histogram of " + title;
25 ImagePlus histIm = new ImagePlus(hTitle, histIp);
26 histIm.show();
27 // histIm.updateAndDraw();
28 }
29
30 } // end of class Create_New_Image

Program 3.3 Creating and displaying a new image (ImageJ plugin). First, we create a
ByteProcessor object (histIp, line 15) that is subsequently filled. At this point, histIp has
no screen representation and is thus not visible. Then, an associated ImagePlus object is
created (line 25) and displayed by applying the show() method (line 26). Notice how the
title (String) is retrieved from the original image inside the setup() method (line 5) and
used to compose the new image’s title (lines 24 and 25). If histIp is changed after calling
show(), then the method updateAndDraw() could be used to redisplay the associated image
again (line 27).



4
Point Operations

Point operations perform a modification of the pixel values without changing
the size, geometry, or local structure of the image. Each new pixel value a′ =
I ′(u, v) depends exclusively on the previous value a = I(u, v) at the same
position and is thus independent from any other pixel value, in particular from
any of its neighboring pixels.1 The original pixel values are mapped to the new
values by a function f(a),

a′ ← f(a) or

I ′(u, v) ← f
(

I(u, v)
)

, (4.1)

for each image position (u, v). If the function f() is independent of the im-
age coordinates (i. e., the same throughout the image), the operation is called
“global” or “homogeneous”. Typical examples of homogeneous point operations
include, among others,

– modifying image brightness or contrast,

– applying arbitrary intensity transformations (“curves”),

– quantizing (or “posterizing”) images,

– global thresholding,

– gamma correction,

– color transformations.
1 If the result depends on more than one pixel value, the operation is called a “filter”,

as described in Ch. 5.

W. Burger, M.J. Burge, Principles of Digital Image Processing, Undergraduate Topics  
in Computer Science, DOI 10.1007/978-1-84800-191-6_4, Springer-Verlag London Limited, 2009 ©
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We will look at some of these techniques in more detail in the following.
In contrast, the mapping function g() for a nonhomogeneous point operation

would also take into account the current image coordinate (u, v); i. e.,

a′ ← g(a, u, v) or

I ′(u, v) ← g (I(u, v), u, v) . (4.2)

A typical nonhomogeneous operation is the local adjustment of contrast or
brightness used for example to compensate for uneven lighting during image
acquisition.

4.1 Modifying Image Intensity

4.1.1 Contrast and Brightness

Let us start with a simple example. Increasing the image’s contrast by 50%
(i. e., by the factor 1.5) or raising the brightness by 10 units can be expressed
by the mapping functions

fcontr(a) = a · 1.5 and fbright(a) = a + 10, (4.3)

respectively. The first operation is implemented as an ImageJ plugin by the
code shown in Prog. 4.1, which can easily be adapted to perform any other
type of point operation. Rounding to the nearest integer values is accomplished
by simply adding 0.5 before the truncation effected by the (int) typecast in
line 7 (this only works for positive values). Also note the use of the more
efficient image processor methods get() and set() (instead of getPixel()
and putPixel()) in this example.

4.1.2 Limiting the Results by Clamping

When implementing arithmetic operations on pixels, we must keep in mind
that the computed results may exceed the maximum range of pixel values for
a given image type ([0 . . . 255] in the case of 8-bit grayscale images). To avoid
this, we have included the “clamping” statement

if (a > 255) a = 255;

in line 9 of Prog. 4.1, which limits any result to the maximum value 255.
Similarly one should, in general, also limit the results to the minimum value
(0) to avoid negative pixel values (which cannot be represented by this type of
8-bit image), for example by the statement

if (a < 0) a = 0;

This second measure is not necessary in Prog. 4.1 because the intermediate
results can never be negative in this particular operation.
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1 public void run(ImageProcessor ip) {
2 int w = ip.getWidth();
3 int h = ip.getHeight();
4
5 for (int v = 0; v < h; v++) {
6 for (int u = 0; u < w; u++) {
7 int a = (int) (ip.get(u, v) * 1.5 + 0.5);
8 if (a > 255)
9 a = 255; // clamp to maximum value

10 ip.set(u, v, a);
11 }
12 }
13 }

Program 4.1 Point operation to increase the contrast by 50% (ImageJ plugin). Note that in
line 7 the result of the multiplication of the integer pixel value by the constant 1.5 (implicitly
of type double) is of type double. Thus an explicit type cast (int) is required to assign the
value to the int variable a. 0.5 is added in line 7 to round to the nearest integer values.

4.1.3 Inverting Images

Inverting an intensity image is a simple point operation that reverses the order-
ing of pixel values (by multiplying with −1) and adds a constant value to map
the result to the admissible range again. Thus, for a pixel value a = I(u, v) in
the range [0, amax], the corresponding point operation is

finvert(a) = −a + amax = amax − a. (4.4)

The inversion of an 8-bit grayscale image with amax = 255 was the task of
our first plugin example in Sec. 2.2.4 (Prog. 2.1). Note that in this case no
clamping is required at all because the function always maps to the origi-
nal range of values. In ImageJ, this operation is performed by the method
invert() (for objects of type ImageProcessor) and is also available through
the Edit→Invert menu. Obviously, inverting an image mirrors its histogram, as
shown in Fig. 4.5 (c).

4.1.4 Threshold Operation

Thresholding an image is a special type of quantization that separates the
pixel values in two classes, depending upon a given threshold value ath that is
usually constant. The threshold function fthreshold(a) maps all pixels to one of
two fixed intensity values a0 or a1; i. e.,

fthreshold(a) =
{

a0 for a < ath

a1 for a ≥ ath
(4.5)

with 0 < ath ≤ amax. A common application is binarizing an intensity image
with the values a0 = 0 and a1 = 1.
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(a) (b) (e)

(c) (d)

Figure 4.1 Threshold operation: original image (a) and corresponding histogram (c); result
after thresholding with ath = 128, a0 = 0, a1 = 255 (b) and corresponding histogram (d);
ImageJ’s interactive Threshold menu (e).

i i

h(i) h′(i)

ath
a0 a1

(a) (b)

Figure 4.2 Effects of thresholding upon the histogram. The threshold value is ath. The
original distribution (a) is split and merged into two isolated entries at a0 and a1 in the
resulting histogram (b).

ImageJ does provide a special image type (BinaryProcessor) for bi-
nary images, but these are actually implemented as 8-bit intensity images
(just like ordinary intensity images) using the values 0 and 255. ImageJ
also provides the ImageProcessor method threshold(int level), with
level ≡ ath, to perform this operation, which can also be invoked through
the Image→Adjust→Threshold menu (see Fig. 4.1 for an example). Threshold-
ing affects the histogram by splitting and merging the distribution into two
entries at positions a0 and a1, as illustrated in Fig. 4.2.
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i i

c h′(i)

h(a1)

h(a2)

h′(a2)← h(a1) + h(a2)

a1 a2 a2

(a) (b)

Figure 4.3 Histogram entries map to sets of pixels of the same value. If a histogram line
is moved as a result of some point operations, then all pixels in the corresponding set are
equally modified (a). If, due to this operation, two histogram lines h(a1), h(a2) coincide
on the same index, the two corresponding pixel sets join and the contained pixels become
undiscernable (b).

4.2 Point Operations and Histograms

We have already seen that the effects of a point operation on the image’s
histogram are quite easy to predict in some cases. For example, increasing the
brightness of an image by a constant value shifts the entire histogram to the
right, raising the contrast widens it, and inverting the image flips the histogram.
Although this appears rather simple, it may be useful to look a bit more closely
at the relationship between point operations and the resulting changes in the
histogram.

As the illustration in Fig. 4.3 shows, every entry (bar) at some position
i in the histogram maps to a set (of size h(i)) containing all image pixels
whose values are exactly i.2 If a particular histogram line is shifted as a result
of some point operation, then of course all pixels in the corresponding set are
equally modified and vice versa. So what happens when a point operation (e. g.,

2 Of course this is only true for ordinary histograms with an entry for every single
intensity value. If binning is used (see Sec. 3.4.1), each histogram entry maps to
pixels within a certain range of values.
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reducing image contrast) causes two previously separated histogram lines to fall
together at the same position i ? The answer is that the corresponding pixel
sets are merged and the new common histogram entry is the sum of the two (or
more) contributing entries (i. e., the size of the combined set). At this point, the
elements in the merged set are no longer distinguishable (or separable), so this
operation may have (perhaps unintentionally) caused an irreversible reduction
of dynamic range and thus a permanent loss of information in that image.

4.3 Automatic Contrast Adjustment

Automatic contrast adjustment (“auto-contrast”) is a point operation whose
task is to modify the pixels such that the available range of values is fully
covered. This is done by mapping the current darkest and brightest pixels
to the lowest and highest available intensity values, respectively, and linearly
distributing the intermediate values.

Let us assume that alow and ahigh are the lowest and highest pixel values
found in the current image, whose full intensity range is [amin, amax]. To stretch
the image to the full intensity range (see Fig. 4.4), we first map the smallest
pixel value alow to zero, subsequently increase the contrast by the factor (amax−
amin)/(ahigh−alow), and finally shift to the target range by adding amin. The
mapping function for the auto-contrast operation is thus defined as

fac(a) = amin +
(

a−alow

) · amax−amin

ahigh−alow
, (4.6)

provided that ahigh �= alow; i. e., the image contains at least two different pixel
values. For an 8-bit image with amin = 0 and amax = 255, the function in Eqn.
(4.6) simplifies to

fac(a) = (a−alow) · 255
ahigh−alow

. (4.7)

The target range [amin, amax] need not be the maximum available range of
values but can be any interval to which the image should be mapped. Of
course the method can also be used to reduce the image contrast to a smaller
range. Figure 4.5 (b) shows the effects of an auto-contrast operation on the
corresponding histogram, where the linear stretching of the intensity range
results in regularly spaced gaps in the new distribution.

4.4 Modified Auto-Contrast

In practice, the mapping function in Eqn. (4.6) could be strongly influenced by
only a few extreme (low or high) pixel values, which may not be representative
of the main image content. This can be avoided to a large extent by “saturating”
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alow ahigh

amin amax

a

a′

Figure 4.4 Auto-contrast operation according to Eqn. (4.6). Original pixel values a in the
range [alow, ahigh] are mapped linearly to the target range [amin, amax].

(a) (b) (c)

Figure 4.5 Effects of auto-contrast and inversion operations on the resulting histograms.
Original image (a), result of auto-contrast operation (b), and inversion (c). The histogram
entries are shown both linearly (black bars) and logarithmically (gray bars).

a fixed percentage (slow, shigh) of pixels at the upper and lower ends of the
target intensity range. To accomplish this, we determine two limiting values
a′
low, a′

high such that a predefined quantile qlow of all pixel values in the image I

are smaller than a′
low and another quantile qhigh of the values are greater than

a′
high (Fig. 4.6). The values a′

low, a′
high depend on the image content and can

be easily obtained from the image’s cumulative histogram3 H(i):

a′
low = min

{

i | H(i) ≥M ·N ·qlow

}

, (4.8)

a′
high = max

{

i | H(i) ≤M ·N ·(1−qhigh)
}

, (4.9)

where 0 ≤ qlow, qhigh ≤ 1, qlow + qhigh ≤ 1, and M ·N is the number of pixels in
the image. All pixel values outside (and including) a′

low and a′
high are mapped

3 See Sec. 3.6.
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i

h(i)

alow ahigh

a′
low a′

high

amin amax

qlow qhigh

a

a′

Figure 4.6 Modified auto-contrast operation (Eqn. (4.10)). Predefined quantiles (qlow,
qhigh) of image pixels—shown as dark areas at the left and right ends of the histogram
h(i)—are “saturated” (i. e., mapped to the extreme values of the target range). The interme-
diate values (a = a′

low . . . a′
high) are mapped linearly to the interval [amin, amax].

to the extreme values amin and amax, respectively, and intermediate values are
mapped linearly to the interval [amin, amax]. The mapping function fmac() for
the modified auto-contrast operation can thus be defined as

fmac(a) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

amin for a ≤ a′
low

amin +
(

a− a′
low

) · amax − amin

a′
high − a′

low

for a′
low < a < a′

high

amax for a ≥ a′
high.

(4.10)

Using this formulation, the mapping to minimum and maximum intensities
does not depend on singular extreme pixels only but can be based on a rep-
resentative set of pixels. Usually the same value is taken for both upper and
lower quantiles (i. e., qlow = qhigh = q), with q = 0.005 . . .0.015 (0.5 . . . 1.5 %)
being common values. For example, the auto-contrast operation in Adobe Pho-
toshop saturates 0.5 % (q = 0.005) of all pixels at both ends of the intensity
range. Auto-contrast is a frequently used point operation and thus available
in practically any image-processing software. ImageJ implements the modified
auto-contrast operation as part of the Brightness/Contrast and Image→Adjust
menus (Auto button), shown in Fig. 4.7.
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Figure 4.7 ImageJ’s Brightness/Contrast
tool (left) and Window/Level tool (right)
can be invoked through the Image→Adjust
menu. The Auto button displays the result
of a modified auto-contrast operation. Ap-
ply must be hit to actually modify the im-
age.

Original Target

i

i

i

i

h(i)

H(i)

heq(i)

Heq(i)

Figure 4.8 Histogram equalization. The idea is to find and apply a point operation to
the image (with original histogram h) such that the histogram heq of the modified image
approximates a uniform distribution (top). The cumulative target histogram Heq must thus
be approximately wedge-shaped (bottom).

4.5 Histogram Equalization

A frequent task is to adjust two different images in such a way that their re-
sulting intensity distributions are similar, for example to use them in a print
publication or to make them easier to compare. The goal of histogram equal-
ization is to find and apply a point operation such that the histogram of the
modified image approximates a uniform distribution (see Fig. 4.8). Since the
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i

H(i) Heq(i)

aa′

Figure 4.9 Histogram equalization on the cumulative histogram. A suitable point operation
a′ ← feq(a) shifts each histogram line from its original position a to a′ (left or right) such
that the resulting cumulative histogram Heq is approximately linear.

histogram is a discrete distribution and homogeneous point operations can only
shift and merge (but never split) histogram entries, we can only obtain an ap-
proximate solution in general. In particular, there is no way to eliminate or
decrease individual peaks in a histogram, and a truly uniform distribution is
thus impossible to reach. Based on point operations, we can thus modify the
image only to the extent that the resulting histogram is approximately uni-
form. The question is how good this approximation can be and exactly which
point operation (which clearly depends on the image content) we must apply
to achieve this goal.

We may get a first idea by observing that the cumulative histogram
(Sec. 3.6) of a uniformly distributed image is a linear ramp (wedge), as shown
in Fig. 4.8. So we can reformulate the goal as finding a point operation that
shifts the histogram lines such that the resulting cumulative histogram is ap-
proximately linear, as illustrated in Fig. 4.9.

The desired point operation feq() is simply obtained from the cumulative
histogram H of the original image as4

feq(a) =
⌊

H(a) · K−1
MN

⌋

, (4.11)

for an image of size M × N with pixel values a in the range [0, K−1]. The
resulting function feq(a) in Eqn. (4.11) is monotonically increasing, because
H(a) is monotonic and K, M , N are all positive constants. In the (unusual) case
where an image is already uniformly distributed, linear histogram equalization
should not modify that image any further. Also, repeated applications of linear
histogram equalization should not make any changes to the image after the
first time. Both requirements are fulfilled by the formulation in Eqn. (4.11).

4 For a derivation, see, e. g., [17, p. 173].
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(a) (b)

h h′

(c) (d)

H H′

(e) (f)

Figure 4.10 Linear histogram equalization (example). Original image I (a) and modified
image I′ (b), corresponding histograms h, h′ (c, d), and cumulative histograms H, H′ (e,
f). The resulting cumulative histogram H′ (f) approximates a uniformly distributed image.
Notice that new peaks are created in the resulting histogram h′ (d) by merging original
histogram cells, particularly in the lower and upper intensity ranges.

Program 4.2 lists the Java code for a sample implementation of linear histogram
equalization. An example demonstrating the effects on the image and the
histograms is shown in Fig. 4.10.

Notice that for “inactive” pixel values i (i. e., pixel values that do not ap-
pear in the image, with h(i) = 0), the corresponding entries in the cumulative
histogram H(i) are either zero or identical to the neighboring entry H(i − 1).
Consequently a contiguous range of zero values in the histogram h(i) corre-
sponds to a constant (i. e., flat) range in the cumulative histogram H(i), and the
function feq(a) maps all “inactive” intensity values within such a range to the
next lower “active” value. This effect is not relevant, however, since the image
contains no such pixels anyway. Nevertheless, a linear histogram equalization
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1 public void run(ImageProcessor ip) {
2 int w = ip.getWidth();
3 int h = ip.getHeight();
4 int M = w * h; // total number of image pixels
5 int K = 256; // number of intensity values
6
7 // compute the cumulative histogram:
8 int[] H = ip.getHistogram();
9 for (int j = 1; j < H.length; j++) {

10 H[j] = H[j-1] + H[j];
11 }
12
13 // equalize the image:
14 for (int v = 0; v < h; v++) {
15 for (int u = 0; u < w; u++) {
16 int a = ip.get(u, v);
17 int b = H[a] * (K-1) / M;
18 ip.set(u, v, b);
19 }
20 }
21 }

Program 4.2 Linear histogram equalization (ImageJ plugin). First the histogram of the
image ip is obtained using the standard ImageJ method ip.getHistogram() in line 8. In
line 10, the cumulative histogram is computed “in place” based on the recursive definition in
Eqn. (3.6). The int division in line 17 implicitly performs the required floor (� �) operation
by truncation.

may (and typically will) cause histogram lines to merge and consequently lead
to a loss of dynamic range (see also Sec. 4.2).

This or a similar form of linear histogram equalization is implemented in
almost any image-processing software. In ImageJ it can be invoked interac-
tively through the Process→Enhance Contrast menu (option Equalize). To avoid
extreme contrast effects, the histogram equalization in ImageJ by default5 cu-
mulates the square root of the histogram entries using a modified cumulative
histogram of the form

H̃(i) =
i
∑

j=0

√

h(j) . (4.12)

4.6 Histogram Specification

Although widely implemented, the goal of linear histogram equalization—a
uniform distribution of intensity values (as described in the previous section)—
appears rather ad hoc, since good images virtually never show such a distri-
5 The “classic” (linear) approach, as given by Eqn. (3.5), is used when simultaneously

keeping the Alt key pressed.
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bution. In most real images, the distribution of the pixel values is not even
remotely uniform but is usually more similar, if at all, to perhaps a Gaussian
distribution. The images produced by linear equalization thus usually appear
quite unnatural, which renders the technique practically useless.

Histogram specification is a more general technique that modifies the image
to match an arbitrary intensity distribution, including the histogram of a given
image. This is particularly useful, for example, for adjusting a set of images
taken by different cameras or under varying exposure or lighting conditions to
give a similar impression in print production or when displayed. Similar to
histogram equalization, this process relies on the alignment of the cumulative
histograms by applying a homogeneous point operation. To be independent of
the image size (i. e., the number of pixels), we first define normalized distribu-
tions, which we use in place of the original histograms.

4.6.1 Frequencies and Probabilities

The value in each histogram cell describes the observed frequency of the corre-
sponding intensity value, i. e., the histogram is a discrete frequency distribution.
For a given image I of size M ×N , the sum of all histogram entries h(i) equals
the number of image pixels,

K−1
∑

i=0

h(i) = M ·N. (4.13)

The associated normalized histogram

p(i) =
h(i)
MN

, (4.14)

for 0 ≤ i < K, is usually interpreted as the probability distribution or probability
density function (pdf) of a random process, where p(i) is the probability for
the occurrence of the pixel value i. The cumulative probability of i being any
possible value is 1, and the distribution p must thus satisfy

K−1
∑

i=0

p(i) = 1. (4.15)

The statistical counterpart to the cumulative histogram H (Eqn. (3.5)) is the
discrete distribution function P() (also called the cumulative distribution func-
tion or cdf), with

P(i) =
H(i)

H(K−1)
=

H(i)
MN

=
i
∑

j=0

h(j)
MN

=
i
∑

j=0

p(j), for 0 ≤ i < K. (4.16)
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Algorithm 4.1 Computation of the cumulative distribution function (cdf) P() from a given
histogram h of length K. See Prog. 4.3 (p. 75) for the corresponding Java implementation.

1: Cdf(h)
Returns the cumulative distribution function P(i) ∈ [0, 1] for a given
histogram h(i), with i = 0, . . .K−1.

2: Let K ← Size(h)

3: Let n←∑K−1
i=0 h(i)

4: Create table P of size K

5: Let c← 0
6: for i← 0 . . . (K−1) do
7: c← c + h(i) � cumulate histogram values
8: P(i)← c/n

9: return P.

The computation of the cdf from a given histogram h is outlined in Alg. 4.1.
The resulting function P(i) is (like the cumulative histogram) monotonically
increasing and, in particular,

P(0) = p(0) and P(K−1) =
K−1
∑

i=0

p(i) = 1. (4.17)

This statistical formulation implicitly treats the generation of images as a
random process whose exact properties are mostly unknown.6 However, the
process is usually assumed to be homogeneous (independent of the image po-
sition); i. e., each pixel value is the result of a “random experiment” on a single
random variable i. The observed frequency distribution given by the histogram
h(i) serves as a (coarse) estimate of the probability distribution p(i) of this ran-
dom variable.

4.6.2 Principle of Histogram Specification

The goal of histogram specification is to modify a given image IA by some point
operation such that its distribution function PA matches a reference distribution
PR as closely as possible. We thus look for a mapping function

a′ = fhs(a) (4.18)

6 Statistical modeling of the image generation process has a long tradition (see,
e. g., [25, Ch. 2]).
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Figure 4.11 Principle of histogram specification. Given is the reference distribution PR

(left) and the distribution function for the original image PA (right). The result is the
mapping function fhs : a → a′ for a point operation, which replaces each pixel a in the
original image IA by a modified value a′. The process has two main steps: A© For each
pixel value a, determine b = PA(a) from the right distribution function. B© a′ is then
found by inverting the left distribution function as a′ = P−1

R (b). In summary, the result is
fhs(a) = a′ = P−1

R

(

PA(a)
)

.

to convert the original image IA to a new image IA′ by a point operation such
that

PA′(i) ≈ PR(i) for 0 ≤ i < K. (4.19)

As illustrated in Fig. 4.11, the desired mapping fhs is found by combining the
two distribution functions PR and PA (see [17, p. 180] for details). For a given
pixel value a in the original image, we get the new pixel value a′ as

a′ = P−1
R

(

PA(a)
)

, (4.20)

and thus the mapping fhs (Eqn. (4.18)) is obtained as

fhs(a) = a′ = P−1
R

(

PA(a)
)

(4.21)

for 0 ≤ a < K. This of course assumes that PR(i) is invertible; i. e., that the
function P−1

R (b) exists for b ∈ [0, 1].

4.6.3 Adjusting to a Piecewise Linear Distribution

If the reference distribution PR is given as a continuous, invertible function,
then the mapping function fhs can be obtained from Eqn. (4.21) without any
difficulty. In practice, it is convenient to specify the (synthetic) reference dis-
tribution as a piecewise linear function PL(i); i. e., as a sequence of N +1
coordinate pairs

L = [〈a0, q0〉, 〈a1, q1〉, . . . 〈ak, qk〉, . . . 〈aN , qN 〉],
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i

PL(i)

0
0

1

K−1
a1 a2 a3 a4

q0
q1

q2

q3

q4 q5

a = P−1
L (b)

b = PL(a)

Figure 4.12 Piecewise linear reference distribution. The function PL(i) is specified by
N = 5 control points 〈0, q0〉, 〈a1, q1〉, . . . 〈a4, q4〉, with ak < ak+1 and qk < qk+1. The final
point q5 is fixed at 〈K−1, 1〉.

each consisting of an intensity value ak and the corresponding function value
qk (with 0 ≤ ak < K, ak < ak+1, and 0 ≤ qk < 1). The two endpoints 〈a0, q0〉
and 〈aN , qN 〉 are fixed at

〈0, q0〉 and 〈K−1, 1〉,

respectively. To be invertible, the function must also be strictly monotonic; i. e.,
qk < qk+1 for 0 ≤ k < N . Figure 4.12 shows an example for such a function,
which is specified by N = 5 variable points (q0, . . . q4) and a fixed end point
q5 and thus consists of N = 5 linear segments. The reference distribution can
of course be specified at an arbitrary accuracy by inserting additional control
points.

The intermediate values of PL(i) are obtained by linear interpolation be-
tween the control points as

PL(i) =

⎧

⎨

⎩

qm + (i−am)· (qm+1 − qm)
(am+1 − am)

for 0 ≤ i < K−1

1 for i = K−1,

(4.22)

where m = max
{

j ∈ [0, N −1] | aj ≤ i
}

is the index of the line segment
〈am, qm〉 → 〈am+1, qm+1〉, which overlaps the position i. For instance, in the
example in Fig. 4.12, the point a lies within the segment that starts at point
〈a2, q2〉; i. e., m = 2.

For the histogram specification according to Eqn. (4.21), we also need the
inverse distribution function P−1

L (b) for b ∈ [0, 1]. As we see from the example
in Fig. 4.12, the function PL(i) is in general not invertible for values b < PL(0).
We can fix this problem by mapping all values b < PL(0) to zero and thus
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obtain a “semi-inverse” of the reference distribution in Eqn. (4.22) as

P−1
L (b) =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

0 for 0 ≤ b < PL(0)

an + (b−qn)· (an+1 − an)
(qn+1 − qn)

for PL(0) ≤ b < 1

K−1 for b ≥ 1.

(4.23)

Here n = max
{

j ∈ {0, . . .N−1} | qj ≤ b
}

is the index of the line segment
〈an, qn〉 → 〈an+1, qn+1〉, which overlaps the argument value b. The required
mapping function fhs for adapting a given image with intensity distribution PA

is finally specified, analogous to Eqn. (4.21), as

fhs(a) = P−1
L

(

PA(a)
)

for 0 ≤ a < K. (4.24)

The whole process of computing the pixel mapping function for a given image
(histogram) and a piecewise linear target distribution is summarized in Alg. 4.2.
A real example is shown in Fig. 4.14 (Sec. 4.6.5).

4.6.4 Adjusting to a Given Histogram (Histogram
Matching)

If we want to adjust one image to the histogram of another image, the refer-
ence distribution function PR(i) is not continuous and thus, in general, cannot
be inverted (as required by Eqn. (4.21)). For example, if the reference distri-
bution contains zero entries (i. e., pixel values k with probability p(k) = 0),
the corresponding cumulative distribution function P (just like the cumulative
histogram) has intervals of constant value on which no inverse function value
can be determined.

In the following, we describe a simple method for histogram matching that
works with discrete reference distributions. The principal idea is graphically
illustrated in Fig. 4.13. The mapping function fhs is not obtained by inverting
but by “filling in” the reference distribution function PR(i). For each possible
pixel value a, starting with a = 0, the corresponding probability pA(a) is
stacked layer by layer “under” the reference distribution PR. The thickness of
each horizontal bar for a equals the corresponding probability pA(a). The bar
for a particular intensity value a with thickness pA(a) runs from right to left,
down to position a′, where it hits the reference distribution PR. This position
a′ corresponds to the new pixel value to which a should be mapped.

Since the sum of all probabilities pA and the maximum of the distribution
function PR are both 1 (i. e.,

∑

i pA(i) = maxi PR(i) = 1), all horizontal bars
will exactly fit underneath the function PR. One may also notice in Fig. 4.13
that the distribution value resulting at a′ is identical to the cumulated proba-
bility PA(a). Given some intensity value a, it is therefore sufficient to find the
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Algorithm 4.2 Histogram specification using a piecewise linear reference distribution.
Given is the histogram hA of the original image and a piecewise linear reference distribution
function, specified as a sequence of N control points LR. The discrete mapping function fhs

for the corresponding point operation is returned.

1: MatchPiecewiseLinearHistogram(hA, LR)

hA: histogram of the original image IA.
LR: reference distribution function, given as a sequence of N + 1
control points LR = [〈a0, q0〉, 〈a1, q1〉, . . . 〈aN , qN 〉], with 0 ≤ ak < K

and 0 ≤ qk ≤ 1.

Returns a discrete pixel mapping function fhs(a) for modifying the
original image IA.

2: Let K ← Size(hA)
3: Let PA ← Cdf(hA) � cdf for hA (Alg. 4.1)

4: Create a table fhs[ ] of size K � mapping function fhs

5: for a← 0 . . . (K−1) do
6: b← PA(a)
7: if (b ≤ q0) then
8: a′ ← 0
9: else if (b ≥ 1) then

10: a′ ← K−1
11: else
12: n← N−1
13: while (n ≥ 0) ∧ (qn > b) do � find line segment in LR

14: n← n− 1

15: a′ ← an + (b−qn)· (an+1 − an)
(qn+1 − qn)

� see Eqn. (4.23)

16: fhs[a]← a′

17: return fhs.

minimum value a′, where the reference distribution PR(a′) is greater than or
equal to the cumulative probability PA(a); i. e.,

fhs(a) = a′ = min
{

j | (0 ≤ j < K) ∧ (PA(a) ≤ PR(j)
)}

. (4.25)

This results in a very simple method, which is summarized in Alg. 4.3. Due
to the use of normalized distribution functions, the size of the images involved
is not relevant. The corresponding Java implementation in Prog. 4.3, consists
of the method matchHistograms(), which accepts the original histogram (Ha)
and the reference histogram (Hr) and returns the resulting mapping function
(map) specifying the required point operation. The following code fragment
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Figure 4.13 Discrete histogram specification. The reference distribution PR (left) is “filled”
layer by layer from bottom to top and from right to left. For every possible intensity value a
(starting from a = 0), the associated probability pA(a) is added as a horizontal bar to a stack
accumulated ‘under” the reference distribution PR. The bar with thickness pA(a) is drawn
from right to left down to the position a′, where the reference distribution PR is reached.
This value a′ is the one which a should be mapped to by the function fhs(a).

demonstrates the use of the method matchHistograms() from Prog. 4.3 in an
ImageJ program:

ImageProcessor ipA = ... // target image IA (to be modified)
ImageProcessor ipR = ... // reference image IR

int[] hA = ipA.getHistogram(); // get the histogram for IA

int[] hR = ipR.getHistogram(); // get the histogram for IR

int[] F = matchHistograms(hA, hR); // mapping function fhs(a)
ipA.applyTable(F); // apply fhs() to the target image IA

The original image ipA is modified in the last line by applying the mapping
function fhs (F) with the method applyTable() (see also p. 87).

4.6.5 Examples

Adjusting to a piecewise linear reference distribution

The first example in Fig. 4.14 shows the results of histogram specification for
a continuous, piecewise linear reference distribution, as described in Sec. 4.6.3.
Analogous to Fig. 4.12, the actual distribution function PR (Fig. 4.14 (f)) is
specified as a polygonal line consisting of five control points 〈ak, qk〉 with coor-
dinates

k = 0 1 2 3 4 5

ak = 0 28 75 150 210 255
qk = 0.002 0.050 0.250 0.750 0.950 1.000

The resulting reference histogram (Fig. 4.14 (c)) is a step function with ranges of
constant values corresponding to the linear segments of the probability density
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Algorithm 4.3 Histogram matching. Given are two histograms: the histogram hA of the
target image IA and a reference histogram hR, both of size K. The result is a discrete
mapping function fhs() that, when applied to the target image, produces a new image with
a distribution function similar to the reference histogram.

1: MatchHistograms(hA, hR)

hA: histogram of the target image IA.
hR: reference histogram (of same size as hA).

Returns a discrete pixel mapping function fhs(a) for modifying the
original image IA.

2: Let K ← Size(hA)
3: Let PA ← Cdf(hA) � cdf for hA (Alg. 4.1)
4: Let PR ← Cdf(hR) � cdf for hR (Alg. 4.1)

5: Create a table fhs[ ] of size K � pixel mapping function fhs

6: for a← 0 . . . (K−1) do
7: j ← K−1
8: repeat
9: fhs[a]← j

10: j ← j − 1
11: while (j ≥ 0) ∧ (PA(a) ≤ PR(j))

12: return fhs.

function. As expected, the cumulative probability function for the modified
image (Fig. 4.14 (h)) is quite close to the reference function in Fig. 4.14 (f),
while the resulting histogram (Fig. 4.14 (e)) shows little similarity with the
reference histogram (Fig. 4.14 (c)). However, as discussed earlier, this is all we
can expect from a homogeneous point operation.

Adjusting to an arbitrary reference histogram

In this case, the reference distribution is not given as a continuous function
but specified by a discrete histogram. We thus use the method described
in Sec. 4.6.4 to compute the required mapping functions. The examples in
Fig. 4.15 demonstrate this technique using synthetic reference histograms whose
shape is approximately Gaussian.

The target image (Fig. 4.15 (a)) used here was chosen intentionally for its
poor quality, manifested by an extremely unbalanced histogram (Fig. 4.15 (f)).
The histograms of the modified images thus naturally show little resemblance
to a Gaussian. However, the resulting cumulative histograms (Fig. 4.15 (j, k))
match nicely with the integral of the corresponding Gaussians (Fig. 4.15 (d, e)),



4.6 Histogram Specification 75

1 int[] matchHistograms (int[] hA, int[] hR) {
2 // hA . . . histogram hA of target image IA

3 // hR . . . reference histogram hR

4 // returns the mapping function fhs() to be applied to image IA

5
6 int K = hA.length; // hA, hR must be of length K
7
8 double[] PA = Cdf(hA); // get CDF of histogram hA

9 double[] PR = Cdf(hR); // get CDF of histogram hR

10
11 int[] F = new int[K]; // pixel mapping function fhs()
12
13 // compute mapping function fhs()
14 for (int a = 0; a < K; a++) {
15 int j = K-1;
16 do {
17 F[a] = j;
18 j--;
19 } while (j>=0 && PA[a]<=PR[j]);
20 }
21
22 return F;
23 }

25 double[] Cdf (int[] h) {
26 // returns the cumulative distribution function for histogram h
27 int K = h.length;
28 int n = 0; // sum all histogram values
29 for (int i=0; i<K; i++) {
30 n += h[i];
31 }
32
33 double[] P = new double[K]; // create cdf table P
34 int c = 0; // cumulate histogram values
35 for (int i=0; i<K; i++) {
36 c += h[i];
37 P[i] = (double) c / n;
38 }
39
40 return P;
41 }

Program 4.3 Histogram matching (Java implementation of Alg. 4.3). The method
matchHistograms() computes the mapping function F from the target histogram Ha and
the reference histogram Hr (see Eqn. (4.25)). The method Cdf() computes the cumulative
distribution function (cdf) for a given histogram (Eqn. (4.16)).

apart from the unavoidable irregularity at the center caused by the dominant
peak in the original histogram.
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Original Image Modified Image

Reference Distribution
(piecewise linear) (a) IA (b) IA′

(c) hR (d) hA (e) hA′

(f) PR (g) PA (h) PA′

Figure 4.14 Histogram specification with a piecewise linear reference distribution. The tar-
get image IA (a), its histogram (d), and distribution function PA (g); the reference histogram
hR (c) and the corresponding distribution PR (f); the modified image IA′ (b), its histogram
hA′ (e), and the resulting distribution PA′ (h).

Adjusting to another image

The third example in Fig. 4.16 demonstrates the adjustment of two images
by matching their intensity histograms. One of the images is selected as
the reference image IR (Fig. 4.16 (b)) and supplies the reference histogram
hR (Fig. 4.16 (e)). The second (target) image IA (Fig. 4.16 (a)) is modified
such that the resulting cumulative histogram matches the cumulative his-
togram of the reference image IR. It can be expected that the final image
IA′ (Fig. 4.16 (c)) and the reference image give a similar visual impression with
regard to tonal range and distribution (assuming that both images show similar
content).

Of course this method may be used to adjust multiple images to the same
reference image (e. g., to prepare a series of similar photographs for a print
project). For this purpose, one could either select a single representative im-
age as a common reference or, alternatively, compute an “average” reference
histogram from a set of typical images (see also Exercise 4.7).
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Original Image Gaussian (σ = 50) Gaussian (σ = 100)

(a) IA (b) IG50 (c) IG100

Reference Histogram

hR(i)

Cumulative
Reference Histogram

HR(i)

(d) (e)

(f) hA (g) hG50 (h) hG100

(i) HA (j) HG50 (k) HG100

Figure 4.15 Histogram matching: adjusting to a synthetic histogram. Original image IA

(a), corresponding histogram (f), and cumulative histogram (i). Gaussian-shaped reference
histograms with center μ = 128 and σ = 50 (d) and σ = 100 (e), respectively. Resulting
images after histogram matching, IG50 (b) and IG100 (c) with the corresponding histograms
(g, h) and cumulative histograms (j, k).

4.7 Gamma Correction

We have been using the terms “intensity” and “brightness” many times without
really bothering with how the numeric pixel values in our images relate to these
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Target Image Reference Image Modified Image

(a) IA (b) IR (c) IA′

(d) hA (e) hR (f) hA′

(g) HA (h) HR (i) HA′

Figure 4.16 Histogram matching: adjusting to a reference image. The target image IA (a)
is modified by matching its histogram to the reference image IR (b), resulting in the new
image IA′ (c). The corresponding histograms hA, hR, hA′ (d–f) and cumulative histograms
HA, HR, PA′ (g–i) are shown. Notice the good agreement between the cumulative histograms
of the reference and adjusted images (h, i).

physical concepts, if at all. A pixel value may represent the amount of light
falling onto a sensor element in a camera, the photographic density of film,
the amount of light to be emitted by a monitor, the number of toner particles
to be deposited by a printer, or any other relevant physical magnitude. In
practice, the relationship between a pixel value and the corresponding physical
quantity is usually complex and almost always nonlinear. In many imaging
applications, it is important to know this relationship, at least approximately,
to achieve consistent and reproducible results.

