Цифрова обработка на изображения

Дискретни трансформации в честотната област

доц. Милена Лазарова, кат. КС, ФКСУ

Сигнал

Измеримо явление, което се променя във времето и/или в пространството

ВЗВУК

изображение

код

011010001011011101100101110001

Сигнал

Сигналът се изменя

- има "вълнов" характер
- в противен случай не би съдържал информация

Представяне на сигналите

пространство – време

 измервания за даден момент във времето и/или позиция в пространството

честотна област

 точно описание на сигнал по отношение на неговите изменения чрез вълново представяне

Звук

- Механични вибрации на обект в атмосферата
 - вибрациите са вътрешни еластични движения на материята
 - повърхността на обекта трепти и именно измененията причинени от това трептене се разпространяват чрез въздуха далеч от повърхността на обекта

 Всеки обект вибрира с различни "вълни"
 всяка "вълна" е модел на трептене с конкретна форма

Вълни на трептене

вълна "string"

вълна "ріре"

Вълни на трептене

Всяка сложна функция може да се представи като сума на прости синусоидни и косиносуидни сигнали (хармоници)

Joseph Fourier 1768-1830

FIGURE 4.1 The function at the bottom is the sum of the four functions above it. Fourier's idea in 1807 that periodic functions could be represented as a weighted sum of sines and cosines was met with skepticism.

Звукови вълни

Звукови вълни

Представяне на сигналите

- Всеки реален сигнал има представяне в честотната област
- хармониците (син цвят)
 се сумират в "накъдрена" квадратна вълна (черен цвят)
 - с увеличаване на броя на сумираните хармоници се апроксимира квадратна вълна (червен цвят)

Представяне на сигналите

синусоидите се наричат
 базови функции
 коефициентите се наричат
 коефициенти на Фурие

Представяне на сигналите

Пример: частична сума на хармоници на квадратна вълна

границата на дадена последователност от частични суми е точно квадратна вълна

(границата на сума от *n* синусоиди когато *n* клони към безкрайност)

Синусоида

$$f(t) = A\sin\left(\frac{2\pi}{\lambda}t - \phi\right)$$

1/λ е честота на синусоидата [Hz]

 $2\pi\lambda$ е ъглова честота [rad/s]

Скаларно произведение на два вектора scalar product, dot product, inner product

$$\langle f,g\rangle = \int_{-\lambda/2}^{\lambda/2} f(t)g^*(t)dt$$

където g*(t) е комплексно спрегнатата функция на g(t)

Определя подобието между две функции в интервала [-λ /2, λ/2]

$$\langle f,g\rangle = \int_{-\lambda/2}^{\lambda/2} f(t)g^*(t)dt$$

може да се разглежда като количествен израз на съдържанието на g в f или като проекция на f върху g

скаларното произведение е максимално
 когато f = g (и имат еднаква енергия)

скаларното произведение е нула
 когато f и g са напълно различни

З различни представяния

 представянето с *реални* коефициенти съдържа амплитудата на синусоидата

$$\left\langle f,g\right\rangle = \int_{-\lambda/2}^{\lambda/2} f(t) \sin\left(\frac{2\pi}{\lambda}t\right) dt \left\langle f,g\right\rangle = \int_{-\lambda/2}^{\lambda/2} f(t) \cos\left(\frac{2\pi}{\lambda}t\right) dt = \int_{-\lambda/2}^{\lambda/2} f(t) \left[\cos\left(\frac{2\pi}{\lambda}t\right) - i\sin\left(\frac{2\pi}{\lambda}t\right)\right] dt = \int_{-\lambda/2}^{\lambda/2} f(t) e^{-i\frac{2\pi}{\lambda}t} dt = \int_{-\lambda/2}^{\lambda/2} f(t) e^{-i\omega t} dt = \int_{-\lambda/2}^{\lambda/2} f(t) e^{-i\omega t} dt$$

 декомпозиция на λ-периодичен сигнал като сума от синусоиди

$$f(t) = A_0 + \sum_{n=1}^{\infty} A_n \cos\left(\frac{2\pi n}{\lambda}t\right) + B_n \sin\left(\frac{2\pi n}{\lambda}t\right)$$

