

Kinect for Windows SDK
Programming Guide

Build motion-sensing applications with Microsoft's
Kinect for Windows SDK quickly and easily

Abhijit Jana

BIRMINGHAM - MUMBAI

Kinect for Windows SDK Programming Guide

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2012

Production Reference: 1191212

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-238-0

www.packtpub.com

Cover Image by Sandeep Babu (sandyjb@gmail.com)

Credits
Author

Abhijit Jana

Reviewers
Atul Gupta

Anoop Madhusudhanan

Atul Verma

Acquisition Editor
James Keane

Lead Technical Editor
Susmita Panda

Technical Editors
Prasanna Joglekar

Dipesh Panchal

Farhaan Shaikh

Nitee Shetty

Copy Editors
Brandt D'Mello

Insiya Morbiwala

Aditya Nair

Alfida Paiva

Project Coordinator
Yashodhan Dere

Proofreaders
Ting Baker

Matthew Humphries

Indexer
Rekha Nair

Graphics
Valentina D'silva

Aditi Gajjar

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

About the Author

Abhijit Jana works at Microsoft as a .NET Consultant, as part of Microsoft Services
Global Delivery, India. As a consultant, his job is to help customers design, develop,
and deploy enterprise-level secure solutions using Microsoft Technology. Apart
from being a former Microsoft MVP, he is a speaker and author as well as an avid
technology evangelist. He has delivered sessions at prestigious Microsoft events
such as TechEd, Web Camps, Azure Camps, Community Tech Days, Virtual Tech
Days, DevDays, and developer conferences. He loves to work with different .NET
communities and help them with different opportunities. He is a well-known author
and has published many articles on different .NET community sites.

He shares his thoughts on his personal blog at http://abhijitjana.net. You can
follow him on Twitter at @abhijitjana. Abhijit lives in Hyderabad, India, with his
wife, Ananya and a beautiful little angel Nilova.

Disclaimer
The opinions in this book are purely my personal opinions and do not
reflect in any way the opinions of my employers.

http://abhijitjana.net

Acknowledgement

Writing this book would not have been possible without the help of many people.
I had a wonderful time while writing, which was mainly due to the skills, support,
dedication, and motivation of the people around me.

First of all I am extremely thankful to Sachin Joshi, Pinal Dave, and Prasant Kraleti for
the continuous support and motivation they gave me from the time I started writing
this book. They have been awesome with their support at every stage of writing.

I am deeply thankful to the entire team at Packt Publishing, including Prasad,
Susmita, Mayur, Prasanna, Dipesh, Farhaan, and Nitee. I would like to extend my
thanks to the Project Coordinator, Yashodhan, for his support from the beginning.
Thank you all for your effort and dedication.

A sincere thanks to Atul Gupta and Anoop Madhusudanan for their insightful and
excellent technical review. They helped me to identify and fill the gaps and improve
the overall quality of this book.

I would like to acknowledge the efforts of Atul Verma for his extended support
for in-depth technical review, and also for his time in discussing, peer coding,
and providing feedback on many topics.

I would like to thank Jebarson Jebamony for his excellent peer review for this book,
and also for spending his time and effort in sharing his thoughts and feedback for
improving the content. He also helped me to organize content and design many
demo applications.

I would like to thank Arka Bhattacharya and Atul Sharma for their offline review
of the book and for sharing their feedback. A big thank you to Rajesh R. Nair for
helping me on designing sketches and icons, and also Rishabh Verma for capturing
and sharing the dismantled sensor images with me.

My sincere thanks to Jag Dua and Sanjoyan Mitra, two true leaders I have worked
with. I would like to extend my thanks to Jag for giving me his Kinect sensor
when I was overseas and was urgently looking for a Kinect sensor for some
experimentation.

I was fortunate enough to be present at many seminars and conferences over the past
year, on Kinect. This helped me to interact with many developers and students who
are really passionate about programming with Kinect. Thanks to each one of them
for spending their time with me and discussing about their problems and questions.

A big thanks to the Kinect for Windows team, the Kinect for Windows Community,
and my Community friends, and MSPs who helped me in writing this book. I would
like to thank my friends Kunal Chowdhury, Abhishek Sur, Dhananjay Kumar,
Suresh Bemagani, Sheo Narayan, and Sharavan Kasagoni for their continuous
support and help while writing this book. I am also thankful to the bloggers on
the various Kinect topics, and also the researchers who have been working and
experimenting day in and day out with Kinect. On many occasions I have been
reading their posts and referring to them.

I spent time in writing when I should have been sleeping, spending time with family,
or playing with my newborn child. I'd never have been able to write this book
without the support of my wife, Ananya. I cannot even express her love and
support while I was writing this book. Thank you Ananya.

Being a Community lover and an active blogger, I have been writing blogs for the
last couple of years; but this is the first time I am putting something in the form of
a book. The credit goes to each one of you who has been connected with me and
have been my blog reader and supporter.

I would really appreciate it if you would contact me at abhijitjana@outlook.com
for any kind of clarification.

About the Reviewers

Atul Gupta is currently a Principal Technology Architect at Infosys' Microsoft
Technology Center, Infosys Labs. With more than 16 years of experience working
on Microsoft technologies, his expertise spans User Interface technologies, and he
currently works on touch and gestural interfaces with technologies such as Windows
8 and Kinect. He has prior experience on Windows Presentation Foundation (WPF),
Silverlight, Windows 7, Deepzoom, Pivot, PixelSense, and Windows Phone 7.

He has co-authored the book ASP.NET 4 Social Networking, Packt Publishing. Earlier
in his career, he has also worked on technologies such as COM, DCOM, C, VC++,
ADO.NET, ASP.NET, AJAX, and ASP.NET MVC. He is a regular reviewer for Packt
Publishing and has reviewed books on topics such as Silverlight and Generics.

He has authored papers for industry publications and websites, some of which are
available on Infosys' Technology Showcase (http://www.infosys.com/microsoft/
resource-center/pages/technology-showcase.aspx). Along with his colleagues
from Infosys, he is also an active blogger (http://www.infosysblogs.com/
microsoft). Being actively involved in professional Microsoft online communities
and developer forums, he has received Microsoft's Most Valuable Professional award
for multiple years in a row.

Anoop Madhusudanan has been a Microsoft MVP in C# for the last 3 years and
has more than 10 years of experience with Microsoft technologies. Presently, he
is working as a Solution Architect with the Cloud & Mobile Center of Excellence,
Marlabs Inc. He works across multiple Microsoft technologies and platforms
including Windows 8, ASP.NET, Windows Azure, and so on, across domains
including education, healthcare, and telecom.

He blogs at http://amazedsaint.com and is the developer of various open source
frameworks such as BrainNet Neural Network Library, ElasticObject, SilverDraw,
MetaCoder, and so on. He is also an active contributor to CodeProject. His Twitter
handle is @amazedsaint.

Atul Verma is a Technical Consultant at Microsoft Services Global Delivery and is
a graduate from NIT, Hamirpur. He has been developing enterprise-level secure and
scalable solutions using agile software methodologies for the past seven years. His
technical expertise includes WPF, ASP.NET, WCF, SharePoint, Dynamics CRM, and
Kinect for Windows. Apart from this, he also contributes to technical communities,
technical seminars, open source projects, and blogs. He is currently studying the
essence of Indian culture and loves to spend quality time with his family.
You can follow him on Twitter at @verma_atul.

http://amazedsaint.com
http://twitter.com/amazedsaint

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

I dedicate this book to my parents, my lovely wife Ananya
and my little angel Nilova.

Table of Contents
Preface 1
Chapter 1: Understanding the Kinect Device 7

Components of Kinect for Windows 8
Inside the Kinect sensor 9

The color camera 10
IR emitter and IR depth sensor 11
Tilt motor 13
Microphone array 14
LED 15

Kinect for Windows versus Kinect for Xbox 15
Where can you use Kinect 16
Summary 18

Chapter 2: Getting Started 19
System requirements for the Kinect for Windows SDK 20

Supported operating systems 20
System configuration 20
The Kinect sensor 21

The Kinect for Windows sensor 21
The Kinect for Xbox sensor 21

Development tools and software 21
Evaluation of the Kinect for Windows SDK 22
Downloading the SDK and the Developer Toolkit 23
Installing the Kinect for Windows SDK 24

Installing the Developer Toolkit 25
Components installed by the SDK and the Developer Toolkit 26

Kinect management service 26
Connecting the sensor with the system 27

Verifying the installed drivers 28

Table of Contents

[ii]

Testing your device 31
Testing Kinect sensors 32
Testing the Kinect microphone array 32

Looking inside the Kinect SDK 34
Features of the Kinect for Windows SDK 35

Capturing the color image data stream 36
Processing the depth image data stream 36

Near Mode 36
Capturing the infrared stream 37
Tracking human skeleton and joint movements 37
Capturing the audio stream 38
Speech recognition 39
Human gesture recognition 40
Tilting the Kinect sensor 41
Getting data from the accelerometer of the sensor 41
Controlling the infrared emitter 41

The Kinect for Windows Developer Toolkit 42
The Face Tracking SDK 42
Kinect Studio 43

Making your development setup ready 44
The Coding4Fun Kinect Toolkit 45
Summary 45

Chapter 3: Starting to Build Kinect Applications 47
How applications interact with the Kinect sensor 48

Understanding the classification of SDK APIs 49
Kinect Info Box – your first Kinect application 50

Creating a new Visual Studio project 50
Adding the Kinect libraries 52

Getting the Kinect sensor 53
The Kinect sensor 53
Defining the Kinect sensor 54
The collection of sensors 54

Starting up Kinect 55
Inside the sensor.Start() method 57
Enabling the data streams 58

Identifying the Kinect sensor 58
Initializing the sensor using device connection ID 59

Stopping the Kinect sensor 60
The Stop() method does the clean-up operation 60

Displaying information in the Kinect Info Box 62
Designing the Info Box UI 62

Table of Contents

[iii]

Binding the data 62
That's all! 65

Dealing with the Kinect status 65
Monitoring the change in sensor status 67

Properties of the StatusChangedEventArgs class 68
Resuming your application automatically 69
Building KinectStatusNotifier 70

Setting up an application 70
How it works 72

Using KinectStatusNotifier 74
Test it out 75

Summary 75
Chapter 4: Getting the Most out of Kinect Camera 77

Understanding the Kinect image stream 78
Types of color images 79

Different ways of retrieving the color stream from Kinect 81
Event model 81
Polling model 82

KinectCam – a Kinect camera application 82
Setting up the project 83
Designing the application – XAML and data binding 84
Capturing color image from the Kinect camera 86

Enabling the color stream channel 86
Enabling a channel with the image format 87
Choosing the image format 87
Disabling the color stream channel 88
Attaching the event handler 89
Processing the incoming image frames 90
Rendering image frames on the UI 93
Running the KinectCam 94

Looking inside color image stream helpers 94
The ColorImageStream class 95
The ColorImageFrame class 95

Capturing frames on demand 97
Extending the KinectCam 98

Getting the frame number 98
Changing image format on the fly 99

Bind available image formats 99
Changing the color image format 100

Calculating frame rate 101
How to calculate frame rate 101

Table of Contents

[iv]

Capturing and saving images 102
Saving images periodically 103
Trying to save image frames directly 104

Changing sensor elevation angles 106
Maximum and minimum elevation angle 108
Adjusting the Kinect sensor angle 108

Playing around with color pixels 109
Applying RGB effects 110
Making grayscale effects 110
Inverting the color 111

Applying more effects to the camera 112
Applying the backlight compensation mode 113
Applying slow motion effects 114
Kinect Camera Effects – application 114

Seeing in low light 114
Making your application perform better 115
Using the Coding4Fun toolkit 117

Installing the Coding4Fun Kinect toolkit 117
Using assembly 117
Using the NuGet package 117

Using Coding4Fun Kinect libraries in your application 118
Summary 119

Chapter 5: The Depth Data – Making Things Happen 121
Understanding the depth data stream 122

Depth data – behind the scenes 123
Stereo triangulation 124

Capturing and processing depth data 125
Enabling the depth stream channel 125
Attaching the event handler 126
Processing the depth frames 127
Depth data at first look 128

Looking inside depth image stream helpers 129
Depth data and distance 131

How the distance is calculated 133
Getting the distance from a particular pixel 134
Accessing the range of distance 135
Colorize depth data processing 136

Working with depth range 138
Special depth range values 140

Depth data distribution 140
Player index with depth data 141

How player index works 141

Table of Contents

[v]

Identifying players 142
Getting the depth and player index automatically 144
A 3D view of depth data 146

The basics of the coordinate system 146
Basic elements of 3D graphics 147
Setting up the project 147
Give it a 3D effect 148

Creating the ViewPort 148
Using the camera 148
Creating the 3D Model 149
Setting up the initial data points 151