When applied to digital intensity images, the ideal is to have some kind
of “calibrated intensity space” that optimally matches the human perception
of intensity and requires a minimum number of bits to represent the required
intensity range. Gamma correction denotes a simple point operation to com-
pensate for the transfer characteristics of different input and output devices
and to map them to a unified intensity space.
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Figure 4.17 Exposure function of photographic film. With respect to the logarithmic light
intensity B, the resulting film density D is approximately linear over a wide intensity range.
The slope (ΔD/ΔB) of this linear section of the function specifies the “gamma” (γ) value for
a particular type of photographic material.

4.7.1 Why Gamma?

The term “gamma” originates from analog photography, where the relation-
ship between the light energy and the resulting film density is approximately
logarithmic. The “exposure function” (Fig. 4.17), specifying the relationship
between the logarithmic light intensity and the resulting film density, is there-
fore approximately linear over a wide range of light intensities. The slope of
this function within this linear range is traditionally referred to as the “gamma”
of the photographic material. The same term was adopted later in television
broadcasting to describe the nonlinearities of the cathode ray tubes used in
TV receivers, i. e., to model the relationship between the amplitude (voltage)
of the video signal and the emitted light intensity. To compensate for the non-
linearities of the receivers, a “gamma correction” was (and is) applied to the TV
signal once before broadcasting in order to avoid the need for costly correction
measures on the receiver side.

4.7.2 Power Function

Gamma correction is based on the power function

fγ(a) = aγ for a ∈ R and γ > 0, (4.26)

where the parameter γ is called the gamma value. If a is constrained to the
interval [0, 1], then—independent of γ—the value of fγ(a) also stays within
[0, 1], and the function always runs through the points (0, 0) and (1, 1). In
particular, fγ(a) is the identity function for γ = 1, as shown in Fig. 4.18. The
function runs above the diagonal for gamma values γ < 1, and below it for
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Figure 4.18 Power function b = fγ(a) = aγ for a ∈ [0, 1] for different gamma values.

γ > 1. Controlled by a single continuous parameter (γ), the power function
can thus “imitate” both logarithmic and exponential types of functions. Within
the interval [0, 1], the function is continuous and strictly monotonic, and also
very simple to invert as

a = f−1
γ (b) = b1/γ , (4.27)

since b1/γ = (aγ)1/γ = a1 = a. The inverse of the power function f−1
γ (b) is

thus again a power function,

f−1
γ (b) = fγ̄ (b) = f1/γ(b), (4.28)

with γ̄ = 1/γ. Thus the inverse of the power function with parameter γ is
another power function with parameter γ̄ = 1/γ.

4.7.3 Real Gamma Values

The actual gamma values of individual devices are usually specified by the
manufacturers based on real measurements. For example, common gamma
values for CRT monitors are in the range 1.8 to 2.8, with 2.4 as a typical
value. Most LCD monitors are internally adjusted to similar values. Digital
video and still cameras also emulate the transfer characteristics of analog film
and photographic cameras by making internal corrections to give the resulting
images an accustomed “look”.

In TV receivers, gamma values are standardized with 2.2 for analog NTSC
and 2.8 for the PAL system (these values are theoretical; results of actual
measurements are around 2.35). A gamma value of 1/2.2 ≈ 0.45 is the norm
for cameras in NTSC as well as the EBU7 standards. The current international
7 European Broadcast Union (EBU).
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standard ITU-R BT.7098 calls for uniform gamma values of 2.5 in receivers and
1/1.956 ≈ 0.51 for cameras [15,20]. The ITU 709 standard is based on a slightly
modified version of the gamma correction (see Sec. 4.7.6).

Computers usually allow adjustment of the gamma value applied to the
video output signals to adapt to a wide range of different monitors. Note
however that the power function fγ() is only a coarse approximation to the
actual transfer characteristics of any device, which may also not be the same
for different color channels. Thus significant deviations may occur in practice,
despite the careful choice of gamma settings. Critical applications, such as
prepress or high-end photography, usually require additional calibration efforts
based on exactly measured device profiles (see Vol. 2 [6, Sec. 6.6.5]).

4.7.4 Applications of Gamma Correction

Let us first look at the simple example illustrated in Fig. 4.19. Assume that we
use a digital camera with a nominal gamma value γc, meaning that its output
signal s relates to the incident light intensity L as

S = Lγc . (4.29)

To compensate the transfer characteristic of this camera (i. e., to obtain a mea-
surement S′ that is proportional to the original light intensity L), the camera
signal S is subject to a gamma correction with the inverse of the camera’s
gamma value γ̄c = 1/γc, so

S′ = fγ̄c(S) = S1/γc . (4.30)

The resulting signal S′ = S1/γc = (Lγc)1/γc = L(γc· 1
γc

) = L1 is obviously
proportional (in theory even identical) to the original light intensity L.

Although the above example is overly simplistic, it still demonstrates the
general rule, which holds for output devices as well:

The transfer characteristic of an input or output device with specified
gamma value γ is compensated for by a gamma correction with γ̄ = 1/γ.

In the above, we have implicitly assumed that all values are strictly in the
range [0, 1], which usually is not the case in practice. When working with
digital images, we have to deal with discrete pixel values; e. g., in the range
[0, 255] for 8-bit images. In general, performing a gamma correction

b = fgc(a, γ),

on a pixel value a ∈ [0, amax] and a gamma value γ > 0 requires the following
three steps:
8 International Telecommunications Union (ITU).
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Figure 4.19 Principle of gamma correction. To compensate the output signal S produced
by a camera with nominal gamma value γc, a gamma correction is applied with γ̄c = 1/γc.
The corrected signal S′ is proportional to the received light intensity L.

1. Scale a linearly to a′ ∈ [0, 1].

2. Apply the gamma correction function to a′: b′ ← fγ(a′) = a′γ .

3. Scale b′ ∈ [0, 1] linearly back to b ∈ [0, amax].

Formulated in a more compact way, the corrected pixel value b is obtained from
the original value a as

b = fgc(a, γ) =
( a

amax

)γ
· amax. (4.31)

Figure 4.20 illustrates the typical role of gamma correction in the digital
work flow with two input (camera, scanner) and two output devices (monitor,
printer), each with its individual gamma value. The central idea is to correct
all images to be processed and stored in a device-independent, standardized
intensity space.

4.7.5 Implementation

Program 4.4 shows the implementation of gamma correction as an ImageJ
plugin for 8-bit grayscale images. The mapping function fgc(a, γ) is computed
as a lookup table (Fgc), which is then applied to the image using the method
applyTable() to perform the actual point operation (see also Sec. 4.8.1).

4.7.6 Modified Gamma Correction

A subtle problem with the simple power function fγ(a) = aγ (Eqn. (4.26))
appears if we take a closer look at the slope of this function, expressed by its
first derivative,

f ′
γ(a) = γ · a(γ−1),
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Figure 4.20 Gamma correction in the digital imaging work flow. Images are processed
and stored in a “linear” intensity space, where gamma correction is used to compensate for
the transfer characteristic of each input and output device. (The gamma values shown are
examples only.)

1 public void run(ImageProcessor ip) {
2 // works for 8-bit images only
3 int K = 256;
4 int aMax = K - 1;
5 double GAMMA = 2.8;
6
7 // create a lookup table for the mapping function
8 int[] Fgc = new int[K];
9

10 for (int a = 0; a < K; a++) {
11 double aa = (double) a / aMax; // scale to [0, 1]
12 double bb = Math.pow(aa,GAMMA); // power function
13 // scale back to [0, 255]:
14 int b = (int) Math.round(bb * aMax);
15 Fgc[a] = b;
16 }
17
18 ip.applyTable(Fgc); // modify the image ip
19 }

Program 4.4 Gamma correction (ImageJ plugin). The corrected intensity values b are
only computed once and stored in the lookup table Fgc (line 15). The gamma value
GAMMA is constant. The actual point operation is performed by calling the ImageJ method
applyTable(Fgc) on the image object ip (line 18).
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which for a = 0 has the values

f ′
γ(0) =

⎧

⎨

⎩

0 for γ > 1
1 for γ = 1
∞ for γ < 1.

(4.32)

The tangent to the function at the origin is thus either horizontal (γ > 1),
diagonal (γ = 1), or vertical (γ < 1), with no intermediate values. For γ < 1,
this causes extremely high amplification of small intensity values and thus
increased noise in dark image regions. Theoretically, this also means that the
power function is generally not invertible at the origin.

A common solution to this problem is to replace the lower part (0 ≤ a ≤ a0)
of the power function by a linear segment with constant slope and to continue
with the ordinary power function for a > a0. The resulting modified gamma
correction f̄γ,a0(a) is defined as

f̄γ,a0(a) =

{

s · a for 0 ≤ a ≤ a0

(1 + d) · aγ − d for a0 < a ≤ 1
(4.33)

with s =
γ

a0(γ−1) + a
(1−γ)
0

and d =
1

aγ
0(γ−1) + 1

− 1. (4.34)

The function thus consists of a linear section (for 0 ≤ a ≤ a0) and a nonlinear
section (for a0 < a ≤ 1) that connect smoothly at the transition point a = a0.
The linear slope s and the parameter d are determined by the requirement that
the two function segments must have identical values as well as identical slopes
(first derivatives) at a = a0 to give a (C1) continuous function. The function
in Eqn. (4.33) is thus fully specified by the two parameters a0 and γ.

Figure 4.21 shows two examples of the modified gamma correction f̄γ,a0()
with values γ = 0.5 and γ = 2.0, respectively. In both cases, the transition
point is at a0 = 0.2. For comparison, the figure also shows the ordinary gamma
correction fγ(a) for the same gamma values (dashed lines), whose slope at the
origin is ∞ (Fig. 4.21 (a)) and zero (Fig. 4.21 (b)), respectively.

Gamma correction in common standards

The modified gamma correction is part of several modern imaging standards.
In practice, however, the values of a0 are considerably smaller than the ones
used for the illustrative examples in Fig. 4.21, and γ is chosen to obtain a good
overall match to the desired correction function. For example, the ITU-BT.709
specification [20] mentioned in Sec. 4.7.3 specifies the parameters

γ =
1

2.222
≈ 0.45 and a0 = 0.018,
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Figure 4.21 The modified gamma correction f̄γ,a0(a) consists of a linear segment with fixed
slope s between a = 0 and a = a0, followed by a power function with parameter γ (Eqn.
(4.33)). The dashed lines show the ordinary power functions for the same gamma values.

Table 4.1 Gamma correction parameters for the ITU and sRGB standards Eqns. (4.33) and
(4.34).

Standard

Nominal
Gamma Value

γ a0 s d

Effective
Gamma Value

γeff

ITU BT.709 1/2.222 ≈ 0.450 0.01800 4.5068 0.09915 1/1.956 ≈ 0.511

sRGB 1/2.400 ≈ 0.417 0.00304 12.9231 0.05500 1/2.200 ≈ 0.455

with the corresponding slope and offset values s = 4.50681 and d = 0.0991499,
respectively (Eqn. (4.34)). The resulting correction function f̄ITU(a) has a
nominal gamma value of 0.45, which corresponds to the effective gamma value
γeff = 1/1.956 ≈ 0.511. The gamma correction in the sRGB standard [40] is
specified on the same basis (with different parameters; see Vol. 2 [6, Sec. 6.3]).

Figure 4.22 shows the actual correction functions for the ITU and sRGB
standards, respectively, each in comparison with the equivalent ordinary
gamma correction. The ITU function (Fig. 4.22 (a)) with γ = 0.45 and
a0 = 0.018 corresponds to an ordinary gamma correction with effective gamma
value γeff = 0.511 (dashed line). The curves for sRGB (Fig. 4.22 (b)) differ
only by the parameters γ and a0, as summarized in Table 4.1.
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Figure 4.22 Gamma correction functions specified by the ITU-R BT.709 (a) and sRGB
(b) standards. The continuous plot shows the modified gamma correction with the nominal
gamma value γ and transition point a0. The dashed lines mark the equivalent ordinary
gamma correction with effective gamma γeff .

Inverting the modified gamma correction

To invert the modified gamma correction of the form b = f̄γ,a0(a) (Eqn. (4.33)),
we need the inverse of the function f̄γ,a0(), which is again defined in two parts,

f̄−1
γ,a0

(b) =

⎧

⎪
⎨

⎪
⎩

b/s for 0 ≤ b ≤ s · a0
(

b + d

1 + d

)1/γ

for s · a0 < b ≤ 1,
(4.35)

where s and d are the values defined in Eqn. (4.34). The inverse gamma correc-
tion function is required in particular for transforming between different color
spaces if nonlinear (i. e., gamma-corrected) component values are involved (see
also Vol. 2 [6, Sec. 6.2]).

4.8 Point Operations in ImageJ

Several important types of point operations are already implemented in Im-
ageJ, so there is no need to program every operation manually (as shown in
Prog. 4.4). In particular, it is possible in ImageJ to apply point operations
efficiently by using tabulated functions, to use built-in standard functions for
point operations on single images, and to apply arithmetic operations on pairs
of images. These issues are described briefly in the remaining parts of this
section.
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4.8.1 Point Operations with Lookup Tables

Some point operations require complex computations for each pixel, and the
processing of large images may be quite time-consuming. If the point operation
is homogeneous (i. e., independent of the pixel coordinates), the value of the
mapping function can be precomputed for every possible pixel value and stored
in a lookup table, which may then be applied very efficiently to the image. A
lookup table L represents a discrete mapping (function f) from the original to
the new pixel values,

L : [0, K−1]
f�−→ [0, K−1]. (4.36)

For a point operation specified by a particular pixel mapping function a′ = f(a),
the table L is initialized with the values

L(a)← f(a) for 0 ≤ a < K. (4.37)

Thus the K table elements of L need only be computed once, where typically
K = 256. Performing the actual point operation only requires a simple (and
quick) table lookup in L at each pixel,

I(u, v)← L(I(u, v)), (4.38)

which is much more efficient than any individual function call. ImageJ provides
the method

void applyTable(int[] lut )

for objects of type ImageProcessor, which requires a lookup table lut (L) as a
one-dimensional int array of size K (see Prog. 4.4 on page 83 for an example).
The advantage of this approach is obvious: for an 8-bit image, for example, the
mapping function is evaluated only 256 times (independent of the image size)
and not a million times or more as in the case of a large image. The use of
lookup tables for implementing point operations thus always makes sense if the
number of image pixels (M ×N) is greater than the number of possible pixel
values K (which is usually the case).

4.8.2 Arithmetic Operations

ImageJ implements a set of common arithmetic operations as methods for the
class ImageProcessor, which are summarized in Table 4.2. In the following
example, the image is multiplied by a scalar constant (1.5) to increase its
contrast:

ImageProcessor ip = ... //some image ip
ip.multiply(1.5);
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Table 4.2 ImageJ methods for arithmetic operations applicable to objects of type
ImageProcessor.

void abs() I(u, v)← |I(u, v)|
void add(int p ) I(u, v)← I(u, v) + p

void gamma(double g ) I(u, v)← (

I(u, v)/255
)g · 255

void invert(int p ) I(u, v)← 255− I(u, v)

void log() I(u, v)← log10

(

I(u, v)
)

void max(double s ) I(u, v)← max
(

I(u, v), s
)

void min(double s ) I(u, v)← min
(

I(u, v), s
)

void multiply(double s ) I(u, v)← round
(

I(u, v) · s)

void sqr() I(u, v)← I(u, v)2

void sqrt() I(u, v)←√

I(u, v)

The image ip is destructively modified by all of these methods, with the results
being limited (clamped) to the minimum and maximum pixel values, respec-
tively.

4.8.3 Point Operations Involving Multiple Images

Point operations may involve more than one image at once, with arithmetic
operations on the pixels of pairs of images being a special but important case.
For example, we can express the pointwise addition of two images I1 and I2 (of
identical size) to create a new image I ′ as

I ′(u, v) ← I1(u, v) + I2(u, v) (4.39)

for all positions (u, v). In general, any function f(a1, a2, . . . , an) over n pixel
values ai may be defined to perform pointwise combinations of n images, i. e.,

I ′(u, v) ← f
(

I1(u, v), I2(u, v), . . . In(u, v)
)

. (4.40)

However, most arithmetic operations on multiple images required in practice
can be implemented as sequences of successive binary operations on pairs of
images.

4.8.4 Methods for Point Operations on Two Images

ImageJ supplies a single method for implementing arithmetic operations on
pairs of images,



4.8 Point Operations in ImageJ 89

Table 4.3 Arithmetic operations for pairs of images provided by ImageProcessor’s
copyBits() method. The constants ADD, etc., listed in this table are defined by ImageJ’s
Blitter interface.

ADD I1(u, v)← I1(u, v) + I2(u, v)

AVERAGE I1(u, v)← (

I1(u, v) + I2(u, v)
)

/ 2

DIFFERENCE I1(u, v)← |I1(u, v)− I2(u, v)|
DIVIDE I1(u, v)← I1(u, v) / I2(u, v)

MAX I1(u, v)← max
(

I1(u, v), I2(u, v)
)

MIN I1(u, v)← min
(

I1(u, v), I2(u, v)
)

MULTIPLY I1(u, v)← I1(u, v) · I2(u, v)

SUBTRACT I1(u, v)← I1(u, v)− I2(u, v)

void copyBits(ImageProcessor ip2, int u, int v, int mode ),

which applies the binary operation specified by the transfer mode parameter
mode to all pixel pairs taken from the source image ip2 and the target image
(the image on which this method is invoked) and stores the result in the target
image. u, v are the coordinates where the source image is inserted into the
target image (usually u = v = 0). The code fragment in the following example
demonstrates the addition of two images:

1 // add images ip1 and ip2:
2 ImageProcessor ip1 = ... // target image I1

3 ImageProcessor ip2 = ... // source image I2

4 ...
5 ip1.copyBits(ip2, 0, 0, Blitter.ADD); // I1(u, v)← I1(u, v) + I2(u, v)
6 // ip1 holds the result, ip2 is unchanged
7 ...

By this operation, the target image ip1 is destructively modified, while the
source image ip2 remains unchanged. The constant ADD is one of several arith-
metic transfer modes defined by the Blitter interface (see Table 4.3). In
addition, Blitter defines (bitwise) logical operations, such as OR and AND.9

For arithmetic operations, the copyBits() method limits the results to the
admissible range of pixel values (of the target image). Also note that (except
for target images of type FloatProcessor) the results are not rounded but
truncated to integer values.

9 See also Sec. 10 of the ImageJ Short Reference [5].
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4.8.5 ImageJ Plugins Involving Multiple Images

ImageJ provides two types of plugin: a generic plugin (PlugIn), which can
be run without any open image, and plugins of type PlugInFilter, which
apply to a single image. In the latter case, the currently active image is passed
as an object of type ImageProcessor to the plugin’s run() method (see also
Sec. 2.2.3).

If two or more images I1, I2 . . . Ik are to be combined by a plugin program,
only a single image I1 can be passed directly to the plugin’s run() method, but
not the additional images I2 . . . Ik. The usual solution is to make the plugin
open a dialog window to let the user select the remaining images interactively.
This is demonstrated in the following example plugin for transparently blending
two images.

Example: alpha blending

Alpha blending is a simple method for transparently overlaying two images,
IBG and IFG. The background image IBG is covered by the foreground image
IFG, whose transparency is controlled by the value α in the form

I ′(u, v)← α·IBG(u, v) + (1−α)·IFG(u, v) (4.41)

with 0 ≤ α ≤ 1. For α = 0, the foreground image IFG is nontransparent
(opaque) and thus entirely hides the background image IBG. Conversely, the
image IFG is fully transparent for α = 1 and only IBG is visible. All α values
between 0 and 1 result in a weighted sum of the corresponding pixel values
taken from IBG and IFG (Eqn. (4.41)).

Figure 4.23 shows the results of alpha blending for different α values.
The Java code for the corresponding implementation (as an ImageJ plugin)
is listed in Progs. 4.5 and 4.6. The background image (bgIp) is passed di-
rectly to the plugin’s run() method. The second (foreground) image and the
α value are specified interactively by creating an instance of the ImageJ class
GenericDialog, which allows the simple implementation of dialog windows
with various types of input fields.10

10 See also Sec. 18.2 of the ImageJ Short Reference [5], where a similar example
producing a stack of images by stepwise alpha blending can be found in Sec. 15.3.
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IBG α = 0.25

IFG α = 0.50

GenericDialog window

α = 0.75

Figure 4.23 Alpha blending example. Background image (IBG) and foreground image
(IFG), GenericDialog window (see the implementation in Progs. 4.5 and 4.6), and blended
images for transparency values α=0.25, 0.50, and 0.75.
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1 import ij.IJ;
2 import ij.ImagePlus;
3 import ij.WindowManager;
4 import ij.gui.GenericDialog;
5 import ij.plugin.filter.PlugInFilter;
6 import ij.process.*;
7
8 public class Alpha_Blending implements PlugInFilter {
9

10 static double alpha = 0.5; // transparency of foreground image
11 ImagePlus fgIm = null; // foreground image
12
13 public int setup(String arg, ImagePlus imp) {
14 return DOES_8G;
15 }
16
17 public void run(ImageProcessor bgIp) { // background image
18 if(runDialog()) {
19 ImageProcessor fgIp
20 = fgIm.getProcessor().convertToByte(false);
21 fgIp = fgIp.duplicate();
22 fgIp.multiply(1-alpha);
23 bgIp.multiply(alpha);
24 bgIp.copyBits(fgIp, 0, 0, Blitter.ADD);
25 }
26 }
27
28 // continued ...

Program 4.5 Alpha blending plugin (part 1). A background image is transparently blended
with a selected foreground image. The plugin is applied to the (currently active) background
image, and the foreground image must also be open when the plugin is started. The back-
ground image (bgIp), which is passed to the plugin’s run() method, is multiplied with α (line
23). The foreground image (fgIP, selected in part 2) is first duplicated (line 21) and then
multiplied with (1−α) (line 22). Thus the original foreground image is not modified. The
final result is obtained by adding the two weighted images (line 24).
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30 // class Alpha_Blending (continued)
31
32 boolean runDialog() {
33 // get list of open images
34 int[] windowList = WindowManager.getIDList();
35 if (windowList == null){
36 IJ.noImage();
37 return false;
38 }
39
40 // get all image titles
41 String[] windowTitles = new String[windowList.length];
42 for (int i = 0; i < windowList.length; i++) {
43 ImagePlus im = WindowManager.getImage(windowList[i]);
44 if (im == null)
45 windowTitles[i] = "untitled";
46 else
47 windowTitles[i] = im.getShortTitle();
48 }
49
50 // create dialog and show
51 GenericDialog gd = new GenericDialog("Alpha Blending");
52 gd.addChoice("Foreground image:",
53 windowTitles, windowTitles[0]);
54 gd.addNumericField("Alpha value [0..1]:", alpha, 2);
55 gd.showDialog();
56 if (gd.wasCanceled())
57 return false;
58 else {
59 int fgIdx = gd.getNextChoiceIndex();
60 fgIm = WindowManager.getImage(windowList[fgIdx]);
61 alpha = gd.getNextNumber();
62 return true;
63 }
64 }
65
66 } // end of class Alpha_Blending

Program 4.6 Alpha blending plugin (part 2). To select the foreground image, a list of
currently open images and image titles is obtained (lines 34–42). Then a dialog object
(GenericDialog) is created and opened for specifying the foreground image (fgIm) and the
α value (alpha). fgIm and alpha are variables in the class AlphaBlend_ (declared in part 1,
Prog. 4.5). The runDialog() method returns true if successful and false if no images are
open or the dialog was canceled by the user.
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4.9 Exercises
Exercise 4.1
Implement the auto-contrast operation as defined in Eqns. (4.8)–(4.10) as
an ImageJ plugin for an 8-bit grayscale image. Set the quantile q of pixels
to be saturated at both ends of the intensity range (0 and 255) to q = qlow =
qhigh = 1%.

Exercise 4.2
Modify the histogram equalization plugin in Prog. 4.2 to use a lookup table
(Sec. 4.8.1) for computing the point operation.

Exercise 4.3
Implement the histogram equalization as defined in Eqn. (4.11), but use
the modified cumulative histogram defined in Eqn. (4.12), cumulating the
square root of the histogram entries. Compare the results to the standard
(linear) approach by plotting the resulting histograms and cumulative his-
tograms as shown in Fig. 4.10.

Exercise 4.4
Show formally that (a) a linear histogram equalization (Eqn. (4.11)) does
not change an image that already has a uniform intensity distribution and
(b) that any repeated application of histogram equalization to the same
image causes no more changes.

Exercise 4.5
Show that the linear histogram equalization (Sec. 4.5) is only a special case
of histogram specification (Sec. 4.6).

Exercise 4.6
Implement (in Java) a histogram specification using a piecewise linear ref-
erence distribution function, as described in Sec. 4.6.3. Define a new object
class with all necessary instance variables to represent the distribution func-
tion and implement the required functions PL(i) (Eqn. (4.22)) and P−1

L (b)
(Eqn. (4.23)) as methods of this class.

Exercise 4.7
Using a histogram specification for adjusting multiple images (Sec. 4.6.4),
one could either use one typical image as the reference or compute an “av-
erage” reference histogram from a set of images. Implement the second
approach and discuss its possible advantages (or disadvantages).

Exercise 4.8
Implement the modified gamma correction (Eqn. (4.33)) as an ImageJ
plugin with variable values for γ and a0 using a lookup table as shown
in Prog. 4.4.
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Exercise 4.9
Show that the modified gamma correction function f̄γ,a0 (a), with the pa-
rameters defined in Eqns. (4.33) and (4.34), is C1-continuous (i. e., both the
function itself and its first derivative are continuous).



5
Filters

The essential property of point operations (discussed in the previous chapter)
is that each new pixel value only depends on the original pixel at the same
position. The capabilities of point operations are limited, however. For ex-
ample, they cannot accomplish the task of sharpening or smoothing an image
(Fig. 5.1). This is what filters can do. They are similar to point operations in
the sense that they also produce a 1:1 mapping of the image coordinates, i. e.,
the geometry of the image does not change.

5.1 What Is a Filter?

The main difference between filters and point operations is that filters gener-
ally use more than one pixel from the source image for computing each new
pixel value. Let us first take a closer look at the task of smoothing an image.
Images look sharp primarily at places where the local intensity rises or drops
sharply (i. e., where the difference between neighboring pixels is large). On the
other hand, we perceive an image as blurred or fuzzy where the local intensity
function is smooth.

A first idea for smoothing an image could thus be to simply replace every
pixel by the average of its neighboring pixels. To determine the new pixel
value in the smoothed image I ′(u, v), we use the original pixel I(u, v) = p0 at
the same position plus its eight neighboring pixels p1, p2, . . . p8 to compute the
arithmetic mean of these nine values,

I ′(u, v) ← p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8

9
(5.1)

W. Burger, M.J. Burge, Principles of Digital Image Processing, Undergraduate Topics  
in Computer Science, DOI 10.1007/978-1-84800-191-6_5, Springer-Verlag London Limited, 2009 ©
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Figure 5.1 No point operation can blur or sharpen an image. This is an example of what
filters can do. Like point operations, filters do not modify the geometry of an image.

or, expressed in relative image coordinates,

I ′(u, v) ← 1
9 · [ I(u−1, v−1) + I(u, v−1) + I(u+1, v−1) +

I(u−1, v) + I(u, v) + I(u+1, v) +
I(u−1, v + 1) + I(u, v+1) + I(u+1, v+1) ] .

(5.2)

Written more compactly, this is equivalent to

I ′(u, v) ← 1
9
·

1
∑

j=−1

1
∑

i=−1

I(u + i, v + j). (5.3)

This simple local averaging already exhibits all the important elements of
a typical filter. In particular, it is a so-called linear filter, which is a very
important class of filters. But how are filters defined in general? First they
differ from point operations mainly by using not a single source pixel but a
set of them for computing each resulting pixel. The coordinates of the source
pixels are fixed relative to the current image position (u, v) and usually form a
contiguous region, as illustrated in Fig. 5.2.

The size of the filter region is an important parameter of the filter because
it specifies how many original pixels contribute to each resulting pixel value
and thus determines the spatial extent (support) of the filter. For example, the
smoothing filter in Eqn. (5.2) uses a 3× 3 region of support that is centered at
the current coordinate (u, v). Similar filters with larger support, such as 5× 5,
7× 7, or even 21× 21 pixels, would obviously have stronger smoothing effects.

The shape of the filter region is not necessarily quadratic or even rectan-
gular. In fact, a circular (disk-shaped) region would be preferred to obtain an
isotropic blur effect (i. e., one that is the same in all image directions). Another
option is to assign different weights to the pixels in the support region, such
as to give stronger emphasis to pixels that are closer to the center of the re-
gion. Furthermore, the support region of a filter does not need to be contiguous
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I I′

uu

vv

Ru,v I′(u, v)

Figure 5.2 Principal filter operation. Each new pixel value I′(u, v) is computed as a function
of the pixels in a corresponding region of source pixels Ru,v in the original image I.

and may not even contain the original pixel itself (imagine a ring-shaped filter
region, for example).

It is probably confusing to have so many options—a more systematic
method is needed for specifying and applying filters in a targeted manner.
The traditional and proven classification into linear and nonlinear filters is
based on the mathematical properties of the filter function; i. e., whether the
result is computed from the source pixels by a linear or a nonlinear expression.
In the following, we discuss both classes of filters and show several practical
examples.

5.2 Linear Filters

Linear filters are denoted that way because they combine the pixel values in
the support region in a linear fashion; i. e., as a weighted summation. The local
averaging process discussed in the beginning (Eqn. (5.3)) is a special example,
where all nine pixels in the 3×3 support region are added with identical weights
(1/9). With the same mechanism, a multitude of filters with different properties
can be defined by simply modifying the distribution of the individual weights.

5.2.1 The Filter Matrix

For any linear filter, the size and shape of the support region, as well as the
individual pixel weights, are specified by the “filter matrix” or “filter mask”
H(i, j). The size of the matrix H equals the size of the filter region, and
every element H(i, j) specifies the weight of the corresponding pixel in the
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summation. For the 3× 3 smoothing filter in Eqn. (5.3), the filter matrix is

H(i, j) =

⎡

⎣

1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9

⎤

⎦ =
1
9

⎡

⎣

1 1 1
1 1 1
1 1 1

⎤

⎦ (5.4)

because each of the nine pixels contributes one-ninth of its value to the result.
In principle, the filter matrix H(i, j) is, just like the image itself, a discrete,

two-dimensional, real-valued function, H : Z × Z �→ R. The filter has its
own coordinate system with the origin—often referred to as the “hot spot”—
mostly (but not necessarily) located at the center. Thus, filter coordinates
are generally positive and negative (Fig. 5.3). The filter function is of infinite
extent and considered zero outside the region defined by the matrix H .

H =

(0, 0) = Hot Spot

i

j

Figure 5.3 Filter matrix and
coordinate system. i is the hor-
izontal (column) index, j is the
vertical (row) index.

5.2.2 Applying the Filter

For a linear filter, the result is unambiguously and completely specified by the
coefficients of the filter matrix. Applying the filter to an image is a simple
process that is illustrated in Fig. 5.4. The following steps are performed at
each image position (u, v):

1. The filter matrix H is moved over the original image I such that its origin
H(0, 0) coincides with the current image position (u, v).

2. All filter coefficients H(i, j) are multiplied with the corresponding image
element I(u+i, v+j), and the results are added.

3. Finally, the resulting sum is stored at the current position in the new image
I ′(u, v).

Described formally, pixels in the new image I ′(u, v) are computed by the op-
eration

I ′(u, v) ←
∑

(i,j)∈RH

I(u + i, v + j) ·H(i, j), (5.5)
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H

I

I′
u

u

v

v

Figure 5.4 Linear filter. The filter matrix H is placed with its origin at position (u, v) on
the image I. Each filter coefficient H(i, j) is multiplied with the corresponding image pixel
I(u+ i, v + j), the results are added, and the final sum is inserted as the new pixel value
I ′(u, v).

where RH denotes the set of coordinates covered by the filter H . For a typical
3× 3 filter with centered origin, this is

I ′(u, v) ←
i=1
∑

i=−1

j=1
∑

j=−1

I(u + i, v + j) ·H(i, j), (5.6)

for all image coordinates (u, v). Not quite for all coordinates, to be exact.
There is an obvious problem at the image borders where the filter reaches
outside the image and finds no corresponding pixel values to use in computing
a result. For the moment, we ignore this border problem, but we will attend
to it again in Sec. 5.5.2.

5.2.3 Computing the Filter Operation

Now that we understand the principal operation of a filter (Fig. 5.4) and know
that the borders need special attention, we go ahead and program a simple
linear filter in ImageJ. But before we do this, we may want to consider one
more detail. In a point operation (e. g., in Progs. 4.1 and 4.2), each new pixel
value depends only on the corresponding pixel value in the original image, and
it was thus no problem simply to store the results back to the same image—the
computation is done “in place” without the need for any intermediate storage.
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Figure 5.5 Practical implementation of filter operations. Version A (a): The result of the
filter is first stored in an intermediate image and subsequently copied back to the original
image. Version B (b): The original image is first copied to an intermediate image that
serves as the source for the actual filter operation. The result replaces the pixels in the
original image.

In-place computation is generally not possible for a filter since any original pixel
contributes to more than one resulting pixel and thus may not be modified
before all operations are complete. We therefore require additional storage
space for the resulting image, which subsequently could be copied back to the
source image again (if desired). Thus the complete filter operation can be
implemented in two different ways (Fig. 5.5):

A. The result of the filter computation is initially stored in a new image whose
content is eventually copied back to the original image.

B. The original image is first copied to an intermediate image that serves as
the source for the filter computation. The results are directly stored in the
original image.

The same amount of storage is required for both versions, and thus none of
them offers a particular advantage. In the following examples, we generally use
version B.

5.2.4 Filter Plugin Examples

The following examples demonstrate the implementation of two very basic fil-
ters that are nevertheless often used in practice.
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1 import ij.*;
2 import ij.plugin.filter.PlugInFilter;
3 import ij.process.*;
4
5 public class Filter_Average3x3 implements PlugInFilter {
6 ...
7 public void run(ImageProcessor orig) {
8 int w = orig.getWidth();
9 int h = orig.getHeight();

10 ImageProcessor copy = orig.duplicate();
11
12 for (int v = 1; v <= h-2; v++) {
13 for (int u = 1; u <= w-2; u++) {
14 //compute filter result for position (u, v)
15 int sum = 0;
16 for (int j = -1; j <= 1; j++) {
17 for (int i = -1; i <= 1; i++) {
18 int p = copy.getPixel(u+i, v+j);
19 sum = sum + p;
20 }
21 }
22 int q = (int) Math.round(sum/9.0);
23 orig.putPixel(u, v, q);
24 }
25 }
26 }
27 } // end of class Filter_Average3x3

Program 5.1 3 × 3 averaging “box” filter (ImageJ plugin). First (in line 10) a duplicate
(copy) of the original image (orig) is created, which is used as the source image in the
subsequent filter computation (line 18). In line 22, the result for the current image position
(u, v) is rounded and subsequently stored in the original image (line 23). Notice that the
border pixels remain unchanged because they are not reached by the iteration over (u, v).

Simple 3× 3 averaging filter (“box” filter)

Program 5.1 shows the ImageJ code for a simple 3 × 3 smoothing filter based
on local averaging (Eqn. (5.4)), which is often called a “box” filter because of its
box-like shape. No explicit filter matrix is required in this case since all filter
coefficients are identical (1/9). Also, no clamping (see Sec. 4.1.2) of the results
is needed because the sum of the filter coefficients is 1 and thus no pixel values
outside the admissible range can be created.

Although this example implements an extremely simple filter, it nevertheless
demonstrates the general structure of a two-dimensional filter program. In
particular, four nested loops are needed: two (outer) loops for moving the
filter over the image coordinates (u, v) and two (inner) loops to iterate over the
(i, j) coordinates within the rectangular filter region. The required amount of
computation thus depends not only upon the size of the image but equally on
the size of the filter.
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Another 3× 3 smoothing filter

Instead of the constant weights applied in the previous example, we now use a
real filter matrix with variable coefficients. For this purpose, we apply a bell-
shaped 3 × 3 filter function H(i, j), which puts more emphasis on the center
pixel than the surrounding pixels:

H(i, j) =

⎡

⎢

⎢

⎣

0.075 0.125 0.075

0.125 0.200 0.125

0.075 0.125 0.075

⎤

⎥

⎥

⎦
. (5.7)

Notice that all coefficients in H are positive and sum to 1 (i. e., the matrix is
normalized) such that all results remain within the original range of pixel val-
ues. Again no clamping is necessary and the program structure in Prog. 5.2 is
virtually identical to the previous example. The filter matrix (filter) is rep-
resented by a two-dimensional array1 of type double. Each pixel is multiplied
by the corresponding coefficient of the filter matrix, the resulting sum being
also of type double. Accessing the filter coefficients, it must be considered that
the coordinate origin of the filter matrix is assumed to be at its center (i. e., at
position (1, 1)) in the case of a 3 × 3 matrix. This explains the offset of 1 for
the i and j coordinates (see Prog. 5.2, line 20).