представянето на функция чрез **Фурие последователност** е сума от синусоидни базисни функции умножени с коефициенти

- Фурие коефициентите са скаларно произведение на функцията и базисните функции
- базисните функции
 съответстват на различни
 вълни на трептене

$$A_{n} = \frac{2}{\lambda} \int_{-\lambda/2}^{\lambda/2} f(t) \left[\cos\left(\frac{2\pi n}{\lambda}t - \phi_{n}\right) \right] dt \text{ for } n \ge 0$$
$$B_{n} = \frac{2}{\lambda} \int_{-\lambda/2}^{\lambda/2} f(t) \left[\sin\left(\frac{2\pi n}{\lambda}t - \phi_{n}\right) \right] dt \text{ for } n \ge 0$$

■ λ -периодичен сигнал: $\exists \lambda \in \Re$ такова че $f(t \pm n\lambda) = f(t)$

може да се представи и чрез комплексни експоненти

$$f(t) = \sum_{n=-\infty}^{\infty} C_n e^{+i\frac{2\pi n}{\lambda}t} = \sum_{n=-\infty}^{\infty} |C_n| e^{+i\left(\frac{2\pi n}{\lambda}t+\phi_n\right)}$$

$$= \sum_{n=-\infty}^{\infty} |C_n| \cos\left(\frac{2\pi n}{\lambda}t+\phi_n\right)+i\cdot|C_n| \sin\left(\frac{2\pi n}{\lambda}t+\phi_n\right)$$

$$C_n = |C_n| e^{+i\phi_n} = \frac{1}{\lambda} \int_{-\lambda/2}^{\lambda/2} f(t) e^{-i\frac{2\pi n}{\lambda}t} dt$$

$$= \frac{1}{\lambda} \int_{-\lambda/2}^{\lambda/2} f(t) \left[\cos\left(\frac{2\pi n}{\lambda}t-\phi_n\right)-i\cdot\sin\left(\frac{2\pi n}{\lambda}t-\phi_n\right)\right] dt$$

$$f(t+n\lambda) = f(t)$$

$$\text{3авсяко целочислено n}$$

Фурие коефициентите са комплексни числа

$$f(t) = \sum_{n=-\infty}^{\infty} C_n e^{+i\frac{2\pi n}{\lambda}t}$$
където $C_n = |C_n| e^{+i\phi_n}.$

 C_n представя големината $A=|C_n|$ и относителната фаза ϕ на онази част от оригиналния сигнал f(t), която е синусоида с честота $\omega_n = n / \lambda$

Фурие последователността на косинусова функция е двойка импулси с комплексни амплитуди

$$F(\omega) = \left(\frac{NA}{2}\cos\phi\right) \left[\delta(\omega + N/\lambda) + \delta(\omega - N/\lambda)\right] + i\left(\frac{NA}{2}\sin\phi\right) \left[-\delta(\omega + N/\lambda) + \delta(\omega - N/\lambda)\right]$$

Реалните и имагинерните части при положителни честоти, *N/λ*, определят големината *NA*/2 и фазата φ₀

Реалните и имагинерните части при отрицателни честоти, -N/λ, определят големината NA/2 и фазата -φ₀

Фурие последователност на квадратна вълна

Фурие трансформация

Декомпозиция на непериодичен сигнал в безкрайна сума от синусоиди

$$F(\boldsymbol{\omega}) = |F(\boldsymbol{\omega})| e^{i\Phi(\boldsymbol{\omega})} = \int_{-\infty} f(t) e^{i2\pi\omega t} dt$$

$$= \int_{-\infty}^{\infty} f(t) [\cos(2\pi\omega t) + i\sin(2\pi\omega t)] dt$$

$$f(t) = \int_{-\infty}^{\infty} F(\omega) e^{-i2\pi\omega t} d\omega = \int_{-\infty}^{\infty} F(\omega) \left| e^{-i(2\pi\omega t + \Phi(\omega))} d\omega \right|$$
$$= \int_{-\infty}^{\infty} F(\omega) \left[\cos(2\pi\omega t) - i\sin(2\pi\omega t) \right] d\omega$$
$$= \int_{-\infty}^{\infty} F(\omega) \left| \left[\cos(2\pi\omega t + \Phi(\omega)) - i\sin(2\pi\omega t + \Phi(\omega)) \right] d\omega$$