Getting the depth data from Kinect 152
Have a look at 3D depth 153

Summary 155
Chapter 6: Human Skeleton Tracking 157

How skeleton tracking works 158
Steps to remember 162

Skeleton tracking with the Kinect SDK 163
Start tracking skeleton joints 165

Tracking the right hand 165
Setting up the project 165
Creating a joint placeholder 166
Get Kinect running and instantiate skeleton tracking 166
Processing the skeleton frames 168
Mapping the skeleton joints with UI elements 170
Running the application 172
Adding more fun 172

Flow – capturing skeleton data 174
An intrusion detector camera application 174

Adding night vision 176
Looking inside skeleton stream helpers 177

The skeleton frame 177
The skeleton stream 178

Skeleton tracking mode 179
Default skeleton tracking 179
Seated skeleton tracking 179

Using seated-skeleton tracking 180
Points to be considered with seated-skeleton tracking 180

Skeleton-tracking in near mode 181
The Skeleton 182

Skeleton-tracking state 183
Choosing which skeleton to track 183

Skeleton tracking ID 184

Table of Contents

[vi]

Monitoring changes in the skeleton 185
Limiting tracking for the intrusion-detector camera 186

The building blocks – Joints and JointCollection 188
Joint-tracking state 189

Steps to be followed for joint tracking 190
Create your own joints data point 190

Bones – connecting joints 191
Bone sequence 193

Bone sequence for a default skeleton 193
Bone sequence for a seated skeleton 194

Drawing bones between joints 194
Adjusting the Kinect sensor automatically and giving live
feedback to users 195
Skeleton smoothing – soften the skeleton's movement 197

What causes skeleton jitters 197
Making skeleton movement softer 198

Smoothing parameters 198
How to check if skeleton smoothing is enabled 199
Exponential smoothing 200

Skeleton space transformation 201
The Advanced Skeleton Viewer application 202
Debugging the applications 204

Using conditional breakpoints 204
Using Kinect Studio 205

Getting data frames together 207
Summary 209

Chapter 7: Using Kinect's Microphone Array 211
Verifying the Kinect audio configuration 212

Using the Kinect microphone array with your computer 214
The Kinect SDK architecture for Audio 215
Kinect microphone array 216

The major focus area of Kinect audio 216
Why microphone array 216

Audio signal processing in Kinect 217
Taking control over the microphone array 219

Kinect audio stream 219
Starting and stopping the Kinect audio stream 219

Starting audio streaming after a time interval 220
Kinect sound recorder – capturing Kinect audio data 220

Setting up the project 221

Table of Contents

[vii]

Designing the application – XAML and data binding 221
Recording the Kinect audio 223

Starting the recording 224
Playing the recorded audio 225

Running the Kinect Sound Recorder 225
Processing the audio data 226

Echo cancellation 227
Noise suppression 227
Automatic gain control 228
Audio data processing with the Kinect sound recorder 228

Sound source localization 231
Sound source angle 231

Confidence level 232
Beamforming 233

Beam angle mode 233
Extending the Kinect Sound Recorder with sound source localization 234

Summary 236
Chapter 8: Speech Recognition 237

How speech recognition works 238
Using Kinect with your Windows PC speech recognition 240
Beginning with Microsoft Speech API (SAPI) 242

Steps for building speech-enabled applications 243
Basic speech-recognition approach 244
Building grammar 246

Using Choice and GrammarBuilder 246
Building grammar using XML 248
Creating grammar from GrammarBuilder 249
Loading grammar into a recognizer 249
Unloading grammars 250

Draw What I Want – a speech-enabled application 250
Setting up the project 250
Designing the application – XAML and data binding 251

Data binding 252
Instantiating speech recognizer 254
Working with the speech recognition engine 255

Configuring Kinect audio 255
Creating grammar 255
Start the speech recognizer 256

Drawing an object when speech is recognized 257
Testing your application 260

Summary 262

Table of Contents

[viii]

Chapter 9: Building Gesture-controlled Applications 263
What is a gesture 264
Approaches for gesture recognition 264
Basic gesture recognition 266

Gesture-detection technique 266
Representing skeleton joints 267
Calculating the distance between two joints 267

Building a clapping-hands application 270
Setting up the project 270
Implementing the gesture recognizer 271
Plugging gestures into the application 275
Testing your application 277

A virtual rope workout application 278
Hands-raised-above-head gesture recognition 279
Steps to recognize basic gestures 281

Algorithmic gesture recognition 282
Which gestures can be considered as algorithmic 282
Understanding the algorithmic gesture detection approach 283
Implementing an algorithmic gesture 285

Adding gesture types 285
Extending the Event argument 286
Adding a GestureHelper class 286
Defining the GestureBase class 287
Implementing the SwipeToLeftGestures class 289
Adding the ZoomIn, ZoomOut, and SwipeToRight gesture classes 290
Implementing the GestureRecognitionEngine class 291
Using the GestureRecognitionEngine class 294
A demo application 295

Making it more flexible 296
Weighted network gesture recognition 297

What is a neural network 298
Gesture recognition with neural networks 298
Jump tracking with a neural network – an example 300

Template-based gesture recognition 302
Building gesture-enabled controls 303

Making a hand cursor 304
Getting the hand-cursor point 304

Identifying the objects 305
Enabling action for the objects 307

The Basic Interaction – a WPF application 309
Key things to remember 309
Summary 310

Table of Contents

[ix]

Chapter 10: Developing Applications Using Multiple Kinects 311
Setting up the environment for multiple Kinects 312

Plugging the first Kinect sensor 312
Plugging the second Kinect sensor 312
Kinect sensors require an individual USB Controller 313

Multiple Kinects – how to reduce interference 316
Detecting multiple Kinects 317

Getting access to the individual sensor 317
Different ways to get a Kinect sensor's reference 318

Developing an application with multiple Kinects 318
Setting up the project 319
Designing the UI 319
Creating the KinectInfoCollection 320
Getting information from Kinects 320
Running the application 321

Controlling multiple sensor status changes 321
Extending Multiple Kinect Viewer with status change 322

Registering and handling the status change 323
Running the application 324

Identifying the devices automatically 325
Integrating with KinectStatusNotifier 326
Capturing data using multiple Kinects 328

Handling a failover scenario using Kinects 329
Challenges faced in developing applications using multiple Kinects 330
Applications where multiple Kinects can be used 330
Summary 330

Chapter 11: Putting Things Together 331
Taking Kinect to the Cloud 332

Required components 332
Windows Azure 332
The Windows Azure SDK 333
The Kinect for Windows SDK 333

Designing the solution 334
Real-time implementations 335

Remotely using the Kinect with Windows Phone 336
Required components 337

The Windows Azure Service Bus 337
The Windows Phone SDK 337

Designing the solution 338
Real-time implementations 342

Table of Contents

[x]

Using Kinect with a Netduino microcontroller 342
Required components 342

Microsoft .NET Micro Framework 343
Netduino 343
The Netduino SDK 344

Blinking of the on-board LED 345
Changing the Deployment Transport 347
Running the application 347

Connecting Kinect to a Netduino 348
Using an Internet connection 348
Listening to the request 349
Sending a request from a Kinect application 350

Taking it further 351
Augmented reality applications 352
Working with face tracking 353
Working with XNA and a 3D avatar 355
Summary 356

Index 357

Preface
Ever since its inception, Kinect has brought about a revolution in the field of NUI
and hands-free gaming. There is no wonder that Kinect went on to shatter all records
and become the fastest selling electronic device on earth. Although touted as a
controller for Xbox console, Kinect applicability is beyond gaming domain and you
can think of building applications for diverse domains such as health care, robotics,
imaging, education, security, and so on. Thus we have the Kinect for Windows
sensor, that enables applications to interacts with users via gestures and voice,
and this opens up avenues that developers couldn't even have imagined before.

This book is mainly focussed on the Kinect for Windows SDK with which you can
build applications that can leverage the power of the Kinect sensor. This book doesn't
require any prior knowledge about the platform from the reader and its strength is
the simplicity in which the concepts have been presented using code snippets, a
step-by-step process, and detailed descriptions. This book covers:

• A practical step-by-step tutorial to make learning easy for a beginner
• A detailed discussion of all the APIs involved and the explanations of

their usage in detail
• Procedures for developing motion-sensing applications and also methods

used to enable speech recognition

What this book covers
Chapter 1, Understanding the Kinect Device, introduces Kinect as a hardware device.
You will get an insight into the different components that make up Kinect and the
technology behind this device, which makes the components work together. This
chapter will also give an overview of the difference between Kinect for Xbox and
Kinect for Windows sensor. You will also become familiar with different possibilities
of domain specific applications that can be developed using the Kinect sensor.

Preface

[2]

Chapter 2, Getting Started, introduces the Kinect for Windows SDK, its features, and
how to start working with the Kinect sensor. In this chapter, you will get to know
about the requirements for preparing your development environment. This will
also walk you through a step-by-step guide for downloading and installing the
SDK. You will delve into the installed components to verify that everything is
set up properly. This chapter will also provide you with a quick lap around the
different features of the Kinect for Windows SDK as well as introduce the Kinect
for Windows Developer Toolkit.

Chapter 3, Starting to Build Kinect Applications, explains the step-by-step process of
building your first Kinect-based application. You will understand how applications
interact with the Kinect sensor using the SDK libraries. This chapter will give you
an in-depth guide on how to start building Kinect applications using the Kinect for
Windows SDK and Visual Studio. You will also learn how to deal with applications
when there is any change in the device status.

Chapter 4, Getting the Most Out of Kinect Camera, covers the in-depth discussion of
the Kinect color camera and how to use it. In this chapter, you will learn about the
different types of image streams and different approaches to retrieve them from the
Kinect sensor. You will get an understanding of Color camera stream pipeline and its
events. You will also explore the different features of the Kinect for Windows SDK
that control the color camera and process the color data. This chapter will give you
an understanding of processing color images and applying different effects to the
captured images and how to save the image frames. You will also learn how you
can use the Kinect camera to capture images in low light.

Chapter 5, The Depth Data – Making Things Happen, explores the fundamentals of
the Kinect depth sensors and how they produce depth information. This chapter
describes how to work with object distances and player indices from the captured
depth data. You will also learn about the capturing of data using the near mode and
also get a quick view of generating 3D depth data.

Chapter 6, Human Skeleton Tracking, describes how a Kinect sensor tracks the human
skeleton and how you can leverage the features of the Kinect for Windows SDK to
play around with tracked skeletons and joints. You will also learn how to change
the sensor elevation angle based on the player position. This chapter also explores
how skeletons can be tracked in a seated mode. You also learn about details of the
skeleton joints and bone hierarchy. The sample application in this chapter will help
you to understand the APIs for skeleton tracking in better ways such as using Kinect
as an intrusion detector. At the end of this chapter, you will be familiar with a few
debugging tips and tricks to boost your development speed.

Preface

[3]

Chapter 7, Using Kinect's Microphone Array, introduces the microphone array that
captures and processes the audio signal. You will learn why Kinect uses an array of
microphones rather than a single microphone. In this chapter you will get an insight
into the Kinect audio processing pipeline that helps Kinect to capture good-quality
audio signals and makes Kinect a highly directional audio device. This chapter
provides you with information on how to capture and record audio signals using
the Kinect microphone array and process the audio data for better quality. You
will also learn about different concepts such as Noise Suppression, Automatic
Gain Control, Echo Cancellation, and Beam forming.

Chapter 8, Speech Recognition, introduces the building of speech-enabled applications
using Kinect. You will explore how speech recognition works and how Kinect's
microphone array helps Kinect to recognize human speech. This chapter also
shows how you can use Kinect as the default speech recognition device for your PC.
You will also learn about the Microsoft Speech API and how it is integrated with
Kinect for Windows SDK, which helps us to build speech-enabled applications.

Chapter 9, Building Gesture-controlled Applications, describes how to build applications
that can be controlled by human gestures. You will learn different approaches for
recognizing gestures and how to apply these approaches in the form of programs
to build motion-sensing applications using the Kinect sensor. This chapter will also
help you understand how to build some gestured-enabled controls.

Chapter 10, Developing Applications Using Multiple Kinects, explains how multiple
Kinect sensors can be placed together and used to build applications. This chapter
describes how to set up environments for developing applications using multiple
Kinects and walks you through building applications by reading data from multiple
devices. You also learn how multiple Kinects work together and different scenarios
where multiple Kinects can be used, along with the challenges while developing
applications using multiple devices.

Chapter 11, Putting Things Together, introduces us to more advanced developments
using Kinect by integrating it with other devices such as Windows Phone,
microcontrollers, and so on. This chapter addresses how we can take things up from
Kinect to Windows Azure and control the Kinect sensor using Windows Phone via
Windows Azure. You will also learn how Kinect can be integrated with the Netduino
microcontroller and how you can use a Kinect device for face tracking.