5.2.5 Integer Coefficients

Instead of using floating-point coefficients (as in the previous examples), it is
often simpler and usually more efficient to work with integer coefficients in
combination with some common scale factor s,

H(i, j) = s ·H ′(i, j), (5.8)

with H ′(i, j) ∈ Z and s ∈ R. If all filter coefficients are positive (which is the
case for any smoothing filter), then s is usually taken as the reciprocal of the
sum of the coefficients,

s =
1

∑

i,j H ′(i, j)
, (5.9)

to obtain a normalized filter matrix. In this case, the results are bounded to
the original range of pixel values. For example, the filter matrix in Eqn. (5.7)
could be defined equivalently as

H(i, j) =

⎡

⎢

⎢

⎣

0.075 0.125 0.075

0.125 0.200 0.125

0.075 0.125 0.075

⎤

⎥

⎥

⎦
=

1
40

⎡

⎢

⎢

⎣

3 5 3

5 8 5

3 5 3

⎤

⎥

⎥

⎦
, (5.10)

1 See the additional comments in Appendix B.2.4 regarding two-dimensional arrays
in Java.
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1 public void run(ImageProcessor orig) {
2 int w = orig.getWidth();
3 int h = orig.getHeight();
4 // 3× 3 filter matrix
5 double[][] filter = {
6 {0.075, 0.125, 0.075},
7 {0.125, 0.200, 0.125},
8 {0.075, 0.125, 0.075}
9 };

10 ImageProcessor copy = orig.duplicate();
11
12 for (int v = 1; v <= h-2; v++) {
13 for (int u = 1; u <= w-2; u++) {
14 // compute filter result for position (u, v)
15 double sum = 0;
16 for (int j = -1; j <= 1; j++) {
17 for (int i = -1; i <= 1; i++) {
18 int p = copy.getPixel(u+i, v+j);
19 // get the corresponding filter coefficient:
20 double c = filter[j+1][i+1];
21 sum = sum + c * p;
22 }
23 }
24 int q = (int) Math.round(sum);
25 orig.putPixel(u, v, q);
26 }
27 }
28 }

Program 5.2 3× 3 smoothing filter (ImageJ plugin, run() method only). The filter matrix
is defined as a two-dimensional array of type double (line 5). The coordinate origin of the
filter is assumed to be at the center of the matrix (i. e., at the array position [1, 1]), which
is accounted for by an offset of 1 for the i, j coordinates in line 20. The results are rounded
(line 24) and stored in the original image (line 25).

with the common scale factor s = 1
40 = 0.025. A similar scaling is used in Prog.

5.3.
In Adobe Photoshop, linear filters can be specified with the “Custom Filter”

tool (Fig. 5.6) using integer coefficients and a common scale factor Scale (which
corresponds to the reciprocal of s). In addition, a constant Offset value can be
specified; e. g., to shift negative results (caused by negative coefficients) into
the visible range of values. In summary, the operation performed by the 5× 5
Photoshop custom filter can be expressed as

I ′(u, v)← Offset +
1

Scale

j=2
∑

j=−2

i=2
∑

i=−2

I(u+i, v+j) ·H(i, j). (5.11)
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Figure 5.6 Adobe Photoshop’s “Custom Filter” implements linear filters up to a size of 5×5.
The filter’s coordinate origin (“hot spot”) is assumed to be at the center (value set to 3 in
this example), and empty cells correspond to zero coefficients. In addition to the (integer)
coefficients, common Scale and Offset values can be specified (see Eqn. (5.11)).

5.2.6 Filters of Arbitrary Size

Small filters of size 3× 3 are frequently used in practice, but sometimes much
larger filters are required. Let us assume that the filter matrix is centered and
has an odd number of (2K + 1) columns and (2L + 1) rows, with K, L ≥ 0. If
the image is of size M ×N , that is

I(u, v) with 0 ≤ u < M and 0 ≤ v < N,

then the filter can be computed for all image coordinates (u′, v′) with

K ≤ u′ ≤ (M−K−1) and L ≤ v′ ≤ (N−L−1),

as illustrated in Fig. 5.7. Program 5.3 (which is adapted from Prog. 5.2) shows
a 7×5 smoothing filter as an example for implementing linear filters of arbitrary
size. This example uses integer-valued filter coefficients in combination with a
common scale factor s, as described above. As usual, the “hot spot” of the filter
is assumed to be at the matrix center, and the range of all iterations depends
on the dimensions of the filter matrix. In this case, clamping of the results is
included (in lines 33–34) as a preventive measure.

5.2.7 Types of Linear Filters

Since the effects of a linear filter are solely specified by the filter matrix (which
can take on arbitrary values), an infinite number of different linear filters exists,
at least in principle. So how can these filters be used and which filters are suited
for a given task? In the following, we briefly discuss two broad classes of linear
filters that are of key importance in practice: smoothing filters and difference
filters (Fig. 5.8).
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Figure 5.7 Border geometry. The filter can be applied only at locations (u, v) where the
filter matrix H of size (2K+1)× (2L+1) is fully contained in the image (inner rectangle).
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Figure 5.8 Typical examples of linear filters, illustrated as 3D plots (top), profiles (center),
and approximations by discrete filter matrices (bottom). The “box” filter (a) and the Gauss
filter (b) are both smoothing filters with all-positive coefficients. The “Laplace” or “Mexican
hat” filter (c) is a difference filter. It computes the weighted difference between the center
pixel and the surrounding pixels and thus reacts most strongly to local intensity peaks.
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1 public void run(ImageProcessor orig) {
2 int M = orig.getWidth();
3 int N = orig.getHeight();
4
5 // filter matrix of size (2K + 1)× (2L + 1)
6 int[][] filter = {
7 {0,0,1,1,1,0,0},
8 {0,1,1,1,1,1,0},
9 {1,1,1,1,1,1,1},

10 {0,1,1,1,1,1,0},
11 {0,0,1,1,1,0,0}
12 };
13
14 double s = 1.0/23; // sum of filter coefficients is 23
15
16 int K = filter[0].length/2;
17 int L = filter.length/2;
18
19 ImageProcessor copy = orig.duplicate();
20
21 for (int v = L; v <= N-L-1; v++) {
22 for (int u = K; u <= M-K-1; u++) {
23 // compute filter result for position (u, v)
24 int sum = 0;
25 for (int j = -L; j <= L; j++) {
26 for (int i = -K; i <= K; i++) {
27 int p = copy.getPixel(u+i, v+j);
28 int c = filter[j+L][i+K];
29 sum = sum + c * p;
30 }
31 }
32 int q = (int) Math.round(s * sum);
33 if (q < 0) q = 0;
34 if (q > 255) q = 255;
35 orig.putPixel(u, v, q);
36 }
37 }
38 }

Program 5.3 ImageJ plugin (run() method only) for filters of arbitrary size. The filter
matrix is an integer array of size (2K+1) × (2L+1) with the origin at the center element.
The summation variable sum is also defined as an integer (int), which is scaled by a constant
factor s and rounded in line 32. The border pixels are not modified.

Smoothing filters

Every filter we have discussed so far caused some kind of smoothing. In fact,
any linear filter with positive-only coefficients is a smoothing filter in a sense
because such a filter computes merely a weighted average of the image pixels
within a certain image region.
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Box filter. This simplest of all smoothing filters, whose 3D shape resembles a
box (Fig. 5.8 (a)), is a well-known friend already. Unfortunately, the box filter is
far from an optimal smoothing filter due to its wild behavior in frequency space,
which is caused by the sharp cutoff around its sides. Described in frequency
terms, smoothing corresponds to low-pass filtering (i. e., effectively attenuating
all signal components above a given cutoff frequency).2 The box filter, however,
produces strong “ringing” in frequency space and is therefore not considered a
high-quality smoothing filter. It may also appear rather ad hoc to assign the
same weight to all image pixels in the filter region. Instead, one would probably
expect to have stronger emphasis given to pixels near the center of the filter
than to the more distant ones. Furthermore, smoothing filters should possibly
operate “isotropically” (i. e., uniformly in each direction), which is certainly not
the case for the rectangular box filter.

Gaussian filter. The filter matrix (Fig. 5.8 (b)) of this smoothing filter cor-
responds to a two-dimensional Gaussian function,

Gσ(x, y) = e−
r2

2σ2 = e−
x2+y2

2σ2 , (5.12)

where σ denotes the width (standard deviation) of the bell-shaped function and
r is the distance (radius) from the center. The pixel at the center receives the
maximum weight (1.0, which is scaled to the integer value 9 in the matrix shown
in Fig. 5.8 (b)), and the remaining coefficients drop off smoothly with increasing
distance from the center. The Gaussian filter is isotropic if the discrete filter
matrix is large enough for a sufficient approximation (at least 5×5). As a low-
pass filter, the Gaussian is “well-behaved” in frequency space and thus clearly
superior to the box filter. The two-dimensional Gaussian filter is separable into
a pair of one-dimensional filters (see Sec. 5.3.3), which facilitates its efficient
implementation.

Difference filters

If some of the filter coefficients are negative, the filter calculation can be in-
terpreted as the difference of two sums: the weighted sum of all pixels with
associated positive coefficients minus the weighted sum of pixels with negative
coefficients in the filter region RH , that is

I ′(u, v) =
∑

(i,j)∈R+
H

I(u+i, v+j) · |H(i, j)|

−
∑

(i,j)∈R−
H

I(u+i, v+j) · |H(i, j)| , (5.13)

2 More details on the image vs. frequency space and related concepts are covered in
Chapters 7 and 8 of Vol. 2 [6].
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where R+
H and R−

H denote the partitions of the filter with positive coefficients
H(i, j) > 0 and negative coefficients H(i, j) < 0, respectively. For example, the
5 × 5 Laplace filter in Fig. 5.8 (c) computes the difference between the center
pixel (with weight 16) and the weighted sum of 12 surrounding pixels (with
weights −1 or −2). The remaining 12 pixels have associated zero coefficients
and are thus ignored in the computation.

While local intensity variations are smoothed by averaging, we can expect
the exact contrary to happen when differences are taken: local intensity changes
are enhanced. Important applications of difference filters thus include edge
detection (Sec. 6.2) and image sharpening (Sec. 6.6).

5.3 Formal Properties of Linear Filters

In the previous sections, we have approached the concept of filters in a rather
casual manner to quickly get a grasp of how filters are defined and used. While
such a level of treatment may be sufficient for most practical purposes, the
power of linear filters may not really be apparent yet considering the limited
range of (simple) applications seen so far.

The real importance of linear filters (and perhaps their formal elegance) only
becomes visible when taking a closer look at some of the underlying theoretical
details. At this point, it may be surprising to the experienced reader that we
have not mentioned the term “convolution” in this context yet. We make up
for this in the remaining parts of this section.

5.3.1 Linear Convolution

The operation associated with a linear filter, as described in the previous sec-
tion, is not an invention of digital image processing but has been known in
mathematics for a long time. It is called linear convolution3 and in general com-
bines two functions of the same dimensionality, either continuous or discrete.
For discrete, two-dimensional functions I and H , the convolution operation is
defined as

I ′(u, v) =
∞
∑

i=−∞

∞
∑

j=−∞
I(u−i, v−j) ·H(i, j), (5.14)

or
I ′ = I ∗H (5.15)

for short, where ∗ denotes the convolution operator. This almost looks the
same as Eqn. (5.5), with two differences: the range of the variables i, j in the

3 Oddly enough the simple concept of convolution is often (though unjustly) feared
as an intractable mystery.
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summation and the negative signs in the coordinates of I(u − i, v − j). The
first point is easy to explain: Because the coefficients outside the filter matrix
H(i, j), also referred to as a filter kernel, are assumed to be zero, the positions
outside the matrix are irrelevant in the summation. To resolve the coordinate
issue, we modify Eqn. (5.14) by replacing the summation variables i, j to

I ′(u, v) =
∑

(i,j)∈RH

I(u−i, v−j) ·H(i, j)

=
∑

(i,j)∈RH

I(u+i, v+j) ·H(−i,−j)

=
∑

(i,j)∈RH

I(u+i, v+j) ·H∗(i, j). (5.16)

The result is identical to the linear filter in Eqn. (5.5), with the filter function
H∗(i, j) = H(−i,−j) being the horizontally and vertically reflected (i. e., ro-
tated by 180◦) function H . To be precise, the operation in Eqn. (5.5) actually
defines the linear correlation, which is merely a convolution with a reflected
filter matrix.4

Thus the mathematical concept underlying all linear filters is the convo-
lution operation (∗), and its results are completely and sufficiently specified
by the convolution matrix (or kernel) H . To illustrate this relationship, the
convolution is often pictured as a “black box” operation, as shown in Fig. 5.9.

I(u, v) I′(u, v)

H(i, j)

Figure 5.9 Convolution as a “black box” operation. The original image I is subjected to a
linear convolution (∗) with the convolution kernel H, producing the resulting image I′.

4 Of course this is the same in the one-dimensional case. Linear correlation is typ-
ically used for comparing images or subpatterns (see Chapter 11 of Vol. 2 [6] for
details).
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5.3.2 Properties of Linear Convolution

The importance of linear convolution is based on its simple mathematical prop-
erties as well as its multitude of manifestations and applications. Linear con-
volution is a suitable model for many types of natural phenomena, including
mechanical, acoustic, and optical systems. In particular (as shown in Ch. 7 of
Vol. 2 [6]), there are strong formal links to the Fourier representation of signals
in the frequency domain that are extremely valuable for understanding com-
plex phenomena, such as sampling and aliasing. In the following, however, we
first look at some important properties of linear convolution in the accustomed
“signal” or image space.

Commutativity

Linear convolution is commutative; i. e.,

I ∗H = H ∗ I. (5.17)

Thus the result is the same if the image and filter kernel were interchanged,
and it makes no difference if we convolve the image I with the kernel H or
the other way around—the two functions I and H are exchangeable and may
assume either role.

Linearity

Linear filters are called that way because of the linearity properties of the
convolution operation, which manifests itself in various aspects. For example,
if an image is multiplied by a scalar constant s ∈ R, then the result of the
convolution multiplies by the same factor,

(s · I) ∗H = I ∗ (s ·H) = s · (I ∗H) . (5.18)

Similarly, if we add two images I1, I2 pixel by pixel and convolve the resulting
image with some kernel H , the same outcome is obtained by convolving each
image individually and adding the two results afterward:

(I1 + I2) ∗H = (I1 ∗H) + (I2 ∗H). (5.19)

It may be surprising, however, that simply adding a constant (scalar) value b

to the image does not add to the convolved result by the same amount,

(b + I) ∗H �= b + (I ∗H), (5.20)

and is thus not part of the linearity property. While linearity is an important
theoretical property, one should note that in practice “linear” filters are often
only partially linear because of rounding errors or a limited range of output
values.
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Associativity

Linear convolution is associative, meaning that the order of successive filter
operations is irrelevant:

A ∗ (B ∗ C) = (A ∗B) ∗ C. (5.21)

Thus multiple successive filters can be applied in any order, and multiple filters
can be arbitrarily combined into new filters.

5.3.3 Separability of Linear Filters

If a convolution kernel H can be expressed as the convolution of multiple kernels
itself,

H = H1 ∗H2 ∗ . . . ∗Hn,

then (as a consequence of Eqn. (5.21)) the filter operation I ∗H may be per-
formed as a sequence of convolutions with the constituting kernels,

I ∗H = I ∗ (H1 ∗H2 ∗ . . . ∗Hn) (5.22)

=
(

. . . ((I ∗H1) ∗H2) ∗ . . . ∗Hn

)

.

Depending upon the type of decomposition, this may result in significant com-
putational savings.

x/y-separability

The possibility of separating a two-dimensional kernel H into a pair of one-
dimensional kernels Hx, Hy is of particular relevance and is used in many
practical applications. Let us assume, as a simple example, that the filter is
composed of the one-dimensional kernels Hx and Hy with

Hx =
[

1 1 1 1 1
]

and Hy =

⎡

⎣

1
1
1

⎤

⎦ , (5.23)

respectively.5 If these filters are applied sequentially to the image I,

I ′ ← (I ∗Hx) ∗Hy = I ∗ (Hx ∗Hy)
︸ ︷︷ ︸

Hxy

, (5.24)

then according to Eqn. (5.22) this is equivalent to applying the composite filter

Hxy = Hx ∗Hy =

⎡

⎣

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤

⎦ . (5.25)

5 The bold values in the matrices mark the filters’ coordinate origins (hot spots).
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Thus this two-dimensional 5 × 3 box filter Hxy can be constructed from two
one-dimensional filters of lengths 5 and 3, respectively (which is obviously true
for box filters of any size). But what is the advantage of this? In the case
above, the required amount of processing is 5 · 3 = 15 steps per image pixel for
the 2D filter Hxy as compared with 5 + 3 = 8 steps for the two separate 1D
filters, a reduction of almost 50%. In general, the number of operations for a
2D filter grows quadratically with the filter size (side length) but only linearly
if the filter is x/y-separable. Clearly, separability is an eminent bonus for the
implementation of large linear filters (see also Sec. 5.5.1).

Separable Gaussian filters

In general, a two-dimensional filter is x/y-separable if (as in the example above)
the filter function H(i, j) can be expressed as the outer product (⊗) of two one-
dimensional functions,

Hx,y(i, j) = (Hx ⊗Hy) (i, j) = Hx(i) ·Hy(j), (5.26)

because in this case the resulting function also corresponds to the convolution
product Hx,y = Hx ∗ Hy. A prominent example is the widely employed two-
dimensional Gaussian function Gσ(x, y) Eqn. (5.12), which can be expressed as
the product

Gσ(x, y) = e−
x2+y2

2σ2 = e−
x2

2σ2 · e− y2

2σ2 = gσ(x) · gσ(y). (5.27)

Thus a two-dimensional Gaussian filter HG,σ can be implemented by a pair of
one-dimensional Gaussian filters Hg,σ

x , Hg,σ
y as

I ′ ← I ∗HG,σ = I ∗Hg,σ
x ∗Hg,σ

y . (5.28)

With different σ-values along the x and y axes, elliptical 2D Gaussians can be
realized as separable filters in the same fashion.

The Gaussian function decays relatively slowly with increasing distance
from the center. To avoid visible truncation errors, discrete approximations of
the Gaussian should have a sufficiently large extent of about ±2.5 σ to ±3.5 σ

samples. For example, a discrete 2D Gaussian with “radius” σ = 10 requires a
minimum filter size of 51 × 51 pixels, in which case the x/y-separable version
can be expected to run about 50 times faster than the full 2D filter. The Java
method makeGaussKernel1d() in Prog. 5.4 shows how to dynamically create a
one-dimensional Gaussian filter kernel with an extent of ±3 σ (i. e., a vector of
odd length 6 σ +1). As an example, this method is used for implementing “un-
sharp masking” filters where relatively large Gaussian kernels may be required
(see Prog. 6.1 in Sec. 6.6.2).
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1 float[] makeGaussKernel1d(double sigma) {
2
3 // create the kernel
4 int center = (int) (3.0*sigma);
5 float[] kernel = new float[2*center+1]; // odd size
6
7 // fill the kernel
8 double sigma2 = sigma * sigma; // σ2

9 for (int i=0; i<kernel.length; i++) {
10 double r = center - i;
11 kernel[i] = (float) Math.exp(-0.5 * (r*r) / sigma2);
12 }
13
14 return kernel;
15 }

Program 5.4 Dynamic creation of one-dimensional Gaussian filter kernels. For a given σ,
the Java method makeGaussKernel1d() returns a discrete 1D Gaussian filter kernel (float
array) large enough to avoid truncation effects.

5.3.4 Impulse Response of a Filter

Linear convolution is a binary operation involving two functions as its operands;
it also has a “neutral element”, which of course is a function, too. The impulse
or Dirac function δ() is neutral under convolution; i. e.,

I ∗ δ = I. (5.29)

In the discrete, two-dimensional case, the impulse function is defined as

δ(u, v) =
{

1 for u = v = 0
0 otherwise.

(5.30)

Interpreted as an image, this function is merely a single bright pixel (with value
1) at the coordinate origin contained in a dark (zero value) plane of infinite
extent (Fig. 5.10).

�

�u

v

δ(u, v)

Figure 5.10 Discrete, two-dimensional impulse or Dirac function δ(u, v).
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When the Dirac function is used as the filter kernel in a linear convolution
as in Eqn. (5.29), the result is identical to the original image (Fig. 5.11). The
reverse situation is more interesting, however, where some filter H is applied
to the impulse δ as the input function. What happens? Since convolution is
commutative (Eqn. (5.17)) it is evident that

H ∗ δ = δ ∗H = H (5.31)

and thus the result of this filter operation is identical to the filter H itself
(Fig. 5.12)! While sending an impulse into a linear filter to obtain its filter
function may seem paradoxical at first, it makes sense if the properties (coeffi-
cients) of the filter H are unknown. Assuming that the filter is actually linear,
complete information about this filter is obtained by injecting only a single
impulse and measuring the result, which is called the “impulse response” of
the filter. Among other applications, this technique is used for measuring the
behavior of optical systems (e. g., lenses), where a point light source serves as
the impulse and the result—a distribution of light energy—is called the “point
spread function” (PSF) of the system.

I(u, v) I′(u, v) ≡ I(u, v)
δ(i, j)

Figure 5.11 Convolving the image I with the impulse δ returns the original unmodified
image.

5.4 Nonlinear Filters

Linear filters have an important disadvantage when used for smoothing or re-
moving noise: all image structures, including points, edges, and lines, are also
blurred, and the quality of the whole image is evenly reduced (Fig. 5.13). This
effect cannot be avoided, and thus the use of linear filters for these kinds of tasks
(noise removal in particular) is limited. In the following, we investigate certain
nonlinear filters to see if they can offer any better solution to this problem.
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δ(u, v)

I′(u, v) = H(u, v)

H(i, j)

Figure 5.12 The linear filter H with the impulse δ as the input yields the filter H as the
result.

� � �
� � �
� � �

Figure 5.13 Any image structure is blurred by a linear smoothing filter. Important image
structures such as step edges (top) or thin lines (bottom) are widened, and the local contrast
is reduced.

5.4.1 Minimum and Maximum Filters

Like all other filters, nonlinear filters compute the result at some image position
(u, v) from the pixels inside the moving region Ru,v of the original image. The
filters are called “nonlinear” because the source pixel values are combined by
some nonlinear function. The simplest of all nonlinear filters are the minimum
and maximum filters, defined as

I ′(u, v)← min {I(u+i, v+j) | (i, j) ∈ R} , (5.32)

I ′(u, v)← max {I(u+i, v+j) | (i, j) ∈ R} , (5.33)

where R denotes the filter region (set of filter coordinates), usually a square
of size 3 × 3 pixels. Figure 5.14 illustrates the effects of a one-dimensional
minimum filter on various local signal structures.

Figure 5.15 shows the results of applying 3 × 3 pixel minimum and maxi-
mum filters to a grayscale image corrupted with “salt-and-pepper” noise (i. e.,
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width of filter

(a) (b) (c)

Figure 5.14 Effects of a one-dimensional minimum filter on various local signal structures.
Original signal (top) and result after filtering (bottom), where the colored bars indicate the
extent of the filter. The step edge (a) and the linear ramp (c) are shifted to the right by half
the filter width, and the narrow pulse (b) is completely removed.

randomly placed white and black dots), respectively. Obviously the minimum
filter removes the white (salt) dots because any single white pixel within the
3 × 3 filter region is replaced by one of its surrounding pixels with a smaller
value. Notice, however, that the minimum filter at the same time widens all
the dark structures in the image.

The reverse effects can be expected from the maximum filter. Any single
bright pixel is a local maximum as soon as it is contained in the filter region
R. White dots (and all other bright image structures) are thus widened to the
size of the filter, while now the dark (“pepper”) dots disappear.

5.4.2 Median Filter

It is impossible of course to design a filter that removes any noise but keeps all
the important image structures intact because no filter can discriminate which
image content is important to the viewer and which is not. The popular median
filter is at least a good step in this direction.

The median filter replaces every image pixel by the median of the pixels in
the corresponding filter region R,

I ′(u, v)← median {I(u+i, v+j) | (i, j) ∈ R} . (5.34)

The median of a sequence of 2K + 1 values pi is defined as the center value pK
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(a) (b)

(c) (d)

(e) (f)

Figure 5.15 Minimum and maximum filters applied to a grayscale image. The original
image (a, b) is corrupted with “salt-and-pepper” noise. The 3 × 3 pixel minimum filter
eliminates the bright dots and widens all dark image structures (c, d). The maximum filter
shows the exact opposite effects (e, f).
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p2K

pK =
median

I(u, v) P

Sort

Figure 5.16 Computation of a 3 × 3 pixel median filter. The nine pixel values extracted
from the 3 × 3 image region are arranged as a vector (P ) that is sorted, and the resulting
center value is taken as the median.

after the sequence P = (p0, . . . , p2K) is sorted ; i. e.,

median
(

p0, p1, . . . , pK−1
︸ ︷︷ ︸

Kvalues
pi≤pK

, pK , pK+1, . . . , p2K
︸ ︷︷ ︸

Kvalues
pi≥pK

)

= pK , (5.35)

where pi ≤ pi+1 (for 0 ≤ i < 2K). Figure 5.16 demonstrates the computation
of the median filter or a filter region of size 3× 3 pixels.

Equation (5.35) defines the median of an odd -sized set of values, and if the
side length of the rectangular filters is odd (which is usually the case), then the
number of elements in the filter region is odd as well. In this case, the median
filter does not create any new pixel values that did not exist in the original
image. If, however, the number of elements is even (2K for some K > 0),
then the median of the sorted sequence P = (p0, . . . , p2K−1) is defined as the
arithmetic mean of the two middle values pK−1 and pK ,

median
(

p0, . . . , pK−1
︸ ︷︷ ︸

Kvalues
pi≤pK

, pK , . . . , p2K−1
︸ ︷︷ ︸

Kvalues
pi≥pK

)

= 1
2 ·(pK−1 + pK). (5.36)

Because of the interpolation above, new pixel values are generally introduced
by the median filter if the region is of even size.

Figure 5.17 illustrates the effects of a 3 × 3 pixel median filter on selected
two-dimensional image structures. In particular, very small structures (smaller
than half the filter size) are eliminated, but all other structures remain largely
unchanged. Finally, Fig. 5.18 compares the results of median filtering with a
linear-smoothing filter. A sample Java implementation of the median filter,
whose principal structure is identical to the 3×3 pixel linear filter in Prog. 5.2,
is shown in Prog. 5.5.



5.4 Nonlinear Filters 121

(a) (b)

(c) (d)

Figure 5.17 Effects of a 3 × 3 pixel median filter on two-dimensional image structures.
Isolated dots are eliminated (a), as are thin lines (b). The step edge remains unchanged (c),
while a corner is rounded off (d).

5.4.3 Weighted Median Filter

The median is a rank order statistic, and in a sense the “majority” of the pixel
values involved determine the result. A single exceptionally high or low value
(an “outlier”) cannot influence the result much but only shift the result up or
down to the next value. Thus the median (in contrast to the linear average) is
considered a “robust” measure. In an ordinary median filter, each pixel in the
filter region has the same influence, regardless of its distance from the center.

The weighted median filter assigns individual weights to the positions in
the filter region, which can be interpreted as the “number of votes” for the
corresponding pixel values. Similar to the coefficient matrix H of a linear filter,
the distribution of weights is specified by a weight matrix W , with W (i, j) ∈ N.
To compute the result of the modified filter, each pixel value I(u + i, v + j)
involved is inserted W (i, j) times into the extended pixel vector

Q = (p0, . . . , pL−1) of length L =
∑

(i,j)∈R

W (i, j).

This vector is then sorted, and the resulting center value is taken as the median,
as in the standard median filter. Figure 5.19 illustrates the computation of the
weighted median filter using the 3× 3 weight matrix

W (i, j) =

⎡

⎣

1 2 1
2 3 2
1 2 1

⎤

⎦ , (5.37)

which requires an extended pixel vector of length L = 15, equal to the sum of
the weights in W .

Of course this method may also be used to implement ordinary median
filters of nonrectangular shape; for example, a cross-shaped median filter with
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(a) (b)

(c) (d)

(e) (f)

Figure 5.18 Linear smoothing filter vs. median filter. The original image is corrupted with
“salt-and-pepper” noise (a, b). The linear 3× 3 pixel box filter (c, d) reduces the bright and
dark peaks to some extent but is unable to remove them completely. In addition, the entire
image is blurred. The median filter (e, f) effectively eliminates the noise dots and also keeps
the remaining structures largely intact. However, it also creates small spots of flat intensity
that noticeably affect the sharpness.



5.4 Nonlinear Filters 123

1 import ij.*;
2 import ij.plugin.filter.PlugInFilter;
3 import ij.process.*;
4 import java.util.Arrays;
5
6 public class Filter_Median3x3 implements PlugInFilter {
7 final int K = 4; // filter size
8
9 public void run(ImageProcessor orig) {

10 int w = orig.getWidth();
11 int h = orig.getHeight();
12 ImageProcessor copy = orig.duplicate();
13
14 // vector to hold pixels from 3×3 neighborhood
15 int[] P = new int[2*K+1];
16
17 for (int v = 1; v <= h-2; v++) {
18 for (int u = 1; u <= w-2; u++) {
19 // fill the pixel vector P for filter position u, v
20 int k = 0;
21 for (int j = -1; j <= 1; j++) {
22 for (int i = -1; i <= 1; i++) {
23 P[k] = copy.getPixel(u+i, v+j);
24 k++;
25 }
26 }
27 // sort pixel vector and take the center element
28 Arrays.sort(P);
29 orig.putPixel(u, v, P[K]);
30 }
31 }
32 }
33
34 } // end of class Filter_Median3x3

Program 5.5 A 3× 3 median filter (ImageJ plugin). An array P of type int is defined (line
15) to hold the 9 pixels for each filter position (u, v). This array is sorted by using the Java
utility method Arrays.sort() in line 28. The center element of the sorted vector (P[K]) is
taken as the median value and stored in the original image (line 29).

the weight matrix

W+(i, j) =

⎡

⎣

0 1 0
1 1 1
0 1 0

⎤

⎦ . (5.38)

Not every arrangement of weights is useful, however. In particular, if the weight
assigned to the center pixel is greater than the sum of all other weights, then
that pixel would always have the “majority” and dictate the resulting value,
thus inhibiting any filter effect.



124 5. Filters

�
"

�
�

�

$
 

#

�

� " �
� � �
$  #

� � �
� � �
� � �

"

�
�

�

 

�

�

"

�

�

$

 

#

�

"

�
�

�

 

�
�

p0

pK−1

pK+1

p2K

pK =

weighted
median

I(u, v)

W (i, j)

Q

Sort

Figure 5.19 Weighted median example. Each pixel value is inserted into the extended pixel
vector multiple times, as specified by the weight matrix W . For example, the value 0 from
the center pixel is inserted three times (since W (0, 0) = 3) and the pixel value 7 twice. The
pixel vector is sorted and the center value (2) is taken as the median.

5.4.4 Other Nonlinear Filters

Median and weighted median filters are two examples of nonlinear filters that
are easy to describe and frequently used. Since “nonlinear” refers to anything
that is not linear, there are a multitude of filters that fall into this category,
including the morphological filters for binary and grayscale images, which are
discussed in Ch. 7. Other types of nonlinear filters, such as the corner detector
described in Vol. 2 [6, Ch. 4], are often described algorithmically and thus defy
a simple, compact description.

In contrast to the linear case, there is usually no “strong theory” for nonlin-
ear filters that could, for example, describe the relationship between the sum
of two images and the results of a median filter, as does Eqn. (5.19) for linear
convolution. Similarly, not much (if anything) can be stated in general about
the effects of nonlinear filters in frequency space.

5.5 Implementing Filters

5.5.1 Efficiency of Filter Programs

Computing the results of filters is computationally expensive in most cases,
especially with large images, large filter kernels, or both. Given an image of
size M×N and a filter kernel of size (2K+1)×(2L+1), a direct implementation
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requires
2K · 2L ·M ·N = 4 KLMN

operations, namely multiplications and additions (in the case of a linear fil-
ter). Thus, if both the image and the filter are simply assumed to be of size
N × N , the time complexity6 of direct filtering is O(N4). As described in
Sec. 5.3.3, substantial savings are possible when large, two-dimensional filters
can be decomposed (separated) into smaller, possibly one-dimensional filters.

The programming examples in this chapter are deliberately designed to be
simple and easy to understand, and none of the solutions shown are particularly
efficient. Possibilities for tuning and code optimization exist in many places. It
is particularly important to move all unnecessary instructions out of inner loops
if possible because these are executed most often. This applies especially to
“expensive” instructions, such as method invocations, which may be relatively
time-consuming (particularly in Java).

In the examples, we have intentionally used the ImageJ standard methods
getPixel() for reading and putPixel() for writing image pixels, which is
the simplest and safest approach to access image data but also the slowest, of
course. Substantial speed can be gained by using the quicker read and write
methods get() and set() defined for class ImageProcessor and its subclasses.
Note, however, that these methods do not check if the passed image coordinates
are valid. Maximum performance can be obtained by accessing the pixel arrays
directly.7

5.5.2 Handling Image Borders

As mentioned briefly in Sec. 5.2.2, the image borders require special attention in
most filter implementations. We have argued that theoretically no filter results
can be computed at positions where the filter matrix is not fully contained in
the image array. Thus any filter operation would reduce the size of the resulting
image, which is not acceptable in most applications. While no formally correct
remedy exists, there are several more or less practical methods for handling the
remaining border regions:

Method 1: Set the unprocessed pixels at the borders to some constant value
(e. g., “black”). This is certainly the simplest method, but not acceptable in
many situations because the image size is incrementally reduced by every filter
operation.

Method 2: Set the unprocessed pixels to the original (unfiltered) image val-
ues. Usually the results are unacceptable, too, due to the noticeable difference
between filtered and unprocessed image parts.
6 See Appendix A (p. 235) for a short description of the O() notation.
7 See the ImageJ Short Reference [5, Chap. 7] for details.
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Method 3: Extend the image by “padding” additional pixels around it
(Fig. 5.20) and filter the border regions, too, assuming that:

A. The pixels outside the image have a constant value (e. g., “black” or “gray”;
Fig. 5.20 (a)). This may produce strong artifacts at the image borders,
particularly when large filters are used.

B. The border pixels extend beyond the image boundaries (Fig. 5.20 (b)). Only
minor artifacts can be expected at the borders. The method is also simple
to compute and is thus often considered the method of choice.

C. The image is mirrored at each of its four boundaries (Fig. 5.20 (c)). The
results will be similar to those of the previous method unless very large
filters are used.

D. The image repeats periodically in the horizontal and vertical directions
(Fig. 5.20 (d)). This may seem strange at first, and also the results are
generally not satisfactory. However, in discrete spectral analysis, the image
is implicitly treated as a periodic function, too.8 Thus, if the image is
filtered in the frequency domain, the results will be equal to filtering in the
space domain under this repetitive model.

None of these methods is perfect and, as usual, the right choice depends
upon the type of image and the filter applied. Notice also that the special
treatment of the image borders may sometimes require more programming
effort (and computing time) than the processing of the interior image.

5.5.3 Debugging Filter Programs

Experience shows that programming errors can hardly ever be avoided, even by
experienced practitioners. Unless errors occur during execution (usually caused
by trying to access nonexistent array elements), filter programs always “do
something” to the image that may be similar but not identical to the expected
result. To assure that the code operates correctly, it is not advisable to start
with full, large images but first to experiment with small test cases for which
the outcome can easily be predicted. Particularly when implementing linear
filters, a first “litmus test” should always be to inspect the impulse response of
the filter (as described in Sec. 5.3.4) before processing any real images.

5.6 Filter Operations in ImageJ

ImageJ offers a collection of readily available filter operations, many of them
contributed by other authors using different styles of implementation. Most of
8 This comment refers to topics covered in Vol. 2 [6, Ch. 7].
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(a) (b)

(c) (d)

Figure 5.20 Methods for padding the image to facilitate filtering along the borders. The
assumption is that the (nonexisting) pixels outside the original image are either set to some
constant value (a), take on the value of the closest border pixel (b), are mirrored at the image
boundaries (c), or repeat periodically along the coordinate axes (d).

the available operations can also be invoked via ImageJ’s Process menu.

5.6.1 Linear Filters

Filters based on linear convolution are implemented by the ImageJ plugin class
ij.plugin.filter.Convolver, which offers useful “public” methods in addi-
tion to the standard run() method. Usage of this class is illustrated by the
following example that convolves an 8-bit grayscale image with the filter kernel
from Eqn. (5.7):

H(i, j) =

⎡

⎣

0.075 0.125 0.075
0.125 0.2 0.125
0.075 0.125 0.075

⎤

⎦ .
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In our run() method below, we first define the filter matrix H as a one-
dimensional float array (notice the syntax for the float constants “0.075f”,
etc.) and then create a new instance (cv) of class Convolver in line 8:

1 import ij.plugin.filter.Convolver;
2 ...
3 public void run(ImageProcessor I) {
4 float[] H = { // filter array is one-dimensional!
5 0.075f, 0.125f, 0.075f,
6 0.125f, 0.200f, 0.125f,
7 0.075f, 0.125f, 0.075f };
8 Convolver cv = new Convolver();
9 cv.setNormalize(false); // do not use filter normalization

10 cv.convolve(I, H, 3, 3); // apply the filter H to I
11 }

The invocation of the method convolve() in line 10 applies the filter H to
the image I. It requires two additional arguments for the dimensions of the
filter matrix since H is passed as a one-dimensional array. The image I is
destructively modified by the convolve operation.

In this case, one could have also used the nonnormalized, integer-valued
filter matrix given in Eqn. (5.10) because convolve() normalizes the given
filter automatically (after cv.setNormalize(true)).