Дискретна Фурие трансформация

Дискретен сигнал {h_k | k = 0, 1, 2, .., N-1} с крайна дължина N може да се представи като претеглена сума от N синусоиди {e^{-i2 πkn/N} | n = 0, 1, 2, .., N-1}

$$h_k = \sum_{n=0}^{N-1} H_n e^{-i 2\pi k n/N}$$

където множеството {*H_n* | *n* = 0, 1, 2, .., *N*-1} са Фурие коефициентите дефинирани като проекции на оригиналния сигнал върху синусоида *n*

$$H_{n} = \frac{1}{N} \sum_{k=0}^{N-1} h_{k} e^{+i2\pi kn/N}$$

Фурие коефициентите се представят като скаларни произведения

$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i2\pi\omega t} dt = \left\langle f(t), e^{+i2\pi\omega t} \right\rangle$$
$$H_n = \frac{1}{N} \sum_{n=0}^{N-1} h_k e^{-i2\pi k n/N} = \left\langle h_k, e^{+i2\pi k n/N} \right\rangle$$

т.е. оценяват подобието на

$$f(t)$$
 и $e^{+i2\pi\omega t}$ за $t \in (-\infty,\infty)$

или на последователностите

$${h_k}_{k=0}^{N-1}$$
 и ${e^{+i2\pi kn/N}}_{k=0}^{N-1}$.

Непрекъснатата Фурие трансформация допуска, че безкрайно изображение съществува в крайна област от безкрайна равнина

Дискретната Фурие трансформация допуска, че изображението съществува върху затворена повърхнина – тороид

$$I(r,c) = \sum_{v=0}^{R-1} \sum_{u=0}^{-1} I(v,u) e^{+i2\pi \left(\frac{vr}{R} + \frac{uc}{C}\right)}$$
$$I(v,u) = \sum_{r=0}^{R-1} \sum_{c=0}^{-1} I(r,c) e^{-i2\pi \left(\frac{rv}{R} + \frac{cu}{C}\right)}$$

Ако *I*(*r*,*c*) е монохроматично изображение с *R* реда и *C* колони, то Фурие представянето на изображението е

$$I(r,c) = \sum_{u=0}^{R-1} \sum_{v=0}^{L-1} \left[(v,u) e^{+i2\pi \left(\frac{vr}{R} + \frac{uc}{C}\right)} \right]$$

където Фурие коефициентите (*R*x*C* на брой) са:

$$(v,u) = \frac{1}{RC} \sum_{r=0}^{R-1} \sum_{c=0}^{C-1} I(r,c) e^{-i2\pi \left(\frac{vr}{R} + \frac{uc}{C}\right)}$$

(комплексните експоненти са синусоиди)

Ако допуснем, че
$$R = C = N$$
, то
 $e^{\pm i 2\pi \left(\frac{vr}{R} + \frac{uc}{C}\right)} = e^{\pm i \frac{2\pi}{N} (vr + uc)} = e^{\pm i \frac{2\pi\omega}{N} (r\sin\theta + c\sin\theta)}$
където
 $v = \omega \sin\theta, \quad u = \omega \cos\theta, \quad \omega = \sqrt{v^2 + u^2}, \quad \theta = \tan^{-1} \left(\frac{v}{u}\right)$

• Ако
$$\lambda = \frac{N}{\omega}$$
,

TO

В изображението началото на координатната система за r и с е в горния ляв ъгъл, затова θ е положително и нараства по посока на часовниковата стрелка

 $e^{\pm i 2\pi \frac{1}{\lambda}(r\sin\theta + c\cos\theta)} = \cos\left[\frac{2\pi}{\lambda}(r\sin\theta + c\cos\theta)\right] \pm i\sin\left[\frac{2\pi}{\lambda}(r\sin\theta + c\cos\theta)\right].$

 Реалната и имагинерната части са синусоидални "решетки" с единична амплитуда, период λ и посока θ

Re
$$\left\{ e^{\pm i 2\pi \frac{1}{\lambda} (r \sin \theta + c \cos \theta)} \right\} = + \cos \left[\frac{2\pi}{\lambda} (r \sin \theta + c \cos \theta) \right]$$