Preface

[4]

What you need for this book
The basic requirements for this book are as follows:

• Microsoft Visual Studio 2010 Express or higher editions of Visual Studio
• Microsoft .NET Framework 4.0 or higher
• Kinect for Windows Sensor or Kinect for Xbox Sensor
• Kinect for Windows SDK

Please refer Chapter 02, Getting Started , for detailed information on installation of
SDK and the development environment setup.

Who this book is for
The purpose of this book is to explain how to develop applications using the Kinect
for Windows SDK. If you are a beginner and looking to start developing applications
using the Kinect for Windows SDK, and if you want to build motion-sensing,
speech-recognizing applications with Kinect, this book is for you.

This book uses C# and WPF (Windows Presentation Foundation) in the examples,
so you need to know the basics of C# and WPF. You should be familiar with the
Visual Studio IDE as well. You don't have to know anything about the Kinect for
Windows SDK.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Each Kinect device represents an
instance of the Microsoft.Kinect.KinectSensor class."

A block of code is set as follows:

public sealed class KinectSensorCollection : ReadOnlyCollection<Kinec
tSensor>
{
 public KinectSensor this[string instanceId] { get; }

 public event EventHandler<StatusChangedEventArgs> StatusChanged;
}

Preface

[5]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

public partial class MainWindow : Window
{

 KinectSensor sensor;
 // remaining code goes here
}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Move
to the Listen tab and select the Listen to this device checkbox and click on Apply".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.PacktPub.com
http://www.PacktPub.com/support
mailto:copyright@packtpub.com

Understanding the
Kinect Device

Welcome to the world of motion computing with Kinect. Kinect was originally
known by the code name "Project Natal". It is a motion-sensing device which was
originally developed for the Xbox 360 gaming console. One of the distinguishing
factors that makes this device stand out among others in this genre is that it is not
a hand-controlled device, but rather detects your body position, motion, and voice.
Kinect provides a Natural User Interface (NUI) for interaction using body motion
and gesture as well as spoken commands. Although this concept seems straight
out of a fairytale, it is very much a reality now. The controller that was once the
heart of a gaming device finds itself redundant in this Kinect age. You must be
wondering where its replacement is. The answer, my friend, is YOU. It's you who
is the replacement for the controller, and from now on, you are the controller for
your Xbox. Kinect has ushered a new revolution in the gaming world, and it has
completely changed the perception of a gaming device. Since its inception it has
gone on to shatter several records in the gaming hardware domain. No wonder
Kinect holds the Guinness World Record for being the "fastest selling consumer
electronics device". One of the key selling points of the Kinect was the idea of
"hands-free control", which caught the attention of gamers and tech enthusiasts
alike and catapulted the device into instant stardom. This tremendous success has
caused the Kinect to shatter all boundaries and venture out as an independent and
standalone, gesture-controlled device.

It has now outgrown its Xbox roots and the Kinect sensor is no longer limited to
only gaming. Kinect for Windows is a specially designed PC-centric sensor that
helps developers to write their own code and develop real-life applications with
human gestures and body motions. With the launch of the PC-centric Kinect for
Windows devices, interest in motion-sensing software development has scaled
a new peak.

Understanding the Kinect Device

[8]

As Kinect blazed through the market in such a short span of time, it has also created
a necessity of resources that help people learn the technology in an appropriate way.
As Kinect is still a relatively new entry into the market, the resources for learning how
to develop applications for this device are scant. So how does a developer understand
the basics of Kinect right from scratch? Here comes the utility of this book.

This book assumes that you have basic knowledge of C# and a great enthusiasm
to program for Kinect devices. This book can be enjoyed by anybody interested in
knowing more about the device and learning how to interact with devices using
Kinect for Windows Software Development Kit (SDK). This book will also help
you explore how to process video depth and audio stream, and build applications
that interact with human body motion. The book has deliberately been kept simple
and concise, which will aid in the quick grasping of the concepts.

Before delving into the development process, we need a good understanding of the
device and, moreover, what the different types of applications are, which we can
develop using these devices. In order to develop standard applications using the
Kinect for Windows SDK, it is really important for us to understand the components
it interacts with.

In this chapter we will cover the following topics:

• Identifying the critical components that make up Kinect
• Looking into the functionalities of each of the components
• Learning how they interact with each other
• Choosing between Kinect for Windows and Kinect for Xbox
• Exploring different application areas where we can use Kinect

Components of Kinect for Windows
Kinect is a horizontal device with depth sensors, color camera, and a set of
microphones with everything secured inside a small, flat box. The flat box is
attached to a small motor working as the base that enables the device to be tilted
in a horizontal direction. The Kinect sensor includes the following key components:

• Color camera
• Infrared (IR) emitter
• IR depth sensor
• Tilt motor
• Microphone array
• LED

Chapter 1

[9]

Apart from the previously mentioned components, the Kinect device also has a
power adapter for external power supply and a USB adapter to connect with a
computer. The following figure shows the different components of a Kinect sensor:

Inside the Kinect sensor
From the outside, the Kinect sensor appears to be a plastic case with three cameras
visible, but it has very sophisticated components, circuits, and algorithms embedded.
If you remove the black plastic cover from the Kinect device, what will you see?
The hardware components that make the Kinect sensor work.

The following image shows a front view of a Kinect sensor that's been unwrapped
from its black case. Take a look (from left to right) at its IR emitter, color camera,
and IR depth sensor:

Let's move further and discuss about component.

Understanding the Kinect Device

[10]

The color camera
This color camera is responsible for capturing and streaming the color video data.
Its function is to detect the red, blue, and green colors from the source. The stream
of data returned by the camera is a succession of still image frames. The Kinect color
stream supports a speed of 30 frames per second (FPS) at a resolution of 640 x 480
pixels, and a maximum resolution of 1280 x 960 pixels at up to 12 FPS. The value of
frames per second can vary depending on the resolution used for the image frame.

The viewable range for the Kinect cameras is 43 degrees vertical by 57 degrees
horizontal. The following figure shows an illustration of the viewable range of
the Kinect camera:

The following image shows a color image that was captured using Kinect color
sensors with a resolution of 640 x 480 pixels:

Chapter 1

[11]

IR emitter and IR depth sensor
Kinect depth sensors consist of an IR emitter and an IR depth sensor. Both of
them work together to make things happen. The IR emitter may look like a camera
from the outside, but it's an IR projector that constantly emits infrared light in a
"pseudo-random dot" pattern over everything in front of it. These dots are normally
invisible to us, but it is possible to capture their depth information using an IR depth
sensor. The dotted light reflects off different objects, and the IR depth sensor reads
them from the objects and converts them into depth information by measuring the
distance between the sensor and the object from where the IR dot was read.
The following figure shows how the overall depth sensing looks:

It is quite fun and entertaining to know that these infrared dots can
be seen by you. All we need is a night vision camera or goggles.

The depth data stream supports a resolution of 640 x 480 pixels, 320 x 240 pixels, and
80 x 60 pixels, and the sensor viewable range remains the same as the color camera.

Understanding the Kinect Device

[12]

The following image shows depth images that are captured from the depth
image stream:

How depth data processing works
The Kinect sensor has the ability to capture a raw, 3D view of the objects in front of
it, regardless of the lighting conditions of the room. It uses an infrared (IR) emitter
and an IR depth sensor that is a monochrome CMOS (Complimentary Metal-Oxide-
Semiconductor) sensor. The backbone behind this technology is from PrimeSense,
and the following diagram shows how this works:

Chapter 1

[13]

The sequence explained in the diagram is as follows:

When there is a need to capture depth data, the PrimeSense chip sends a signal to
the infrared emitter to turn on the infrared light (1), and sends another signal to the
IR depth sensor to initiate depth data capture from the current viewable range of
the sensor (2). The IR emitter meanwhile starts sending an infrared light invisible
to human eyes (3) to the objects in front of the device. The IR depth sensor starts
reading the inferred data from the object based on the distance of the individual light
points of reflection (4) and passes it to the PrimeSense chip (5). The PrimeSense chip
then analyzes the captured data, and creates a per-frame depth image and passes it
to the output depth stream as a depth image (6).

The IR emitter emits an electromagnetic radiation. The wavelengths
of the radiations are longer than the wavelength of the visible light,
which makes the sensor's IR lights invisible. The wavelengths need to be
consistent to minimize the noise within the captured data. Heat generated
by the laser diode when the Kinect sensor is running can impact the
wavelength. The Kinect sensor has a small, inbuilt fan to normalize the
temperature and ensure that the wavelengths are consistent.

Tilt motor
The base and body part of the sensor are connected by a tiny motor. It is used to
change the camera and sensor's angles, to get the correct position of the human
skeleton within the room. The following image shows the motor along with three
gears that enable the sensor to tilt at a specified range of angles:

Understanding the Kinect Device

[14]

The motor can be tilted vertically up to 27 degrees, which means that the Kinect
sensor's angles can be shifted upwards or downwards by 27 degrees. The following
figure shows an illustration of the angle being changed when the motor is tilted:

Do not physically force the device into a specific angle. The Kinect for
Windows SDK has a few specific APIs that can help us control the
sensor's motor tilting. Do not tilt the Kinect motor frequently; use
this as few times as possible and only when it's required.

Microphone array
The Kinect device exhibits great support for audio with the help of a microphone
array. The microphone array consists of four different microphones that are
placed in a linear order (three of them are spread on the right side and the other
one is placed on the left side, as shown in the following image) at the bottom of
the Kinect sensor:

Chapter 1

[15]

The purpose of the microphone array is not just to let the Kinect device capture the
sound but to also locate the direction of the audio wave. The main advantages of
having an array of microphones over a single microphone are that capturing and
recognizing the voice is done more effectively with enhanced noise suppression,
echo cancellation, and beam-forming technology. This enables Kinect to be a highly
bidirectional microphone that can identify the source of the sound and recognize the
voice irrespective of the noise and echo present in the environment:

LED
An LED is placed in between the camera and the IR projector. It is used for indicating
the status of the Kinect device. The green color of the LED indicates that the Kinect
device drivers have loaded properly. If you are plugging Kinect into a computer,
the LED will start with a green light once your system detects the device; however
for full functionality of your device, you need to plug the device into an external
power source.

Kinect for Windows versus Kinect for
Xbox
Although "Kinect for Windows" and "Kinect for Xbox" are similar in many respects,
there are several subtle differences from a developer's point of view. We have to
keep in mind that the main purpose of Kinect for Xbox was to enhance the gaming
experience of the players. Developing applications was not its primary purpose.
In contrast, Kinect for Windows is primarily a developing device and not for
gaming purposes.

Understanding the Kinect Device

[16]

You can develop applications that use either the Kinect for Windows sensor or the
Kinect for Xbox sensor. The Kinect for Xbox sensor was built to track players that
are up to 12 feet (4.0 meters) away from the sensor. But it fails to track objects that
are very close (80 cm), and we might need to track objects at a very close range for
different applications. The Kinect for Windows sensor has new firmware, which
enables Near Mode tracking. Using Near Mode, Kinect for Windows supports the
tracking of objects as close as 40 cm in front of the device without losing accuracy
or precision. In terms of range, both the sensors behave the same.

Kinect for Windows SDK exposes APIs that can control the mode
of the sensors (Near Mode or Default Mode) using our application,
however the core changes for this feature are built within the
firmware of the Kinect for Windows sensor.

Both the Kinect for Windows and Kinect for Xbox sensors need additional power for
the sensors to work with your PC. This might not be required when connected to the
Xbox device as the Xbox port has enough power to operate the device. There is no
difference between Xbox Kinect and Kinect for Windows in this respect. However
in Kinect for Windows, the USB cable is small and improved to enable more
reliability and portability across a wide range of computers.

And finally, the Kinect for Windows sensor is for commercial applications, which
means that if you are developing a commercial application, you must use the Kinect
for Windows device for production, whereas you can use Kinect for Xbox for general
development, learning, and research purposes.

Where can you use Kinect
By now it has already struck you that this is something more than just gaming.
The Kinect sensor for Windows and the Kinect for Windows SDK unwrap a
new opportunity for the developer to build a wide range of applications.
These can include:

• Capturing real-time video using the color sensor
• Tracking a human body and then responding to its movements and

gestures as a natural user interface
• Measuring the distances of objects and responding

Chapter 1

[17]

• Analyzing 3D data and making a 3D model and measurement
• Generating a depth map of the objects tracked
• Recognizing a human voice and developing hands-free applications

that can be controlled by voice

With this you can build a number of real-world applications that fall under
a different domain. The following are a few examples, which will help you
understand the applicability of Kinect sensors:

• Healthcare: Using the Kinect sensor, you can build different applications
for healthcare, such as exercise measurement, monitoring patients, their
body movements, and so on

• Robotics: Kinect can be used as a navigation system for robots either by
tracking human gestures, voice commands, or by human body movements

• Education: You can build various applications for students and kids to
educate and help them to learn subjects either by their gesture
and voice commands

• Security system: Kinect can be used for developing security systems where
you can track human body movement or face and send the notifications

• Virtual Reality: With the help of Kinect 3D technology and human
gesture tracking, several virtual reality applications can be build using
the Kinect sensor

• Trainer: Kinect can potentially be used as a trainer by measuring the
movements of human body joints, providing live feedback to users if the
joints are moving in an appropriate manner by comparing the movements
with previously stored data

• Military: Kinect can be used to build intelligent drones to spy on enemy lines

Well these were just a few specific examples of domains where you can use Kinect,
but at the end of the day it's up to your imagination; where and how you want this
device to work.