5.6.2 Gaussian Filters

The ImageJ class ij.plugin.filter.GaussianBlur implements a simple
Gaussian blur filter with arbitrary radius (σ). The filter uses separable one-
dimensional Gaussians as described in Sec. 5.3.3. Here is an example showing
its application with the radius σ = 2.5:

1 import ij.plugin.filter.GaussianBlur;
2 ...
3 public void run(ImageProcessor ip) {
4 GaussianBlur gb = new GaussianBlur();
5 double radius = 2.5;
6 gb.blur(ip, radius);
7 }

An alternative implementation of separable Gaussian filters can be found in
Prog. 6.1 (see p. 154), which uses the method makeGaussKernel1d() defined
in Prog. 5.4 (page 115) for dynamically computing the required 1D filter kernels.

5.6.3 Nonlinear Filters

A small set of nonlinear filters is implemented in the ImageJ class ij.plugin.
filter.RankFilters, including the minimum, maximum, and standard me-
dian filters. The filter region is (approximately) circular with variable radius.
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Here is an example that applies three different filters with the same radius in
sequence:

1 import ij.plugin.filter.RankFilters;
2 ...
3 public void run(ImageProcessor ip) {
4 RankFilters rf = new RankFilters();
5 double radius = 3.5;
6 rf.rank(ip, radius, RankFilters.MIN); // minimum filter
7 rf.rank(ip, radius, RankFilters.MAX); // maximum filter
8 rf.rank(ip, radius, RankFilters.MEDIAN); // median filter
9 }

5.7 Exercises
Exercise 5.1
Explain why the “custom filter” in Adobe Photoshop (Fig. 5.6) is not strictly
a linear filter.

Exercise 5.2
Determine the possible maximum and minimum results (pixel values) for a
linear filter with

H(i, j) =

⎡

⎣

−1 −2 0
−2 0 2

0 2 1

⎤

⎦

when applied to an 8-bit grayscale image (with pixel values in the range
[0, 255]). Assume that no clamping of the results occurs.

Exercise 5.3
Modify the ImageJ plugin shown in Prog. 5.3 such that the image borders
are processed as well. Use one of the methods for extending the image
outside its boundaries as described in Sec. 5.5.2.

Exercise 5.4
Show that a standard box filter is not isotropic (i. e., does not smooth the
image identically in all directions).

Exercise 5.5
Explain why the clamping of results to a limited range of pixel values may
violate the linearity property (Sec. 5.3.2) of linear filters.

Exercise 5.6
Compare the number of processing steps required for non-separable linear
filters and x/y-separable filters sized 5 × 5, 11 × 11, 25 × 25, and 51 × 51
pixels. Compute the speed gain resulting from separability in each case.
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Exercise 5.7
Implement a weighted median filter (Sec. 5.4.3) as an ImageJ plugin, spec-
ifying the weights as a constant, two-dimensional int array. Test the filter
on suitable images and compare the results with those from a standard
median filter. Explain why, for example, the weight matrix

W (i, j) =

⎡

⎣

0 1 0
1 5 1
0 1 0

⎤

⎦

does not make sense.

Exercise 5.8
Verify the properties of the impulse function with respect to linear filters
Eqn. (5.31). Create a black image with a white pixel at its center and use
this image as the two-dimensional impulse. See if linear filters really deliver
the filter matrix H as their impulse response.

Exercise 5.9
Describe the effect of a linear filter with the following filter matrix:

H(i, j) =

⎡

⎣

0 0 0
0 0 1
0 0 0

⎤

⎦ .

Exercise 5.10
Design a linear filter (matrix) that creates a horizontal blur over a length
of 7 pixels, thus simulating the effect of camera movement during exposure.

Exercise 5.11
Program your own ImageJ plugin that implements a Gaussian smoothing
filter with variable filter width (radius σ). The plugin should dynamically
create the required filter kernels with a size of at least 5σ in both direc-
tions. Make use of the fact that the Gaussian function is x/y-separable (see
Sec. 5.3.3).

Exercise 5.12
The “Laplacian of Gaussian” (LoG) filter (Fig. 5.8) is based on the sum of
the second derivatives of the two-dimensional Gaussian. It is defined as

LoGσ(x, y) = −
(x2 + y2 − 2σ2

σ4

)

· e−x2+y2

2σ2 .

Implement the LoG filter as an ImageJ plugin of variable width (σ), anal-
ogous to Exercise 5.11. Find out if the LoG function is x/y-separable.



6
Edges and Contours

Prominent image “events” originating from local changes in intensity or color,
such as edges and contours, are of high importance for the visual perception
and interpretation of images. The perceived amount of information in an image
appears to be directly related to the distinctiveness of the contained structures
and discontinuities. In fact, edge-like structures and contours seem to be so
important for our human visual system that a few lines in a caricature or
illustration are often sufficient to unambiguously describe an object or a scene.
It is thus no surprise that the enhancement and detection of edges has been a
traditional and important topic in image processing as well. In this chapter, we
first look at simple methods for localizing edges and then attend to the related
issue of image sharpening.

6.1 What Makes an Edge?

Edges and contours play a dominant role in human vision and probably in many
other biological vision systems as well. Not only are edges visually striking, but
it is often possible to describe or reconstruct a complete figure from a few key
lines, as the example in Fig. 6.1 shows. But how do edges arise, and how can
they be technically localized in an image?

Edges can roughly be described as image positions where the local inten-
sity changes distinctly along a particular orientation. The stronger the local
intensity change, the higher is the evidence for an edge at that position. In
mathematics, the amount of change with respect to spatial distance is known

W. Burger, M.J. Burge, Principles of Digital Image Processing, Undergraduate Topics  
in Computer Science, DOI 10.1007/978-1-84800-191-6_6, Springer-Verlag London Limited, 2009 ©
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(a) (b)

Figure 6.1 Edges play an important role in human vision. Original image (a) and edge
image (b).

as the first derivative of a function, and we thus start with this concept to
develop our first simple edge detector.

6.2 Gradient-Based Edge Detection

For simplicity, we first investigate the situation in only one dimension, assuming
that the image contains a single bright region at the center surrounded by a dark
background (Fig. 6.2 (a)). In this case, the intensity profile along one image
line would look like the one-dimensional function f(x), as shown in Fig. 6.2 (b).
Taking the first derivative of the function f ,

f ′(x) =
df

dx
(x) (6.1)

results in a positive swing at those positions where the intensity rises and a
negative swing where the value of the function drops (Fig. 6.2 (c)).

Unlike in the continuous case, however, the first derivative is undefined
for a discrete function f(u) (such as the line profile of a real image), and
some method is needed to estimate it. Figure 6.3 gives the basic idea, again
for the one-dimensional case: the first derivative of a continuous function at
position x can be interpreted as the slope of its tangent at this position. One
simple method for roughly approximating the slope of the tangent for a discrete
function f(u) at position u is to fit a straight line through the neighboring
function values f(u−1) and f(u+1),

df

du
(u) ≈ f(u+1)− f(u−1)

(u+1)− (u−1)
=

f(u+1)− f(u−1)
2

. (6.2)

The same method can be applied of course in the vertical direction to estimate
the first derivative along the y-axis; i. e., along the image columns.
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(a)

0

0 x

x

f(x)

f ′(x)

(b)

(c)

Figure 6.2 Sample image and first derivative in one dimension: original image (a), horizon-
tal intensity profile f(x) along the center image line (b), and first derivative f ′(x) (c).

uu−1 u+1

f(u)

uu−1 u+1

f(u)

Figure 6.3 Estimating the first derivative of a discrete function. The slope of the straight
(dashed) line between the neighboring function values f(u−1) and f(u+1) is taken as the
estimate for the slope of the tangent (i. e., the first derivative) at f(u).

6.2.1 Partial Derivatives and the Gradient

A derivative of a multidimensional function taken along one of its coordinate
axes is called a partial derivative; for example,

∂I

∂u
(u, v) and

∂I

∂v
(u, v) (6.3)

are the partial derivatives of the image function I(u, v) along the u and v axes,
respectively.1 The function

∇I(u, v) =

⎡

⎣

∂I
∂u (u, v)
∂I
∂v (u, v)

⎤

⎦ (6.4)

1 ∂ denotes the partial derivative or “del” operator.
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is called the gradient vector (or “gradient” for short) of the function I at position
(u, v). The magnitude of the gradient,

|∇I|(u, v) =

√

(∂I

∂u
(u, v)

)2

+
(∂I

∂v
(u, v)

)2

, (6.5)

is invariant under image rotation and thus independent of the orientation of
the underlying image structures. This property is important for isotropic lo-
calization of edges, and thus |∇I| is the basis of many practical edge detection
methods.

6.2.2 Derivative Filters

The components of the gradient function (Eqn. (6.4)) are simply the first deriva-
tives of the image lines (Eqn. (6.1)) and columns along the horizontal and ver-
tical axes, respectively. The approximation of the first horizontal derivatives
(Eqn. (6.2)) can be easily implemented by a linear filter (see Sec. 5.2) with the
coefficient matrix

HD
x =

[−0.5 0 0.5
]

= 0.5 · [−1 0 1
]

, (6.6)

where the coefficients −0.5 and +0.5 apply to the image elements I(u−1, v) and
I(u+1, v), respectively. Notice that the center pixel I(u, v) itself is weighted
with the zero coefficient and is thus ignored. Similarly, the vertical component
of the gradient can be computed with the linear filter

HD
y =

⎡

⎣

−0.5
0
0.5

⎤

⎦ = 0.5 ·
⎡

⎣

−1
0
1

⎤

⎦ . (6.7)

Figure 6.4 shows the results of applying the gradient filters defined in Eqn.
(6.6) and Eqn. (6.7) to a synthetic test image. The orientation dependence
of the filter responses can be seen clearly. The horizontal gradient filter HD

x

reacts most strongly to rapid changes along the horizontal direction, (i. e., to
vertical edges); analogously the vertical gradient filter HD

y reacts most strongly
to horizontal edges. The filter response is zero in flat image regions (shown gray
in Fig. 6.4 (b, c)).

6.3 Edge Operators

The local gradient of the image function is the basis of many classical edge-
detection operators. Practically, they only differ in the type of filter used for
estimating the gradient components and the way these components are com-
bined. In many situations, one is not only interested in the strength of edge
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(a) (b)

(c) (d)

Figure 6.4 Partial derivatives of a two-dimensional function: synthetic image function I (a);
approximate first derivatives in the horizontal direction ∂I/∂u (b) and the vertical direction
∂I/∂v (c); magnitude of the resulting gradient |∇I| (d). In (b) and (c), the lowest (negative)
values are shown black, the maximum (positive) values are white, and zero values are gray.

points but also in the local direction of the edge. Both types of information
are contained in the gradient function and can be easily computed from the di-
rectional components. The following small collection describes some frequently
used, simple edge operators that have been around for many years and are thus
interesting from a historical perspective as well.

6.3.1 Prewitt and Sobel Operators

The edge operators by Prewitt and Sobel [10] are two classic methods that
differ only marginally in the filters they use.
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Gradient filters

The Prewitt and Sobel operators use linear filters that extend over three adja-
cent lines and columns, respectively, to counteract the noise sensitivity of the
simple (single line/column) gradient operators (Eqns. (6.6) and (6.7)). The
Prewitt operator uses the filters

HP
x =

⎡

⎣

−1 0 1
−1 0 1
−1 0 1

⎤

⎦ and HP
y =

⎡

⎣

−1 −1 −1
0 0 0
1 1 1

⎤

⎦ , (6.8)

which compute the average gradient components across three neighboring lines
or columns, respectively. When the filters are written in separated form,

HP
x =

⎡

⎣

1
1
1

⎤

⎦ ∗ [ −1 0 1
]

and HP
y =

[

1 1 1
] ∗

⎡

⎣

−1
0
1

⎤

⎦ , (6.9)

it becomes obvious that HP
x performs a simple (box) smoothing over three lines

before computing the x gradient (Eqn. (6.6)), and analogously HP
y smooths

over three columns before computing the y gradient (Eqn. (6.7)).2 Because of
the commutativity of linear convolution, this could equally be described the
other way around, with smoothing being applied after the computation of the
gradients.

The filters for the Sobel operator are almost identical; however, the smooth-
ing part assigns higher weight to the current center line and column, respec-
tively:

HS
x =

⎡

⎣

−1 0 1
−2 0 2
−1 0 1

⎤

⎦ and HS
y =

⎡

⎣

−1 −2 −1
0 0 0
1 2 1

⎤

⎦ . (6.10)

The estimates for the local gradient components are obtained from the filter
results by appropriate scaling:

∇I(u, v) ≈ 1
6
·
⎡

⎣

(

I ∗HP
x

)

(u, v)
(

I ∗HP
y

)

(u, v)

⎤

⎦ (6.11)

for the Prewitt operator and

∇I(u, v) ≈ 1
8
·
⎡

⎣

(

I ∗HS
x

)

(u, v)
(

I ∗HS
y

)

(u, v)

⎤

⎦ (6.12)

for the Sobel operator.
2 In Eqn. (6.9), ∗ is the linear convolution operator (see Sec. 5.3.1).
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I(u, v)

Hx

Hy

Dx(u, v)

Dy(u, v)

E(u, v)

Φ(u, v)

√

D2
x + D2

y

tan−1 Dy

Dx

Figure 6.5 Typical process of gradient-based edge extraction. The two linear gradient filters
Hx and Hy produce two gradient images, Dx and Dy , respectively. They are used to compute
the edge strength E and orientation Φ for each image position (u, v).

Edge strength and orientation

In the following, we denote the scaled filter results (obtained with either the
Prewitt or Sobel operator) as

Dx = Hx ∗ I and Dy = Hy ∗ I.

In both cases, the local edge strength E(u, v) is defined as the gradient magni-
tude

E(u, v) =
√

(

Dx(u, v)
)2 +

(

Dy(u, v)
)2

, (6.13)

and the local edge orientation angle Φ(u, v) is3

Φ(u, v) = tan−1
(Dy(u, v)

Dx(u, v)

)

= Arctan
(

Dy(u, v), Dx(u, v)
)

. (6.14)

The whole process of extracting the edge magnitude and orientation is summa-
rized in Fig. 6.5. First, the original image I is independently convolved with
the two gradient filters Hx and Hy, and subsequently the edge strength E and
orientation Φ are computed from the filter results. Figure 6.6 shows the edge
strength and orientation for two test images, obtained with the Sobel filters in
Eqn. (6.10).

The estimate of the edge orientation based on the original Prewitt and Sobel
filters is relatively inaccurate, and improved versions of the Sobel filters were
proposed in [24, p. 353] to minimize the orientation errors:

HS′
x =

1
32

⎡

⎣

−3 0 3
−10 0 10
−3 0 3

⎤

⎦ and HS′
y =

1
32

⎡

⎣

−3 −10 −3
0 0 0
3 10 3

⎤

⎦ . (6.15)

3 See the hints in Appendix B.1.6 for computing the inverse tangent tan−1(y/x) with
the Arctan(y, x) function.
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(a)

(b)

(c)

(d)

Figure 6.6 Edge strength and orientation obtained with a Sobel operator. Original images
(a), the edge strength E(u, v) (b), and the local edge orientation Φ(u, v) (c). The images in
(d) show the orientation angles coded as color hues, with the edge strength controlling the
color saturation (see Sec. 8.2.3 for the corresponding definitions).
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These edge operators are frequently used because of their good results (see
also Fig. 6.11) and simple implementation. The Sobel operator, in particular,
is available in many image-processing tools and software packages (including
ImageJ).

6.3.2 Roberts Operator

As one of the simplest and oldest edge finders, the Roberts operator [36] today
is mainly of historical interest. It employs two extremely small filters of size
2× 2 for estimating the directional gradient along the image diagonals:

HR
1 =

[

0 1
−1 0

]

and HR
2 =

[ −1 0
0 1

]

. (6.16)

These filters naturally respond to diagonal edges but are not highly selective
to orientation; i. e., both filters show strong results over a relatively wide range
of angles (Fig. 6.7). The local edge strength is computed by measuring the
length of the resulting 2D vector, similar to the gradient computation but with
its components rotated 45◦ (Fig. 6.8).

D1 = I ∗HR
1 D2 = I ∗HR

2

Figure 6.7 Diagonal gradient components produced by the two Roberts filters.

6.3.3 Compass Operators

The design of linear edge filters involves a trade-off: the stronger a filter re-
sponds to edge-like structures, the more sensitive it is to orientation. In other
words, filters that are orientation-insensitive tend to respond to nonedge struc-
tures, while the most discriminating edge filters only respond to edges in a
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D1

D2

x

y

E =
√

D2
1 + D2

2

Figure 6.8 Definition of edge strength for the Roberts operator. The edge strength E(u, v)
corresponds to the length of the vector obtained by adding the two orthogonal gradient
components (filter results) D1(u, v) and D2(u, v).

narrow range of orientations. One solution is to use not only a single pair of
relatively “wide” filters for two directions (such as the Prewitt and the simple
Sobel operator discussed above) but a larger set of filters with narrowly spaced
orientations. A classic example is the extended Sobel operator, which employs
the following eight filters with orientations spaced at 45◦:

HS
0 =

⎡

⎣

−1 0 1
−2 0 2
−1 0 1

⎤

⎦ HS
4 =

⎡

⎣

1 0 −1
2 0 −2
1 0 −1

⎤

⎦ , (6.17)

HS
1 =

⎡

⎣

−2 −1 0
−1 0 1

0 1 2

⎤

⎦ HS
5 =

⎡

⎣

2 1 0
1 0 −1
0 −1 −2

⎤

⎦ , (6.18)

HS
2 =

⎡

⎣

−1 −2 −1
0 0 0
1 2 1

⎤

⎦ HS
6 =

⎡

⎣

1 2 1
0 0 0
−1 −2 −1

⎤

⎦ , (6.19)

HS
3 =

⎡

⎣

0 −1 −2
1 0 −1
2 1 0

⎤

⎦ HS
7 =

⎡

⎣

0 1 2
−1 0 1
−2 −1 0

⎤

⎦ . (6.20)

Only the results of four of the eight filters HS
0 , HS

1 , . . .HS
7 above must actually

be computed since the remaining four are identical except for the reversed sign.
For example, from the fact that HS

4 = −HS
0 and the convolution being linear

(Eqn. (5.18)), it follows that

I ∗HS
4 = I ∗ −HS

0 = −(I ∗HS
0 ); (6.21)

i. e., the result for filter HS
4 is simply the negative result for filter HS

0 . The di-
rectional outputs D0, D1, . . .D7 for the eight Sobel filters can thus be computed
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as follows:

D0 ← I ∗HS
0 D1 ← I ∗HS

1 D2 ← I ∗HS
2 D3 ← I ∗HS

3

D4 ← −D0 D5 ← −D1 D6 ← −D2 D7 ← −D3.
(6.22)

The edge strength ES at position (u, v) is defined as the maximum of the eight
filter outputs; i. e.,

ES(u, v) � max
(

D0(u, v), D1(u, v), D2(u, v), D3(u, v), D4(u, v), . . .D7(u, v)
)

= max
(|D0(u, v)|, |D1(u, v)|, |D2(u, v)|, |D3(u, v)|), (6.23)

and the strongest-responding filter also determines the local edge orientation
as

ΦS(u, v) � π

4
j , with j = argmax

0≤i≤7
Di(u, v). (6.24)

Another classic compass operator is the one proposed by Kirsch [27], which
is also based on eight directional filters with the following kernels:

HK
0 =

⎡

⎣

−5 3 3
−5 0 3
−5 3 3

⎤

⎦ HK
4 =

⎡

⎣

3 3 −5
3 0 −5
3 3 −5

⎤

⎦ , (6.25)

HK
1 =

⎡

⎣

−5 −5 3
−5 0 3

3 3 3

⎤

⎦ HK
5 =

⎡

⎣

3 3 3
3 0 −5
3 −5 −5

⎤

⎦ , (6.26)

HK
2 =

⎡

⎣

−5 −5 −5
3 0 0
3 3 3

⎤

⎦ HK
6 =

⎡

⎣

3 3 3
3 0 3
−5 −5 −5

⎤

⎦ , (6.27)

HK
3 =

⎡

⎣

3 −5 −5
3 0 −5
3 3 3

⎤

⎦ HK
7 =

⎡

⎣

3 3 3
−5 0 3
−5 −5 3

⎤

⎦ . (6.28)

Again, because of the symmetries, only four of the eight filters need to be
applied and the results may be combined in the same way as described above
for the extended Sobel operator. In practice, this and other “compass operators”
show only minor benefits over the simpler operators described earlier, including
the small advantage of not requiring the computation of square roots (which is
considered a relatively “expensive” operation).
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6.3.4 Edge Operators in ImageJ

The current version of ImageJ implements the Sobel operator (as described in
Eqn. (6.10)) for practically any type of image. It can be invoked via the

Process→Find Edges

menu and is also available through the method void findEdges() for objects
of type ImageProcessor.

6.4 Other Edge Operators

One problem with edge operators based on first derivatives (as described in
the previous section) is that each resulting edge is as wide as the underlying
intensity transition and thus edges may be difficult to localize precisely. An
alternative class of edge operators makes use of the second derivatives of the
image function, including some popular modern edge operators that also ad-
dress the problem of edges appearing at various levels of scale. These issues
are briefly discussed in the following.

6.4.1 Edge Detection Based on Second Derivatives

The second derivative of a function measures its local curvature. The idea is
that edges can be found at zero positions or—even better—at the zero crossings
of the second derivatives of the image function, as illustrated in Fig. 6.9 for
the one-dimensional case. Since second derivatives generally tend to amplify
image noise, some sort of presmoothing is usually applied with suitable low-pass
filters.

A popular example is the “Laplacian-of-Gaussian” (LoG) operator [29],
which combines gaussian smoothing and computing the second derivatives (see
the Laplace Filter in Sec. 6.6.1) into a single linear filter. The example in
Fig. 6.11 shows that the edges produced by the LoG operator are more pre-
cisely localized than the ones delivered by the Prewitt and Sobel operators,
and the amount of “clutter” is comparably small. Details about the LoG op-
erator and a comprehensive survey of common edge operators can be found
in [37, Ch. 4] and [31].

6.4.2 Edges at Different Scales

Unfortunately, the results of the simple edge operators we have discussed so
far often deviate from what we as humans perceive as important edges. The
two main reasons for this are:
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(b)

(c)

Figure 6.9 Principle of edge detection with the second derivative: original function (a), first
derivative (b), and second derivative (c). Edge points are located where the second derivative
crosses through zero and the first derivative has a high magnitude.

– First, edge operators only respond to local intensity differences, while our
visual system is able to extend edges across areas of minimal or vanishing
contrast.

– Second, edges exist not at a single fixed resolution or at a certain scale but
over a whole range of different scales.

Typical small edge operators, such as the Sobel operator, can only respond to
intensity differences that occur within their 3× 3 pixel filter regions. To recog-
nize edge-like events over a greater horizon, we would either need larger edge op-
erators (with correspondingly large filters) or use the original (small) operators
on reduced (i. e., scaled) images. This is the principal idea of “multiresolution”
techniques (also referred to as “hierarchical” or “pyramid” techniques), which
have traditionally been used in many image-processing applications [7, 28]. In
the context of edge detection, this typically amounts to detecting edges at var-
ious scale levels first and then deciding which edge (if any) at which scale level
is dominant at each image position.
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6.4.3 Canny Operator

A popular example for such a method is the edge operator by Canny [8], which
employs a set of relatively large, oriented filters at multiple image resolutions
and merges the individual results into a common edge map. The method tries
to reach three main goals: (a) to minimize the number of false edge points,
(b) achieve good localization of edges, and (c) deliver only a single mark on
each edge. At its core, the Canny “filter” is a gradient method (based on first
derivatives; see Sec. 6.2), but it uses the zero crossings of second derivatives for
precise edge localization. Frequently, however, only a single-scale implemen-
tation of the algorithm with an adjustable filter radius (smoothing parameter
σ) is used, which is nevertheless superior to most of the simple edge opera-
tors (see Figs. 6.10 and 6.11). Thus, even in its basic (single-scale) form, the
Canny operator is often preferred over other edge detection methods. A more
detailed description of the algorithm and a Java implementation can be found,
for example, in [12, Ch. 7].

6.5 From Edges to Contours

Whatever method is used for edge detection, the result is usually a continuous
value for the edge strength for each image position and possibly also the angle
of local edge orientation. How can this information be used, for example, to
find larger image structures and contours of objects in particular?

6.5.1 Contour Following

The idea of tracing contours sequentially along the discovered edge points is
not uncommon and appears quite simple in principle. Starting from an image
point with high edge strength, the edge is followed iteratively in both directions
until the two traces meet and a closed contour is formed. Unfortunately, there
are several obstacles that make this task more difficult than it seems at first,
including the following:

– Edges may end in regions of vanishing intensity gradient.

– Crossing edges lead to ambiguities.

– Contours may branch into several directions.

Because of these problems, contour following usually is not applied to origi-
nal images or continuous-valued edge images except in very simple situations,
such as when there is a clear separation between objects (foreground) and the
background. Tracing contours in binary images is much simpler, of course (see
Vol. 2 [6, Ch. 2]).
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Original σ = 1.0

σ = 2.0 σ = 4.0

σ = 8.0 σ = 16.0

Figure 6.10 Canny edge operator. Resulting edge maps for different settings of the smooth-
ing (scale) parameter σ.

6.5.2 Edge Maps

In many situations, the next step after edge enhancement (by some edge oper-
ator) is the selection of edge points, a binary decision whether an image pixel
is an edge point or not. The simplest method is to apply a threshold opera-
tion to the edge strength delivered by the edge operator using either a fixed or
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Original Roberts

Prewitt Sobel

Laplacian of Gaussian Canny (σ = 1.0)

Figure 6.11 Comparison of various edge operators. Important criteria for the quality of
edge results are the amount of “clutter” (irrelevant edge elements) and the connectedness of
dominant edges. The Roberts operator responds to very small edge structures because of the
small size of its filters. The similarity of the Prewitt and Sobel operators is manifested in
the corresponding results. The edge map produced by the Canny operator is substantially
cleaner than those of the simpler operators, even for a fixed and relatively small scale value σ.
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adaptive threshold value, which results in a binary edge image or “edge map”.
In practice, edge maps hardly ever contain perfect contours but instead

many small, unconnected contour fragments, interrupted at positions of insuf-
ficient edge strength. After thresholding, the empty positions of course contain
no edge information at all that could possibly be used in a subsequent step, such
as for linking adjacent edge segments. Despite this weakness, global threshold-
ing is often used at this point because of its simplicity, and some common
postprocessing methods, such as the Hough transform (see Vol. 2 [6, Ch. 3]),
can cope well with incomplete edge maps.

6.6 Edge Sharpening

Making images look sharper is a frequent task, such as to make up for a lack
of sharpness after scanning or scaling an image or to precompensate for a
subsequent loss of sharpness in the course of printing or displaying an image.
The common approach to image sharpening is to amplify the high-frequency
image components, which are mainly responsible for the perceived sharpness
of an image and for which the strongest occur at rapid intensity transitions. In
the following, we describe two methods for artificial image sharpening that are
based on techniques similar to edge detection and thus fit well in this chapter.

6.6.1 Edge Sharpening with the Laplace Filter

A common method for localizing rapid intensity changes are filters based on
the second derivatives of the image function. Figure 6.12 illustrates this idea
on a one-dimensional, continuous function f(x). The second derivative f ′′(x)
of the step function shows a positive pulse at the lower end of the transition
and a negative pulse at the upper end. The edge is sharpened by subtracting
a certain fraction w of the second derivative f ′′(x) from the original function
f(x),

f̌(x) = f(x)− w · f ′′(x). (6.29)

Depending upon the weight factor w ≥ 0, the expression in Eqn. (6.29) causes
the intensity function to overshoot at both sides of an edge, thus exaggerating
edges and increasing the perceived sharpness.

Laplace operator

Sharpening of a two-dimensional function can be accomplished with the second
derivatives in the horizontal and vertical directions combined by the so-called
Laplace operator. The Laplace operator ∇2 of a two-dimensional function
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0

0

0

0

x

x

x

x

f(x)

f ′(x)

f ′′(x)

f̌(x)

Figure 6.12 Edge sharpening with the second derivative. The original intensity function
f(x), first derivative f ′(x), second derivative f ′′(x), and sharpened intensity function f̌(x) =
f(x)−w · f ′′(x) are shown.

f(x, y) is defined as the sum of the second partial derivatives along the x and
y directions:

(∇2f
)

(x, y) =
∂2f

∂2x
(x, y) +

∂2f

∂2y
(x, y). (6.30)

Similar to the first derivatives (see Sec. 6.2.2), the second derivatives of a
discrete image function can also be estimated with a set of simple linear fil-
ters. Again, several versions, have been proposed. For example, the two one-
dimensional filters

∂2f

∂2x
≡ HL

x =
[

1 −2 1
]

and
∂2f

∂2y
≡ HL

y =

⎡

⎣

1
−2

1

⎤

⎦ (6.31)
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(a) (b)

(c) (d)

Figure 6.13 Results of Laplace filter HL: synthetic test image I (a), second partial deriva-
tive ∂2I/∂2u in the horizontal direction (b), second partial derivative ∂2I/∂2v in the vertical
direction (c), and Laplace filter ∇2I(u, v) (d). Intensities in (b–d) are scaled such that maxi-
mally negative and positive values are shown as black and white, respectively, and zero values
are gray.

for estimating the second derivatives along the x and y directions, respectively,
combine to make the two-dimensional Laplace filter

HL = HL
x + HL

y =

⎡

⎣

0 1 0
1 −4 1
0 1 0

⎤

⎦ . (6.32)

Figure 6.13 shows an example of applying the Laplace filter HL to a grayscale
image, where the pairs of positive-negative peaks at both sides of each edge are
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clearly visible. The filter appears almost isotropic despite the coarse approxi-
mation with the small filter kernels.

Notice that HL in Eqn. (6.32) is not a separable filter in the usual sense (as
described in Sec. 5.3.3) but, because of the linearity property of convolution
(Eqns. (5.17) and (5.19)), it can be expressed (and computed) as the sum of
two one-dimensional filters,

I ∗HL = I ∗ (HL
x + HL

y ) = (I ∗HL
x ) + (I ∗HL

y ). (6.33)

Analogous to the gradient filters (for estimating the first derivatives), the sum
of the coefficients is zero in any Laplace filter, such that its response is zero in
areas of constant (flat) intensity (Fig. 6.13). Other common variants of 3 × 3
pixel Laplace filters are

HL
8 =

⎡

⎣

1 1 1
1 −8 1
1 1 1

⎤

⎦ and HL
12 =

⎡

⎣

1 2 1
2 −12 2
1 2 1

⎤

⎦ . (6.34)

Sharpening

To perform the actual sharpening, as described by Eqn. (6.29) for the one-
dimensional case, we first apply a Laplace filter to the image I and then subtract
a fraction of the result from the original image,

Ǐ ← I − w · (HL ∗ I). (6.35)

The factor w specifies the proportion of the Laplace component and thus the
sharpening strength. The proper choice of w also depends on the specific
Laplace filter used in Eqn. (6.35) since none of the filters above is normalized.

Figure 6.13 shows the result of applying a Laplace filter (with the kernel
given in Eqn. (6.32)) to a synthetic test image where the pairs of positive/
negative peaks at both sides of each edge are clearly visible. The filter appears
almost isotropic despite the coarse approximation with the small filter kernels.
The application to a real grayscale image using the filter HL (Eqn. (6.32)) and
w = 1.0 is shown in Fig. 6.14.

As we can expect from second-order derivatives, the Laplace filter is fairly
sensitive to image noise, which can be reduced (as is commonly done in edge
detection with first derivatives) by previous smoothing such as with a Gaussian
filter (see also Sec. 6.4.1).

6.6.2 Unsharp Masking

“Unsharp masking” (USM) is a technique for edge sharpening that is partic-
ularly popular in astronomy, digital printing, and many other areas of image
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(a) (b)

(c) (d)

(e) (f)

Figure 6.14 Edge sharpening with the Laplace filter: original image with a horizontal profile
taken from the marked line (a, b), result of Laplace filter HL (c, d), and sharpened image
(e, f).

processing. The term originates from classical photography, where the sharp-
ness of an image was optically enhanced by combining it with a smoothed
(“unsharp”) copy. This process is in principle the same for digital images.

Process

The first step in the USM filter is to subtract a smoothed version of the image
from the original, which enhances the edges. The result is called the “mask”. In
analog photography, the required smoothing was achieved by simply defocusing
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the lens. Subsequently, the mask is again added to the original, such that the
edges in the image are sharpened. In summary, the steps involved in USM
filtering are:

1. The mask M is generated by subtracting a smoothed version of the image
I from the original,

M ← I − (I ∗ H̃) = I − Ĩ , (6.36)

where the kernel H̃ of the smoothing filter is assumed to be normalized
(see Sec. 5.2.5).

2. To obtain the sharpened image Ǐ, the mask M is added to the original image
I, weighted by the factor a, which controls the amount of sharpening,

Ǐ ← I + a ·M, (6.37)

and thus (substituting from Eqn. (6.36))

Ǐ ← I + a · (I − Ĩ) = (1 + a) · I − a · Ĩ . (6.38)

Smoothing filter

In principle, any smoothing filter could be used for the kernel H̃ in Eqn. (6.36),
but Gaussian filters HG,σ with variable radius σ are most common (see also
Sec. 5.2.7). Typical parameter values are 1 to 20 for σ and 0.2 to 4.0 (equivalent
to 20% to 400%) for the sharpening factor a. Figure 6.15 shows two examples
of USM filters using Gaussian smoothing filters with different radii σ.

Extensions

The advantages of the USM filter over the Laplace filter are a reduced noise
sensitivity due to the involved smoothing and improved controllability through
the parameters σ (spatial extent) and a (sharpening strength).

Of course the USM filter responds not only to real edges but to some extent
to any intensity transition and thus potentially increases any visible noise in
continuous image regions. Some implementations (e. g., Adobe Photoshop)
therefore provide an additional threshold parameter tc to specify the minimum
local contrast required to perform edge sharpening. Sharpening is only applied
if the local contrast at position (u, v), expressed for example by the gradient
magnitude |∇I| (Eqn. (6.5)), is greater than that threshold. Otherwise, that
pixel remains unmodified:

Ǐ(u, v)←
{

I(u, v) + a ·M(u, v) for |∇I|(u, v) ≥ tc

I(u, v) otherwise.
(6.39)
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(a) Original (b)

(c) σ = 2.5 (d)

(e) σ = 10.0 (f)

(g) Original (h) σ = 2.5 (i) σ = 10.0

Figure 6.15 USM filters with varying smoothing radii σ. Original image (a) and the inten-
sity profile along the marked image line (b); results of USM filtering with Gaussian smoothing
radius σ = 2.5 (c, d) and σ = 10.0 (e, f); enlarged image detail (g–i). The value of the sharp-
ening factor a is 1.0 (100%).
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1 public void unsharpMask(ImageProcessor ip,
2 double sigma, double a) {
3 ImageProcessor I = ip.convertToFloat(); // I
4
5 // create a blurred version of the image
6 ImageProcessor J = I.duplicate(); // Ĩ
7 float[] H = GaussKernel1d.create(sigma); // see Prog. 5.4
8 Convolver cv = new Convolver();
9 cv.setNormalize(true);

10 cv.convolve(J, H, 1, H.length);
11 cv.convolve(J, H, H.length, 1);
12
13 I.multiply(1+a); // I ← (1 + a) · I
14 J.multiply(a); // Ĩ ← a · Ĩ
15 I.copyBits(J,0,0,Blitter.SUBTRACT); // Ĩ ← (1 + a) · I − a · Ĩ
16
17 //copy result back into original byte image
18 ip.insert(I.convertToByte(false), 0, 0);
19 }

Program 6.1 Unsharp masking (Java implementation). First the original image is converted
to a FloatProcessor object I (I) in line 3, which is duplicated to hold the blurred image J
(Ĩ) in line 6. The method makeGaussKernel1d(), defined in Prog. 5.4, is used to create the
1D Gaussian filter kernel applied in the horizontal and vertical directions (lines 10–11). The
remaining computations follow Eqn. (6.38).

Different from the original USM filter (Eqn. (6.37)), this extended version is
no longer a linear filter. On color images, the USM filter is usually applied to
all color channels with identical parameter settings.

Implementation

The USM filter is available in virtually any image-processing software and,
due to its simplicity and flexibility, has become an indispensable tool for many
professional users. In ImageJ, the USM filter is implemented by the plugin class
ij.plugin.filter.UnsharpMask, which can be invoked through the menu

Process→Filter→Unsharp Mask...

ImageJ’s UnsharpMask implementation uses the class GaussianBlur for the
required smoothing operation. The implementation shown in Prog. 6.1 follows
the definition in Eqn. (6.38) and uses relatively large filter kernels that are
created with the method makeGaussKernel1d(), as defined in Prog. 5.4.

Laplace versus USM filter

A closer look at these two methods reveals that sharpening with the Laplace
filter (Sec. 6.6.1) can be viewed as a special case of the USM filter. If the
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Laplace filter in Eqn. (6.32) is decomposed as

HL =

⎡

⎣

0 1 0
1−4 1
0 1 0

⎤

⎦ =

⎡

⎣

0 1 0
1 1 1
0 1 0

⎤

⎦− 5

⎡

⎣

0 0 0
0 1 0
0 0 0

⎤

⎦ (6.40)

= 5

(

1
5

⎡

⎣

0 1 0
1 1 1
0 1 0

⎤

⎦−
⎡

⎣

0 0 0
0 1 0
0 0 0

⎤

⎦

)

= 5
(

H̃ − δ
)

,

one can see that HL consists of a simple 3× 3 pixel smoothing filter H̃ minus
the impulse function δ. Laplace sharpening with the weight factor w as defined
in Eqn. (6.35) can therefore (by a little manipulation) be expressed as

ǏL ← I − w · (HL ∗ I) = I − w · (5(H̃L − δ) ∗ I
)

= I − 5w · (H̃L ∗ I − I) = I + 5w · (I − H̃L ∗ I)

= I + 5w ·ML; (6.41)

i. e., in the form of a USM filter Ǐ ← I + a · M (Eqn. (6.37)). Laplacian
sharpening is thus a special case of a USM filter with the mask M = ML =
(I − H̃L ∗ I), the specific smoothing filter

H̃ = H̃L =
1
5

⎡

⎣

0 1 0
1 1 1
0 1 0

⎤

⎦ ,

and the sharpening factor a = 5w.