Im $\left\{ e^{\pm i 2\pi \frac{1}{\lambda} (r \sin \theta + c \cos \theta)} \right\} = \pm \sin \left[\frac{2\pi}{\lambda} (r \sin \theta + c \cos \theta) \right]$

където

 $\frac{\omega}{N}$ – честота

$$\frac{2\pi\omega}{N}
 –
 радиантна честота

 $\lambda = \frac{N}{\omega}
 –
 дължината на вълната в пиксели$$$

$$I(r,c) = \frac{A}{2} \left\{ \cos \left[\frac{2\pi}{\lambda} (r \cdot \sin \theta + c \cdot \cos \theta) + \phi \right] + 1 \right\}$$

2D синусоидите във Фурие представянето на изображението са

 равнинни вълни с амплитуди изразени в нюанси на сивото (grayscale) и период определен като дължина в брой пиксели

$$I(r,c) = \frac{A}{2} \left\{ \cos \left[\frac{2\pi}{\lambda} (r \cdot \sin \theta + c \cdot \cos \theta) + \phi \right] + 1 \right\}$$

2D синусоидите във Фурие представянето на изображението имат
 специфична ориентация и фазово отместване

Трансформация на Фурие за изображение

Re[F{/}]

Ι

Im[F{/}]

Точка в честотната област

Точката с координати (*u*, *v*), т.е. колона *u* и ред *v* представлява синусоида с дължина на вълната ω и ориентация θ (ако R = C = N)

- амплитудата е $\omega = N/\lambda$
- където λ е дължината на вълната и R = C = N

Точка в честотната област

 В честотното представяне на изображение честотите λ_u и λ_v се представят пропорционално чрез стойностите на R и C

 $\lambda_u = \frac{C}{u}$ и $\lambda_v = \frac{R}{v}$ пиксела

посоката и дължината на вълната са $\theta_{\rm wf} = \tan^{-1}\left(\frac{vC}{uR}\right), \quad \lambda_{\rm wf} = \sqrt{\left(\frac{C}{u}\right)^2 + \left(\frac{R}{v}\right)^2}$

честотата се представя пропорционално чрез стойностите на R и C

$$\omega_u = \frac{u}{C}, \ \omega_v = \frac{v}{R}$$

 $\omega_{wf} = 1 / \sqrt{\left(\frac{C}{u}\right)^2 + \left(\frac{R}{v}\right)^2}$ периода

Точка в честотната област

Стойността на коефициент във Фурие представянето е комплексно число

Представянето с *големина* и *фаза* има по-ясен физически смисъл

Големината А (ω,θ) в точка (ω,θ) представя амплитудата на синусоидата

Фазата f(ω,θ) представя отместването спрямо началото на координатната система

Коефициент на Фурие в точка (u, v)

Точка (*u*,*v*) в честотната област

представя синусоидалната решетка за честота ωи ориентация θ

Комплексната стойност *F*(*u*,*v*) от Фурие трансформацията в точка (*u*,*v*) представя амплитудата *A* и фазовото отместване ф на синусоидата

Коефициент на Фурие в точка (u, v)

Фурие трансформация на изображение *големина* и *фаза*

 $I \qquad \log\{|\mathsf{F}\{l\}|^2+1\} \qquad \angle[\mathsf{F}\{l\}]$

Re[F{*I*}]

Фурие трансформация на изображение *реална* и *имагинерна* част

Фурие трансформация

Im[F{*I*}]

Спектрална функция

Спектралната функция на даден сигнал е квадрата на големината на Фурие трансформацията

$$|\mathbf{I}(u,v)|^{2} = \mathbf{I}(u,v)\mathbf{I}^{*}(u,v)$$

= [Re $\mathbf{I}(u,v)$ + *i* Im $\mathbf{I}(u,v)$][Re $\mathbf{I}(u,v)$ - *i* Im $\mathbf{I}(u,v)$]
= [Re $\mathbf{I}(u,v)$]² + [Im $\mathbf{I}(u,v)$]²

Във всяка точка (u,v) спектралната функция показва квадрата на честотния коефициент

с период $\lambda = 1/\sqrt{u^2 + v^2}$ и ориентация $\theta = \tan^{-1}(v/u)$

За визуализиране на спектралната функция обикновено се използва логаритмична функция