Understanding the Kinect Device

[18]

Summary
This chapter gave you an inside look at the different components of the Kinect
sensor. You saw that the major components of a Kinect device are its color sensor,
IR depth sensors, IR emitter, microphone arrays, and a stepper motor that can be
tilted to change the Kinect camera angles. While the color sensor and depth sensors
ensure video and depth data input, which is of prime importance for the functioning
of the device, the microphone arrays on the other hand ensure that the audio
quality is also at par. Also worthwhile is mentioning about how kinect processes
the depth data, and the array of microphones, which is a design novelty that
helps in clear voice recognition with the use of the noise suppression and echo
cancelation mechanisms. Kinect for Windows is also capable of tracking humans
at a close range of approximately 40 centimeters using Near Mode. It wouldn't
be wrong to say that it is this combination of technological innovations that make
Kinect the awe-inspiring device that it is. You have also gone through the different
possibilities of applications that can be developed using Kinect. In the next chapter,
we will walk you through the step-by-step installation and configuration of the
development environment setup along with different troubleshooting tips and tricks
that will help you to be sure about everything before beginning with development.

Getting Started
The Kinect for Windows SDK is a toolkit for developing applications for
Kinect devices. Developing applications using Kinect SDK is fairly easy and
straightforward. The SDK provides an interface to interact with Kinect via system
drivers. The SDK includes drivers for the Kinect sensor, which interact with the
device, and the OS and APIs interact with the device through program. Overall, the
SDK provides an opportunity to the developers to build an application using either
managed code (C# and VB.NET) or unmanaged code (C++) using Visual Studio 2010
or higher versions, running on Windows 7 or Windows 8.

Kinect for Windows Developer Toolkit is an additional installer that comes with a
set of extended components, such as Face Tracking SDK, which helps to track human
faces, and Kinect Studio to record and playback the depth and color stream data.
The Developer Toolkit also contains samples and documentation to give you a quick
hands-on reference.

While the application development with Kinect SDK is fascinating and
straightforward, there are certain things that need to be taken care of during the SDK
installation, configuration, and setting up of your development environment. The
following is a quick overview of various aspects we'll be discussing in this chapter:

• Understanding the system requirements
• The evolutionary journey of Kinect for Windows SDK
• Installing and verifying the installed components
• Troubleshooting tips and tricks
• Exploring the installed components of SDK
• A quick lap around different features of Kinect for Windows SDK
• The Coding4fun toolkit

By the end of this chapter, you will have everything set up to start development with
the Kinect sensor.

Getting Started

[20]

System requirements for the Kinect for
Windows SDK
While developing applications for any device using an SDK, compatibility plays
a pivotal role. It is really important that your development environment must
fulfill the following set of requirements before starting to work with the Kinect
for Windows SDK.

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.PacktPub.com.
If you purchased this book elsewhere, you can visit http://www.
PacktPub.com/support and register to have the files e-mailed
directly to you.

Supported operating systems
The Kinect for Windows SDK, as its name suggests, runs only on the Windows
operating system. The following are the supported operating systems for
development:

• Windows 7
• Windows Embedded 7
• Windows 8

The Kinect for Windows sensor will also work on Windows
operating systems running in a virtual machine such as
Microsoft HyperV, VMWare, and Parallels.

System configuration
The hardware requirements are not as stringent as the software requirements. It
can be run on most of the hardware available in the market. The following are the
minimum configurations required for development with Kinect for Windows:

• A 32- (x86) or 64-bit (x64) processor
• Dual core 2.66 GHz or faster processor
• Dedicated USB 2.0 bus
• 2 GB RAM

Chapter 2

[21]

The Kinect sensor
It goes without saying, you need a Kinect sensor for your development. You can use
the Kinect for Windows or the Kinect for Xbox sensor for your development.

Before choosing a sensor for your development, make sure you are
clear about the limitations of the Kinect for Xbox sensor over the
Kinect for Windows sensor, in terms of features, API supports, and
licensing mechanisms. We have already discussed this in the Kinect
for Windows versus Kinect for Xbox section in Chapter 1, Understanding
the Kinect Device.

The Kinect for Windows sensor
By now, you are already familiar with the Kinect for Windows sensor and its
different components. The Kinect for Windows sensor comes with an external power
supply, which supplies the additional power, and a USB adapter to connect with the
system. For the latest updates and availability of the Kinect for Windows sensor, you
can refer to http://www.microsoft.com/en-us/kinectforwindows/site.

The Kinect for Xbox sensor
If you already have a Kinect sensor with your Xbox gaming console, you may use
it for development. Similar to the Kinect for Windows sensor, you will require a
separate power supply for the device so that it can power up the motor, camera,
IR sensor, and so on.

If you have bought a Kinect sensor with an Xbox as a bundle, you
will need to buy the adapter / power supply separately. You can
check out the external power supply adapter at http://www.
microsoftstore.com. If you have bought only the Kinect for Xbox
sensor, you will have everything that is required for a connection with
a PC and external power cable.

Development tools and software
The following are the software that are required for development with Kinect SDK:

• Microsoft Visual Studio 2010 Express or higher editions of Visual Studio
• Microsoft .NET Framework 4.0 or higher
• Kinect for Windows SDK

http://www.microsoft.com/en-us/kinectforwindows/
http://www.microsoftstore.com
http://www.microsoftstore.com

Getting Started

[22]

Kinect for Windows SDK uses the underlying speech capability of a Windows
operating system to interact with the Kinect audio system. This will require
Microsoft Speech Platform – Server Runtime, the Microsoft Speech Platform SDK,
and a language pack to be installed in the system, and these will be installed
along with the Kinect for Windows SDK. The system requirements for SDK may
change with upcoming releases. Refer to http://www.microsoft.com/en-us/
kinectforwindows/ for the latest system requirements.

Evaluation of the Kinect for Windows SDK

Though the Kinect for Xbox sensor has been in the market for quite some time,
Kinect for Windows SDK is still fairly new in the developer paradigm, and it's
evolving. The book is written on Kinect for Windows SDK v1.6. The Kinect for
Windows SDK was first launched as a Beta 1 version in June 2011, and after a
thunderous response from the developer community, the updated version of Kinect
for Windows SDK Beta 2 version was launched in November 2011. Initially, both the
SDK versions were a non-commercial release and were meant only for hobbyists.
The first commercial version of Kinect for Windows SDK (v1.0) was launched in
February 2012 along with a separate commercial hardware device. SDK v1.5 was
released on May 2012 with bunches of new features, and the current version of
Kinect for Windows SDK (v1.6) was launched in October 2012. The hardware hasn't
changed since its first release. It was initially limited to only 12 countries across
the globe. Now the new Kinect for Windows sensor is available in more than 40
countries. The current version of SDK also has the support of speech recognition for
multiple languages.

http://www.microsoft.com/en-us/kinectforwindows/
http://www.microsoft.com/en-us/kinectforwindows/

Chapter 2

[23]

Downloading the SDK and the Developer
Toolkit
The Kinect SDK and the Developer Toolkit are available for free and can be
downloaded from http://www.microsoft.com/en-us/kinectforwindows/.

The installer will automatically install the 64- or 32-bit version of SDK depending on
your operating system. The Kinect for Windows Developer Toolkit is an additional
installer that includes samples, tools, and other development extensions. The
following diagram shows these components:

The main reason behind keeping SDK and Developer Toolkit in two
different installers is to update the Developer Toolkit independently
from the SDK. This will help to keep the toolkit and samples updated
and distributed to the community without changing or updating the
actual SDK version. The version of Kinect for Windows SDK and that
for the Kinect for Windows Developer Toolkit might not be the same.

http://www.microsoft.com/en-us/kinectforwindows/

Getting Started

[24]

Installing Kinect for Windows SDK
Before running the installation, make sure of the following:

• You have uninstalled all the previous versions of Kinect for Windows SDK
• The Kinect sensor is not plugged into the USB port on the computer
• There are no Visual Studio instances currently running

Start the installer, which will display the start screen as End User License
Agreement. You need to read and accept this agreement to proceed with
the installation. The following screenshot shows the license agreement:

Accept the agreement by selecting the checkbox and clicking on the Install option,
which will do the rest of the job automatically.

Before the installation, your computer may pop out the User Access
Control (UAC) dialog, to get a confirmation from you that you are
authorizing the installer to make changes in your computer.

Chapter 2

[25]

Once the installation is over, you will be notified along with an option for installing
the Developer Toolkit, as shown in the next screenshot:

Is it mandatory to uninstall the previous version of SDK before we
install the new one?
The upgrade will happen without any hassles if your current version is a
non-Beta version. As a standard procedure, it is always recommended to
uninstall the older SDK prior to installing the newer one, if your current
version is a Beta version.

Installing the Developer Toolkit
If you didn't downloaded the Developer Toolkit installer earlier, you can click on
the Download the Developer Toolkit option of the SDK setup wizard (refer to the
previous screenshot); this will first download and then install the Developer Toolkit
setup. If you have already downloaded the setup, you can close the current window
and execute the standalone Toolkit installer. The installation process for Developer
Toolkit is similar to the process for the SDK installer.

Getting Started

[26]

Components installed by the SDK and the
Developer Toolkit
The Kinect for Windows SDK and Kinect for Windows Developer Toolkit install the
drivers, assemblies, samples, and the documentation. To check which components
are installed, you can navigate to the Install and Uninstall Programs section of
Control Panel and search for Kinect. The following screenshot shows the list
of components that are installed with the SDK and Toolkit installer:

The default location for the SDK and Toolkit installation is
%ProgramFiles%/Microsoft SDKs/Kinect.

Kinect management service
The Kinect for Windows SDK also installs Kinect Management, which is a Windows
service that runs in the background while your PC communicates with the device.
This service is responsible for the following tasks:

• Listening to the Kinect device for any status changes
• Interacting with the COM Server for any native support
• Managing the Kinect audio components by interacting with Windows

audio drivers

You can view this service by launching Services by navigating to Control Panel |
Administrative Tools, or by typing Services.msc in the Run command.

Chapter 2

[27]

Is it necessary to install the Kinect SDK to end users' systems?
The answer is No. When you install the Kinect for Windows SDK, it
creates a Redist directory containing an installer that is designed to
be deployed with Kinect applications, which install the runtime and
drivers. This is the path where you can find the setup file after the
SDK is installed:
%ProgramFiles%/\Microsoft SDKs\Kinect\v1.6\Redist\
KinectRuntime-v1.6-Setup.exe

This can be used with your application deployment package, which
will install only the runtime and necessary drivers.

Connecting the sensor with the system
Now that we have installed the SDK, we can plug the Kinect device into your PC.
The very first time you plug the device into your system, you will notice the LED
indicator of the Kinect sensor turning solid red and the system will start installing
the drivers automatically.

The default location of the driver is %Program Files%\Microsoft
Kinect Drivers\Drivers.

The drivers will be loaded only after the installation of SDK is complete and it's
a one-time job. This process also checks for the latest Windows updates on USB
Drivers, so it is good to be connected to the Internet if you don't have the latest
updates of Windows.

Getting Started

[28]

The check marks in the dialog box shown in the next screenshot indicate successful
driver software installation:

When the drivers have finished loading and are loaded properly, the LED light on
your Kinect sensor will turn solid green. This indicates that the device is functioning
properly and can communicate with the PC as well.

Verifying the installed drivers
This is typically a troubleshooting procedure in case you encounter any problems.
Also, the verification procedure will help you to understand how the device drivers
are installed within your system. In order to verify that the drivers are installed
correctly, open Control Panel and select Device Manager; then look for the Kinect
for Windows node. You will find the Kinect for Windows Device option listed as
shown in the next screenshot:

Chapter 2

[29]

Not able to view all the device components
At some point of time, it may happen that you are able to view only the Kinect for
Windows Device node (refer to the following screenshot). At this point of time, it
looks as if the device is ready. However, a careful examination reveals a small hitch.
Let's see whether you can figure it out or not! The Kinect device LED is on and Device
Manager has also detected the device, which is absolutely fine, but we are still missing
something here. The device is connected to the PC using the USB port, and the system
prompt shows the device installed successfully—then where is the problem?

The default USB port that is plugged into the system doesn't have the power
capabilities required by the camera, sensor, and motor. At this point, if you plug
it into an external power supplier and turn the power on, you will find all the
driver nodes in Device Manager loaded automatically.