6.7 Exercises
Exercise 6.1
Compute manually the gradient and the Laplacian for the following image
I(u, v) by using the approximations in Eqns. (6.2) and (6.32), respectively:

I(u, v) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

14 10 19 16 14 12
18 9 11 12 10 19
9 14 15 26 13 6

21 27 17 17 19 16
11 18 18 19 16 14
16 10 13 7 22 21

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Exercise 6.2
Implement the Sobel edge operator as defined in Eqn. (6.10) (and illustrated
in Fig. 6.5) as an ImageJ plugin. The plugin should generate two new images
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for the edge magnitude E(u, v) and the edge orientation Φ(u, v). Come up
with a suitable way to display the edge orientation.

Exercise 6.3
Express the Sobel operator in x/y-separable form analogous to the decom-
position of the Prewitt operator in Eqn. (6.9).

Exercise 6.4
Implement the Kirsch operator (Eqn. (6.25)) analogous to the two-directional
Sobel operator in Exercise 6.2 and compare the results from both methods,
particularly the edge orientation estimates.

Exercise 6.5
Devise and implement a compass edge operator with more than 8 (16?)
differently oriented filters.

Exercise 6.6
Compare the results of the unsharp masking filters in ImageJ and Adobe
Photoshop using a suitable test image. How should the parameters for σ

(radius) and a (weight) be defined in both implementations to obtain similar
results?



7
Morphological Filters

In the discussion of the median filter in Ch. 5 (Sec. 5.4.2), we noticed that this
type of filter can somehow alter two-dimensional image structures. Figure 7.1
illustrates once more how corners are rounded off, holes of a certain size are
filled, and small structures, such as single dots or thin lines, are removed. The
median filter thus responds selectively to the local shape of image structures,
a property that might be useful for other purposes if it can be applied not
just randomly but in a controlled fashion. Altering the local structure in a
predictable way is exactly what “morphological” filters can do, which we focus
on in this chapter.

In their original form, morphological filters are aimed at binary images,

(a) (b) (c)

Figure 7.1 Median filter applied to a binary image: original image (a) and results from a
3×3 pixel median filter (b) and a 5×5 pixel median filter (c).

W. Burger, M.J. Burge, Principles of Digital Image Processing, Undergraduate Topics  
in Computer Science, DOI 10.1007/978-1-84800-191-6_7, Springer-Verlag London Limited, 2009 ©
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images with only two possible pixel values, 0 and 1 or black and white, re-
spectively. Binary images are found in many places, in particular in digital
printing, document transmission (FAX) and storage, or as selection masks in
image and video editing. Binary images can be obtained from grayscale images
by simple thresholding (see Sec. 4.1.4) using either a global or a locally varying
threshold value. We denote binary pixels with values 1 and 0 as foreground
and background pixels, respectively. In most of the following examples, the
foreground pixels are shown black and background pixels are shown white, as
is common in printing.

At the end of this chapter, we will see that morphological filters are appli-
cable not only to binary images but also to grayscale and even color images,
though these operations differ significantly from their binary counterparts.

7.1 Shrink and Let Grow

Our starting point was the observation that a simple 3×3 pixel median filter can
round off larger image structures and remove smaller structures, such as points
and thin lines, in a binary image. This could for one be useful to eliminate
structures that are below a certain size (e. g., to clean an image from noise or
dirt). But how can we control the size and possibly the shape of the structures
affected by such an operation?

Although its structural effects may be interesting, we disregard the median
filter at this point and start with this task again from the beginning. Let’s
assume that we want to remove small structures from a binary image without
significantly altering the remaining larger structures. The key idea for accom-
plishing this could be the following (Fig. 7.2):

1 2 3 4

8 7 6 5

shrink

grow

Figure 7.2 Removing small image structures by stepwise shrinking and subsequent growing.
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(a) (b) (c)

Figure 7.3 “Shrinking” a foreground region by removing a layer of border pixels: original
image (a), identified foreground pixels that are in direct contact with the background (b),
and result after shrinking (c).

(a) (b) (c)

Figure 7.4 “Growing” a foreground region by attaching a layer of pixels: original image (a),
identified background pixels that are in direct contact with the region (b), and result after
growing (c).

1. First, all structures in the image are iteratively “shrunk” by peeling off a
layer of a certain thickness around the boundaries.

2. Shrinking removes the smaller structures step by step, and only the larger
structures remain.

3. The remaining structures are then grown back by the same amount.

4. Eventually the larger regions should have returned to approximately their
original shapes, while the smaller regions have disappeared from the image.

All we need for this are two types of operations. “Shrinking” means to remove
a layer of pixels from a foreground region around all its borders against the
background (Fig. 7.3). The other way around, “growing”, adds a layer of pixels
around the border of a foreground region (Fig. 7.4).

7.1.1 Neighborhood of Pixels

For both operations, we must define the meaning of two pixels being adjacent
(i. e., being “neighbors”). Two definitions of “neighborhood” are commonly used
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N4 N8

N2

N1 × N3

N4

N5 N2 N6

N1 × N3

N8 N4 N7

Figure 7.5 Definitions of “neighborhood” on a rectangular pixel grid: 4-neighborhood N4 =
{N1, . . . N4} (left) and 8-neighborhood N8 = N4 ∪ {N5, . . . N8} (right).

for rectangular pixel grids (Fig. 7.5):

– 4-neighborhood (N4): the four pixels adjacent to a given pixel in the
horizontal and vertical directions;

– 8-neighborhood (N8): the pixels contained in N4 plus the four adjacent
pixels along the diagonals.

7.2 Basic Morphological Operations

Shrinking and growing are indeed the two most basic morphological operations,
which are referred to as “erosion” and “dilation”, respectively. These morpholog-
ical operations, however, are much more general than illustrated in the example
above. They go well beyond removing or attaching single pixel layers and—in
combination—can perform much more complex operations.

7.2.1 The Structuring Element

Similar to the coefficient matrix of a linear filter (see Sec. 5.2), the properties of
a morphological filter are specified by elements in a matrix called a “structuring
element”. In binary morphology, the structuring element (just like the image
itself) contains only the values 0 and 1,

H(i, j) ∈ {0, 1},

and the hot spot marks the origin of the coordinate system of H (Fig. 7.6). No-
tice that the hot spot is not necessarily located at the center of the structuring
element, nor must its value be 1.
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H =
•

• • •
•

origin (hot spot)

Figure 7.6 Binary structuring element (example). 1–elements are marked with •; 0–cells
are empty.

I H

0 1 2 3

0

1 • •
2 •
3

−1 0 1

−1

0 • •
1

I ≡ QI = {(1, 1), (2, 1), (2, 2)} H ≡ QH = {(0, 0), (1, 0)}

Figure 7.7 A binary image I or a structuring element H can each be described as a set
of coordinate pairs, QI and QH , respectively. The dark shaded element in H marks the
coordinate origin (hot spot).

7.2.2 Point Sets

For the formal specification of morphological operations, it is helpful to describe
binary images as sets of two-dimensional coordinate points. For a binary image
I(u, v) ∈ {0, 1}, the corresponding point set QI consists of the coordinate pairs
p = (u, v) of all foreground pixels,

QI = {p | I(p) = 1}. (7.1)

Of course, as shown in Fig. 7.7, not only a binary image I but also a structuring
element H can be described as a point set.

Given a description as point sets, fundamental operations on binary images
can also be expressed as simple set operations. For example, inverting a binary
image I → Ī (i. e., exchanging foreground and background) is equivalent to
building the complementary set

QĪ = Q̄I = {p ∈ Z
2 | p /∈ QI}. (7.2)

Combining two binary images I1 and I2 by an OR operation between corre-
sponding pixels, the resulting point set is the union of the individual point sets
QI1 and QI2 ; that is,

QI1∨I2 = QI1 ∪ QI2 . (7.3)

Since a point setQI is only an alternative representation of the binary image
I (i. e., I ≡ QI), we will use both image and set notations synonymously in the
following. For example, we simply write Ī instead of Q̄I for an inverted image
as in Eqn. (7.2) or I1 ∪ I2 instead of QI1 ∪ QI2 in Eqn. (7.3). The meaning
should always be clear in the given context.
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Translating (shifting) the binary image I by some coordinate vector d cre-
ates a new image with the content Id(p + d) = I(p), which corresponds to all
coordinates in the point set QI being shifted by d; i. e.,

Id ≡
{

(p + d) | p ∈ I
}

. (7.4)

In some cases, it is also necessary to reflect (mirror) a binary image or point
set about its origin, which we denote as

H∗ ≡ {−p | p ∈ H}. (7.5)

7.2.3 Dilation

A dilation is the morphological operation that corresponds to our intuitive
concept of “growing” as discussed above. As a set operation, it is defined as

I ⊕H ≡ {(p + q) | for every p ∈ I, q ∈ H
}

. (7.6)

Thus the point set produced by a dilation is the (vector) sum of all possible
pairs of coordinate points from the original sets I and H , as illustrated by a
simple example in Fig. 7.8.

Alternatively, one could view the dilation as the structuring element H

being replicated at each foreground pixel of the image I or, conversely, the
image I being replicated at each foreground element of H . Expressed in set
notation,1 this is

I ⊕H ≡
⋃

p∈I

Hp =
⋃

q∈H

Iq, (7.7)

with Hp, Iq denoting the sets H, I shifted by p and q, respectively (see Eqn.
(7.4)).

7.2.4 Erosion

The quasi-inverse of dilation is the erosion operation, again defined in set
notation as

I �H ≡ {p ∈ Z
2 | (p + q) ∈ I, for every q ∈ H

}

. (7.8)

This definition may appear quite cryptic but is simply explained as follows. A
position p is contained in the result I�H if (and only if) the structuring element
H—when placed at this position p—is fully contained in the foreground pixels
of the original image; i. e., if Hp is a subset of I. Equivalent to Eqn. (7.8), we
could thus define binary erosion as

I �H ≡ {p ∈ Z
2 | Hp ⊆ I}. (7.9)

Figure 7.9 shows a simple example for binary erosion.
1 Also see Sec. A.2.
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I H I ⊕H

0 1 2 3

0

1 • •
2 •
3

⊕

−1 0 1

−1

0 • •
1

=

0 1 2 3

0

1 • • •
2 • •
3

I ≡ {(1, 1), (2, 1), (2, 2)}, H ≡ {(0,0), (1,0)}

I ⊕H ≡ { (1, 1) + (0,0), (1, 1) + (1,0),
(2, 1) + (0,0), (2, 1) + (1,0),
(2, 2) + (0,0), (2, 2) + (1,0) }

Figure 7.8 Dilation example. The binary image I is subject to dilation with the structuring
element H. In the result I ⊕H, the structuring element H is replicated at every foreground
pixel of the original image I.

7.2.5 Properties of Dilation and Erosion

The dilation operation is commutative,

I ⊕H = H ⊕ I , (7.10)

and therefore—just as in linear convolution—the image and the structuring
element (filter) can be exchanged to get the same result. Dilation is also asso-
ciative,

(I1 ⊕ I2)⊕ I3 = I1 ⊕ (I2 ⊕ I3), (7.11)

and therefore the ordering of multiple dilations is not relevant. This also
means—analogous to linear filters (cf. Eqn. (5.21))—that a dilation with a
large structuring element of the form Hbig = H1 ⊕H2 ⊕ . . .⊕HK can be effi-
ciently implemented as a sequence of multiple dilations with smaller structuring
elements by

I ⊕Hbig = (. . . ((I ⊕H1)⊕H2)⊕ . . .⊕HK). (7.12)

There is also a neutral element δ for the dilation operation, similar to the Dirac
function for the linear convolution (see Sec. 5.3.4),

I ⊕ δ = δ ⊕ I = I, with δ ≡ {(0, 0)
}

. (7.13)

The erosion operation is, in contrast to dilation (but similar to arithmetic
subtraction), not commutative; i. e.,

I �H �= H � I (7.14)
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I ≡ {(1, 1), (2, 1), (2, 2)}, H ≡ {(0,0), (1,0)}

I �H ≡ { (1, 1) } because

(1, 1) + (0,0) = (1, 1) ∈ I and (1, 1) + (1,0) = (2, 1) ∈ I

Figure 7.9 Erosion example. The binary image I is subject to erosion with H as the
structuring element. H is only covered by I when placed at position p = (1, 1). Thus the
resulting point set contains only the single coordinate (1, 1).

in general. However, if erosion and dilation are combined, then—again in
analogy with arithmetic subtraction and addition—the following chain rule
holds:

(I1 � I2)� I3 = I1 � (I2 ⊕ I3). (7.15)

Although dilation and erosion are not mutually inverse (in general, the
effects of dilation cannot be undone by a subsequent erosion), there are still
some strong formal relations between these two operations.

For one, dilation and erosion are dual in the sense that a dilation of the
foreground (I) can be accomplished by an erosion of the background (Ī) and
subsequent inversion of the result,

I ⊕H ≡ (Ī �H∗), (7.16)

where H∗ denotes the reflection of H (Eqn. (7.5)). This works similarly the
other way, too, namely

I �H ≡ (Ī ⊕H∗), (7.17)

effectively eroding the foreground by dilating the background with the mirrored
structuring element, as illustrated by the example in Fig. 7.10 (see [17, pp. 521–
524] for a proof).

Equation (7.17) is interesting because it shows that we only need to im-
plement either dilation or erosion for computing both, considering that the
foreground-background inversion is a very simple task. Algorithm 7.1 gives a
simple algorithmic description of dilation and erosion based on the relationships
above. The corresponding Java implementation is shown later, in Sec. 7.5.2.
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I H I �H

(a)

•
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(b)
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• • • • •

Ī H∗ Ī ⊕H∗

Figure 7.10 Implementing erosion via dilation. The binary erosion of the foreground I�H
(a) can be implemented by dilating the inverted (background) image Ī with the reflected
structuring element H∗ and subsequently inverting the result again (b).

7.2.6 Designing Morphological Filters

A morphological filter is unambiguously specified by (a) the type of operation
and (b) the contents of the structuring element. The appropriate size and shape
of the structuring element depends upon the application, image resolution, etc.
In practice, structuring elements of quasi-circular shape are frequently used,
such as the examples shown in Fig. 7.11.

A dilation with a circular (disk-shaped) structuring element with radius r

adds a layer of thickness r to any foreground structure in the image. Conversely,
an erosion with that structuring element peels off layers of the same thickness.
Figure 7.13 shows the results of dilation and erosion with disk-shaped structur-

•
• • •
•

• • •
• • •
• • •

• • •
• • • • •
• • • • •
• • • • •
• • •

(a) (b) (c)

Figure 7.11 Typical small structuring elements: 4-neighborhood (a), 8-neighborhood (b),
and “small disk” (c).
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Algorithm 7.1 Binary dilation and erosion. Procedure Dilate() implements the binary
dilation as suggested by Eqn. (7.7). The original image I is displaced to each foreground
coordinate of H and then copied into the resulting image I′. The hot spot of the structur-
ing element H is assumed to be at coordinate (0, 0). Procedure Erode() implements the
binary erosion by dilating the inverted image Ī with the reflected structuring element H∗, as
described by Eqn. (7.17).

1: Dilate (I, H)
I: binary image
H : binary structuring element
Returns the dilated image I ′ = I ⊕H

2: I ′ ← new binary image of size w × h

3: I ′(u, v)← 0, for all (u, v) � I ′ ← ∅

4: for all q = (i, j) in the structuring element H do

5: if H(i, j) = 1 then � q ∈ H

Merge the shifted image Iq with I ′: � I ′ ← I ′ ∪ Iq

6: for all image locations p = (u, v) do
7: if I(u, v) = 1 then � p ∈ I

8: I ′(u+i, v+j)← 1 � I ′ ← I ′ ∪ {(p+q)}

9: return I ′.

10: Erode (I, H)
I: binary image
H : binary structuring element
Returns the eroded image I ′ = I �H

11: Ī ← Invert(I) � Ī ← ¬I
12: H∗ ← Reflect(H)
13: return Invert(Dilate(Ī , H∗)). � I ⊕H = (Ī ⊕H∗)

ing elements of different diameters applied to the original image in Fig. 7.12.
Dilation and erosion results for various other structuring elements are shown
in Fig. 7.14.

Disk-shaped structuring elements are commonly used to implement isotropic
filters, morphological operations that have the same effect in every direction.
Unlike linear filters (e. g., the 2D Gaussian filter in Sec. 5.3.3), it is gener-
ally not possible to compose an isotropic 2D structuring element H◦ from
one-dimensional structuring elements Hx and Hy since the dilation Hx ⊕ Hy

always results in a rectangular (i. e., nonisotropic) structure. A remedy for ap-
proximating large disk-shaped filters is to alternately apply smaller disk-shaped
operators of different shapes, as illustrated in Fig. 7.15. The resulting filter is
generally not fully isotropic but can be implemented efficiently as a sequence
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Figure 7.12 Original binary image and the section used in the following examples (illustra-
tion by Albrecht Dürer, 1515).

of small filters.

7.2.7 Application Example: Outline

A typical application of morphological operations is to extract the boundary
pixels of the foreground structures. The process is very simple. First, we
apply an erosion on the original image I to remove the boundary pixels of the
foreground,

I ′ = I �Hn,

using the 4- or 8-neighborhood (Fig. 7.11) as the structuring element Hn. To
extract the actual boundary pixels B, we take the intersection of the original
image I and the inverted result Ī ′; that is,

B = I ∩ I ′ = I ∩ (I �Hn). (7.18)

Notice that using the 4-neighborhood as the structuring element Hn produces
“8-connected” contours and vice versa [23, p. 504].

The process of boundary extraction is illustrated on a simple example in
Fig. 7.16. As can be observed in this figure, the result B contains exactly
those pixels that are different in the original image I and the eroded image
I ′ = I �Hn, which can also be obtained by an exclusive-OR (XOR) operation
between pairs of pixels; that is, boundary extraction from a binary image can
be implemented as

B(u, v) = XOR
(

I(u, v), I ′(u, v)
)

for all (u, v). (7.19)

Figure 7.17 shows a more complex example for isolating the boundary pixels
in a real image.
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Dilation Erosion

r = 1.0

r = 2.5

r = 5.0

Figure 7.13 Results of binary dilation and erosion with disk-shaped structuring elements.
The radius of the disk (r) is 1.0 (top), 2.5 (center), or 5.0 (bottom).

7.3 Composite Operations

Due to their semiduality, dilation and erosion are often used together in com-
posite operations, two of which are so important that they even carry their
own names and symbols: “opening” and “closing”. They are probably the most
frequently used morphological operations in practice.
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H Dilation Erosion

Figure 7.14 Examples of binary dilation and erosion with various free-form structuring
elements. The structuring elements H are shown in the left column (enlarged). Notice that
the dilation expands every isolated foreground point to the shape of the structuring element,
analogous to the impulse response of a linear filter. Under erosion, only those elements where
the structuring element is fully contained in the original image survive.
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(a)

HA HA⊕HA HA⊕HA⊕HA HA⊕HA⊕HA⊕HA

(b)

HB HB⊕HB HB⊕HB⊕HB HB⊕HB⊕HB⊕HB

(c)

HB HB⊕HA HB⊕HA⊕HB HB⊕HA⊕HB⊕HA

Figure 7.15 Composition of large morphological filters by repeated application of smaller fil-
ters: repeated application of the structuring element HA (a) and structuring element HB (b);
alternating application of HB and HA (c).

7.3.1 Opening

A binary opening I ◦H denotes an erosion followed by a dilation with the same
structuring element H ,

I ◦H = (I �H)⊕H. (7.20)

The main effect of an opening is that all foreground structures that are smaller
than the structuring element are eliminated in the first step (erosion). The
remaining structures are smoothed by the subsequent dilation and grown
back to approximately their original size, as demonstrated by the examples
in Fig. 7.18). This process of shrinking and subsequent growing corresponds
to the idea for eliminating small structures that we had initially sketched in
Sec. 7.1.
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Figure 7.16 Outline example using a 4-neighborhood structuring element Hn. The image I
is first eroded (I�Hn) and subsequently inverted (I �Hn). The boundary pixels are finally
obtained as the intersection I ∩ I �Hn.

7.3.2 Closing

When the sequence of erosion and dilation is reversed, the resulting operation
is called a closing and denoted I •H ,

I •H = (I ⊕H)�H. (7.21)

A closing removes (closes) holes and fissures in the foreground structures that
are smaller than the structuring element H . Some examples with typical disk-
shaped structuring elements are shown in Fig. 7.18.

7.3.3 Properties of Opening and Closing

Both operations, opening as well as closing, are idempotent, meaning that their
results are “final” in the sense that any subsequent application of the same
operation no longer changes the result; i. e.,

I ◦H = (I ◦H) ◦H = ((I ◦H) ◦H) ◦H = . . . ,

I •H = (I •H) •H = ((I •H) •H) •H = . . . . (7.22)
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(a) (b)

Figure 7.17 Extraction of boundary pixels using morphological operations. The 4-
neighborhood structuring element used in (a) produces 8-connected contours. Conversely,
using the 8-neighborhood as the structuring element gives 4-connected contours (b).

Also, opening and closing are “duals” in the sense that opening the foreground
is equivalent to closing the background and vice versa; i. e.,

I ◦H =
(

Ī •H
)

and I •H =
(

Ī ◦H
)

. (7.23)

7.4 Grayscale Morphology

Morphological operations are not confined to binary images but are also for
intensity (grayscale) images. In fact, the definition of grayscale morphology is
a generalization of binary morphology, with the binary OR and AND operators
replaced by the arithmetic MAX and MIN operators, respectively. As a conse-
quence, procedures designed for grayscale morphology can also perform binary
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Opening Closing

r = 1.0

r = 2.5

r = 5.0

Figure 7.18 Binary opening and closing with disk-shaped structuring elements. The radius
r of the structuring element H is 1.0 (top), 2.5 (center), or 5.0 (bottom).

morphology (but not the other way around).2 In the case of color images, the
grayscale operations are usually applied individually to each color channel.

2 ImageJ provides a single implementation of morphological operations that handles
both binary and grayscale images (see Sec. 7.5.5).
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7.4.1 Structuring Elements

Unlike in the binary scheme, the structuring elements for grayscale morphology
are not defined as point sets but as real-valued 2D functions,

H(i, j) ∈ R , for (i, j) ∈ Z
2.

The values in H may be negative or zero. Notice, however, that in contrast to
linear convolution (Sec. 5.3.1), zero elements in grayscale morphology generally
do contribute to the result.3 The design of structuring elements for grayscale
morphology must therefore distinguish explicitly between cells containing the
value 0 and empty (“don’t care”) cells; for example

0 1 0

1 2 1

0 1 0

�=
1

1 2 1

1

. (7.24)

7.4.2 Dilation and Erosion

The result of grayscale dilation I ⊕H is defined as the maximum of the values
in H added to the values of the current subimage of I,

(I ⊕H)(u, v) = max
(i,j)∈H

{

I(u+i, v+j) + H(i, j)
}

. (7.25)

Similarly, the result of grayscale erosion is the minimum of the differences,

(I �H)(u, v) = min
(i,j)∈H

{

I(u+i, v+j)−H(i, j)
}

. (7.26)

Figures 7.19 and 7.20 demonstrate the basic process of grayscale dilation and
erosion, respectively, on a simple example. In general, either operation may
produce negative results that must be considered if the range of pixel values is
restricted; for example, by clamping the results (see Sec. 4.1.2). Some examples
of grayscale dilation and erosion on natural images using disk-shaped structur-
ing elements of various sizes are shown in Fig. 7.21. Figure 7.22 demonstrates
the same operations with some freely designed structuring elements.

7.4.3 Grayscale Opening and Closing

Opening and closing on grayscale images are defined, identical to the binary
case (Eqns. (7.20) and (7.21)), as operations composed of dilation and erosion
with the same structuring element. Some examples are shown in Fig. 7.23
for disk-shaped structuring elements and in Fig. 7.24 for various nonstandard
3 While a zero coefficient in a linear convolution matrix simply means that the cor-

responding image pixel is ignored.
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Figure 7.19 Grayscale dilation I ⊕ H. The 3 × 3 pixel structuring element H is placed
on the image I in the upper left position. Each value of H is added to the corresponding
element of I; the intermediate result (I + H) for this particular position is shown below. Its
maximum value 8 = 7 + 1 is inserted into the result (I ⊕ H) at the current position of the
filter origin. The results for three other filter positions are also shown.
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Figure 7.20 Grayscale erosion I �H. The 3 × 3 pixel structuring element H is placed on
the image I in the upper left position. Each value of H is subtracted from the corresponding
element of I; the intermediate result (I −H) for this particular position is shown below. Its
minimum value 3−1 = 2 is inserted into the result (I � H) at the current position of the
filter origin. The results for three other filter positions are also shown.

structuring elements. Notice that interesting effects can be obtained, particu-
larly from structuring elements resembling the shape of brush or other stroke
patterns.
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Dilation Erosion

r = 2.5

r = 5.0

r = 10.0

Figure 7.21 Grayscale dilation and erosion with disk-shaped structuring elements. The
radius r of the structuring element is 2.5 (top), 5.0 (center), or 10.0 (bottom).

7.5 Implementing Morphological Filters

7.5.1 Binary Images in ImageJ

In ImageJ, binary images contain 8 bits per pixel, the same as ordinary
grayscale images.4 A zero intensity value is interpreted as a binary 0, and

4 ImageJ does not provide a special (1-bit) data format for binary images. The class
BinaryProcessor keeps image data as byte (8-bit) arrays, as does ByteProcessor
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H Dilation Erosion

Figure 7.22 Grayscale dilation and erosion with various free-form structuring elements.

any value greater than zero is considered a binary 1. Usually the intensity
values 0 and 255 are used to represent the binaries 0 and 1, respectively, in
which case the background pixels are displayed black and the foreground pixels

for grayscale images.
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Opening Closing

r = 2.5

r = 5.0

r = 10.0

Figure 7.23 Grayscale opening and closing with disk-shaped structuring elements. The
radius r of the structuring element is 2.5 (top), 5.0 (center), or 10.0 (bottom).

are white by default. If an inverted display (black foreground) is desired, this
can be easily accomplished by inverting the display function or lookup table
(LUT) either interactively through the menu

Image→Lookup Tables→Invert LUT

or within the Java program by invoking the ImageProcessor method

void invertLut()
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H Opening Closing

Figure 7.24 Grayscale opening and closing with various free-form structuring elements.

on the corresponding ImageProcessor object. Any of these instructions
changes only the screen presentation of the current image but not its contents
(pixel values).
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7.5.2 Dilation and Erosion

Most morphological operations are already implemented in ImageJ as methods
of the class ImageProcessor (see also Sec. 7.5.5); however, they are restricted
to structuring elements of size 3×3 pixels.

In the following, we describe a sample implementation of binary dilation for
arbitrary structuring elements that can be used (due to the duality of dilation
and erosion; see Eqn. (7.16)) for implementing most other morphological oper-
ations. Input to dilate() is a binary image I with values 0 for the background
and 255 for the foreground5 and a two-dimensional structuring element H with
0/1-values whose origin (hot spot) is assumed at its center:

1 import ij.process.Blitter;
2 import ij.process.ImageProcessor;
3 ...
4 void dilate(ImageProcessor I, int[][] H){
5 //assume that the hot spot of H is at its center (ic,jc):
6 int ic = (H[0].length-1)/2;
7 int jc = (H.length-1)/2;
8
9 //create a temporary (empty) image:

10 ImageProcessor tmp
11 = I.createProcessor(I.getWidth(),I.getHeight());
12
13 for (int j=0; j<H.length; j++){
14 for (int i=0; i<H[j].length; i++){
15 if (H[j][i] > 0) { // this pixel is set
16 //copy image into position (i-ic,j-jc):
17 tmp.copyBits(I,i-ic,j-jc,Blitter.MAX);
18 }
19 }
20 }
21 //copy the temporary result back to original image
22 I.copyBits(np,0,0,Blitter.COPY);
23 }

The dilate() method destructively modifies the input image I. First (in
line 10), a temporary (empty) image tmp of the same size as I is created,
which is then modified and eventually (line 22) copied back to replace the
input image. The actual dilation is performed iteratively by copying a shifted
version of the original image into the temporary image tmp for every position
(i, j) of the structuring element with H(i, j) > 0. This is done in line 17 using
the ImageProcessor method copyBits() with Blitter.MAX as the operation
parameter (see also Sec. 4.8.3). If the pixels are interpreted as binary values,
the max-operation corresponds to a logical OR operation between the pixels in
the intermediate image tmp and the shifted input image I.

5 In fact, any value greater than 0 is considered a foreground pixel.
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Dilation is the only operation that must be implemented in detail since
erosion can be performed as a dilation of the background by inverting the
image, performing a dilation, and inverting again (see Alg. 7.1):

24 void erode(ImageProcessor I, int[][] H) {
25 ip.invert();
26 dilate(ip, reflect(H));
27 ip.invert();
28 }

In the above, the method reflect(H) (line 26) returns a mirrored copy of
the structuring element H and invert() (lines 25, 27) is a standard ImageJ
method defined by the class ImageProcessor.

7.5.3 Opening and Closing

Opening and closing operations are now easy to implement as combinations
of dilation and erosion with the same structuring element H, as described in
Sec. 7.3:
29 void open(ImageProcessor I, int[][] H) {
30 erode(I,H);
31 dilate(I,H);
32 }

33 void close(ImageProcessor I, int[][] H) {
34 dilate(I,H);
35 erode(I,H);
36 }

7.5.4 Outline

To implement the outline operation for extracting the boundary pixels, as
described in Sec. 7.2.7, we use a 3×3 pixel structuring element H to represent the
4-neighborhood. First we create a duplicate (Ie) of the input image (I), which
is then subject to erosion with H (line 43). The boundary pixels are obtained
by computing the difference between the original and the eroded image (using
the standard method copyBits() with the argument Blitter.DIFFERENCE).
In binary terms, this is an exclusive-OR (XOR) operation between the pixels
in I and Ie, which implements the set intersection (see Eqn. (7.19)). The
differencing operation in line 44 stores its result in I, which finally contains the
boundary pixels of the foreground structures:
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37 void outline(ImageProcessor I) {
38 int[][] H = { //4-neighborhood structuring element
39 {0,1,0},
40 {1,1,1},
41 {0,1,0}};
42 ImageProcessor Ie = I.duplicate();
43 erode(Ie,H); // I ′ ← I �H
44 I.copyBits(Ie,0,0,Blitter.DIFFERENCE); // I ← XOR(I, I ′)
45 }

7.5.5 Morphological Operations in ImageJ

Class ImageProcessor

ImageJ defines several methods for basic morphological operations in the class
ImageProcessor:

void dilate()
void erode()
void open()
void close()

All these methods apply a 3 × 3 pixel box-shaped structuring element (see
Fig. 7.11 (b)) and perform either binary or grayscale operations, depending
upon the image content. The class ColorProcessor uses the same methods
for RGB images by processing the color channels individually like ordinary
grayscale or binary images.

Class BinaryProcessor

The class BinaryProcessor (a subclass of ByteProcessor) offers the specific
morphological methods

void outline()
void skeletonize()

which are only defined for binary images. The method outline() implements
the extraction of boundary pixels using an 8-neighborhood structuring element,
as described in Sec. 7.2.7.

The operation implemented by the method skeletonize() is often referred
to as “thinning” or “skeletonization”, which iteratively erodes structures down
to a thickness of 1 pixel without splitting them. This requires a decision based
on the current image content within the filter region (typically of size 3 × 3
pixels) as to whether another erosion should be applied or not. The operation
repeats until no more changes can be made to the result (see, e. g., [17, p. 535]
or [24, p. 517] for details). The actual implementation in ImageJ is based on
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(a) (b)

Figure 7.25 Example of thinning with the skeletonize() method: original image and detail
(a) and results from thinning (b).

an efficient algorithm by Zhang and Suen [44], and an example of applying the
skeletonize() method is shown in Fig. 7.25.

The methods outline() and skeletonize() are only applicable to objects
of type BinaryProcessor, which can be created from existing ByteProcessor
objects. This assumes, however, that the original image contains only values
of 0 (background) and 255 (foreground). The following example shows the use
of outline() within the run() method of an ImageJ plugin:

1 public void run(ImageProcessor ip) {
2 ByteProcessor byteP
3 = (ByteProcessor) ip.convertToByte(true); // scale!
4 BinaryProcessor binP
5 = new BinaryProcessor(byteP);
6 binP.outline();
7 ...
8 }
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Notice that the new BinaryProcessor object binP does not allocate any new
image data but only references the data of the parent image byteP. Thus any
subsequent modification to binP (e. g., by invoking the method outline()) is
also visible in byteP.

Other morphological filters

In addition to the morphological operations implemented in ImageJ itself, there
are additional plugins and complete morphological packages available online,6

including the morphology operators by Gabriel Landini and the Grayscale Mor-
phology package by Dimiter Prodanov, which allows structuring elements to
be interactively specified.

7.6 Exercises
Exercise 7.1
Manually compute the results of dilation and erosion for the following image
I and the structuring elements H1 and H2:

I =

•
• • • • •

• • • • •
• • • •

• •
•

H1 =
•
•
•

H2 =
•

• • •
•

Exercise 7.2
Assume that a binary image I contains unwanted foreground spots with a
maximum diameter of 5 pixels that should be removed without damaging
the remaining structures. Design a suitable morphological procedure, and
evaluate its performance on appropriate test images.

Exercise 7.3
Show that, in the special case of the structuring elements with the contents

• • •
• • •
• • •

for binary images and
0 0 0

0 0 0

0 0 0

for grayscale images,

dilation is equivalent to a 3×3 pixel maximum filter and erosion is equivalent
to a 3× 3 pixel minimum filter (see Sec. 5.4.1).

6 http://rsb.info.nih.gov/ij/plugins/.
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Color Images

Color images are involved in every aspect of our lives, where they play an im-
portant role in everyday activities such as television, photography, and print-
ing. Color perception is a fascinating and complicated phenomenon that has
occupied the interest of scientists, psychologists, philosophers, and artists for
hundreds of years [38, 39]. In this chapter, we focus on those technical aspects
of color that are most important for working with digital color images. Our
emphasis will be on understanding the various representations of color and cor-
rectly utilizing them when programming. Additional color-related issues, such
as color quantization and colorimetric color spaces, are covered in Volume 2 [6].

8.1 RGB Color Images

The RGB color schema encodes colors as combinations of the three primary
colors: red (R), green (G), and blue (B). This scheme is widely used for
transmission, representation, and storage of color images on both analog devices
such as television sets and digital devices such as computers, digital cameras,
and scanners. For this reason, many image-processing and graphics programs
use the RGB schema as their internal representation for color images, and most
language libraries, including Java’s imaging APIs, use it as their standard image
representation.

RGB is an additive color system, which means that all colors start with
black and are created by adding the primary colors. You can think of color
formation in this system as occurring in a dark room where you can overlay

W. Burger, M.J. Burge, Principles of Digital Image Processing, Undergraduate Topics  
in Computer Science, DOI 10.1007/978-1-84800-191-6_8, Springer-Verlag London Limited, 2009 ©



186 8. Color Images

�6 

�6 

R

G

B

YG

C

B M

W

S

R
R75

R50
R25

PK

RGB Value
Point Color R G B

S Black 0.00 0.00 0.00
R Red 1.00 0.00 0.00
Y Yellow 1.00 1.00 0.00
G Green 0.00 1.00 0.00
C Cyan 0.00 1.00 1.00
B Blue 0.00 0.00 1.00
M Magenta 1.00 0.00 1.00
W White 1.00 1.00 1.00
K 50% Gray 0.50 0.50 0.50

R75 75% Red 0.75 0.00 0.00
R50 50% Red 0.50 0.00 0.00
R25 25% Red 0.25 0.00 0.00
P Pink 1.00 0.50 0.50

Figure 8.1 Representation of the RGB color space as a three-dimensional unit cube. The
primary colors red (R), green (G), and blue (B) form the coordinate system. The “pure” red
color (R), green (G), blue (B), cyan (C), magenta (M), and yellow (Y) lie on the vertices of
the color cube. All the shades of gray, of which K is an example, lie on the diagonal between
black S and white W.

three beams of light—one red, one green, and one blue—on a sheet of white pa-
per. To create different colors, you would modify the intensity of each of these
beams independently. The distinct intensity of each primary color beam con-
trols the shade and brightness of the resulting color. The colors gray and white
are created by mixing the three primary color beams at the same intensity. A
similar operation occurs on the screen of a color television or CRT1-based com-
puter monitor, where tiny, close-lying dots of red, green, and blue phosphorous
are simultaneously excited by a stream of electrons to distinct energy levels
(intensities), creating a seemingly continuous color image.