Uncertainty Relation

Малък обект в пространството на изображението има голям обхват в честотната област и обратно

Ако $\Delta x \Delta y$ са размерите на обект в пространст вото на изображени ето и $\Delta u \Delta v$ е обхвата му в честотната област $\Delta x \Delta y \cdot \Delta u \Delta v \ge \frac{1}{16\pi^2}$

Uncertainty Relation

Фурие трансформация на контур

Фурие трансформация на правоъгълен обект

- Координати и посоки в честотната област
 - номера на реда се увеличава надолу
 - номера на колоната се увеличава надясно
 - наклонът и ъглите са противоположни на тези при дясно ориентирана координатна система

- Обратна Фурие трансформация на импулс
 - хоризонтална синусоида с най-голямата възможна честота (С е четно)
 - посоката на вълната е "хоризонтална"

- Обратна Фурие трансформация на импулс
 - вертикална синусоида с най-голямата възможна честота (*R* е четно)
 - посоката на вълната е "вертикална"

- Обратна Фурие трансформация на импулс
 - синусоида с най-голямата възможна честота (хоризонтална+вертикална) (R и C са четни)

• "шахматен" модел

Обратна Фурие трансформация на импулси

- хоризонтална синусоида с най-малката възможна честота
 - посоката на вълната е "хоризонтална"

Обратна Фурие трансформация на импулси

- вертикална синусоида с най-малката възможна честота
 - посоката на вълната е "вертикална"

Обратна Фурие трансформация на импулси

синусоида с най-малката възможна честота (негативен диагонал)

посоката на вълната е по негативния диагонал

Обратна Фурие трансформация на импулси

синусоида с най-малката възможна честота (позитивен диагонал)

посоката на вълната е по позитивния диагонал

Честота и дължина на вълната в честотната област

🗖 честота

- (u,v) = (4,3)
- 🔳 дължина на вълната

• $(\lambda_u, \lambda_v) = (128, 128)$

Честота и дължина на вълната в честотната област

🗖 честота

$$(u,v) = (1,0)$$

🔳 дължина на вълната

 $\lambda_{\rm u} = 512$

Честота и дължина на вълната в честотната област

🗖 честота

$$(u,v) = (0,1)$$

🔳 дължина на вълната

 $\lambda_{\rm u} = 384$

Честота и дължина на вълната в честотната област

🗖 честота

🗖 дължина на вълната

 $\lambda_{\rm u} = 256$

Честота и дължина на вълната в честотната област

🗖 честота

🔳 дължина на вълната

 $\lambda_v = 192$

Честота и дължина на вълната в честотната област

🗖 честота

🗖 дължина на вълната

• $\lambda_u = 170 \frac{2}{3}$

Честота и дължина на вълната в честотната област

🗖 честота

🔳 дължина на вълната

 $\lambda_v = 128$

Честота и дължина на вълната в честотната област

🗖 честота

- (u,v) = (3,3)
- 🔳 дължина на вълната

• $(\lambda_u, \lambda_v) = (170 \frac{2}{3}, 128)$

В честотната област за квадратно изображение

- ориентацията на линия през двойка точки съвпада с ориентацията на вълна през изображението
- Не е така за **правоъгълно** изображение

 ъгълът е 45° в честотната област и около 53° в изображението (жълтата линия)

Спектрална функция на изображение

Фурие трансформация на изображение

2D трансформация на Фурие

- Приложение на трансформацията на Фурие в обработка на изображения
 - обяснение на причините за изкривявания и деформации на изображението при намаляването на стъпката на дискретизиране и подход за избягване на това изкривяване
 - полезна за редуциране на шумове в изображението и подобряване на визуалното му представяне
 - приложение при откриване на специфични характеристики в изображението, например откриване на контури

Изображение /

Ι
Големина на Фурие трансформацията

 $\log |\mathbf{F}\{I\}|$

Фаза на Фурие трансформацията

Къде се съдържа визуална информация за изображението: в големината или във фазата на Фурие преобразуването?

оригинално

изображение

фаза на Фурие трансформация

големина на Фурие трансформация

Възстановяване на изображението с използване само на големината

 Възстановявана на изображението с използване само на фазата