This is one of the most common mistakes made by the developers. While
working with Kinect SDK, make sure your Kinect device is connected
with the computer using the USB port, and the external power adapter
is plugged in and turned on.

The next picture shows the Kinect sensor with USB connector and power adapter,
and how they have been used:

Getting Started

[30]

With the aid of the external power supply, the system will start searching for
Windows updates for the USB components. Once everything is installed properly,
the system will prompt you as shown in the next screenshot:

All the check marks in the screenshot indicate that the corresponding components
are ready to be used and the same components are also reflected in Device Manager.

The messages prompting for the loading of drivers, and the prompts
for the installation displaying during the loading of drivers, may vary
depending upon the operating system you are using. You might also not
receive any of them if the drivers are being loaded in the background.

Detecting the loaded drivers in Device Manager
Navigate to Control Panel | Device Manager, look for the Kinect for Windows
node, and you will find the list of components detected. Refer to the next screenshot:

The Kinect for Windows Audio Array Control option indicates the driver for
the Kinect audio system whereas the Kinect for Windows Camera option controls
the camera sensor. The Kinect for Windows Security Control option is used to
check whether the device being used is a genuine Microsoft Kinect for Windows
or not. In addition to appearing under the Kinect for Windows node, the Kinect
for Windows USB Audio option should also appear under the Sound, Video
and Game Controllers node, as shown in the next screenshot:

Chapter 2

[31]

Once the Kinect sensor is connected, you can identify the Kinect microphone like any
other microphone connected to your PC in the Audio Device Manager section. Look
at the next screenshot:

Testing your device
Once the SDK installation is complete, you are ready to start the development.
But let's start with a few bits of testing.

Getting Started

[32]

Testing Kinect sensors
The Developer Toolkit has a set of sample applications; you can choose any of them
to test the device. To quickly check it out, you can run the Kinect Explorer application
from the Developer Toolkit. The Kinect Explorer demonstrates the basic features of the
Kinect for Windows SDK, which retrieves color, depth, and skeleton data and displays
them on the UI. The next screenshot shows the UI reference of the application:

If you are also able to view a similar-looking output, where you can see the Kinect
sensor returning the depth, color, and skeleton data, you can be sure that your
device has been installed properly.

Testing the Kinect microphone array
You can use Kinect as a microphone. Navigate to the Sound section in Control Panel
and select the Recording tab to see Kinect's Microphone Array. This is shown in
the following screenshot. You can also see the bar along with the microphone array,
which indicates the level of sound. You can do everything that a PC's audio tool is
capable of doing.

Chapter 2

[33]

To ensure that the Kinect microphone array is capturing the sound clearly and
passing it to your system, you can use the Listen To this device option. To enable
this, right-click on Microphone Array and select Properties. This is shown in the
next screenshot:

This will launch the Microphone Array Property window. Move to the Listen tab,
select the Listen to this device checkbox, and click on Apply. This is shown in the
next screenshot:

Now, if your system's speaker is turned on and you speak in front of the Kinect
device, you should get to hear the same voice via your system's speaker. This ensures
that your Kinect audio device is also configured properly.

Getting Started

[34]

If you want to use multiple Kinect sensors for your application, you can see the
detailed procedure given in Chapter 10, Developing Application Using Multiple Kinects.

Looking inside the Kinect SDK
The Kinect SDK provides both managed and unmanaged libraries. If you are
developing an application using either C# or VB.NET, you can directly invoke the
.NET Kinect Runtime APIs; and for C++ applications, you have to interact with the
Native Kinect Runtime APIs. Both the types of APIs can talk to the Kinect drivers
that are installed as a part of SDK installation.

The unmanaged and managed libraries provide access to the same
set of Kinect sensor features.

For managed code, the Kinect for Windows SDK provides Dynamic Link Library
(DLL) as an assembly (Microsoft.Kinect.dll), which can be added to any application
that wants to use the Kinect device. You can find this assembly in the SDK
installation directory, as shown in the next screenshot:

The Kinect driver can control the camera, depth sensor, audio microphone array,
and the motor. Data passes between the sensor and the application in the form of
data streams of the following types:

• Color data stream
• Depth data stream
• Audio data stream

The Kinect for Windows SDK is capable of capturing Infrared data
stream as a part of color data stream channel as well as can read the
sensor accelerometer data.

The next diagram illustrates the overall layered components for the Kinect SDK,
and it shows how an application interacts with different layers of components:

Chapter 2

[35]

Features of the Kinect for Windows SDK
Well, as of now we have discussed the components of the Kinect SDK, system
requirements, installation of SDK, and setting up of devices. Now it's time to
have a quick look at the top-level features of Kinect for Windows SDK.

The Kinect SDK provides a library to directly interact with the camera sensors,
the microphone array, and the motor. We can even extend an application for
gesture recognition using our body motion, and also enable an application with
the capability of speech recognition. The following is the list of operations that
you can perform with Kinect SDK. We will be discussing each of them in
subsequent chapters.

• Capturing and processing the color image data stream
• Processing the depth image data stream
• Capturing the infrared stream
• Tracking human skeleton and joint movements
• Human gesture recognition
• Capturing the audio stream
• Enabling speech recognition
• Adjusting the Kinect sensor angle
• Getting data from the accelerometer
• Controlling the infrared emitter

Getting Started

[36]

Capturing the color image data stream
The color camera returns 32-bit RGB images at a resolution ranging from 640 x 480
pixels to 1280 x 960 pixels. The Kinect for Windows sensor supports up to 30 FPS in
the case of a 640 x 480 resolution, and 10 FPS for a 1280 x 960 resolution. The SDK
also supports retrieving of YUV images with a resolution of 640 x 480 at 15 FPS.

Using the SDK, you can capture the live image data stream at different resolutions.
While we are referring to color data as an image stream, technically it's like a
succession of color image frames sent by the sensor. The SDK is also capable of
sending an image frame on demand from the sensor.

Chapter 4, Getting the Most Out of Kinect Camera, talks in depth about capturing
color streams.

Processing the depth image data stream
The Kinect sensor returns 16-bit raw depth data. Each of the pixels within the data
represents the distance between the object and the sensor. Kinect SDK APIs support
depth data streams at resolutions of 640 x 480, 320 x 240, and 80 x 60 pixels.

Near Mode
The Near Mode feature helps us track a human body within a very close range
(of approximately 40 centimeters). We can control the mode of sensors using our
application; however, the core part of this feature is built in the firmware of the
Kinect sensor.

This feature is limited to the Kinect for Windows sensor only. If you are
using the Xbox sensor, you won't be able to work with Near Mode.

We will talk about depth data processing and Near Mode in Chapter 5, The Depth
Data – Making Things Happen.

Chapter 2

[37]

Capturing the infrared stream
You can also capture images in low light conditions, by reading the infrared stream
from the Kinect sensor. The Kinect sensor returns 16 bits per pixel infrared data with
a resolution of 640 x 480 as an image format, and it supports up to 30 FPS.
The following is an image captured from an infrared stream:

You cannot read color and infrared streams simultaneously, but you can
read depth and infrared data simultaneously. The reason behind this is
that an infrared stream is captured as a part of a color image format.

Tracking human skeleton and joint
movements
One of the most interesting parts of the Kinect SDK is its support for tracking the
human skeleton. You can detect the movement of the human skeleton standing in
front of a Kinect device. Kinect for Windows can track up to 20 joints in a single
skeleton. It can track up to six skeletons, which means it can detect up to six people
standing in front of a sensor, but it can return the details of the full skeleton (joint
positions) for only two of the tracked skeletons.

Getting Started

[38]

The SDK also supports tracking the skeleton of a human body that is seated. The
Kinect device can track your joints even if you are seated, but up to 10 joint points
only (upper body part).

The next image shows the tracked skeleton of a standing person, which is based
on depth data:

The details on tracking the skeletons of standing and seated humans, its uses,
and the development of an application using skeletal tracking, is covered in
Chapter 6, Human Skeleton Tracking.

Capturing the audio stream
Kinect has four microphones in a linear configuration. The SDK provides
high-quality audio processing capabilities by using its own internal audio
processing pipeline. The SDK allows you not only to capture raw audio data,
but also high-quality audio processing by enabling the noise suppression and
echo cancellation features. You can also control the direction of the beam of the
microphone array with the help of the SDK.

We have covered the details of audio APIs of Kinect SDK in Chapter 7, Using Kinect's
Microphone Array.

Chapter 2

[39]

Speech recognition
You can take advantage of the Kinect microphone array and Windows Speech
Recognition APIs to recognize your voice and develop relevant applications. You can
build your own vocabulary and pass it to the speech engine, and design your own
set of voice commands to control the application. If a user says something with some
gestures, say while moving a hand as shown in the following picture, an application
can be developed to perform some work to be done depending on the user's gestures
and speech.

In Chapter 8, Speech Recognition, we will discuss the APIs and build some sample
applications by leveraging the speech recognition capability of the Kinect for
Windows SDK.

Getting Started

[40]

Human gesture recognition
A gesture is nothing but an action intended to communicate feelings or intentions
to the device. Gesture recognition has been a prime research area for a long time.
However, in the last decade, a phenomenal amount of time, effort, and resources
have been devoted to this field in the wake of the development of devices. Gesture
recognition allows people to interface with a device and interact naturally with body
motion, as with the person in the following picture, without any device attached to
the human body.

In the Kinect for Windows SDK, there is no direct support for an API to recognize
and deal with human gestures; however, by using skeleton tracking and depth
data processing, you can build your own gesture API, which can interact with
your application.

Chapter 9, Building Gesture-controlled Applications, has a detailed discussion about
building gesture-controlled applications using the Kinect for Windows SDK.

Chapter 2

[41]

Tilting the Kinect sensor
The SDK provides direct access to controlling the motor of the sensor. By changing
the elevation angles of the sensors, you can set the viewing angle for the Kinect
sensor as per your needs. The maximum and minimum value of elevation angle is
limited to +27 degrees and -27 degrees, in SDK. If you try to change the sensor angle
more or less than these specified ranges, your application will throw an invalid
operation exception.

The tilting is allowed only for the vertical direction. There is no
horizontal tilting with Kinect sensors.

We will cover the details of tilting motors and the required APIs in Chapter 4, Getting
the Most Out of Kinect Camera.

Getting data from the accelerometer of the
sensor
Kinect treats the elevation angle as being relative to the gravity and not its base, as
it uses its accelerometers to control the rotation. The Kinect SDK exposes the APIs
to read the accelerometer data directly from the sensor. You can detect the sensor
orientation by reading the data from accelerometer of the sensor.

Controlling the infrared emitter
Controlling the infrared emitter is a very small but very useful feature of the Kinect
SDK, where you can forcefully turn the infrared emitter off. This is required while
dealing with the data from multiple sensors, and when you want to capture data
from specific sensors by turning off the IR emitters of other sensors.

This feature is limited only to the Kinect for Windows
sensor. If you are using the Xbox sensor, you will get
InvalidOperationException with the The feature
is not supported by this version of the hardware message.

Getting Started

[42]

The Kinect for Windows Developer
Toolkit
Kinect for Windows Developer Toolkit is an additional set of components that helps
you to build sophisticated applications easily by providing access to more tools and
APIs. This toolkit has a number of samples, documentation for SDK API libraries,
the Kinect Studio tool (a tool that can help you record and play Kinect and data
during debugging), as well as the Face Tracking SDK.

After the installation of Developer Toolkit, you will get a standalone executable
within the toolkit that is installed in the directory. Run the application; it will
display the screen as shown in the following screenshot. You can navigate
through it for resources and samples.

The Face Tracking SDK
The Face Tracking SDK is a part of the Kinect for Windows Developer Toolkit.
It contains a few sets of APIs that you can use to track a human face, by taking
advantages of Kinect SDK APIs. The SDK detects and tracks the positions and
orientations of faces, and it can also animate eye brow positions and the shape
of mouth in real time. The Face Tracking SDK can be used in several places,
such as recognizing facial expressions, NUI interaction with the face, and
tasks that are related to the face.

Chapter 2

[43]

The next image shows a basic face tracking instance using the Kinect for Windows
and Face Tracking SDKs.

Kinect Studio
Kinect Studio can record and playback the sensor's data stream. It's a very handy
and useful tool for developers during testing and while dealing with debugging of
Kinect applications. The Kinect data stream can be recorded and saved in a .xed
file format for future use. What does that mean? How does that help? Well, let's say
you are developing an application based on gestures, and you need to perform that
gesture every time to test or debug your application; in this case, using the Kinect
Studio you can record your action once and just play the recording again and again.

The permission level for both Kinect Studio and the application that
is used by Kinect Studio, has to be the same.

Getting Started

[44]

The next screenshot shows a quick view of Kinect Studio, which is displaying the
color view, depth view, and 3D view of the data captured by Kinect:

I have covered more on the Face Tracking SDK and Kinect Studio in the latter part
of this book.