The RGB color space can be visualized as a three-dimensional unit cube in
which the three primary colors form the coordinate axis. The RGB values are
positive and lie in the range [0, Cmax]; for most digital images, Cmax = 255.
Every possible color Ci corresponds to a point within the RGB color cube of
the form

Ci = (Ri, Gi, Bi),

where 0 ≤ Ri, Gi, Bi ≤ Cmax. RGB values are often normalized to the interval
[0, 1] so that the resulting color space forms a unit cube (Fig. 8.1). The point
S = (0, 0, 0) corresponds to the color black, W = (1, 1, 1) corresponds to the
color white, and all the points lying on the diagonal between S and W are
shades of gray created from equal color components R = G = B.

Figure 8.2 shows a color test image and its corresponding RGB color com-
ponents, displayed here as intensity images. We will refer to this image in a
1 Cathode ray tube.
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RGB

R G B

Figure 8.2 A color image and its corresponding RGB channels. The fruits depicted are
mainly yellow and red and therefore have high values in the R and G channels. In these
regions, the B content is correspondingly lower (represented here by darker gray values)
except for the bright highlights on the apple, where the color changes gradually to white.
The tabletop in the foreground is purple and therefore displays correspondingly higher values
in its B channel.

number of examples that follow in this chapter.
RGB is a very simple color system, and as demonstrated in Sec. 8.2, a

basic knowledge of it is often sufficient for processing color images or trans-
forming them into other color spaces. At this point, we will not be able to
determine what color a particular RGB pixel corresponds to in the real world,
or even what the primary colors red, green, and blue truly mean in a physical
(i. e., colorimetric) sense. Instead, in this volume we will rely on our intuitive
understanding of color and address colorimetry and color spaces in detail in
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Vol. 2 [6, Sec. 6].

8.1.1 Organization of Color Images

Color images are represented in the same way as grayscale images, by using
an array of pixels in which different models are used to order the individual
color components. In the next sections we will examine the difference between
true color images, which utilize colors uniformly selected from the entire color
space, and so-called palleted or indexed images, in which only a select set of
distinct colors are used. Deciding which type of image to use depends on the
requirements of the application.

True color images

A pixel in a true color image can represent any color in its color space, as long
as it falls within the (discrete) range of its individual color components. True
color images are appropriate when the image contains many colors with sub-
tle differences, as occurs in digital photography and photo-realistic computer
graphics. Next we look at two methods of ordering the color components in
true color images: component ordering and packed ordering.

Component ordering. In component ordering (also referred to as planar
ordering) the color components are laid out in separate arrays of identical
dimensions. In this case, the color image

I =
(

IR, IG, IB

)

can be thought of as a vector of related intensity images IR, IG, and IB

(Fig. 8.3), and the RGB component values of the color image I at position
(u, v) are obtained by accessing all three intensity images as follows:

⎛

⎝

Ru,v

Gu,v

Bu,v

⎞

⎠←
⎛

⎝

IR(u, v)
IG(u, v)
IB(u, v)

⎞

⎠ . (8.1)

Packed ordering. In packed ordering, the component values that represent
the color of a particular pixel are packed together into a single element of the
image array (Fig. 8.4) so that

I(u, v) = (Ru,v, Gu,v, Bu,v).

The RGB value of a packed image I at the location (u, v) is obtained by ac-
cessing the individual components of the color pixel as

⎛

⎝

Ru,v

Gu,v

Bu,v

⎞

⎠←
⎛

⎝

Red(I(u, v))
Green(I(u, v))
Blue(I(u, v))

⎞

⎠ . (8.2)
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3 component arrays

IR

IG

IB

u

v
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IG(u, v)

IB(u, v)

Figure 8.3 RGB color image in component ordering. The three color components are laid
out in separate arrays IR, IG, IB of the same size.

RGB Pixel Array

R G B

u

v

I(u, v)

Figure 8.4 RGB-color image using packed ordering. The three color components R, G, and
B are placed together in a single array element.

The access functions, Red(), Green(), Blue(), will depend on the specific imple-
mentation used for encoding the color pixels.

Indexed images

Indexed images permit only a limited number of distinct colors and therefore
are used mostly for illustrations and graphics that contain large regions of the
same color. Often these types of images are stored in indexed GIF or PNG files
for use on the Web. In these indexed images, the pixel array does not contain
color or brightness data but instead consists of integer numbers k that are used
to index into a color table or “palette”

P (k) = (rk, gk, bk) ,

for k = 0 . . .N−1 (Fig. 8.5). N is the size of the color table and therefore also
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Image Iidx(u,v)
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Figure 8.5 RGB indexed image. Instead of a full color value, each pixel in Iidx(u,v) contains
an index k. The color value for each k is defined by an entry in the color table or “palette”
P [k].

the maximum number of distinct image colors (typically N = 2 to 256). Since
the color table can contain any RGB color value (rk, gk, bk), it must be saved
as part of the image. The RGB component values of an indexed image Iidx at
location (u, v) are obtained as

⎛

⎝

R

G

B

⎞

⎠←
⎛

⎝

PR(k)
PG(k)
PB(k)

⎞

⎠ =

⎛

⎝

rk

gk

bk

⎞

⎠ , with k = Iidx(u, v). (8.3)

During the transformation from a true color image to an indexed image (for
example, from a JPEG image to a GIF image), the problem of optimal color
reduction, or color quantization, arises. Color quantization is the process of
determining an optimal color table and then mapping it to the original colors.
This process is described in detail in Vol. 2 [6, Sec. 5].

8.1.2 Color Images in ImageJ

ImageJ provides two simple types of color images:

– RGB full-color images (24-bit “RGB color”)

– Indexed images (“8-bit color”)

RGB true color images

RGB color images in ImageJ use a packed order (see Sec. 8.1.1), where each
color pixel is represented by a 32-bit int value. As Fig. 8.6 illustrates, 8 bits
are used to represent each of the RGB components, which limits the range of
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Figure 8.6 Structure of an RGB color pixel in Java. Within a 32-bit int, 8 bits are allocated,
in the following order, for each of the color components R, G, B as well as the transparency
α (unused in ImageJ).

the individual components to 0 to 255. The remaining 8 bits are reserved for
the transparency,2 or alpha (α), component. This is also the usual ordering in
Java3 for RGB color images.

Accessing RGB pixel values. RGB color images are represented by an ar-
ray of pixels, the elements of which are standard Java ints. To disassemble the
packed int value into the three color components, you apply the appropriate
bitwise shifting and masking operations. In the following example, we assume
that the image processor ip contains an RGB color image:

1 int c = ip.getPixel(u,v); // a color pixel
2 int r = (c & 0xff0000) >> 16; // red value
3 int g = (c & 0x00ff00) >> 8; // green value
4 int b = (c & 0x0000ff); // blue value

In this example, each of the RGB components of the packed pixel c are isolated
using a bitwise AND operation (&) with an appropriate bit mask (following
convention, bit masks are given in hexadecimal4 notation), and afterwards the
extracted bits are shifted right by 16 (for R) or 8 (for G) bit positions (see
Fig. 8.7).

The “construction” of an RGB pixel from the individual R, G, and B values
is done in the opposite direction using the bitwise OR operator (|) and shifting
the bits left (<<):

1 int r = 169; // red value
2 int g = 212; // green value
3 int b = 17; // blue value
4 int c = ((r & 0xff)<<16) | ((g & 0xff)<<8) | b & 0xff;
5 ip.putPixel(u,v,C);

Masking the component values with 0xff works in this case because except for
the bits in positions 0 to 7 (values in the range 0 to 255), all the other bits are
2 The transparency value α (alpha) represents the ability to see through a color pixel

onto the background. At this time, the α channel is unused in ImageJ.
3 Java Advanced Window Toolkit (AWT).
4 The mask 0xff0000 is of type int and represents the 32-bit binary pattern
00000000111111110000000000000000.
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Figure 8.7 Decomposition of a 32-bit RGB color pixel using bit operations. The R com-
ponent (bits 16–23) of the RGB pixels C (above) is isolated using a bitwise AND operation
(&) together with a bit mask M = 0xff0000. All bits except the R component are set to the
value 0, while the bit pattern within the R component remains unchanged. This bit pattern
is subsequently shifted 16 positions to the right (>>), so that the R component is moved into
the lowest 8 bits and its value lies in the range of 0 to 255. During the shift operation, zeros
are filled in from the left.

already set to zero. A complete example of manipulating an RGB color image
using bit operations is presented in Prog. 8.1. Instead of accessing color pixels
using ImageJ’s access functions, these programs directly access the pixel array
for increased efficiency (see also Sec. B.1.3).

The ImageJ class ColorProcessor provides an easy to use alternative
which returns the separated RGB components (as an int array with three
elements). In the following example that demonstrates its use, ip is of type
ColorProcessor:

1 int[] RGB = new int[3];
2 ...
3 RGB = ip.getPixel(u,v,RGB);
4 int r = RGB[0];
5 int g = RGB[1];
6 int b = RGB[2];
7 ...
8 ip.putPixel(u,v,RGB);

A more detailed and complete example is shown by the simple plugin in
Prog. 8.2, which increases the value of all three color components of an RGB
image by 10 units. Notice that the plugin limits the resulting component
values to 255, because the putPixel() method only uses the lowest 8 bits of
each component and does not test if the value passed in is out of the permitted
0 to 255 range. Without this test, arithmetic overflow errors can occur. The
price for using this access method, instead of direct array access, is a noticeably
longer running time (approximately a factor of 4 when compared to the version
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1 // File Brighten_Rgb_1.java
2
3 import ij.ImagePlus;
4 import ij.plugin.filter.PlugInFilter;
5 import ij.process.ImageProcessor;
6
7 public class Brighten_Rgb_1 implements PlugInFilter {
8
9 public int setup(String arg, ImagePlus im) {

10 return DOES_RGB; // this plugin works on RGB images
11 }
12
13 public void run(ImageProcessor ip) {
14 int[] pixels = (int[]) ip.getPixels();
15
16 for (int i = 0; i < pixels.length; i++) {
17 int c = pixels[i];
18 // split the color pixel into RGB components
19 int r = (c & 0xff0000) >> 16;
20 int g = (c & 0x00ff00) >> 8;
21 int b = (c & 0x0000ff);
22 // modify colors
23 r = r + 10; if (r > 255) r = 255;
24 g = g + 10; if (g > 255) g = 255;
25 b = b + 10; if (b > 255) b = 255;
26 // reassemble the color pixel and insert into pixel array
27 pixels[i]
28 = ((r & 0xff)<<16) | ((g & 0xff)<<8) | b & 0xff;
29 }
30 }
31
32 } // end of class Brighten_Rgb_1

Program 8.1 Working with RGB color images using bit operations (ImageJ plugin, version
1). This plugin increases the values of all three color components by 10 units. It demonstrates
the use of direct access to the pixel array (line 17), the separation of color components using
bit operations (lines 19–21), and the reassembly of color pixels after modification (line 28).
The value DOES_RGB (defined in the interface PlugInFilter) returned by the setup() method
indicates that this plugin is designed to work on RGB formatted true color images (line 10).

in Prog. 8.1).

Opening and saving RGB images. ImageJ supports the following types
of image formats for RGB true color images:

– TIFF (only uncompressed): 3 × 8-bit RGB. TIFF color images with 16-
bit depth are opened as an image stack consisting of three 16-bit intensity
images.

– BMP, JPEG: 3× 8-bit RGB.

– PNG: 3× 8-bit RGB.
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1 // File Brighten_Rgb_2.java
2
3 import ij.ImagePlus;
4 import ij.plugin.filter.PlugInFilter;
5 import ij.process.ColorProcessor;
6 import ij.process.ImageProcessor;
7
8 public class Brighten_Rgb_2 implements PlugInFilter {
9 static final int R = 0, G = 1, B = 2; // component indices

10
11 public int setup(String arg, ImagePlus im) {
12 return DOES_RGB; // this plugin works on RGB images
13 }
14
15 public void run(ImageProcessor ip) {
16 //make sure the image is of type ColorProcessor
17 ColorProcessor cp = (ColorProcessor) ip;
18 int[] RGB = new int[3];
19
20 for (int v = 0; v < cp.getHeight(); v++) {
21 for (int u = 0; u < cp.getWidth(); u++) {
22 cp.getPixel(u, v, RGB);
23 RGB[R] = Math.min(RGB[R]+10, 255); // add 10 and
24 RGB[G] = Math.min(RGB[G]+10, 255); // limit to 255
25 RGB[B] = Math.min(RGB[B]+10, 255);
26 cp.putPixel(u, v, RGB);
27 }
28 }
29 }
30
31 } // end of class Brighten_Rgb_2

Program 8.2 Working with RGB color images without bit operations (ImageJ plugin, ver-
sion 2). This plugin increases the values of all three color components by 10 units using the
access methods getPixel(int, int, int[]) and putPixel(int, int, int[]) from the class
ColorProcessor (lines 22 and 26, respectively). The running time, because of the method
calls, is approximately four times higher than that of version 1 (Prog. 8.1).

– RAW: using the ImageJ menu File→Import→Raw, RGB images can be
opened whose format is not directly supported by ImageJ. It is then possible
to select different arrangements of the color components.

Creating RGB images. The simplest way to create a new RGB image using
ImageJ is to use an instance of the class ColorProcessor, as the following
example demonstrates:

1 int w = 640, h = 480;
2 ColorProcessor cip = new ColorProcessor(w, h);
3 ImagePlus cimg = new ImagePlus("My New Color Image", cip);
4 cimg.show();
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When needed, the color image can be displayed by creating an instance of the
class ImagePlus (line 3) and calling its show() method. Since cip is of type
ColorProcessor, the resulting ImagePlus object cimg is also a color image.
The following code segment demonstrates how this could be verified:

5 if (cimg.getType()==ImagePlus.COLOR_RGB) {
6 int b = cimg.getBitDepth(); // b = 24
7 IJ.write("this is an RGB color image with " + b + " bits");
8 }

Indexed color images

The structure of an indexed image in ImageJ is given in Fig. 8.5, where each
element of the index array is 8 bits and therefore can represent a maximum
of 256 different colors. When programming, indexed images are similar to
grayscale images, as both make use of a color table to determine the actual
color of the pixel. Indexed images differ from grayscale images only in that the
contents of the color table are not intensity values but RGB values.

Opening and saving indexed images. ImageJ supports the following types
of image formats for indexed images:

– GIF: index values with 1 to 8 bits (2 to 256 colors), 3× 8-bit color values.

– PNG: index values with 1 to 8 Bits (2 to 256 colors), 3×8-bit color values.
When saved as PNG, indexed images are stored as full-color RGB images.

– BMP, TIFF (uncompressed): index values with 1 to 8 bits (2 to 256
colors), 3× 8-bit color values.

Working with indexed images. The indexed format is mostly used as a
space-saving means of image storage and is not directly useful as a processing
format since an index value in the pixel array is arbitrarily related to the
actual color, found in the color table, that it represents. When working with
indexed images it usually makes no sense to base any numerical interpretations
on the pixel values or to apply any filter operations designed for 8-bit intensity
images. Figure 8.8 illustrates an example of applying a Gaussian filter and a
median filter to the pixels of an indexed image. Since there is no meaningful
quantitative relation between the actual colors and the index values, the results
are erratic. Note that even the use of the median filter is inadmissible because
no ordering relation exists between the index values. Thus, with few exceptions,
ImageJ functions do not permit the application of such operations to indexed
images. Generally, when processing an indexed image, you first convert it into a
true color RGB image and then after processing convert it back into an indexed
image.
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1 // File Brighten_Index_Image.java
2
3 import ij.ImagePlus;
4 import ij.WindowManager;
5 import ij.plugin.filter.PlugInFilter;
6 import ij.process.ImageProcessor;
7 import java.awt.image.IndexColorModel;
8
9 public class Brighten_Index_Image implements PlugInFilter {

10
11 public int setup(String arg, ImagePlus im) {
12 return DOES_8C; // this plugin works on indexed color images
13 }
14
15 public void run(ImageProcessor ip) {
16 IndexColorModel icm =
17 (IndexColorModel) ip.getColorModel();
18 int pixBits = icm.getPixelSize();
19 int mapSize = icm.getMapSize();
20
21 //retrieve the current lookup tables (maps) for R,G,B
22 byte[] Rmap = new byte[mapSize]; icm.getReds(Rmap);
23 byte[] Gmap = new byte[mapSize]; icm.getGreens(Gmap);
24 byte[] Bmap = new byte[mapSize]; icm.getBlues(Bmap);
25
26 //modify the lookup tables
27 for (int idx = 0; idx < mapSize; idx++){
28 int r = 0xff & Rmap[idx]; //mask to treat as unsigned byte
29 int g = 0xff & Gmap[idx];
30 int b = 0xff & Bmap[idx];
31 Rmap[idx] = (byte) Math.min(r + 10, 255);
32 Gmap[idx] = (byte) Math.min(g + 10, 255);
33 Bmap[idx] = (byte) Math.min(b + 10, 255);
34 }
35
36 //create a new color model and apply to the image
37 IndexColorModel icm2 =
38 new IndexColorModel(pixBits, mapSize, Rmap, Gmap,Bmap);
39 ip.setColorModel(icm2);
40
41 //update the resulting image
42 WindowManager.getCurrentImage().updateAndDraw();
43 }
44
45 } // end of class Brighten_Index_Image

Program 8.3 Working with indexed images (ImageJ plugin). This plugin increases the
brightness of an image by 10 units by modifying the image’s color table (palette). The actual
values in the pixel array, which are indices into the palette, are not changed.
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(a) (b) (c)

Figure 8.8 Improper application of smoothing filters to an indexed color image. Indexed
image with 16 colors (a) and results of applying a linear smoothing filter (b) and a 3 × 3
median filter (c) to the pixel array (that is, the index values). The application of a linear filter
makes no sense, of course, since no meaningful relation exists between the index values in the
pixel array and the actual image intensities. While the median filter (c) delivers seemingly
plausible results in this case, its use is also inadmissible because no suitable ordering relation
exists between the index values.

When an ImageJ plugin is supposed to process indexed images, its setup()
method should return the DOES_8C (“8-bit color”) flag. The plugin in Prog.
8.3 shows how to increase the intensity of the three color components of an
indexed image by 10 units (analogously to Progs. 8.1 and 8.2 for RGB images).
Notice how in indexed images only the palette is modified and the original pixel
data, the index values, remain the same. The color table of ImageProcessor is
accessible through a ColorModel5 object, which can be read using the method
getColorModel() and modified using setColorModel().

The ColorModel object for indexed images (as well as 8-bit grayscale im-
ages) is a subtype of IndexColorModel, which contains three color tables
(maps) representing the red, green, and blue components as separate byte
arrays. The size of these tables (2 to 256) can be determined by calling the
method getMapSize(). Note that the elements of the palette should be in-
terpreted as unsigned bytes with values ranging from 0 to 255. Just as with

5 Defined in the standard Java class java.awt.image.ColorModel.



198 8. Color Images

grayscale pixel values, during the conversion to int values, these color compo-
nent values must also be bitwise masked with 0xff as shown in Prog. 8.3 (lines
28–30).

As a further example, Prog. 8.4 shows how to convert an indexed image to
a true color RGB image of type ColorProcessor. Conversion in this direc-
tion poses no problems because the RGB component values for a particular
pixel are simply taken from the corresponding color table entry, as described
by Eqn. (8.3). On the other hand, conversion in the other direction requires
quantization of the RGB color space and is as a rule more difficult and in-
volved (see Vol. 2 [6, Sec. 5] for more details). In practice, most applications
make use of existing conversion methods such as those available in ImageJ (see
pp. 200–200).

Creating indexed images. In ImageJ, no special method is provided for the
creation of indexed images, so in almost all cases they are generated by con-
verting an existing image. The following method demonstrates how to directly
create an indexed image if required:

1 ByteProcessor makeIndexColorImage(int w, int h, int nColors) {
2 // allocate red, green, blue color tables:
3 byte[] Rmap = new byte[nColors];
4 byte[] Gmap = new byte[nColors];
5 byte[] Bmap = new byte[nColors];
6 // color maps need to be filled here
7 byte[] pixels = new byte[w * h];
8 // pixel array (color indices) needs to be filled here
9 IndexColorModel cm

10 = new IndexColorModel(8, nColors, Rmap, Gmap, Bmap);
11 return new ByteProcessor(w, h, pixels, cm);
12 }

The parameter nColors defines the number of colors (and thus the size of
the palette) and must be a value in the range of 2 to 256. To use the above
template, you would complete it with code that filled the three byte arrays for
the RGB components (Rmap, Gmap, Bmap) and the index array (pixels) with
the appropriate values.

Transparency. Transparency is one of the reasons indexed images are often
used for Web graphics. In an indexed image, it is possible to define one of
the index values so that it is displayed in a transparent manner and at selected
image locations the background beneath the image shows through. In Java this
can be controlled when creating the image’s color model (IndexColorModel).
As an example, to make color index 2 in Prog. 8.3 transparent, lines 37–39
would need to be modified as follows:
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1 // File Index_To_Rgb.java
2
3 import ij.ImagePlus;
4 import ij.plugin.filter.PlugInFilter;
5 import ij.process.ColorProcessor;
6 import ij.process.ImageProcessor;
7 import java.awt.image.IndexColorModel;
8
9 public class Index_To_Rgb implements PlugInFilter {

10 static final int R = 0, G = 1, B = 2;
11
12 public int setup(String arg, ImagePlus im) {
13 return DOES_8C + NO_CHANGES; //does not alter original image
14 }
15
16 public void run(ImageProcessor ip) {
17 int w = ip.getWidth();
18 int h = ip.getHeight();
19
20 //retrieve the color table (palette) for R,G,B
21 IndexColorModel icm =
22 (IndexColorModel) ip.getColorModel();
23 int mapSize = icm.getMapSize();
24 byte[] Rmap = new byte[mapSize]; icm.getReds(Rmap);
25 byte[] Gmap = new byte[mapSize]; icm.getGreens(Gmap);
26 byte[] Bmap = new byte[mapSize]; icm.getBlues(Bmap);
27
28 //create new 24-bit RGB image
29 ColorProcessor cp = new ColorProcessor(w,h);
30 int[] RGB = new int[3];
31 for (int v = 0; v < h; v++) {
32 for (int u = 0; u < w; u++) {
33 int idx = ip.getPixel(u, v);
34 RGB[R] = Rmap[idx];
35 RGB[G] = Gmap[idx];
36 RGB[B] = Bmap[idx];
37 cp.set(u, v, RGB);
38 }
39 }
40 ImagePlus cimg = new ImagePlus("RGB Image",cp);
41 cimg.show();
42 }
43
44 } // end of class Index_To_Rgb

Program 8.4 Converting an indexed image to a true color RGB image (ImageJ plugin).

1 int tIdx = 2; // index of transparent color
2 IndexColorModel icm2 = new
3 IndexColorModel(pixBits, mapSize, Rmap, Gmap, Bmap, tIdx);
4 ip.setColorModel(icm2);
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At this time, however, ImageJ does not support the transparency property;
it is not considered during display, and it is lost when the image is saved.

Color image conversion in ImageJ

In ImageJ, the following methods for converting between different types of color
and grayscale image objects of type ImagePlus and processor objects of type
ImageProcessor are available:

Converting images of type ImageProcessor. ImageJ objects of type
ImageProcessor can be converted using the methods listed in Table 8.1. Each
of these methods returns a new ImageProcessor object, unless the original
image is already of the desired type. If this is the case, only a reference to the
original image processor is returned, i. e., no duplication or modification occurs.
The following example demonstrates the conversion from an ByteProcessor
(grayscale) image type to an RGB color image:

1 ByteProcessor ip1; // a grayscale image
2 ...
3 ImageProcessor ip2 = ip1.convertToRGB();
4 // now ip2 is of type ColorProcessor, ip1 is unmodified.
5 ...

In this case, a new object (ip2) of type ColorProcessor is created and the
original object (ip1) remains unchanged.

Converting images of type ImagePlus. ImageJ image objects of type
ImagePlus can be converted with the help of methods from the ImageJ class
ImageConverter, as summarized in Table 8.2. The following example demon-
strates the conversion to an RGB color image:

1 import ij.process.ImageConverter;
2 ...
3 ImagePlus ipl;
4 ...
5 ImageConverter ic = new ImageConverter(ipl);
6 ic.convertToRGB();
7 // ipl is an RGB image now

Note that the method convertToRGB() does not return a new image object,
but instead modifies the original ImagePlus object ipl.

8.2 Color Spaces and Color Conversion

The RGB color system is well-suited for use in programming, as it is simple to
manipulate and maps directly to the typical display hardware. When modifying
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Table 8.1 Conversion methods for images of type ImageProcessor. If doScaling is true
in the first two methods, the pixel values are automatically scaled to the maximum range of
the new image.

ImageProcessor convertToByte(boolean doScaling)
Converts to an 8-bit grayscale image (ByteProcessor).

ImageProcessor convertToShort(boolean doScaling)
Converts to a 16-bit grayscale image (ShortProcessor).

ImageProcessor convertToFloat()
Converts to a 32-bit floating-point image (FloatProcessor).

ImageProcessor convertToRGB()
Converts to a 32-bit RGB color image (ColorProcessor).

Table 8.2 Methods of the ImageJ class ImageConverter for converting ImagePlus objects.
Note that these methods do not create any new images, but instead modify the original
ImagePlus object ipl used to instantiate the ImageConverter.

ImageConverter(ImagePlus ipl )
Instantiates an ImageConverter object for the image ipl .

void convertToGray8()
Converts ipl to an 8-bit grayscale image.

void convertToGray16()
Converts ipl to a 16-bit grayscale image.

void convertToGray32()
Converts ipl to a 32-bit grayscale image (float).

void convertToRGB()
Converts ipl to an RGB color image.

void convertRGBtoIndexedColor(int nColors)
Converts the RGB true color image ipl to an indexed image with
8-bit index values and nColors colors, performing color quantiza-
tion.

void convertToHSB()
Converts ipl to a color image using the HSB color space (see
Sec. 8.2.3).

void convertHSBToRGB()
Converts an HSB color space image ipl to an RGB color image.
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colors within the RGB space, it is important to remember that the metric, or
measured distance within this color space, does not proportionally correspond
to our perception of color (e. g., doubling the value of the red component does
not necessarily result in a color which appears to be twice as red). In general,
in this space, modifying different color points by the same amount can cause
very different changes in color. In addition, brightness changes in the RGB
color space are also perceived as nonlinear.

Since any coordinate movement modifies color tone, saturation, and bright-
ness all at once, color selection in RGB space is difficult and quite non-intuitive.
Color selection is more intuitive in other color spaces, such as the HSV space
(see Sec. 8.2.3), since perceptual color features, such as saturation, are rep-
resented individually and can be modified independently. Alternatives to the
RGB color space are also used in applications such as the automatic separation
of objects from a colored background (the blue box technique in television),
encoding television signals for transmission, or in printing, and are thus also
relevant in digital image processing.

Figure 8.9 shows the distribution of the colors from natural images in the
RGB color space. The first half of this section introduces alternative color
spaces and the methods of converting between them and later discusses the
choices that need to be made to correctly convert a color image to grayscale.
In addition to the classical color systems most widely used in programming,
precise reference systems, such as the CIEXYZ color space, gain increasing
importance in practical color processing.

8.2.1 Conversion to Grayscale

The conversion of an RGB color image to a grayscale image proceeds by com-
puting the equivalent gray or luminance value Y for each RGB pixel. In its
simplest form, Y could be computed as the average

Y = Avg(R, G, B) =
R + G + B

3
(8.4)

of the three color components R, G, and B. Since we perceive both red and
green as being substantially brighter than blue, the resulting image will appear
to be too dark in the red and green areas and too bright in the blue ones.
Therefore, a weighted sum of the color components

Y = Lum(R, G, B) = wR ·R + wG ·G + wB ·B (8.5)

is typically used to compute the equivalent luminance value. The weights most
often used were originally developed for encoding analog color television signals
(see Sec. 8.2.4):

wR = 0.299 , wG = 0.587 , wB = 0.114 . (8.6)
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(a)

(b)
RGB

Figure 8.9 Examples of the color distribution of natural images. Original images: landscape
photograph with dominant green and blue components and sun-spot image with rich red and
yellow components (a). Distribution of image colors in RGB-space (b).

Those recommended in ITU-BT.709 [20] for digital color encoding are

wR = 0.2125 , wG = 0.7154 , wB = 0.072 . (8.7)

If each color component is assigned the same weight, as in Eqn. (8.4), this is of
course just a special case of Eqn. (8.5).

Note that, although these weights were developed for use with TV sig-
nals, they are optimized for linear RGB component values, i. e., signals with
no gamma correction. In many practical situations, however, the RGB compo-
nents are actually nonlinear, particularly when we work with sRGB images (see
Vol. 2 [6, Sec. 6.3]). In this case, the RGB components must first be linearized
to obtain the correct luminance values with the above weights. An alternative
is to estimate the luminance without linearization by computing the weighted
sum of the nonlinear component values and applying a different set of weights
(for details see p. 109 of Vol. 2 [6, Sec. 6.3]).
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In some color systems, instead of a weighted sum of the RGB color compo-
nents, a nonlinear brightness function, for example the value V in HSV (Eqn.
(8.11) in Sec. 8.2.3) or the luminance L in HLS (Eqn. (8.21)), is used as the
intensity value Y .

Hueless (gray) color images

An RGB image is hueless or gray when the RGB components of each pixel
I(u, v) = (R, G, B) are the same; i. e., if

R = G = B.

Therefore, to completely remove the color from an RGB image, simply replace
the R, G, and B component of each pixel with the equivalent gray value Y ,

Ig(u, v)←
⎛

⎝

Rg

Gg

Bg

⎞

⎠ =

⎛

⎝

Y

Y

Y

⎞

⎠ , (8.8)

by using Y = Lum(R, G, B) from Eqn. (8.5), for example. The resulting
grayscale image should have the same subjective brightness as the original
color image.

Grayscale conversion in ImageJ

In ImageJ, the simplest way to convert an RGB color image (of type
ColorProcessor) into an 8-bit grayscale image is to use the method

convertToByte(boolean doScaling),

which returns a new image of type ByteProcessor (see Table 8.1 and the
example on page 200). ImageJ uses the default weights wR = wG = wB = 1

3

(as in Eqn. (8.4)) for the RGB components, or wR = 0.299, wG = 0.587,
wB = 0.114 (as in Eqn. (8.6)) if the “Weighted RGB Conversions” option is
selected in the Edit→Options→Conversions dialog. Arbitrary weights (wr , wg ,
wb ) can be specified for subsequent conversion operations through the static
ColorProcessor method

setWeightingFactors(double wr, double wg, double wb ).

Similarly, the static method ColorProcessor.getWeightingFactors() can be
used to retrieve the current weights as a 3-element double-array. Note that no
linearization is performed on the color components, which should be considered
when working with (nonlinear) sRGB colors (see Vol. 2 [6, Sec. 6.3] for details).
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8.2.2 Desaturating Color Images

Desaturation is the uniform reduction of the amount of color in an RGB image
in a continuous manner. It is done by replacing each RGB pixel by a desatu-
rated color (Rd, Gd, Bd) computed by linear interpolation between the pixel’s
original color and the corresponding (Y, Y, Y ) gray point in the RGB space,
i. e.,

⎛

⎝

Rd

Gd

Bd

⎞

⎠←
⎛

⎝

Y

Y

Y

⎞

⎠+ scol ·
⎛

⎝

R− Y

G− Y

B − Y

⎞

⎠ , (8.9)

where the factor scol ∈ [0, 1] controls the remaining amount of color saturation
(Fig. 8.10). A value of scol = 0 completely eliminates all color, resulting in a
true grayscale image, and with scol = 1 the color values will be unchanged. In
Prog. 8.5, continuous desaturation as defined in Eqn. (8.9) is implemented as
an ImageJ plugin.

R

G

B W

S

scol

0

1

C
D

G

Figure 8.10 Desaturation in RGB space: original color point C = (R, G, B), its correspond-
ing gray point G = (Y, Y, Y ), and the desaturated color point D = (Rd, Gd, Bd). Saturation
is controlled by the factor scol.

8.2.3 HSV/HSB and HLS Color Space

In the HSV color space, colors are specified by the components hue, saturation,
and value. Often, such as in Adobe products and the Java API, the HSV space
is called HSB. While the acronym is different (in this case B = brightness),6

it denotes the same color space. The HSV color space is traditionally shown

6 Sometimes the HSV space is also referred to as the “HSI” space, where ‘I’ stands
for intensity.
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1 // File Desaturate_Rgb.java
2
3 import ij.ImagePlus;
4 import ij.plugin.filter.PlugInFilter;
5 import ij.process.ImageProcessor;
6
7 public class Desaturate_Rgb implements PlugInFilter {
8
9 static double sCol = 0.3; // color saturation factor

10
11 public int setup(String arg, ImagePlus im) {
12 return DOES_RGB;
13 }
14
15 public void run(ImageProcessor ip) {
16
17 // iterate over all pixels
18 for (int v = 0; v < ip.getHeight(); v++) {
19 for (int u = 0; u < ip.getWidth(); u++) {
20
21 // get int-packed color pixel
22 int c = ip.get(u, v);
23
24 // extract RGB components from color pixel
25 int r = (c & 0xff0000) >> 16;
26 int g = (c & 0x00ff00) >> 8;
27 int b = (c & 0x0000ff);
28
29 // compute equivalent gray value
30 double y = 0.299 * r + 0.587 * g + 0.114 * b;
31
32 // linearly interpolate (yyy)↔ (rgb)
33 r = (int) (y + sCol * (r - y));
34 g = (int) (y + sCol * (g - y));
35 b = (int) (y + sCol * (b - y));
36
37 // reassemble color pixel
38 c = ((r & 0xff)<<16) | ((g & 0xff)<<8) | b & 0xff;
39 ip.set(u, v, c);
40 }
41 }
42 }
43
44 } // end of class Desaturate_Rgb

Program 8.5 Continuous desaturation of an RGB color image (ImageJ plugin). The amount
of color saturation is controlled by the variable sCol defined in line 9 (see Eqn. (8.9)).

as an upside-down, six-sided pyramid (Fig. 8.11 (a)), where the vertical axis
represents the V (brightness) value, the horizontal distance from the axis the
S (saturation) value, and the angle the H (hue) value. The black point is at
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(a) HSV (b) HLS

Figure 8.11 HSV and HLS color space are traditionally visualized as a single or double
hexagonal pyramid. The brightness V (or L) is represented by the vertical dimension, the
color saturation S by the radius from the pyramid’s axis, and the hue h by the angle. In both
cases, the primary colors red (R), green (G), and blue (B) and the mixed colors yellow (Y),
cyan (C), and magenta (M) lie on a common plane with black (S) at the tip. The essential
difference between the HSV and HLS color spaces is the location of the white point (W).

the tip of the pyramid and the white point lies in the center of the base. The
three primary colors red, green, and blue and the pairwise mixed colors yellow,
cyan and magenta are the corner points of the base. While this space is often
represented as a pyramid, according to its mathematical definition, the space
is actually a cylinder, as shown below (Fig. 8.13).

The HLS color space7 (hue, luminance, saturation) is very similar to the
HSV space, and the hue component is in fact completely identical in both
spaces. The luminance and saturation values also correspond to the verti-
cal axis and the radius, respectively, but are defined differently than in HSV
space. The common representation of the HLS space is as a double pyramid
(Fig. 8.11 (b)), with black on the bottom tip and white on the top. The primary
colors lie on the corner points of the hexagonal base between the two pyramids.
Even though it is often portrayed in this intuitive way, mathematically the HLS
space is again a cylinder (see Fig. 8.15).

RGB→HSV

To convert from RGB to the HSV color space, we first find the saturation of
the RGB color components R, G, B ∈ [0, Cmax], with Cmax being the maximum

7 The acronyms HLS and HSL are used interchangeably.
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component value (typically 255), as

SHSV =

{

Crng
Chigh

for Chigh > 0

0 otherwise,
(8.10)

and the luminance (value)

VHSV =
Chigh

Cmax
, (8.11)

with Chigh, Clow, and Crng defined as

Chigh = max(R, G, B), Clow = min(R, G, B), Crng = Chigh − Clow. (8.12)

Finally, we need to specify the hue value HHSV. When all three RGB color
components have the same value (R = G = B), then we are dealing with
an achromatic (gray) pixel. In this particular case Crng = 0 and thus the
saturation value SHSV = 0, consequently the hue is undefined. To compute
HHSV when Crng > 0, we first normalize each component using

R′ =
Chigh−R

Crng
, G′ =

Chigh−G

Crng
, B′ =

Chigh−B

Crng
. (8.13)

Then, depending on which of the three original color components had the max-
imal value, we compute a preliminary hue H ′ as

H ′ =

⎧

⎨

⎩

B′ −G′ if R = Chigh

R′ −B′ + 2 if G = Chigh

G′ − R′ + 4 if B = Chigh.

(8.14)

Since the resulting value for H ′ lies on the interval [−1 . . . 5], we obtain the
final hue value by normalizing to the interval [0, 1] as

HHSV =
1
6
·
{

(H ′ + 6) for H ′ < 0
H ′ otherwise.

(8.15)

Hence all three components HHSV, SHSV, and VHSV will lie within the interval
[0, 1]. The hue value HHSV can naturally also be computed in another angle
interval, for example in the 0 to 360◦ interval using

H◦
HSV = HHSV · 360.

Under this definition, the RGB space unit cube is mapped to a cylinder
with height and radius of length 1 (Fig. 8.13). In contrast to the traditional
representation (Fig. 8.11), all HSB points within the entire cylinder correspond
to valid color coordinates in RGB space. The mapping from RGB to the HSV
space is nonlinear, as can be noted by examining how the black point stretches
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HHSV SHSV VHSV

Figure 8.12 HSV components for the test image in Fig. 8.2. The darker areas in the hHSV
component correspond to the red and yellow colors, where the hue angle is near zero.

H
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P

RGB/HSV Values

Pt. Color R G B H S V

S Black 0.00 0.00 0.00 — 0.00 0.00

R Red 1.00 0.00 0.00 0 1.00 1.00

Y Yellow 1.00 1.00 0.00 1/6 1.00 1.00

G Green 0.00 1.00 0.00 2/6 1.00 1.00

C Cyan 0.00 1.00 1.00 3/6 1.00 1.00

B Blue 0.00 0.00 1.00 4/6 1.00 1.00

M Magenta 1.00 0.00 1.00 5/6 1.00 1.00

W White 1.00 1.00 1.00 — 0.00 1.00

R75 75% Red 0.75 0.00 0.00 0 1.00 0.75

R50 50% Red 0.50 0.00 0.00 0 1.00 0.50

R25 25% Red 0.25 0.00 0.00 0 1.00 0.25

P Pink 1.00 0.50 0.50 0 0.5 1.00

Figure 8.13 HSV color space. The illustration shows the HSV color space as a cylinder
with the coordinates H (hue) as the angle, S (saturation) as the radius, and V (brightness
value) as the distance along the vertical axis, which runs between the black point S and the
white point W. The table lists the (R, G, B) and (H, S, V ) values of the color points marked
on the graphic. Pure colors (composed of only one or two components) lie on the outer wall
of the cylinder (S = 1), as exemplified by the gradually saturated reds (R25, R50, R75, R).

completely across the cylinder’s base. Figure 8.12 shows the individual HSV
components (in grayscale) of the test image in Fig. 8.2. Figure 8.13 plots the
location of some notable color points and compares them with their locations
in RGB space (see also Fig. 8.1).

Java implementation. In Java, the RGB-HSV conversion is implemented in
the class java.awt.Color by the method

float[] RGBtoHSB (int r, int g, int b, float[] hsv )
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(HSV and HSB denote the same color space). The method takes three int
arguments r, g, b (within the range [0, 255]) and returns a float array with
the resulting H, S, V values in the interval [0, 1]. When an existing float array
is passed as the argument hsv , then the result is placed in it; otherwise (when
hsv = null) a new array is created. Here is a simple example:

1 import java.awt.Color;
2 ...
3 float[] hsv = new float[3];
4 int red = 128, green = 255, blue = 0;
5 hsv = Color.RGBtoHSB (red, green, blue, hsv);
6 float h = hsv[0];
7 float s = hsv[1];
8 float v = hsv[2];
9 ...

A possible implementation of the Java method RGBtoHSB() using the definition
in Eqns. (8.11)–(8.15) is given in Prog. 8.6.

HSV→RGB

To convert an HSV tuple (HHSV, SHSV, VHSV), where HHSV, SHSV, and VHSV

∈ [0, 1], into the corresponding (R, G, B) color values, the appropriate color
sector

H ′ = (6 ·HHSV) mod 6 (8.16)

(0 ≤ H ′ < 6) is determined first, followed by computing the intermediate values

c1 = �H ′�, x = (1− SHSV) · v,

c2 = H ′ − c1, y = (1 − (SHSV · c2)) · VHSV,

z = (1− (SHSV · (1− c2))) · VHSV.

(8.17)

Depending on the value of c1, the normalized RGB values R′, G′, B′ ∈ [0, 1] are
then computed from v = VHSV, x, y, and z as follows:8

(R′, G′, B′) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

(v, z, x) if c1 = 0
(y, v, x) if c1 = 1
(x, v, z) if c1 = 2
(x, y, v) if c1 = 3
(z, x, v) if c1 = 4
(v, x, y) if c1 = 5.

(8.18)

8 The variables x, y, z used here have no relation to those used in the CIEXYZ color
space.
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1 static float[] RGBtoHSV (int R, int G, int B, float[] HSV) {
2 // R, G, B ∈ [0, 255]
3 float H = 0, S = 0, V = 0;
4 float cMax = 255.0f;
5 int cHi = Math.max(R,Math.max(G,B)); // highest color value
6 int cLo = Math.min(R,Math.min(G,B)); // lowest color value
7 int cRng = cHi - cLo; // color range
8
9 // compute value V

10 V = cHi / cMax;
11
12 // compute saturation S
13 if (cHi > 0)
14 S = (float) cRng / cHi;
15
16 // compute hue H
17 if (cRng > 0) { // hue is defined only for color pixels
18 float rr = (float)(cHi - R) / cRng;
19 float gg = (float)(cHi - G) / cRng;
20 float bb = (float)(cHi - B) / cRng;
21 float hh;
22 if (R == cHi) // R is highest color value
23 hh = bb - gg;
24 else if (G == cHi) // G is highest color value
25 hh = rr - bb + 2.0f;
26 else // B is highest color value
27 hh = gg - rr + 4.0f;
28 if (hh < 0)
29 hh= hh + 6;
30 H = hh / 6;
31 }
32
33 if (HSV == null) // create a new HSV array if needed
34 HSV = new float[3];
35 HSV[0] = H; HSV[1] = S; HSV[2] = V;
36 return HSV;
37 }

Program 8.6 RGB→HSV conversion. This Java method for RGB→HSV conversion follows
the process given in the text to compute a single color tuple. It takes the same arguments
and returns results identical to the standard Color.RGBtoHSB() method.

The scaling of the RGB components to whole numbers in the range [0, N − 1]
(typically N = 256) is carried out as follows:

R = min
(

round(N ·R′), N − 1
)

,

G = min
(

round(N ·G′), N − 1
)

, (8.19)

B = min
(

round(N ·B′), N − 1
)

.
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1 static int HSVtoRGB (float h, float s, float v) {
2 // h, s, v ∈ [0, 1]
3 float rr = 0, gg = 0, bb = 0;
4 float hh = (6 * h) % 6; // h′ ← (6 · h) mod 6
5 int c1 = (int) hh; // c1 ← �h′�
6 float c2 = hh - c1;
7 float x = (1 - s) * v;
8 float y = (1 - (s * c2)) * v;
9 float z = (1 - (s * (1 - c2))) * v;

10 switch (c1) {
11 case 0: rr=v; gg=z; bb=x; break;
12 case 1: rr=y; gg=v; bb=x; break;
13 case 2: rr=x; gg=v; bb=z; break;
14 case 3: rr=x; gg=y; bb=v; break;
15 case 4: rr=z; gg=x; bb=v; break;
16 case 5: rr=v; gg=x; bb=y; break;
17 }
18 int N = 256;
19 int r = Math.min(Math.round(rr*N), N-1);
20 int g = Math.min(Math.round(gg*N), N-1);
21 int b = Math.min(Math.round(bb*N), N-1);
22 // create int-packed RGB color:
23 int rgb = ((r&0xff)<<16) | ((g&0xff)<<8) | b&0xff;
24 return rgb;
25 }

Program 8.7 HSV→RGB conversion. This Java method takes the same arguments and
returns identical results as the standard method Color.HSBtoRGB().

Java implementation. In Java, HSV→RGB conversion is implemented in
the standard AWT class java.awt.Color by the method

int HSBtoRGB (float h, float s, float v ) ,

which takes three float arguments h , s , v ∈ [0, 1] and returns the correspond-
ing RGB color as an int value with 3 × 8 bits arranged in the standard Java
RGB format (see Fig. 8.6). One possible implementation of this method is
shown in Prog. 8.7.

RGB→HLS

In the HLS model, the hue value HHLS is computed in the same way as in the
HSV model (Eqns. (8.13)–(8.15)), i. e.,

HHLS = HHSV. (8.20)

The other values, LHLS and SHLS, are computed as follows (for Chigh, Clow,
and Crng, see Eqn. (8.12)):

LHLS =
Chigh + Clow

2
, (8.21)
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HHLS SHLS LHLS

Figure 8.14 HLS color components HHLS (hue), SHLS (saturation), and LHLS (luminance).
Note that the S and L images are swapped to appear in the same order as in HSV space (see
Fig. 8.12).

SHLS =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

0 for LHLS = 0

0.5 · Crng
LHLS

for 0 < LHLS ≤ 0.5

0.5 · Crng
1−LHLS

for 0.5 < LHLS < 1

0 for LHLS = 1.

(8.22)

Figure 8.14 shows the individual HLS components of the test image as grayscale
images. Using the above definitions, the unit cube in the RGB space is again
mapped to a cylinder with height and length 1 (Fig. 8.15). In contrast to the
HSV space (Fig. 8.13), the primary colors lie together in the horizontal plane at
LHLS = 0.5 and the white point lies outside of this plane at LHLS = 1.0. Using
these nonlinear transformations, the black and the white points are mapped to
the top and the bottom planes of the cylinder, respectively.

HLS→RGB

When converting from HLS to the RGB space, we assume that HHLS, SHLS,
LHLS ∈ [0, 1]. In the case where LHLS = 0 or LHLS = 1, the result is

(R′, G′, B′) =
{

(0, 0, 0) for LHLS = 0
(1, 1, 1) for LHLS = 1.

(8.23)

Otherwise, we again determine the appropriate color sector

H ′ = (6 ·HHLS) mod 6 , (8.24)
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RGB/HLS Values

Pt. Color R G B H S L

S Black 0.00 0.00 0.00 — 0.00 0.00

R Red 1.00 0.00 0.00 0 1.00 0.50

Y Yellow 1.00 1.00 0.00 1/6 1.00 0.50

G Green 0.00 1.00 0.00 2/6 1.00 0.50

C Cyan 0.00 1.00 1.00 3/6 1.00 0.50

B Blue 0.00 0.00 1.00 4/6 1.00 0.50

M Magenta 1.00 0.00 1.00 5/6 1.00 0.50

W White 1.00 1.00 1.00 — 0.00 1.00

R75 75% Red 0.75 0.00 0.00 0 1.00 0.375

R50 50% Red 0.50 0.00 0.00 0 1.00 0.250

R25 25% Red 0.25 0.00 0.00 0 1.00 0.125

P Pink 1.00 0.50 0.50 0/6 1.00 0.75

Figure 8.15 HLS color space. The illustration shows the HLS color space visualized as
a cylinder with the coordinates H (hue) as the angle, S (saturation) as the radius, and L
(lightness) as the distance along the vertical axis, which runs between the black point S and
the white point W. The table lists the (R, G, B) and (H, S, L) values where “pure” colors
(created using only one or two color components) lie on the lower half of the outer cylinder
wall (S = 1), as illustrated by the gradually saturated reds (R25, R50, R75, R). Mixtures
of all three primary colors, where at least one of the components is completely saturated, lie
along the upper half of the outer cylinder wall; for example, the point P (pink).

where (0 ≤ H ′ < 6), and then, based on the resulting sector, we determine the
values

c1 = �H ′�
c2 = H ′ − c1

d =

{

SHLS · LHLS for LHLS ≤ 0.5

SHLS · (LHLS−1) for LHLS > 0.5

w = LHLS + d

x = LHLS − d

y = w − (w − x) · c2

z = x + (w − x) · c2.
(8.25)

The assignment of the RGB values is done similarly to Eqn. (8.18), i. e.,

(R′, G′, B′) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

(w, z, x) if c1 = 0
(y, w, x) if c1 = 1
(x, w, z) if c1 = 2
(x, y, w) if c1 = 3
(z, x, w) if c1 = 4
(w, x, y) if c1 = 5.

(8.26)

Finally, scaling the normalized ([0, 1]) R′, G′, B′ color components back into
the [0, 255] range is done as in Eqn. (8.19).



8.2 Color Spaces and Color Conversion 215

1 static float[] RGBtoHLS (float R, float G, float B) {
2 // R, G, B assumed to be in [0, 1]
3 float cHi = Math.max(R,Math.max(G,B)); // highest color value
4 float cLo = Math.min(R,Math.min(G,B)); // lowest color value
5 float cRng = cHi - cLo; // color range
6
7 // compute luminance L
8 float L = (cHi + cLo)/2;
9

10 // compute saturation S
11 float S = 0;
12 if (0 < L && L < 1) {
13 float d = (L <= 0.5f) ? L : (1 - L);
14 S = 0.5f * cRng / d;
15 }
16
17 // compute hue H
18 float H=0;
19 if (cHi > 0 && cRng > 0) { // a color pixel
20 float rr = (float)(cHi - R) / cRng;
21 float gg = (float)(cHi - G) / cRng;
22 float bb = (float)(cHi - B) / cRng;
23 float hh;
24 if (R == cHi) // R is highest color value
25 hh = bb - gg;
26 else if (G == cHi) // G is highest color value
27 hh = rr - bb + 2.0f;
28 else // B is highest color value
29 hh = gg - rr + 4.0f;
30
31 if (hh < 0)
32 hh= hh + 6;
33 H = hh / 6;
34 }
35
36 return new float[] {H,L,S};
37 }

Program 8.8 RGB→HLS conversion (Java method).

Java implementation (RGB ↔ HLS)

Currently there is no method in either the standard Java API or ImageJ for
converting color values between RGB and HLS. Program 8.8 gives one possible
implementation of the RGB→HLS conversion that follows the definitions in
Eqns. (8.20)–(8.22). The HLS→RGB conversion is given in Prog. 8.9.
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1 static float[] HLStoRGB (float H, float L, float S) {
2 // H, L, S assumed to be in [0, 1]
3 float R = 0, G = 0, B = 0;
4
5 if (L <= 0) // black
6 R = G = B = 0;
7 else if (L >= 1) // white
8 R = G = B = 1;
9 else {

10 float hh = (6 * H) % 6;
11 int c1 = (int) hh;
12 float c2 = hh - c1;
13 float d = (L <= 0.5f) ? (S * L) : (S * (1 - L));
14 float w = L + d;
15 float x = L - d;
16 float y = w - (w - x) * c2;
17 float z = x + (w - x) * c2;
18 switch (c1) {
19 case 0: R=w; G=z; B=x; break;
20 case 1: R=y; G=w; B=x; break;
21 case 2: R=x; G=w; B=z; break;
22 case 3: R=x; G=y; B=w; break;
23 case 4: R=z; G=x; B=w; break;
24 case 5: R=w; G=x; B=y; break;
25 }
26 }
27 return new float[] {R,G,B};
28 }

Program 8.9 HLS→RGB conversion (Java method).

Comparing HSV and HLS

Despite the gross similarity between the two color spaces, as Fig. 8.16 illus-
trates, substantial differences in the V /L and S components do exist. The
essential difference between the HSV and HLS spaces is the ordering of the
colors that lie between the white point W and the “pure” colors (R, G, B, Y,
C, M), which consist of at most two primary colors, at least one of which is
completely saturated.

The difference in how colors are distributed in RGB, HSV, and HLS space
is readily apparent in Fig. 8.17. The starting point was a distribution of 1331
(11× 11× 11) color tuples obtained by uniformly sampling the RGB space at
an interval of 0.1 in each dimension. The color distributions in HSV-space for
a set of natural images are shown in Fig. 8.18 (p. 220).

Both the HSV and HLS color spaces are widely used in practice; for instance,
for selecting colors in image editing and graphics design applications. In digital
image processing, they are also used for color keying (that is, isolating objects
according to their hue) on a homogeneously colored background where the
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HSV HLS Difference

SHSV SHLS SHSV − SHLS

VHSV LHLS VHSV − LHLS

Figure 8.16 Comparison between HSV and HLS components: saturation (top row) and
intensity (bottom row). In the color saturation difference image SHSV − SHLS (top), light
areas correspond to positive values and dark areas to negative values. Saturation in the HLS
representation, especially in the brightest sections of the image, is notably higher, resulting in
negative values in the difference image. For the intensity (value and luminance, respectively)
in general, VHSV ≥ LHLS and therefore the difference VHSV − LHLS (bottom) is always
positive. The hue component H (not shown) is identical in both representations.

brightness is not necessarily constant.

8.2.4 TV Color Spaces—YUV, YIQ, and YCbCr

These color spaces are an integral part of the standards surrounding the record-
ing, storage, transmission, and display of television signals. YUV and YIQ are
the fundamental color-encoding methods for the analog NTSC and PAL sys-
tems, and YCbCr is a part of the international standards governing digital
television [19]. All of these color spaces have in common the idea of separat-
ing the luminance component Y from two chroma components and, instead of
directly encoding colors, encoding color differences. In this way, compatibil-
ity with legacy black and white systems is maintained while at the same time
the bandwidth of the signal can be optimized by using different transmission
bandwidths for the brightness and the color components. Since the human
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Figure 8.17 Distribution of colors in the RGB, HSV, and HLS spaces. The starting point
is the uniform distribution of colors in RGB space (a). The corresponding colors in the
cylindrical spaces are distributed nonsymmetrically in HSV (b) and symmetrically in HLS
(c).

visual system is not able to perceive detail in the color components as well as
it does in the intensity part of a video signal, the amount of information, and
consequently bandwidth, used in the color channel can be reduced to approx-
imately 1/4 of that used for the intensity component. This fact is also used
when compressing digital still images and is why, for example, the JPEG codec
converts RGB images to YCbCr. That is why these color spaces are important
in digital image processing, even though raw YIQ or YUV images are rarely
encountered in practice.
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YUV

YUV is the basis for the color encoding used in analog television in both the
North American NTSC and the European PAL systems. The luminance com-
ponent Y is computed, just as in Eqn. (8.6), from the RGB components as

Y = 0.299 ·R + 0.587 ·G + 0.114 ·B (8.27)

under the assumption that the RGB values have already been gamma corrected
according to the TV encoding standard (γNTSC = 2.2 and γPAL = 2.8, see
Sec. 4.7) for playback. The UV components are computed from a weighted
difference between the luminance and the blue or red components as

U = 0.492 · (B − Y ) and V = 0.877 · (R− Y ), (8.28)

and the entire transformation from RGB to YUV is
⎛

⎝

Y

U

V

⎞

⎠ =

⎛

⎝

0.299 0.587 0.114
−0.147 −0.289 0.436

0.615 −0.515 −0.100

⎞

⎠ ·
⎛

⎝

R

G

B

⎞

⎠ . (8.29)

The transformation from YUV back to RGB is found by inverting the matrix
in Eqn. (8.29):

⎛

⎝

R

G

B

⎞

⎠ =

⎛

⎝

1.000 0.000 1.140
1.000 −0.395 −0.581
1.000 2.032 0.000

⎞

⎠ ·
⎛

⎝

Y

U

V

⎞

⎠ . (8.30)

The color distributions in YUV-space for a set of natural images are shown in
Fig. 8.18.

YIQ

The original NTSC system used a variant of YUV called YIQ (I for “in-phase”,
Q for “quadrature”), where both the U and V color vectors were rotated and
mirrored such that

(

I

Q

)

=
(

0 1
1 0

)

·
(

cosβ sin β

− sinβ cosβ

)

·
(

U

V

)

, (8.31)

where β = 0.576 (33◦). The Y component is the same as in YUV. Although
the YIQ has certain advantages with respect to bandwidth requirements it has
been completely replaced by YUV [22, p. 240].



220 8. Color Images

(a)

(b)
HSV

(c)
YUV

Figure 8.18 Examples of the color distribution of natural images in different color spaces.
Original images (a); color distribution in HSV- (b), and YUV-space (c). See Fig. 8.9 for the
corresponding distributions in RGB color space.
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YCbCr

The YCbCr color space is an internationally standardized variant of YUV
that is used for both digital television and image compression (for example,
in JPEG). The chroma components Cb, Cr are (similar to U, V ) difference val-
ues between the luminance and the blue and red components, respectively. In
contrast to YUV, the weights of the RGB components for the luminance Y de-
pend explicitly on the coefficients used for the chroma values Cb and Cr [35, p.
16]. For arbitrary weights wB , wR, the transformation is defined as

Y = wR · R + (1− wB − wR) ·G + wB · B,

Cb =
0.5

1− wB
· (B − Y ),

Cr =
0.5

1− wR
· (R− Y ), (8.32)

and the inverse transformation from YCbCr to RGB is

R = Y +
1− wR

0.5
· Cr,

G = Y − wB · (1− wB) · Cb − wR · (1− wR) · Cr

0.5 · (1 − wB − wR)
,

B = Y +
1− wB

0.5
· Cb. (8.33)

The ITU9 recommendation BT.601 [21] specifies the values wR = 0.299 and
wB = 0.114 (wG = 1−wB −wR = 0.587). Using these values, the transforma-
tion becomes

⎛

⎝

Y

Cb

Cr

⎞

⎠ =

⎛

⎝

0.299 0.587 0.114
−0.169 −0.331 0.500

0.500 −0.419 −0.081

⎞

⎠ ·
⎛

⎝

R

G

B

⎞

⎠ , (8.34)

and the inverse transformation becomes
⎛

⎝

R

G

B

⎞

⎠ =

⎛

⎝

1.000 0.000 1.403
1.000 −0.344 −0.714
1.000 1.773 0.000

⎞

⎠ ·
⎛

⎝

Y

Cb

Cr

⎞

⎠ . (8.35)

Different weights are recommended based on how the color space is used; for
example, ITU-BT.709 [20] recommends wR = 0.2125 and wB = 0.0721 to be
used in digital HDTV production. The values of U, V , I, Q, and Cb, Cr may
be both positive or negative. To encode Cb, Cr values to digital numbers, a
suitable offset is typically added to obtain positive-only values, e. g., 128 = 27

in case of 8-bit components.
9 International Telecommunication Union (www.itu.int).
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YUV

Y U V

YIQ

Y I Q

YCbCr

Y Cb Cr

Figure 8.19 Comparing YUV-, YIQ- and YCbCrvalues. The Y values are identical in all
three color spaces.

Figure 8.19 shows the three color spaces YUV, YIQ, and YCbCr together
for comparison. The U, V , I, Q, and Cb, Cr values in the right two frames
have been offset by 128 so that the negative values are visible. Thus a value
of zero is represented as medium gray in these images. The YCbCr encoding
is practically indistinguishable from YUV in these images since they both use
very similar weights for the color components.
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8.2.5 Color Spaces for Printing—CMY and CMYK

In contrast to the additive RGB color scheme (and its various color models),
color printing makes use of a subtractive color scheme, where each printed
color reduces the intensity of the reflected light at that location. Color printing
requires a minimum of three primary colors; traditionally cyan (C), magenta
(M) and yellow (Y )10 have been used.

Using subtractive color mixing on a white background, C = M = Y = 0
(no ink) results in the color white and C = M = Y = 1 (complete saturation
of all three inks) in the color black. A cyan-colored ink will absorb red (R)
most strongly, magenta absorbs green (G), and yellow absorbs blue (B). The
simplest form of the CMY model is defined as

C = 1−R,

M = 1−G, (8.36)

Y = 1−B.

In practice, the color produced by fully saturating all three inks is not
physically a true black. Therefore, the three primary colors C, M, Y are usually
supplemented with a black ink (K) to increase the color range and coverage
(gamut). In the simplest case, the amount of black is

K = min(C, M, Y ). (8.37)

With rising levels of black, however, the intensity of the C, M, Y components
can be gradually reduced. Many methods for reducing the primary dyes have
been proposed and we look at three of them in the following.

CMY→CMYK (Version 1): In this simple variant the C, M, Y values are
reduced linearly with increasing K and the modified components C ′, M ′, Y ′, K ′

are defined as

⎛

⎜

⎜

⎝

C′

M ′

Y ′

K ′

⎞

⎟

⎟

⎠
=

⎛

⎜

⎜

⎝

C−K

M−K

Y −K

K

⎞

⎟

⎟

⎠
. (8.38)

CMY→CMYK (Version 2): The second variant corrects the color by re-
ducing the C, M, Y components by s = 1

1−K , resulting in stronger colors in the

10 Note that in this case Y stands for yellow and has nothing to do with the Y
luminance component in YUV or YCbCr.
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dark areas of the image:
⎛

⎜

⎜

⎝

C′

M ′

Y ′

K ′

⎞

⎟

⎟

⎠
=

⎛

⎜

⎜

⎝

(C−K) · s
(M−K) · s
(Y −K) · s

K

⎞

⎟

⎟

⎠
, with s =

{

1
1−K for K < 1

1 otherwise.
(8.39)

In both versions, the K-component (as defined in Eqn. (8.37)) is used directly
without modification, and all gray tones (that is, when R = G = B) are printed
using black ink K ′, without any contribution from C′, M ′, or Y ′.

While both of these simple definitions are widely used, neither one produces
high quality results. Figure 8.20 (a) compares the result from version 2 with
that produced with Adobe Photoshop (Fig. 8.20 (c)). The difference in the
cyan component C is particularly noticeable and also the amount of black (K)
brighter areas of the image.

In practice, the required amounts of black K and C, M, Y depend so strongly
on the printing process and the type of paper used that print jobs are routinely
calibrated individually.

CMY→CMYK (Version 3): In print production, special transfer functions
are applied to tune the results. For example, the Adobe PostScript inter-
preter [26, p. 345] specifies an undercolor-removal function fUCR(K) for grad-
ually reducing the CMY components and a separate black-generation function
fBG(K) for controlling the amount of black. These functions are used in the
form

⎛

⎜

⎜

⎝

C′

M ′

Y ′

K ′

⎞

⎟

⎟

⎠
=

⎛

⎜

⎜

⎝

C − fUCR(K)
M − fUCR(K)
Y − fUCR(K)

fBG(K)

⎞

⎟

⎟

⎠
, (8.40)

where K = min(C, M, Y ) again (as defined in Eqn. (8.37)). The functions
fUCR and fBG are usually nonlinear, and the resulting values C′, M ′, Y ′, K ′

are scaled (typically by means of clamping) to the interval [0, 1]. The example
shown in Fig. 8.20 (b) was produced using the functions

fUCR(K) = sK ·K, (8.41)

fBG(K) =

{

0 for K < K0

Kmax · K−K0
1−K0

for K ≥ K0,
(8.42)

where sK = 0.1, K0 = 0.3, and Kmax = 0.9 (see Fig. 8.21). With this definition,
fUCR reduces the CMY components by 10% of the K value (by Eqn. (8.40)),
which mostly affects the dark areas of the image with high K values. The effect
of the function fBG (Eqn. (8.42)) is that for values of K < K0 (that is in the
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CMYK Version 2 CMYK Version 3 Adobe Photoshop

C

M

Y

K

(a) (b) (c)

Figure 8.20 RGB→CMYK conversion comparison. Simple conversion using Eqn. (8.39)
(a), applying the undercolor-removal and black-generation functions of Eqn. (8.40) (b), and
results obtained with Adobe Photoshop (c). The color intensities are shown inverted, i. e.,
darker areas represent higher CMYK color values. The simple conversion (a), in comparison
with Photoshop’s result (c), shows strong deviations in all color components, C and K in
particular. The results in (b) are close to Photoshop’s and could be further improved by
tuning the corresponding function parameters.
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Figure 8.21 Examples of undercolor-removal function fUCR (Eqn. (8.41)) and black gen-
eration function fBG (Eqn. (8.42)). The parameter settings are sK = 0.1, K0 = 0.3, and
Kmax = 0.9.

light areas of the image), no black ink is added at all. In the interval K =
K0 . . . 1.0, the black component is increased linearly up to the maximum value
Kmax. The result in Fig. 8.20 (b) is relatively close to the CMYK component
values produced by Photoshop11 in Fig. 8.20 (c). It could be further improved
by adjusting the function parameters sK , K0, and Kmax (Eqn. (8.40)).

Even though the results of this last variant (3) for converting RGB to
CMYK are better, it is only a gross approximation and still too imprecise
for professional work. As we discuss in Vol. 2 [6, Sec. 6], technically correct
color conversions need to be based on precise, “colorimetric” grounds.

8.3 Statistics of Color Images

8.3.1 How Many Colors Are in an Image?

A minor but frequent task in the context of color images is to determine how
many different colors are contained in a given image. One way of doing this
would be to create and fill a histogram array with one integer element for each
color and subsequently count all histogram cells with values greater than zero.
But since a 24-bit RGB color image potentially contains 224 = 16, 777, 216
colors, the resulting histogram array (with a size of 64 megabytes) would be
larger than the image itself in most cases!

A simple solution to this problem is to sort the pixel values in the (one-
dimensional) pixel array such that all identical colors are placed next to each

11 Actually Adobe Photoshop does not convert directly from RGB to CMYK. Instead,
it first converts to, and then from, the CIE L∗a∗b∗ color space (see Vol. 2 [6,
Sec. 6.2]).
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1 import ij.process.ColorProcessor;
2 import java.util.Arrays;
3
4 public class ColorStatistics {
5
6 static int countColors (ColorProcessor cp) {
7 // duplicate pixel array and sort
8 int[] pixels = ((int[]) cp.getPixels()).clone();
9 Arrays.sort(pixels);

10
11 int k = 1; // image contains at least one color
12 for (int i = 0; i < pixels.length-1; i++) {
13 if (pixels[i] != pixels[i+1])
14 k = k + 1;
15 }
16 return k;
17 }
18
19 } // end of class ColorStatistics

Program 8.10 Counting the colors contained in an RGB image. The method
countColors() first creates a copy of the one-dimensional RGB (int) pixel array (line 8),
then sorts that array, and finally counts the transitions between contiguous blocks of identical
colors.

other. The sorting order is of course completely irrelevant, and the number of
contiguous color blocks in the sorted pixel vector corresponds to the number of
different colors in the image. This number can be obtained by simply counting
the transitions between neighboring color blocks, as shown in Prog. 8.10. Of
course, we do not want to sort the original pixel array (which would destroy the
image) but a copy of it, which can be obtained with Java’s clone() method.12

Sorting of the one-dimensional array in Prog. 8.10 is accomplished (in line
9) with the generic Java method Arrays.sort(), which is implemented very
efficiently.

8.3.2 Color Histograms

We briefly touched on histograms of color images in Sec. 3.5, where we only con-
sidered the one-dimensional distributions of the image intensity and the individ-
ual color channels. For instance, the built-in ImageJ method getHistogram(),
when applied to an object of type ColorProcessor, simply computes the in-
tensity histogram of the corresponding gray values:

ColorProcessor cp;
int[] H = cp.getHistogram();

12 Java arrays implement the methods of the root class Object, including the clone()
method specified by the Cloneable interface (see also Appendix B.2.5).
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As an alternative, one could compute the individual intensity histograms of the
three color channels, although (as discussed in Sec. 3.5.2) these do not provide
any information about the actual colors in this image. Similarly, of course,
one could compute the distributions of the individual components of any other
color space, such as HSV or L∗a∗b∗.

A full histogram of an RGB image is three-dimensional and, as noted earlier,
consists of 256×256×256 = 224 cells of type int (for 8-bit color components).
Such a histogram is not only very large13 but also difficult to visualize.

2D color histograms

A useful alternative to the full 3D RGB histogram are two-dimensional his-
togram projections (Fig. 8.22). Depending on the axis of projection, we obtain
2D histograms with coordinates red-green (HRG), red-blue (HRB), or green-
blue (HGB), respectively, with the values

HRG(r, g) ← number of pixels with IRGB(u, v)=(r, g, ∗),
HRB(r, b) ← number of pixels with IRGB(u, v)=(r, ∗, b), (8.43)

HGB(g, b) ← number of pixels with IRGB(u, v)=(∗, g, b),

where ∗ denotes an arbitrary component value. The result is, independent of
the original image size, a set of two-dimensional histograms of size 256 × 256
(for 8-bit RGB components), which can easily be visualized as images. Note
that it is not necessary to obtain the full RGB histogram in order to compute
the combined 2D histograms (see Prog. 8.11).

As the examples in Fig. 8.23 show, the combined color histograms do, to a
certain extent, express the color characteristics of an image. They are therefore
useful, for example, to identify the coarse type of the depicted scene or to
estimate the similarity between images (see also Exercise 8.6).

8.4 Exercises
Exercise 8.1
Create an ImageJ plugin that rotates the individual components of an RGB
color image; i. e., R→ G→ B → R.

Exercise 8.2
Create an ImageJ plugin that shows the color table of an 8-bit indexed
image as a new image with 16×16 rectangular color fields. Mark all unused
color table entries in a suitable way. Look at Prog. 8.3 as a starting point.

13 It may seem a paradox that, although the RGB histogram is usually much larger
than the image itself, the histogram is not sufficient in general to reconstruct the
original image.
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Figure 8.22 Two-dimensional RGB histogram projections. Three-dimensional RGB cube il-
lustrating an image’s color distribution (a). The color points indicate the corresponding pixel
colors and not the color frequency. The combined histograms for red-green (HRG), red-blue
(HRB), and green-blue (HGB) are 2D projections of the 3D histogram. The corresponding
image is shown in Fig. 8.9 (a).

1 static int[][] get2dHistogram
2 (ColorProcessor cp, int c1, int c2) {
3 // c1, c2: R = 0, G = 1, B = 2
4 int[] RGB = new int[3];
5 int[][] H = new int[256][256]; // histogram array H[c1][c2]
6
7 for (int v = 0; v < cp.getHeight(); v++) {
8 for (int u = 0; u < cp.getWidth(); u++) {
9 cp.getPixel(u, v, RGB);

10 int i = RGB[c1];
11 int j = RGB[c2];
12 // increment corresponding histogram cell
13 H[j][i]++; // i runs horizontal, j runs vertical
14 }
15 }
16 return H;
17 }

Program 8.11 Method get2dHistogram() for computing a combined 2D color histogram.
The color components (histogram axes) are specified by the parameters c1 and c2. The color
distribution H is returned as a two-dimensional int array. The method is defined in class
ColorStatistics (Prog. 8.10).

Exercise 8.3
Show that a “desaturated” RGB pixel produced in the form (r, g, b) →
(y, y, y), where y is the equivalent luminance value (see Eqn. (8.8)), has the
luminance y as well.
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Original Images

Red-Green Histograms (R→, G ↑)

Red-Blue Histograms (R→, B ↑)

Green-Blue Histograms (G→, B ↑)

Figure 8.23 Combined color histogram examples. For better viewing, the images are in-
verted (dark regions indicate high frequencies) and the gray value corresponds to the loga-
rithm of the histogram entries (scaled to the maximum entries).
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Exercise 8.4
Extend the ImageJ plugin for desaturating color images in Prog. 8.5 such
that the image is only modified inside the user-selected region of interest
(ROI).

Exercise 8.5
Pseudocolors are sometimes used for displaying grayscale images (i. e., for
viewing medical images with high dynamic range). Create an ImageJ plugin
for converting 8-bit grayscale images to an indexed image with 256 colors,
simulating the hues of glowing iron (from dark red to yellow and white).

Exercise 8.6
Determining the similarity between images of different sizes is a frequent
problem (e. g., in the context of image data bases). Color statistics are com-
monly used for this purpose because they facilitate a coarse classification of
images, such as landscape images, portraits, etc. However, two-dimensional
color histograms (as described in Sec. 8.3.2) are usually too large and thus
cumbersome to use for this purpose. A simple idea could be to split the
2D histograms or even the full RGB histogram into K regions (bins) and
to combine the corresponding entries into a K-dimensional feature vector,
which could be used for a coarse comparison. Develop a concept for such a
procedure, and also discuss the possible problems.
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Mathematical Notation

A.1 Symbols

The following symbols are used in the main text primarily with the denotations
given below. While some symbols may be used for purposes other than the ones
listed, the meaning should always be clear in the particular context.

{a, b, c, d, . . .} A set ; i. e., an unordered collection of distinct elements. A
particular element x can be contained in a set at most once.
A set may also be empty (denoted by { }).

(a1, a2, . . . an) A vector ; i. e., a fixed-size, ordered collection of elements
of the same type. (a1, a2, . . . an)T denotes the transposed
(i. e., column) vector. In programming, vectors are usu-
ally implemented as one-dimensional arrays, with elements
being referred to by position (index).

[c1, c2, . . . cm] A sequence or list ; i. e., an ordered collection of elements
of variable length. Elements can be added to the sequence
(inserted) or deleted from the sequence. A sequence may
be empty (denoted by [ ]). In programming, sequences are
usually implemented with dynamic data structures, such
as linked lists. Java’s Collections framework (see also Ap-
pendix B.2.7) provides numerous ready-to-use implementa-
tions.
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〈α1, α2, . . . αk〉 A tuple; i. e., an ordered list of elements, each possibly of a
different type. Tuples are typically implemented as objects
(in Java or C++) or structures (in C) with elements being
referred to by name.

∗ Linear convolution operator (Sec. 5.3.1).

⊕ Morphological dilation operator (Sec. 7.2.3).

� Morphological erosion operator (Sec. 7.2.4).

∂ Partial derivative operator (Sec. 6.2.1). For example,
∂f
∂x (x, y) denotes the first derivative of the function f(x, y)
along the x variable at position (x, y), ∂2f

∂2x (x, y) is the sec-
ond derivative, etc.

∇ Gradient. ∇f is the vector of partial derivatives of a mul-
tidimensional function f (Sec. 6.2.1).

�x� “Floor” of x, the largest integer z ∈ Z smaller than x ∈ R

(i. e., z = �x� ≤ x). For example, �3.141� = 3, �−1.2� =
−2.

a Pixel value (usually 0 ≤ a < K).

Arctan(x, y) Inverse tangent function, similar to arctan
(

y
x

)

= tan−1
(

y
x

)

but with two arguments and returning angles in the range
[−π, +π] (i. e., covering all four quadrants). It corresponds
to the Java method Math.atan2(y,x) (Secs. 6.3, B.1.6).

card{. . .} Cardinality (size) of a set, cardA ≡ |A| (Sec. 3.1).

h(i) Histogram of an image at pixel value (or bin) i (Sec. 3.1).

H(i) Cumulative histogram of an image at pixel value (or bin) i

(Sec. 3.6).

I(u, v) Intensity or color value of the image I at (integer) position
(u, v).