Making your development setup ready
While the device and driver setup look good, you need to ensure your development
environment is ready as well.

The basic software you require for setting up the development environment are
Visual Studio 2010 Express Edition or any higher edition along with .NET 4.0
Framework, which we have already discussed as a part of system requirement.

Chapter 2

[45]

If you are already familiar with development using Visual Studio, the basic steps
for implementing an application using a Kinect device should be straightforward.
You simply have to perform the following operations:

1. Launch a new instance of Visual Studio.
2. Create a new project.
3. Refer to the Microsoft.Kinect.dll file.
4. Declare the appropriate namespaces for the added assembly.
5. Start using the Kinect SDK API library.

We will be discussing the details about development in the next chapter.

The Coding4Fun Kinect Toolkit
The Coding4Fun Kinect Toolkit provides several necessary extension methods
to make developing of application using the Kinect for Windows SDK faster and
easier. You can download the Coding4Fun Kinect Toolkit from http://c4fkinect.
codeplex.com/.

The Coding4Fun Kinect Toolkit is also available as a NuGet package.
You can install it using the NuGet Package Manager console within
Visual Studio.

We will explore some of the extension methods and the installation procedure of
Coding4Fun Kinect Toolkit in the upcoming chapters.

Summary
In this chapter we have covered the prerequisites of an SDK installation, that is,
the hardware and software requirements for the installation. A brief step-by-step
guide for the installation, loading of drivers, and for setting up the development
environment is also discussed. We have seen a quick overview of the Kinect SDK
features and also the new Kinect SDK Developer Toolkit. We have also seen how
the SDK provides an opportunity to developers to build applications using different
languages such as C#, VB.NET, or C++. The knowledge gained from this chapter will
help you fully grasp the subjects discussed in the subsequent chapters.

In the next chapter you will get started with development with the Kinect for
Windows SDK.

http://c4fkinect.codeplex.com/

Starting to Build Kinect
Applications

Let's begin our journey towards developing our first application with Kinect. For the
development of every Kinect application, there are certain common operations we
need to perform, listed as follows:

• The application must detect the connected Kinect device and needs to start it.
• Once the sensor is started, the application has to initialize and subscribe the

type of data required from the sensor.
• During the overall execution cycle of an application, a sensor can change its

state. The application must monitor the changes in the state for the connected
device and handle them appropriately.

• When the application quits/ends, it should shut down the device properly.

This chapter will cover the basic understanding of the Kinect SDK APIs and the
development of applications with the Kinect SDK. We will discuss in a step-by-step
manner the development of the applications in this chapter so that it helps you in
upcoming chapters. The following is an overview of various aspects we'll be covering
in this chapter:

• Getting familiar with the application's interaction with the Kinect device
• Understanding the classification of APIs based on the Kinect SDK

libraries used
• Building a Kinect Info Box application by reading sensor information
• Using Kinect libraries in your application
• Exploring SDK libraries that read device information

Starting to Build Kinect Applications

[48]

• Different ways to examine whether Kinect devices are correctly connected
and installed and are in working condition

• Building a KinectStatusNotifier application to notify the sensor state change
in the system tray

How applications interact with the Kinect
sensor
The Kinect for Windows SDK works as an interface between the Kinect device
and your application. When you need to access the sensor, the application sends
an API call to the driver. The Kinect driver controls access to sensor data. To take
a granular look inside the application interfacing with the sensor, refer to the
following diagram:

The installed drivers for the sensors sit with the components of system device drivers
and can talk to each other. The drivers help to stream the video and audio data from
the sensors and return it to the application. These drivers help to detect the Kinect
microphone array as a default audio device and also help the array to interact with
the Windows default speech recognition engine. Another part of the Kinect device
driver controls the USB hubs on the connected sensor as well.

Chapter 3

[49]

Understanding the classification of SDK APIs
To understand the functionality of different APIs and to know their use, it is always
good to have a clear view of the way they work. We can classify the SDK libraries
into the two following categories:

• Those controlling and accessing Kinect sensors
• Those accessing microphones and controlling audio

The first category deals with the sensors by capturing the color stream, infrared data
stream, and depth stream, by tracking human skeletons and taking control of sensor
initialization. A set of APIs in this category directly talks to the sensor hardware,
whereas a few APIs on processing apply the data that is captured from the sensor.

On the other hand, the audio APIs control the Kinect microphone array and help
to capture the audio stream from the sensors, controlling the sound source and
enabling speech recognition, and so on. The following diagram shows a top-level
API classification based on the type of work the API performs:

Depth Stream

Accessing Sensors

Accessing
Microphone

Ki
ne

ct
 S

D
K

AP
I

Color Stream

Skeleton Tracking

Device Info

Audio Stream

Speech

Beamforming

We can also define the SDK API as a Natural User Interfaces (NUI) API, which
retrieves the data from the depth sensor and color camera and captures the audio data
stream. There are several APIs that are written on top of the NUI APIs, such as those
for retrieving sensor information just by reading sensor details and for tracking human
skeletons based on the depth data stream returned from the sensor.

Starting to Build Kinect Applications

[50]

Kinect Info Box – your first Kinect
application
Let's start developing our first application. We will call this application Kinect Info
Box. To start development, the first thing we are going to build is an application
that reads the device information from a Kinect sensor. The Info Box application is
self-explanatory. The following screenshot shows a running state of the application,
which shows the basic device information such as Connection ID, Device ID, and
Status. The Info Box also shows the currently active stream channel and the sensor
angle. You can also start or stop the sensor using the buttons at the bottom of
the window.

We will build this application in a step-by-step manner and explore the different
APIs used along with the basic error-handling mechanisms that need to be taken
care of while building a Kinect application.

Creating a new Visual Studio project
1. Start a new instance of Visual Studio.
2. Create a new project by navigating to File | New Project. This will open

the New Project window.

Chapter 3

[51]

3. Choose Visual C# from the installed templates and select the WPF
Application, as shown in the following screenshot:

You can select the Windows Forms Application template instead of WPF
Application template. In this book, all the sample applications will be
developed using WPF. The underlying Kinect SDK API is the same for
both Windows Forms Application and WPF Application.

4. Give it the name KinectInfoBox, and then click on OK to create a new
Visual studio project.

Starting to Build Kinect Applications

[52]

Adding the Kinect libraries
The next thing you need to do is add the Kinect libraries to the Visual Studio project
using the following steps:

1. From the Solution Explorer window, right-click on the References folder
and select Add Reference…, as shown in the following screenshot:

2. This will launch the Add Reference window. Then, search for the Microsoft.
Kinect.dll file within the Kinect SDK folder. Select Microsoft.Kinect.dll
and click on OK, as shown in the following screenshot:

Chapter 3

[53]

3. This will add Microsoft.Kinect.dll as a reference assembly into your
project, which you can see within the References folder, as shown in the
following screenshot:

We now have a default project ready with the Kinect library added. The next thing to
do is to access the library APIs for our application.

Getting the Kinect sensor
The KinectSensor class is provided as part of the SDK libraries, which are
responsible for most of the operation with the Kinect sensor. You need to create an
instance of the KinectSensor class and then use this to control the Kinect sensor and
read the sensor information.

While writing code, the first thing you need to do is to add the using directives, which
will enable the program to use the Kinect SDK reference. Open the MainWindow.xaml.
cs file from Solution Explorer, and then add the following line of code at the top of
your program with the other using statement:

using Microsoft.Kinect;

The Kinect sensor
In a Kinect application, each Kinect device represents an instance of the Microsoft.
Kinect.KinectSensor class. This represents the complete runtime pipeline for the
sensor during the life span of the application.

Starting to Build Kinect Applications

[54]

The following diagram illustrates the usage of Kinect sensors over a life span of
an application:

Defining the Kinect sensor
Defining the sensor objects is as simple as defining other class objects. The defined
object will come into action only when you initialize for a specific Kinect operation,
such as color image streaming and depth image streaming. We can define a Kinect
sensor object using the following code snippet:

public partial class MainWindow : Window
{
 KinectSensor sensor;
 // remaining code goes here
}

The sensor objects need a reference to the Kinect device that is connected with the
system and can be used by your application. You can't instantiate the KinectSensor
object as it does not have a public constructor. Instead, the SDK creates KinectSensor
objects when it detects a Kinect device attached to your system.

The collection of sensors
The KinectSensor class has a static property of the KinectSensorCollection type,
named KinectSensors, which consists of the collection of sensors that are connected
with your system. The KinectSensor.KinectSensors collection returns the
collection of Kinect devices connected with your system. KinectSensorCollection
is a read-only collection of the KinectSensor type. Each KinectSensorCollection
class consists of an indexer of the KinectSensor object and an event named
StatusChanged. The following code block shows the definition of the
KinectSensorCollection class:

public sealed class KinectSensorCollection : ReadOnlyCollection<Kinect
Sensor>, IDisposable
 {
 public KinectSensor this[string instanceId] { get; }
 public event EventHandler<StatusChangedEventArgs>
 StatusChanged;
 public void Dispose();
 }

Chapter 3

[55]

As this returns a collection of Kinect devices, you can use any index of that collection
to get the reference of a particular sensor. As an example, if you have two devices
connected with your system, KinectSensor.KinectSensors[0] will represent the
first Kinect device and KinectSensor.KinectSensors[1] will represent the second
Kinect device.

Consider that you have connected a device, so you will get a reference of this
connected sensor as shown in this code:

this.sensor = KinectSensor.KinectSensors[0];

Once you have the sensor object for the Kinect device, invoke the KinectSensor.
Start() method to start the sensor.

Check whether any device is connected before you start the sensor
It is always good practice to first check whether there is any sensor
connected with the system before carrying out any operation with the
KinectSensor objects. KinectSensors holds the reference to all
connected sensors, and as this is a collection, it has a Count property.
You can use KinectSensors.Count to check the number of devices.

int deviceCount = KinectSensor.KinectSensors.Count;
if (deviceCount > 0)
{
 this.sensor = KinectSensor.KinectSensors[0];
 // Rest operation here
}
else
{
 // No sensor connected. Take appropriate action
}

Starting up Kinect
Starting up Kinect means initializing the Kinect sensors with different data streams.
The sensor has to first start before reading from itself. You can write a method, such
as the following one, that handles the sensor start:

private void StartSensor()
{
 if (this.sensor != null && !this.sensor.IsRunning)
 {
 this.sensor.Start();
 }
}

Starting to Build Kinect Applications

[56]

The KinectSensor class has a property named IsRunning,
which returns true if the sensor is running. You can take
advantage of this property to check whether the sensor is running
or not. When you call the sensor.Start() method, the SDK
checks the current sensor status internally before it actually starts
the sensor. So, if you forgot to check sensor.IsRunning, the
SDK will take care of this automatically; however, checking it well
in advance will save an unnecessary call. Similarly, calling the
Start() method multiple times won't cause any problems as the
SDK will start the sensor only if it is not running.

In this application, we are instantiating the sensor in the Window_Loaded event, as
shown in the following code snippet. This will start the sensor when the application
starts; however, you can take the connected sensor as a reference and can start it
anywhere in your application, based on your requirements.

protected void MainWindow_Loaded(object sender, RoutedEventArgs e)
{
 if (KinectSensor.KinectSensors.Count > 0)
 {
 this.sensor = KinectSensor.KinectSensors[0];
 this.StartSensor();
 }
 else
 {
 MessageBox.Show("No device is connected with system!");
 this.Close();
 }
}

In the preceding code block, you can see that, first of all, we check the count of the
connected sensors and proceed if the number of the connected devices is greater
than 0, otherwise we prompt a message to the user and close the application.
This is always a good practice. Once we have connected the sensor, we take the
sensor as a reference and start the sensor by calling the StartSensor method
that we defined earlier.

Chapter 3

[57]

Inside the sensor.Start() method
Before taking any further action, the sensor.Start() method first checks for the
status of the sensor(with the Status term). The initialization of the sensor happens
only if the sensor is connected. If the sensor is not connected and you are trying
to start the sensor, it will throw an InvalidOperationException object with the
KinectNotReady message.

If the sensor is connected, the Start() method initializes the sensor and then tries to
open the color, depth, and skeleton data stream channels with the default values if
they are set to Enable.

Initialization of different stream channels does not mean to start sending
data from the sensor. You have to explicitly enable the channel and
register an appropriate event to feed data from the sensor.

The initialization of the sensor happens with a set of enumeration flags, which
provides the type of channel that needs to be initialized. The following table lists
the types of initialization options and their descriptions:

Initialization option Description
None This is the default option, so the sensor will just initialize

the channels but it won't open any of them unless we
explicitly mention the type of initialization we need.

UseDepthAndPlayerIndex This option is used to capture depth stream data as well as
the player index from the skeleton tracking engine.

UseColor This option enables the color image stream.
UseSkeletonTracking This option opens the channel for reading the positions of

the skeleton joints from the sensor.
UseDepth This option is used to enable the depth data stream.
UseAudio To start the audio source, the sensor uses the UseAudio

initialization option.

The initialization of the stream channel is achieved by setting the options internally.
From a developer's perspective, you just need to call the Start() method, and the
rest will be taken care of by the SDK.

Starting to Build Kinect Applications

[58]

Enabling the data streams
The KinectSensor class provides specific events that help to enable and to subscribe
image stream, depth stream, and skeleton stream data. We will be dealing with
details of each and every data stream in subsequent chapters. As of now, we will
learn how to enable stream data in our application.

Within the Kinect for Windows SDK, the color, depth, and skeleton data streams
are represented by the types of ColorImageStream, DepthImageStream, and
SkeletonStream methods respectively. Each of them has an Enable method that
opens up the stream pipeline. For example, to enable the ColorStream type, you
need to write the following line of code:

this.sensor.ColorStream.Enable();

You can explicitly enable the stream only after the StartSensor() method, as
shown in the following code snippet. In our Info Box application, we did the same
by enabling the color, depth, and skeleton data streams after starting the sensor.

if (KinectSensor.KinectSensors.Count > 0)
{
 this.sensor = KinectSensor.KinectSensors[0];
 this.StartSensor();
 this.sensor.ColorStream.Enable();
 this.sensor.DepthStream.Enable();
 this.sensor.SkeletonStream.Enable();
}

Identifying the Kinect sensor
Each Kinect sensor can be identified by the DeviceConnectionId property of
the KinectSensor object. The connection ID of this device returns the Device
Instance Path of the USB port on which it is connected.

To have a look at it, open Control Panel and navigate to Device Manager.
Then, change the view of Device Manager to Device by Connection. Select
Generic USB Hub for the Kinect for Windows Device node and open the
Properties menu. There you will find the same device ID as you have seen
previously. See the following screenshot:

Chapter 3

[59]

Initializing the sensor using device connection ID
If you know the device connection ID for your Kinect sensor, you can use the same
for instantiating the senor instead of using an index. This will make sure that you
are initializing the correct device if there are multiple devices and if you are not sure
about the device index. In the following code snippet we have used the previously
received unique instance ID:

KinectSensor sensor = KinectSensor.KinectSensors [@" USB\VID_045E&PID
_02C2\5&192B533&0&5"];
This.sensor.Start()

As this Connection ID returns the USB hub device instance path ID, it will be
changed once you plug the device into a different USB hub.

If you are aware of your device ID, you can always refer to the device using the
ID as stated in the following code block:

KinectSensor sensor = KinectSensor.KinectSensors[@"USB\
VID_045E&PID_02AE\A00362A01385118A"];
int position = 0;
var collection = KinectSensor.KinectSensors.Where(item => item.
DeviceConnectionId == sensor.DeviceConnectionId);
var indexCollection = from item in collection
let row = position++
select new { SensorObject = item, SensorIndex = row };

Starting to Build Kinect Applications

[60]

If it's a single sensor, the index should be 0, but this code block will return the actual
position from the list of sensors as well. Currently, we have tested the code with one
sensor, so we have the sensor index value 0 as shown in the following screenshot:

The KinectSensor object has another property, named
UniqueKinectId, that returns a unique ID for the Kinect sensor.
You can use this ID to identify the sensor uniquely. Also you can use
the same to map the index of the sensor.

Stopping the Kinect sensor
You should call the sensor.Stop() method of the KinectSensor class when the
sensor finishes its work. This will shut down the instance of the Kinect sensor. You
can write a method such as the following that deals with stopping the sensor.

private void StopSensor()
{
 if (this.sensor != null && this.sensor.IsRunning)
 {
 this.sensor.Stop();
 }
}

Like sensor.Start(), the Stop() method also internally
checks for the sensor's running state. The call goes to stop the
sensor only if it is running.

The Stop() method does the clean-up operation
It's good practice to call Stop() once you are done with the Kinect sensor. This is
because the Stop() method does some clean-up work internally before it actually
shuts down the device. It completes the following tasks:

• It stops the depth, color, and skeleton data streams individually by calling
the Close method if they are open

• It checks for the open Kinect audio source and stops it if it's running

Chapter 3

[61]

• It kills all the threads that were spawned by events generated by the
Kinect device

• It shuts down the device and sets the sensor initialization option to None

The following diagram shows the actual flow of the Stop() method of a
Kinect device:

The Kinect sensor internally uses unmanaged resources to manage the sensor data
streams. It sends the stream to the managed application and the KinectSensor class
uses it. When we close the application, it cannot dispose of the unmanaged stream
automatically if we don't forcefully send a termination request by calling the Stop()
method. The managed Dispose method does this as well. So to turn off the device,
the application programmer needs to call the Stop() method to clear unmanaged
resources before the managed application gets closed.

For instance, if you are running the application while debugging, your application
will be directly hosted in your vshost file and the Visual Studio debugger allows
you to run your code line by line. If you close the application directly from Visual
Studio, it will ensure that the process gets stopped without any code getting
executed. To experience this situation, you can stop the application directly from
Visual Studio without calling the Stop() method, and you will see the IR light of
the device is still on.

Turning off the IR light forcefully
You can turn off the IR emitter using the KinectSensor.
ForceInfraredEmitterOff property. By default, this property is set
to false. To turn the IR light off, set the property to true.
You can test this functionality easily by performing the following steps:

• Once the sensor is started, you will find a red light is turned on in
the IR emitter.

• Set ForceInfraredEmitterOff to true, which will stop the IR
emitter; you will find that the IR light is also stopped.

Again, set the ForceInfraredEmitterOff property to false to turn
on the emitter.

Starting to Build Kinect Applications

[62]

Displaying information in the Kinect Info Box
So far, you have seen how you can use Kinect libraries in your application and how
to identify, stop, and start it. In short, you are almost done with the major part of the
application. Now, it's time to look at how to display information in the UI.

Designing the Info Box UI
This application displays information using the System.Windows.Controls.
TextBlock class inside a System.Windows.Controls.Grid class. That is, each
cell on the grid contains a Textblock component. The following excerpt from
the MainWindow.xaml file shows how this is accomplished in XAML:

<TextBlock Text="Connection ID" Grid.Row="1" Grid.Column="0"
Style="{StaticResource BasicTextStyle}" />
<TextBlock Text="{Binding ConnectionID}" Grid.Row="1" Grid.Column="1"
Style="{StaticResource BasicContentStyle}" />

As we are going to display the information in text format, we will be splitting the
window into a number of columns and rows, where each of the individual rows
is responsible for showing information for one single sensor. As you can see in the
preceding code, we have two TextBlock controls. One of them shows the label and
another is bound to a property that shows the actual data.

Similar to this, we have several TextBlock controls that display the data for different
information types. Apart from the text controls, we have button controls to start and
stop the sensor.

Binding the data
Data binding in WPF can be done very easily using the property notification API
built into WPF applications. INotifyPropertyChanged is a powerful interface in
the System.Component namespace and provides a standard way to notify binding
to UI on a property change.

Implementing the INotifyPropertyChanged interface is not
mandatory for data binding. You can use direct binding of data by just
assigning data into control. Implementing INotifyPropertyChanged
will allow changes to property values to be reflected in the UI and will
help keep your code clean and get the most out of the complex work
done by implementing data binding in the UI. As the standard process of
data binding, in this section we will give you a step-by-step look into the
application as we will be following the same approach across the book for
all demo applications.

Chapter 3

[63]

A quick look at INotifyPropertyChanged
The INotifyPropertyChanged interface itself is a simple. It has no properties and
no methods. It has just one event called PropertyChanged with two parameters.
Refer to the following code snippet; the first parameter is the sender, and the
second parameter is PropertyChangedEventArgs, which has a property
named PropertyName:

this.PropertyChanged.Invoke(this, new PropertyChangedEventArgs(proper
tyName));

Using INotifyPropertyChanged for data binding
Within our Kinect Info Box project, add a new class named MainWindowViewModel.
cs and implement the INotifyPropertyChanged interface.

The very first thing we are going to do here is wrap the PropertyChanged event
within a generic method so that we can call the same method for every property
that needs to send the notifications.

As shown in the following code block, we have a method named
OnNotifyPropertyChange, which accepts the propertyName variable
as a parameter and passes it within PropertyChangedEventArgs:

public void OnNotifyPropertyChange(string propertyName)
{
 if (this.PropertyChanged != null)
 {
 this.PropertyChanged.Invoke(this, new PropertyChangedEventArgs
 (propertyName));
 }
}

The class also contains the list of properties with PropertyChanged in the setter
block to see if a value is changing. Any changes in the values will automatically
notify the UI. This is all very simple and useful. Implementation of any property
that needs a notification looks like the following code snippet:

private string connectionIDValue;
public string ConnectionID
{
 get
 {
 return this.connectionIDValue;
 }
 set
 {

Starting to Build Kinect Applications

[64]

 if (this.connectionIDValue != value)
 {
 this.connectionIDValue = value;
 this.OnNotifyPropertyChange("ConnectionID");
 }
 }
}

We need all the properties to be defined in the same way for our
MainWindowViewModel class. The following diagram is the class
diagram for the MainWindowViewModel class:

Setting the DataContext
Binding of the data occurs when the PropertyChanged event of the
MainWindowViewModel class is raised. The DataContext property of the MainWindow
class is set when the class is first initialized in the constructor of the MainWindow class:

private MainWindowViewModel viewModel;
public MainWindow()
{
 this.InitializeComponent();
 this.Loaded += this.MainWindow_Loaded;
 this.viewModel = new MainWindowViewModel();
 this.DataContext = this.viewModel;
}

Chapter 3

[65]

Setting up the information
The last thing we need to do is to fill up the MainWindowViewModel class instance
with the values from the sensor object. The SetKinectInfo method does the same
job in our Kinect Info Box application. Refer to the following code snippet; we have
assigned the DeviceConnectionId value of the sensor object, which is nothing but
the currently running sensor, to the connectionID property of the ViewModel object.

private void SetKinectInfo()
{
 if (this.sensor != null)
 {
 this.viewModel.ConnectionID = this.sensor.DeviceConnectionId;
 // Set other property values
 }
}

Whenever the SetKinectInfo method is called, the value of DeviceConnectionId
is assigned to ViewModel.connectionID, and it immediately raises the
OnNotifyPropertyChange notification, which notifies the UI about the
changes and updates the value accordingly.

That's all!
You are done! You have just finished building your first application. Run the
application to see the information about the attached Kinect sensor. While starting
the application it will automatically start the sensor; however, you can start and
stop the sensor by clicking on the Start and Stop buttons. In the code behind these
two buttons that were just mentioned, are the SensorStart() and SensorStop()
methods, respectively.

Dealing with the Kinect status
The Kinect sensor needs an external power supply to get the camera, IR sensor,
and motor to work properly. Even after following all the standard practices and
measures, your system might not detect any of the components of Kinect if there
is any problem with your device. Other scenarios that may occur, and that are
indeterministic in nature, could be the power suddenly going off while your
application is running, , some error occurring in the device, or the device getting
unplugged. All the earlier cases can cause your application to crash or throw an
unknown exception.

Starting to Build Kinect Applications

[66]

It is of paramount importance to track the device status while your sensor is
used by the application. The KinectSensor object has a property named Status,
which indicates the current state of the devices. The property type is of the
KinectStatus enumeration.

The following table has listed the different status values with their descriptions:

Status Description
Connected This indicates that the device is connected properly with

the system and that it can be used for receiving data using
an application.

Error The SDK will return this status if the system fails to detect
the device properly or there is some internal error.

Disconnected This is the status if the device gets disconnected at any
point in time while the application is running, which
could happen in different scenarios such as a power cut,
unplugging the external power source, or even unplugging
the USB device from system.

NotReady This is the status returned when the device is detected but
not loaded properly.
Generally, the Kinect SDK detects the device once you
have plugged it into the system, but the system loads
actual drivers once external power is supplied. This is the
intermediate status when the device is not ready to be used.

NotPowered This is the status if the device is connected to the system
using a USB port, but the external power supplier is not
plugged in or is turned off.

Initializing This is the status when the device is getting connected or
initialized. Generally, this occurs during reconnecting after
disconnection or shutdown.

DeviceNotSupported This is the status if the device is not supported by the SDK.
This is not applicable to the Kinect for Xbox device.

DeviceNotGenuine This status can be used to make your application check that
you are using only Kinect for Windows devices. This is not
applicable to the Kinect for Xbox device.

InsufficicentBandwith This is the status when the USB hub is not able to process
the complete data sent by the sensor.

Undefined This is the status raised for any kind of unhandled issues
that can cause the sensor to be undefined or erroneous.

Chapter 3

[67]

To understand the flow of the Kinect status and the scenarios in which it can occur
can be explained in a simpler way refer to the following diagram. Once the device is
connected and the power is turned off, it will show the NotPowered status. Similarly,
unplugging the device from USB port will return the Disconnected status. If you
plug it back in or turn the power on, it will first show the Initializing status
before changing to the Connected status.