K Number of possible pixel values.

M, N Number of columns (width) and rows (height) of an image
(0 ≤ u < M , 0 ≤ v < N).

mod Modulus operator: (a mod b) is the remainder of the integer
division a/b (Sec. B.1.2).
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p(i) Probability density function (Sec. 4.6.1).

P(i) Probability distribution function or cumulative probability
density (Sec. 4.6.1).

round(x) Rounding function: rounds x to the nearest integer.
round(x) = �x + 0.5�.

truncate(x) Truncation function: truncates x toward zero to the
closest integer. For example, truncate(3.141) = 3,
truncate(−2.5) = −2.

A.2 Set Operators

|A| The size (number of elements) of the set A (equivalent to
cardA).

∀x . . . “All” quantifier (for all x, . . . ).

∃x . . . “Exists” quantifier (there is some x for which . . . ).

∪ Set union (e. g., A ∪B).

∩ Set intersection (e. g., A ∩B).
⋃

Ri
Union over multiple sets Ri.

⋂

Ri
Intersection over multiple sets Ri.

A.3 Algorithmic Complexity and O Notation

The term “complexity” describes the effort (i. e., computing time or storage)
required by an algorithm or procedure to solve a particular problem in relation
to the “problem size” n. Often complexity is reported in the literature using
“big O” (O) notation [18, Sec. 9.2], as in the following example. Consider a
spreadsheet with 20 columns and 30 rows. Obviously, adding up all the entries
in the spreadsheet requires performing 30·20 additions. We can be more general
by representing the number of columns and rows by M and N , respectively,
and saying it requires M ·N additions. What if we want to replace each location
with the sum of its eight neighbors? Then it would require M ·N ·8 operations.
If we compare these two algorithms, we see that, at their core, both require
doing some number of operations M · N times. Since big O notation factors
out constants (such as 8), we could say that the complexity of both of these
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algorithms is O(MN).
O(MN) is an upper bound on the number of operations an algorithm re-

quires on an input of size MN . We can simplify this, since typical images have
roughly the same number of rows and columns, by selecting the larger of the
rows and columns n = max(M, N) and replacing it with n. Now, since we
know n ·n ≥M ·N we can say their complexity is O(n ·n) or, more commonly,
O(n2). Big O notation lets us compare classes of algorithms—in this case we
discovered that both our algorithms belong to the O(n2) class. This tells us
that, no matter how much we optimize our code, at the heart our algorithm
will require n2 operations.

Similarly, the direct computation of the linear convolution (Sec. 5.3.1) for
an image of size n × n and a convolution kernel of size k × k has the time
complexity O(n2k2). As another example, the fast Fourier transform (FFT,
see Vol. 2 [6, Sec. 7.4.2]) of a signal vector of length n = 2k requires only
O(n log2(n)

)

time.
Additional details on complexity can be found in any good book on com-

puter algorithms, such as [1, 9].



B
Java Notes

As an undergraduate text for engineering curricula, this book assumes basic
programming skills in a procedural language, such as C or Java. The exam-
ples in the main text should be easy to understand with the help of some
introductory book on Java or one of the many online tutorials. Experience
shows, however, that difficulties with some basic Java concepts pertain even at
higher levels and frequently cause complications. The following sections aim at
resolving some of these typical problem spots.

B.1 Arithmetic

Java is a “strongly typed” programming language, which means in particular
that any variable has a fixed type that cannot be altered dynamically. Also,
the result of an expression is determined by the types of the involved operands
and not (in the case of an assignment) by the type of the “receiving” variable.

B.1.1 Integer Division

Division involving integer operands is a frequent cause of errors. If the vari-
ables a and b are both of type int, then the expression (a / b) is evaluated
according to the rules of integer division. The result—the number of times b is
contained in a—is again of type int. For example, after the Java statements

int a = 2;
int b = 5;
double c = a/b;
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the value of c is not 0.4 but 0.0 because the expression a/b on the right produces
the int value 0, which is then automatically converted to the double value 0.0.

If we wanted to evaluate a/b as a floating-point operation (as most pocket
calculators do), at least one of the involved operands must be converted to a
floating-point value, for example by an explicit type cast (double):

double c = (double) a / b;

Notice that the type cast (double) only applies to the immediately following
term (a) and not the entire expression a / b; i. e., the value of the second
operand (b) in this division is still of type int.

Example

Assume, for example, that we want to scale any pixel value a of an image
such that the maximum pixel value amax is mapped to 255 (see Ch. 4). In
mathematical notation, the scaling of the pixel values is simply expressed as

c ← a

amax
· 255,

and it may be tempting to convert this 1:1 into Java code, such as

int a_max = ip.getMaxValue();
...
int a = ip.getPixel(u,v);
int c = (a / a_max) * 255; ← PROBLEM!
ip.putPixel(u,v,a);
...

As we can easily predict, the resulting image will be all black (zero values),
except those pixels whose value was a_max originally (they are set to 255). The
reason is again the division (a / a_max) with two operands of type int, where
the result is zero whenever the divisor (a_max) is greater than the dividend (a).

Of course, the entire operation could be performed in the floating-point
domain by converting one of the operands (as shown earlier), but this is not
even necessary in this case. Instead, we may simply swap the order of operations
and start with the multiplication,

int c = a * 255 / a_max;

Why does this work? The subexpression a * 255 is evaluated first,1 generating
large intermediate values that pose no problem for the subsequent (integer)
division. In addition, rounding should always be considered to obtain more
accurate results when computing fractions of integers (see Sec. B.1.5).

1 In Java, expressions at the same level are always evaluated in left-to-right order,
and therefore no parentheses are required in this example (though they would not
do any harm either).
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B.1.2 Modulus Operator

The result of the modulus operator

a mod b

(used in several places in the main text) is defined [18, p. 82] as the remainder
of the integer division a/b,

a mod b �
{

a for b = 0

a− b ·
⌊a

b

⌋

otherwise. (B.1)

Unfortunately, this type of mod operator (or an equivalent library method) is
not available in the standard Java API. Java’s native % (remainder) operator,
defined as

a % b � a− b · truncate
(a

b

)

for b �= 0, (B.2)

is often used in this context, but produces the same results only for positive
operands a ≥ 0 and b > 0. For example,

13 mod 4 → 1
13 mod −4 → −3
−13 mod 4 → 3
−13 mod −4 → −1

13 % 4 → 1
13 % −4 → 1
−13 % 4 → −1
−13 % −4 → −1

The following Java method implements the mod operation according to the
definition in Eqn. (B.1):

static int Mod(int a, int b) {
if (b == 0)
return a;

if (a * b >= 0)
return a - b * (a / b);

else
return a - b * (a / b - 1);

}

B.1.3 Unsigned Bytes

Most grayscale and indexed images in Java and ImageJ are composed of pixels
of type byte, and the same holds for the individual components of most color
images. A single byte consists of eight bits and can thus represent 28 = 256
different bit patterns or values, usually mapped to the numeric range 0 . . . 255.
Unfortunately, Java (unlike C and C++) does not provide a suitable “unsigned”
8-bit data type. The primitive Java type byte is “signed”, using one of its eight
bits for the ± sign, and can represent values in the range −128 . . .127.
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Java’s byte data can still be used to represent the values 0 to 255, but
conversions must take place to perform proper arithmetic computation. For
example, after execution of the statements

int a = 200;
byte b = (byte) a;

the variables a (32-bit int) and b (8-bit byte) contain the binary patterns

a = 00000000000000000000000011001000
b = 11001000

respectively. Interpreted as a (signed) byte value, with the leftmost bit2 as the
sign bit, the variable b has the decimal value −56. Thus, after the statement

int a1 = b; // a1 == -56

the value of the new int variable a1 is −56 ! To (ab-)use signed byte data as
unsigned data, we can circumvent Java’s standard conversion mechanism by
disguising the content of b as a logic (i. e., nonarithmetic) bit pattern; e. g., by

int a2 = (0xff & b); // a2 == 200

where 0xff (in hexadecimal notation) is an int value with the binary bit
pattern 00000000000000000000000011111111 and & is the bitwise AND oper-
ator. Now the variable a2 contains the right integer value (200) and we thus
have a way to use Java’s (signed) byte data type for storing unsigned val-
ues. Within ImageJ, access to pixel data is routinely implemented in this way,
which is considerably faster than using the convenience methods getPixel()
and putPixel().

B.1.4 Mathematical Functions (Class Math)

Java provides the standard mathematical functions as static methods in class
Math, as listed in Table B.1. The Math class is part of the java.lang package
and thus requires no explicit import to be used. Most Math methods accept
arguments of type double and also return values of type double. As a simple
example, a typical use of the cosine function y = cos(x) is

double x;
double y = Math.cos(x);

Similarly, the Math class defines some common numerical constants as static
variables; e. g., the value of π could be obtained by

double x = Math.PI;

2 Java uses the standard “2s-complement” representation, where a sign bit = 1 stands
for a negative value.
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Table B.1 Methods and constants defined by Java’s Math class.

double abs(double a) double max(double a, double b)

int abs(int a) float max(float a, float b)

float abs(float a) int max(int a, int b)

long abs(long a) long max(long a, long b)

double ceil(double a) double min(double a, double b)

double floor(double a) float min(float a, float b)

double rint(double a) int min(int a, int b)

long round(double a) long min(long a, long b)

int round(float a) double random()

double toDegrees(double rad) double toRadians(double deg)

double sin(double a) double asin(double a)

double cos(double a) double acos(double a)

double tan(double a) double atan(double a)

double atan2(double y, double x)

double log(double a) double exp(double a)

double sqrt(double a) double pow(double a, double b)

double E double PI

B.1.5 Rounding

Java’s Math class (confusingly) offers three different methods for rounding
floating-point values:

double rint (double x)
long round (double x)
int round (float x)

For example, a double value x can be rounded to int in one of the following
ways:

double x; int k;
k = (int) Math.rint(x);
k = (int) Math.round(x);
k = Math.round((float)x);

If the operand x is known to be positive (as is typically the case with pixel
values) rounding can be accomplished without using any method calls by

k = (int) (x + 0.5); // works for x ≥ 0 only!

In this case, the expression (x + 0.5) is first computed as a floating-point
(double) value, which is then truncated (toward zero) by the explicit (int)
typecast.
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B.1.6 Inverse Tangent Function

The inverse tangent function ϕ = tan−1(a) or ϕ = arctan(a) is used in sev-
eral places in the main text. This function is implemented by the method
atan(double a) in Java’s Math class (Table B.1). The return value of atan()
is in the range [−π

2 . . . π
2 ] and thus restricted to only two of the four quadrants.

Without any additional constraints, the resulting angle is ambiguous. In many
practical situations, however, a is given as the ratio of two catheti (Δx, Δy) of
a right-angled triangle in the form

ϕ = tan−1
(Δy

Δx

)

,

for which we used the (self-defined) two-parameter function

ϕ = Arctan(Δy, Δx)

in the main text. The function Arctan(Δy, Δx) is implemented by the static
method atan2(dy,dx) in Java’s Math class and returns an unambiguous angle
ϕ in the range [−π . . . π]; i. e., in any of the four quadrants of the unit circle.3

B.1.7 Float and Double (Classes)

The representation of floating-point numbers in Java follows the IEEE stan-
dard, and thus the types float and double include the values

POSITIVE_INFINITY
NEGATIVE_INFINITY
NaN (“not a number”)

These values are defined as constants in the corresponding wrapper classes
Float and Double, respectively. If such a value occurs in the course of some
computation (e. g., POSITIVE_INFINITY as the result of dividing by zero),4 Java
continues without raising an error.

B.2 Arrays and Collections

B.2.1 Creating Arrays

Unlike in most traditional programming languages (such as FORTRAN or C),
arrays in Java can be created dynamically, meaning that the size of an array
can be specified at runtime using the value of some variable or arithmetic
expression. For example:
3 The function atan2(dy,dx) is available in most current programming languages,

including Java, C, and C++.
4 In Java, this only holds for floating-point operations. Integer division by zero still

causes an exception.
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int N = 20;
int[] A = new int[N];
int[] B = new int[N*N];

Once allocated, however, the size of any Java array is fixed and cannot be subse-
quently altered. For additional variability, Java provides a number of universal
container classes (e. g., the class Vector) for a wide range of applications.

After its definition, an array variable can be assigned any other compatible
array or the constant value null; e. g.,

A = B; // A now points to B’s data
B = null;

Through the assignment A = B above, the array initially referenced by A be-
comes unaccessible and thus turns into garbage. In contrast to C and C++,
where unnecessary storage needs to be deallocated explicitly, this is taken care
of in Java by its built-in “garbage collector”. It is also convenient that newly
created arrays of numerical element types (int, float, double, etc.) are au-
tomatically initialized to zero.

B.2.2 Array Size

Since an array may be created dynamically, it is important that its actual size
can be determined at runtime. This is done by accessing the length attribute5

of the array:

int k = A.length; // number of elements in A

It may be surprising that Java arrays may have zero (not null) elements! If an
array has more than one dimension, the size (length) along every dimension
must be derived separately. The size is a property of the array itself and can
therefore be obtained inside any method from array arguments passed to it.
Thus (unlike in C, for example) it is not necessary to pass the size of an array
as a separate function argument.

B.2.3 Accessing Array Elements

In Java, the index of the first array element is always 0 and the index of the
last element is N−1 for an array with a total of N elements. To iterate through
a one-dimensional array A of arbitrary size, one would typically use a construct
like

for (int i = 0; i < A.length; i++) {
// do something with A[i]

}

5 Notice that the length attribute of an array is not a method!
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Since images in Java and ImageJ are stored as one-dimensional arrays (accessi-
ble through the ImageProcessormethod getPixels()), most point operations
can be efficiently implemented in this way.6

B.2.4 Two-Dimensional Arrays

Multidimensional arrays are a common cause of misunderstanding. In Java,
all arrays are one-dimensional, and multidimensional arrays are implemented
as one-dimensional arrays of subarrays (Fig. B.1). If, for example, the 3 × 3
matrix

A =

⎛

⎝

A0,0 A0,1 A0,2

A1,0 A1,1 A1,2

A2,0 A2,1 A2,2

⎞

⎠ =

⎛

⎝

1 2 3
4 5 6
7 8 9

⎞

⎠ , (B.3)

with elements aij (i being the row and j being the column index) is represented
as a two-dimensional floating-point array,

double[][] A = {{1,2,3},
{4,5,6},
{7,8,9}};

then A is really a one-dimensional array containing three items, each of which
is again a one-dimensional array of type double (see Fig. B.1).
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Figure B.1 Multidimensional arrays are implemented in Java as one-dimensional arrays
whose elements are again one-dimensional arrays.

The usual assumption is that the array elements are arranged in row-first
ordering, as illustrated in Fig. B.1. The first index thus corresponds to the row
number row and the second index corresponds to the column number col ,

arow,col ≡ A[row][col] or ai,j ≡ A[i][j].

6 See Prog. 7.1 in Sec. 7.6 of the ImageJ Short Reference [5] for an example.
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So here the first array index runs downwards in the matrix and the second index
runs to the right. This is quite convenient, because the array initialization in
the code segment above looks exactly the same as the original matrix in Eqn.
(B.3).

However, if the matrix represents an image or filter kernel, we usually asso-
ciate the row index with the vertical coordinate v (or j) and the column index
with the horizontal coordinate u (or i)—so the ordering of indices is reversed!
For example, if we represent the filter kernel

H(i, j) =

⎡

⎢

⎢

⎣

H(0, 0) H(1, 0) H(2, 0)

H(0, 1) H(1, 1) H(2, 1)

H(0, 2) H(1, 2) H(2, 2)

⎤

⎥

⎥

⎦
=

⎡

⎢

⎢

⎣

−1 −2 0

−2 0 2

0 2 1

⎤

⎥

⎥

⎦

(with i, j denoting the horizontal and vertical coordinate, respectively) as a
two-dimensional Java array,

double[][] H = {{-1,-2, 0},
{-2, 0, 2},
{ 0, 2, 1}};

then the indices must be reversed in order to access the right elements. In this
particular case,

H(i, j) ≡ H[j][i].

This scheme was used, for example, for implementing the 3× 3 filter plugin in
Prog. 5.2 (p. 105).

Size of Multi-Dimensional Arrays

The size of a multidimensional array can be obtained by querying the size of
its subarrays. For example, given the following three-dimensional array with
dimensions P ×Q×R,

int[][][] B = new int[P][Q][R];

the size of B along its three dimensions is obtained by the statements

int p = B.length; // = P
int q = B[0].length; // = Q
int r = B[0][0].length; // = R

At least this works for “rectangular” Java arrays, i. e., multidimensional arrays
with all subarrays at the same level having identical length. If this is not the
case, the length of each (one-dimensional) subarray must be determined indi-
vidually to avoid “index-out-of-bounds” errors. Thus a “bullet-proof” iteration
over all elements of a three-dimensional—potentially “non-rectangular”—array
C could be implemented as follows:
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1 import java.lang.reflect.Array;
2
3 public static Object duplicateArray(Object orig) {
4 Class origClass = orig.getClass();
5 if (!origClass.isArray())
6 return null; // no array to duplicate
7 Class compType = origClass.getComponentType();
8 int n = Array.getLength(orig);
9 Object dup = Array.newInstance(compType, n);

10 if (compType.isArray()) // array elements are arrays again:
11 for (int i = 0; i < n; i++)
12 Array.set(dup, i, duplicateArray(Array.get(orig, i)));
13 else // array elements are objects or primitives:
14 System.arraycopy(orig, 0, dup, 0, n);
15 return dup;
16 }

Program B.1 Utility method duplicateArray() for cloning arrays of any element type and
dimensionality. Objects inside the array are not duplicated.

for (int i = 0; i < C.length; i++) {
for (int j = 0; j < C[i].length; j++) {
for (int k = 0; k < C[i][j].length; k++) {

// do something with C[i][j][k]
}

}
}

B.2.5 Cloning Arrays

Java arrays implement the standard java.lang.Cloneable interface and pro-
vide clone() methods to perform a single-level (“shallow”) form of duplication;
i. e., to make a copy of the top-level structure of the array. Applied to a one-
dimensional array of primitive element type, e. g.,

int[] A1 = {1,2,3,4};
int[] A2 = (int[]) A1.clone();

the result A2 is an exact and independent copy of the array A1, as one would
expect. If the original array contains real (i. e., nonprimitive) Java objects,
clone() does not duplicate the individual objects themselves, but the cells of
both arrays refer to the same original objects.

Similarly, applying clone() to a two-dimensional (or multidimensional)
array duplicates only the top-level structure of that array but none of its sub-
arrays. Java has no standard method for doing a full-depth duplication of
multidimensional arrays. The (nontrivial) method duplicateArray() in Prog.
B.1 shows how this could be accomplished recursively for arrays of any element
type and dimensionality.
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B.2.6 Arrays of Objects, Sorting

In Java, as mentioned earlier, we can create arrays dynamically; i. e., the size
of an array can be specified during execution. This is convenient because we
can adapt the size of the arrays to the actual problem. For example, we could
write

Corner[] cornerArray = new Corner[n];

to create an array that can hold n objects of type Corner (as defined in Vol. 2 [6,
Sec. 4.3]). But be aware that the new array is not filled with corners yet but
initialized with null (i. e., empty references), so the array is really empty. We
can insert a Corner object into its first (or any other) cell by

cornerArray[0] = new Corner(10,20,6789.0f);

Arrays can be sorted quickly using the static utility methods in the java.util.
Arrays class,

Arrays.sort(type[] arr)

where arr can be any array of primitive type (int, float, etc.) or an array
of objects. In the latter case, the array may not have null entries. Also, the
class of every contained object must implement the Comparable interface, i. e.,
provide a public method

int compareTo(Object obj)

that must return an int value of −1, 0, or 1, depending upon the intended
order relation to the other object obj. For example, within the Corner class,
the compareTo() method could be defined as follows:

public int compareTo (Object obj){ // in class Corner
Corner c2 = (Corner) obj;
if (this.q > c2.q) return -1;
if (this.q < c2.q) return 1;
else return 0;

}

which implicitly assumes that objects of class Corner need never be compared
with any other type of object.7

In summary, arrays are highly efficient data structures that allow fast
searching and sorting and therefore should be used whenever fixed size is not
a problem.

7 Note that the typecast (Corner)obj (line 2 in method compareTo) is potentially
dangerous and will create a runtime exception if obj is not of type Corner.



248 B. Java Notes

B.2.7 Collections

Once created, arrays in Java are of fixed size and cannot be expanded or shrunk.
To use an array for collecting the corners detected in an image may thus not
be a good idea because we do not know a priori how many corners the image
contains. If we make the initial array too small, we will run out of space during
the process. If we make the array as large as possibly needed, we will probably
waste a lot of memory most of the time.

When we try to extract entities (e. g., corner points) from images, we do not
know in advance how many of them we are going to find. Also, the properties
of these items of interest may vary. This is a frequent situation, and while most
simple processes in digital imaging are done with fixed-sized arrays of numbers,
dynamic data structures are often needed for advanced tasks. Incidentally,
this is also one of Java’s strongest aspects. In fact, Java provides a complete
collection framework with several convenient data structures that would be
complicated to implement by oneself.

A “collection” represents a group of objects, known as its elements. So
arrays, which we have been using over and over again, are of course collections.
The Java collections framework is a unified architecture for representing and
manipulating collections, allowing them to be manipulated independently of the
details of their representation. It reduces programming effort while delivering
high performance. It allows for interoperability among unrelated APIs, reduces
effort in designing and learning new APIs, and fosters software reuse. The
framework is based on six collection interfaces. It includes implementations of
these interfaces and algorithms to manipulate them. Some types of collections
allow duplicate elements and others do not, and some collections are ordered
and others unordered.

The Java SDK does not provide any direct implementations of this interface
but implements more specific subinterfaces such as Set and List. This inter-
face is typically used to pass collections around and manipulate them where
maximum generality is desired. Concrete implementations of the Collection
interface include the classes Vector and ArrayList, as well as HashSet for the
convenient construction of hash tables.

Additional details and application examples can be found in the Java SDK
documentation8 and the Java Collections tutorial.9 For general hints on ef-
fective programming in Java, the classic book by Bloch [4] is a particularly
valuable source.

8 http://java.sun.com/javase/reference/
9 http://java.sun.com/docs/books/tutorial/collections/
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Symbols
⊕ (dilation operator) 162, 234
� (erosion operator) 162, 234
? (operator) 215
∗ (convolution operator) 110, 234
∧ (logic operator) 72, 74
� � 48, 64, 234
¬ (logical operator) 166
∂ 133, 234
∇ 134, 147, 234
& (operator) 191, 240
| (operator) 191
>> (operator) 191
<< (operator) 191
% (operator) 239

A
abs (method) 88, 241
achromatic 208
acos (method) 241
ADD (constant) 89, 92
add (method) 88
addChoice (method) 93
addNumericField (method) 93
Adobe
– Illustrator 13
– Photoshop 62, 105, 129, 152
alpha
– blending 90, 92
– channel 16, 191
– value 90, 191
AND (constant) 89
applyTable (method) 73, 83, 87
Arctan function 137, 234, 242

arithmetic operation 88, 89
array 242–247
– accessing elements 243
– creation 242
– duplication 246
– size 243
– sorting 247
– two-dimensional 244
ArrayList (class) 248
Arrays (class) 227, 247
Arrays.sort (method) 247
asin (method) 241
associativity 113, 163
atan (method) 241
atan2 (method) 234, 241, 242
auto-contrast 60
– modified 60
AVERAGE (constant) 89
AWT 191

B
background 158
big endian 21, 23
binarization 57
binary
– image 11, 147, 157, 176
– morphology 157–172
BinaryProcessor (class) 58, 182
binnedHistogram (method) 49
binning 47–49, 52, 53
bit
– mask 191
– operation 193
bit depth 10
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bitmap image 11
bitwise AND operator 240
black box 111
black-generation function 224
Blitter (interface) 89, 92
blur
– filter 97, 98
– Gaussian 128, 154
BMP 20, 23, 193
box filter 103, 114, 136
brightness 56
byte 21
byte (type) 239
ByteProcessor (class) 89, 198, 201

C
camera obscura 3
Canny edge operator 144, 146
card 38, 234, 235
cardinality 234, 235
CCD sensor 7
CCITT 14
Cdf (method) 75
cdf see cumulative distribution

function
ceil (method) 241
CGM format 13
chroma 221
CIE
– L*a*b* 226
clamping 56, 103
clone (method) 227, 246
Cloneable (interface) 246
cloning arrays 246
close (method) 181, 182
closing 171, 174, 181
CMOS sensor 7
CMYK 223–226
Color (class) 209, 210, 212
color
– count 226
– image 11, 185–231
– keying 216
– pixel 188, 191
– saturation 205
– table 189, 195, 197, 228
color quantization 44, 190, 198, 201
color space 200
– CMYK 223
– HLS 207
– HSB 205
– HSV 205
– in Java 226

– RGB 186
– YCbCr 221
– YIQ 219
– YUV 219
color system
– additive 185
– subtractive 223
COLOR_RGB (constant) 195
ColorModel (class) 197
ColorProcessor (class) 182, 192, 194,

199, 201, 204, 227
commutativity 112, 163
Comparable (interface) 247
compareTo (method) 247
complementary set 161
complexity 235
component
– histogram 50
– ordering 188, 189
computer
– graphics 2
contour 144
contrast 41, 56
– automatic adjustment 60
convertHSBToRGB (method) 201
convertRGBtoIndexedColor (method)

201
convertToByte (method) 92, 154, 183,

201, 204
convertToFloat (method) 154, 201
convertToGray16 (method) 201
convertToGray32 (method) 201
convertToGray8 (method) 201
convertToHSB (method) 201
convertToRGB (method) 200, 201
convertToShort (method) 201
convolution 110, 236
convolve (method) 128, 154
Convolver (class) 128, 154
copyBits (method) 89, 92, 154, 180,

182
correlation 111
cos (method) 241
cosine transform 16
countColors (method) 227
counting colors 226
createProcessor (method) 180
creating
– new images 54
CRT 186
cumulative
– distribution function 67
– histogram 52, 61, 66, 67
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D
debugging 126
depth of an image 10
derivative
– estimation 133
– first 132, 133
– partial 133
– second 142, 147
desaturation 205
DICOM 29
DIFFERENCE (constant) 89, 182
difference filter 109
digital images 6
dilate (method) 180–182
dilation 162, 174, 180
Dirac function 115, 163
DIVIDE (constant) 89
DOES_8C (constant) 196, 197, 199
DOES_8G (constant) 31, 46
DOES_RGB (constant) 193, 194
dots per inch (dpi) 8
Double (class) 242
double (type) 104, 238
duplicate (method) 92, 103, 105, 123,

154, 182
duplicateArray (method) 246
DXF format 13
dynamic range 41

E
E (constant) 241
Eclipse 33
edge
– map 147
– sharpening 147–155
edge operator 134–144
– Canny 144, 146
– compass 139
– in ImageJ 142
– Kirsch 139
– LoG 142, 146
– Prewitt 135, 146
– Roberts 139, 146
– Sobel 135, 140, 142, 146
effective gamma value 85
EMF format 13
Encapsulated PostScript (EPS) 13
erode (method) 181, 182
erosion 162, 174, 180
EXIF 18
exp (method) 241
exposure 40

F
fast Fourier transform 236
FFT see fast Fourier transform
file format 23
– BMP 20
– EXIF 18
– GIF 15
– JFIF 17
– JPEG-2000 18
– magic number 23
– PBM 20
– Photoshop 23
– PNG 15
– RAS 21
– RGB 21
– TGA 21
– TIFF 13–15
– XBM/XPM 21
fill (method) 54
filter 97–130
– blur 97, 98, 128
– border handling 101, 125
– box 103, 108, 114, 136
– color image 154
– computation 101
– debugging 126
– derivative 134
– difference 109
– edge 134–142
– efficiency 124
– Gaussian 109, 114, 128, 150
– ImageJ 126–129
– impulse response 115
– indexed image 195
– kernel 111
– Laplace 110, 149, 154
– Laplacian 130
– linear 99–116, 127
– low-pass 109
– mask 99
– matrix 99
– maximum 117, 128, 184
– median 118, 128, 157
– minimum 117, 128, 184
– morphological 157–184
– nonlinear 116–124, 128
– normalized 104
– separable 113, 114, 150
– smoothing 104, 105, 108, 152
– unsharp masking 150
– weighted median 121
findEdges (method) 142
FITS 29
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flat image 15
Float (class) 242
floating-point image 12
FloatProcessor (class) 201
floor (method) 241
floor function 235
foreground 158
frequency
– distribution 67

G
gamma (method) 88
gamma correction 77–86, 203
– applications 81
– inverse 86
– modified 82–86
gamut 223
garbage 243
Gaussian
– blur 154
– distribution 53
– filter 109, 114, 128, 150
– filter size 114
– separable 114
GaussianBlur (class) 154
GaussKernel1d (class) 154
GenericDialog (class) 91, 93
get (method) 33, 57, 66, 125, 206
get2dHistogram (method) 229
getBitDepth (method) 195
getBlues (method) 196, 199
getColorModel (method) 196, 197, 199
getCurrentImage (method) 196
getGreens (method) 196, 199
getHeight (method) 32, 103
getHistogram (method) 47, 54, 66, 73,

227
getIDList (method) 93
getImage (method) 93
getMapSize (method) 196, 197, 199
getNextChoiceIndex (method) 93
getNextNumber (method) 93
getPixel (method) 32, 103, 123, 125,

192, 240
getPixels (method) 244
getPixelSize (method) 196
getProcessor (method) 92
getReds (method) 196, 199
getShortTitle (method) 93
getType (method) 195
getWeightingFactors (method) 204
getWidth (method) 32, 103
GIF 15, 23, 29, 44, 190, 195
global operation 55

gradient 132–134
grayscale
– conversion 202
– image 10, 15
– morphology 172–175

H
HashSet (class) 248
HDTV 221
hexadecimal 191, 240
hierarchical techniques 143
histogram 37–53, 227–228, 234
– binning 47
– channel 50
– color image 49
– component 50
– computing 44
– cumulative 52, 61, 67
– equalization 63
– matching 71
– normalized 67
– specification 66–76
HLS 205, 207, 212–216, 218
HLStoRGB (method) 216
homogeneous
– point operation 55, 64, 67
hot spot 100, 161
Hough transform 147
HSB see HSV
HSBtoRGB (method) 212
HSV 201, 205, 209, 216, 218, 220
Huffman code 17

I
iconic image 15
idempotent 171
image
– acquisition 3
– binary 11
– bitmap 11
– color 11
– compression and histogram 44
– coordinates 9, 234
– creating new 54
– defects 42
– depth 10, 11
– digital 6
– display 54
– file format 12–13
– flat 15
– floating-point 12
– grayscale 10, 15
– iconic 15

Index
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– indexed color 12, 15
– intensity 10
– padding 126, 127
– palette 12
– plane 3
– raster 13
– redisplay 35
– size 8
– space 112
– special 12
– true color 15
– vector 13
ImageConverter (class) 200, 201
ImageJ 25–36
– filter 126–129
– macro 28, 34
– main window 28
– plugin 29–34
– point operation 86–95
– snapshot 34
– stack 28
– tutorial 34
– undo 29, 34
– Website 34
ImagePlus (class) 194, 199, 200
ImageProcessor (class) 31, 182, 193,

194, 196, 197, 199–201, 206, 244
impulse
– function 115
– response 115, 169
IndexColorModel (class) 196, 198, 199
indexed color image 12, 15, 189, 190,

195, 201
insert (method) 154
intensity
– histogram 49
– image 10
inverse
– power function 80
– tangent function 242
inversion 57
invert (method) 57, 88, 181
invertLut (method) 178
isotropic 98, 134, 150, 166
ITU601 221
ITU709 81, 86, 203, 221

J
Java
– applet 28
– arithmetic 237
– array 242–247
– AWT 30

– class file 33
– collection 242
– compiler 33
– integer division 66, 237
– JVM 22
– mathematical functions 240
– rounding 241
– runtime environment 27
– virtual machine 22
JBuilder 33
JFIF 17, 21, 23
JPEG 14, 16–21, 23, 29, 44, 190
JPEG-2000 18

K
kernel 111
Kirsch operator 139

L
Laplace
– filter 110, 149, 150, 154
– operator 147
Laplacian of Gaussian (LoG) 130
lens 6
linear
– convolution 110
– correlation 111
linearity 112
lines per inch (lpi) 8
List (interface) 248
list 233
little endian 21, 23
LoG
– filter 130
– operator 146
log (method) 88, 241
lookup table 87, 178
LSB 22
luminance 202, 221
LZW 14, 15

M
magic number 23
makeGaussKernel1d (method) 115, 154
makeIndexColorImage (method) 198
mask 151
matchHistograms (method) 73
Math (class) 240, 241
MAX (constant) 89, 129
max (method) 88, 241
maximum
– filter 117, 184
MEDIAN (constant) 129
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median filter 118, 128, 157
– cross-shaped 123
– weighted 121
MIN (constant) 89, 129
min (method) 88, 241
minimum filter 117, 184
mod operator 234
modified auto-contrast 60
modulus see mod operator
morphological filter 157–184
– binary 157–172
– closing 171, 174, 181
– color 173
– dilation 162, 174, 180
– erosion 162, 174, 180
– grayscale 172–175
– opening 170, 174, 181
– outline 167, 181
MSB 22
multi-resolution techniques 143
MULTIPLY (constant) 89
multiply (method) 88, 92, 154
My_Inverter (plugin) 32

N
NaN (constant) 242
NEGATIVE_INFINITY (constant) 242
neighborhood 159
NetBeans 33
neutral element 163
nextGaussian (method) 53
nextInt (method) 53
NIH-Image 27
NO_CHANGES (constant) 34, 46, 199
noImage (method) 93
nominal gamma value 85
nonhomogeneous operation 56
normal distribution 53
normalization 104
normalized histogram 67
NTSC 80, 217, 219
null (constant) 243

O
O notation 235
object 234
open (method) 181, 182
opening 170, 174, 181
optical axis 3
OR (constant) 89
outer product 114
outline 167, 181
outline (method) 182

P
packed ordering 188–190
padding 126, 127
PAL 80, 217
palette 189, 195, 197
– image see indexed color image
partial derivative 133
PDF 13
pdf see probability density function
perspective
– transformation 3
Photoshop 23
PI (constant) 241
PICT format 13
piecewise linear function 69
pinhole camera 3
pixel 3
– value 10
PKZIP 16
planar ordering 188
PlugIn (interface) 30
PlugInFilter (interface) 30, 193
PNG 15, 23, 29, 193, 195
point operation 55–95
– arithmetic 86
– effects on histogram 59
– gamma correction 77
– histogram equalization 63
– homogeneous 87
– in ImageJ 86–95
– inversion 57
– thresholding 57
point set 161
point spread function 116
POSITIVE_INFINITY (constant) 242
PostScript 13
pow (method) 83, 241
Prewitt operator 135, 146
primary color 187
probability 67
– density function 67
– distribution 67
projection 229
pseudocolor 231
putPixel (method) 32, 103, 105, 123,

125, 192, 240
pyramid techniques 143

Q
quantization 8, 57

R
Random (package) 53
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random
– process 67
– variable 68
random (method) 53, 241
random image 53
rank (method) 129
RankFilters (class) 128
RAS format 21
raster image 13
RAW format 194
redisplaying an image 35
reflect (method) 181
reflection 162, 164–166
remainder operator 239
resolution 8
RGB
– color image 185–200
– color space 187, 218
– format 21
RGBtoHLS (method) 215
RGBtoHSB (method) 209–211
rint (method) 241
Roberts operator 139, 146
round (method) 83, 103, 105, 241
round function 88, 235
rounding 56, 89, 238, 241
run (method) 31

S
sampling
– spatial 7
– time 7
saturation 43, 205
separability 113, 129, 166
separable filter 109, 150
sequence 233
Set (interface) 248
set 161, 233
set (method) 33, 57, 66, 125, 206
setColorModel (method) 196–198
setNormalize (method) 128, 154
setup (method) 30, 31, 34, 35, 92, 193,

197
setValue (method) 54
setWeightingFactors (method) 204
ShortProcessor (class) 201
show (method) 54, 194
showDialog (method) 93
signal space 112
sin (method) 241
skeletonization 182
skeletonize (method) 182
smoothing filter 99, 104

Sobel operator 135, 140, 146
software 26
sort (method) 123, 227, 247
sorting arrays 247
spatial sampling 7
special image 12
sqr (method) 88
sqrt (method) 88, 241
sRGB 85, 86, 203, 204
stack 193
standard deviation 53
structure 234
structuring element 160, 161, 165, 174,

180
SUBTRACT (constant) 89

T
tan (method) 241
tangent function 242
temporal sampling 7
TGA format 21
thin lens model 6
thinning 182
threshold 57, 145
threshold (method) 58
TIFF 13, 18, 21, 23, 29, 193, 195
toDegrees (method) 241
toRadians (method) 241
transparency 90, 191, 198
true color image 12, 15, 188, 190
truncate function 235, 239
truncation 89
tuple 234
type cast 57, 238
TypeConverter (class) 200

U
undercolor-removal function 224
uniform distribution 53
unsharp masking 150–155
UnsharpMask (class) 154
unsharpMask (method) 154
unsigned byte (type) 239
updateAndDraw (method) 36, 54, 196

V
Vector (class) 243, 248
vector 233
– image 13

W
wasCanceled (method) 93
Website for this book 34
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white point 207
WindowManager (class) 93, 196
WMF format 13

X
XBM/XPM format 21

Y
YCbCr 222
YCbCr 221
YIQ 219, 222
YUV 219–222

Z
ZIP 14
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