Monitoring the change in sensor status
The KinectSensorCollection object has only an event named StatusChanged,
which can be registered as follows:

KinectSensor.KinectSensors.StatusChanged += KinectSensors_
StatusChanged;

Once the event is registered, it will fire automatically if there are any changes in the
device status, internally or externally.

The StatusChanged event is registered at the start of your application
during the initialization of the sensor.

The StatusChanged event fires up with a StatusChangedEventArgs class, which
holds the KinectStatus property and the instance of the sensor by which this event
has been raised.

Starting to Build Kinect Applications

[68]

Properties of the StatusChangedEventArgs class
The following table shows the properties of the StatusChangedEventArgs class:

Name Description
Sensor This property refers to the Kinect sensor that raised this event. This

information is useful if you are handling any operation on any status
change. If there are multiple Kinect devices, you will get the reference of
individual sensors using the property itself.

Status This property provides the current status of the Kinect device that raised
the events. KinectStatus is a flag enumeration defined in Microsoft.
Kinect namespaces.

In the StatusChanged event handler, you can check for the status that is returned by
the KinectStatus enumeration and display the proper message to end users. The
uses of different statuses with the StatusChanged event handler are shown in the
following code snippet:

void Kinects_StatusChanged(object sender, StatusChangedEventArgs e)
{
 switch (e.Status)
 {
 case KinectStatus.Connected:
 // Device Connected;
 break;
 case KinectStatus.DisConnected:
 // Device DisConnected;
 break;
 }
}

So, you must have noticed that the Kinect SDK is flexible enough to detect the
device status this well. This will really help avoid unnecessary exceptions and
application crashes.

The StausChanged events are attached to all the elements of
KinectSensorCollection. So, you can track the status change of each and every
Kinect device if there is more than one device connected. When the StatusChanged
event is fired, it invokes the event handler with StatusChangedEventArgs, which
has associated with the sensor. The following image shows the sensor property of the
Kinect StatusChangedEventArgs class within the event handler that is raised by the
StatusChanged event:

Chapter 3

[69]

Resuming your application automatically
You have also seen that, during the lifespan of a Kinect application the status of the
sensor can change. You can start the sensor only when it's in the connected state and
you need to call the Start() method explicitly to start it. We can take advantage
of the StatusChanged event to start the sensor and resume our application
automatically when it is connected. You can save the state of your application when
the status is Disconnected or NotPowered and can resume it automatically once it is
connected by starting the sensor and reloading your application state. This is shown
in the following diagram:

Starting to Build Kinect Applications

[70]

Building KinectStatusNotifier
In this section, we are going to learn how to build a notification application named
KinectStatusNotifier that uses the Kinect sensor and shows the sensor status in the
system tray. KinectStatusNotifier will pop up a notification icon in the system tray
whenever there is a change in the sensor status (refer to the following screenshot).

If you want to show some custom messages with the status change, you can also
explicitly call KinectStatusNotifier to notify of a status change in the system tray,
as shown in the following screenshot:

The KinectStatusNotifier application can be useful for any Kinect
application, so we will implement it as a general class library so that
we can inject it into any Kinect application.

Setting up an application
We will start this application from scratch with a new ClassLibrary project,
as follows:

1. Start a new instance of Visual Studio.
2. Create a new project by navigating to File | New Project.
3. Select the Visual C# template and pick the Class Library option from the

template options.
4. Name the library KinectStatusNotifier, as shown in the following image.

Click on OK to create the project.

Chapter 3

[71]

NotifyIcon is a class in the System.Windows.Forms namespace and
can be used to invoke the default notification from the system tray. By
default, the WPF application does not have NotifyIcon, so we are going
to create a wrapper around System.Windows.Forms.NotifyIcon so
that we can easily invoke it from any application.

Perform the following steps to set up our projects:

5. Remove the exiting classes from the KinectStatusNotifier project and add a
new class by right-clicking on Project | Add New Item | Class. Give it the
name StatusNotifier and click on OK.

6. Add a reference to System.Windows.Forms and System.Drawing to the
KinectStatusNotifier project.

Starting to Build Kinect Applications

[72]

How it works
Once we have the project set up, the first thing we need to do is to create an instance
of NotifyIcon, as follows:

private NotifyIcon kinectNotifier = new NotifyIcon();.

KinectNotifier now holds the reference to NotifyIcon and can be
invoked by a status change of the sensor. Hence, we need the reference
to KinectSensorCollection in the KinectStatusNotifier project.

Add a property of type KinectSensorCollection, as follows:

private KinectSensorCollection sensorsValue;
public KinectSensorCollection Sensors
{
 get
 {
 return this.sensorsValue;
 }
 set
 {
 this.sensorsValue = value;
 this.AutoNotification = true;
 }
}

Sensors is a public property of the StatusNotifier class that holds the reference
to KinectSensorCollection that is passed from the calling application. If you have
noticed, we have an additional AutoNotification property, which is by default set
to true; however, if you look inside the definition of this property, you will find this:

private bool autoNotificationValue;
public bool AutoNotification
{
 get
 {
 return this.autoNotificationValue;
 }
 set
 {
 this.autoNotificationValue = value;
 if (value)
 {
 this.Sensors.StatusChanged += this.Sensors_StatusChanged;
 }
 else
 {

Chapter 3

[73]

 this.sensors.StatusChanged -= this.Sensors_StatusChanged;
 }
 }
}

We are subscribing to the StatusChanged event handler only when
AutoNotification is set to true. This will give you a choice between using
the automatic notification with status change and not using it, as shown in the
following screenshot:

The StatusNotifer class has a few more properties for the notification title,
message, and sensor status, as shown in the preceding class diagram. The
StatusNotifer class has a defined enumeration called StatusType, which is either
the information or a warning. The NotifierMessage and NotifierTitle properties
are set in the Sensor_StatusChanged event handler, which was registered from the
AutoNotification property as follows:

protected void Sensors_StatusChanged(object sender,
StatusChangedEventArgs e)
{
 this.SensorStatus = e.Status;
 this.NotifierTitle = System.Reflection.Assembly.
 GetExecutingAssembly().GetName().Name;
 this.NotifierMessage = string.Format("{0}\n{1}", this.
 SensorStatus.ToString(), e.Sensor.DeviceConnectionId);
 this.StatusType = StatusType.Information;
 this.NotifyStatus();
}

Starting to Build Kinect Applications

[74]

As you can see in the preceding code, the NotifierTitle property is set to the
name of the application, and the NotifierMessage property is set to SensorStatus
and DeviceConnectionId. Finally, the call to the NotifyStatus() method sets the
StatusNotifier property to the kinectNotifier instance of the NotifyIcon class
and invokes the ShowBallonTip() method to notify an icon on the system tray. The
NotifyStatus class is shown in the following code snippet:

public void NotifyStatus()
{
 this.kinectNotifier.Icon = new Icon(this.GetIcon());
 this.kinectNotifier.Text = string.Format("Device Status : {0}",
 this.SensorStatus.ToString());
 this.kinectNotifier.Visible = true;
 this.kinectNotifier.ShowBalloonTip(3000, this.NotifierTitle,
 this.NotifierMessage, this.StatusType == StatusType.Information ?
 ToolTipIcon.Info : ToolTipIcon.Warning);
}

Using KinectStatusNotifier
KinectStatusNotifier is not a self-executable; it generates a
KinectStatusNotifier.dll assembly that can be used with a Kinect application.
Let's integrate this to our previously built Kinect Info Box application and see how
it works. This can be done simply by performing the following steps:

1. Add the KinectStatusNotifier.dll assembly as a reference assembly to
the Kinect Info Box application from the Add References window.

2. Add the following namespace in the application:
using KinectStatusNotifier;

3. Instantiate a new object for the StatusNotifier class, as follows:
private StatusNotifier notifier = new StatusNotifier();

4. Assign the KinectSensor.KinectSensors collection as a reference to
notifer.Sensors, as follows:

this.notifier.Sensors = KinectSensor.KinectSensors;

That's all! The StatusNotifer class will take care of the rest. Whenever there is a
change in the status of the sensor, you can see a notification with the current status
in the System Tray icon.

Chapter 3

[75]

You can set the value of AutoNotification to false, which will stop
the automatic notification in the system tray at the StatusNotifer class
level and invoke the NotifyIcon class explicitly when there is a status
change. It will do this by handling the StatusChanged event handler in
your application itself. You can also handle it from both places, while you
can change the status in the tray icon from a single place.

Test it out
To test the application out and see how the application and the sensor work together,
first run the Kinect Info Box application and then switch off the power to the sensor
and switch it back on. As shown in the following screenshot, you will able to see
exactly three different changes in sensor status in the system tray notification:

Summary
In this chapter we discussed the fundamentals of building Kinect applications. As the
sensor is prevalent in many other platforms and devices, the Kinect applications also
make substantial use of it in device identification, initialization, and disposing. Thus
we have learned a comprehensive view of these approaches in this chapter. We have
explored several APIs that help to start and stop the sensor, as well as identifying
them and enabling different types of streams by building a small utility. Tracking the
Kinect status will safeguard the application from failures and crashes, and we have
also discussed a way to do so by notifying the state change in the system tray. With
the knowledge gained from this chapter, we will be building a few more complex
applications by directly consuming Kinect camera information in the next chapter.

Getting the Most out of
Kinect Camera

You are all set to take your development experience to the next level. This time you
will leverage your learning towards the Kinect SDK API by accessing the Kinect
camera and playing around with the data captured by the camera. The Kinect device
has a video camera that delivers the three basic color components, namely red, green,
and blue. As part of the Kinect sensor, the camera helps in capturing the color stream,
enabling face tracking and more. This color stream is the least complex process in
terms of the way it returns the data and how the SDK processes it. Working with a
Kinect image stream majorly involves the following steps:

1. Enabling the stream.
2. Capturing the stream frame by frame in the application.
3. Processing the image frames.

In this chapter, you will learn how to enable and retrieve the color stream, extract
frames, play around with the color pixels, control the device motor, and apply effects
on camera images. We will start with building a camera application that uses the
Kinect color camera, and then we will be extending the camera with various features,
such as extracting frames, saving frames, changing pixels formats and others. You
will also learn how to change the camera's color brightness, contrasts, hue, and
other different settings to fine-tune color images, along with applying backlight
compensation. The following is an overview of the various aspects that we'll be
covering in this chapter:

• Understanding the Kinect image stream
• Understanding different ways of retrieving stream data
• Building a KinectCam application that uses the Kinect camera

Getting the Most out of Kinect Camera

[78]

• Studying Kinect APIs in depth for color image streams
• Manipulating individual color pixels
• Changing the sensor elevation angle
• Applying effects on the Kinect camera
• Making your camera see in low light conditions
• Improving the performance of your application

Understanding the Kinect image stream
An image stream is nothing but a succession of still image frames. Kinect can deliver
the still image frame within a range of 12 to 30 frames per second (fps). The frame
rate can change as per the requested type and resolution. The SDK supports two
types of image stream formats:

• Color image stream
• Depth image stream

Different streams are transferred in different pipelines, which you must enable
along with the type of data that you want from the sensor. The type of image frames
depend on input parameters such as the frame resolution, image type, and frame
rate. Based on your inputs, the sensor will initialize the stream channel for data
transfer. If you are not specifying anything, the SDK will pick up the default image
type and resolution defined in the SDK for that particular channel.

The image frames are stored into a buffer before they are used by
the application. If there is any delay in reading the buffer data and
rendering it as images, the buffer will fill with a new image frame by
discarding the old frame data. The unprocessed frames will be dropped,
which means you are losing the image frames, and the frame rate will be
decreased. One of the reasons can be a lack of hardware resources due to
which Kinect may go out of sync with the application.

The Kinect SDK provides a top-level base class ImageStream, which is an abstract
class; this is implemented by both the color and depth stream classes.

Having said that Kinect supports the image stream in the format of color and depth;
in this chapter we will be focusing only on the details of the color image stream.

Chapter 4

[79]

Types of color images
The Kinect sensor supports the following types of color image formats:

• RGB
• YUV
• Bayer

The first one, as the name suggests, is the Red-Green-Blue color space known as RGB
color. Each RGB pixel of the Kinect color image frame is an array of size four and
arranged in the following way, where the first three values are for red, green, and
blue. Alpha, the fourth value in the array, gives the transparency:

And the second one is Luminance YUV, where Y is the luminance channel, U is the
blue channel, and V is the red channel. Both YUV data and RGB data represent the
same image frame as they are captured using the same camera; the only difference is
in the representation of the color space. You can choose the image format that is most
convenient for your application.

The Kinect video camera can return a 32 bits per pixel RGB image stream in two
different resolutions:

• 640 x 480 (at 30 frames per second)
• 1280 x 960 (at 12 frames per second)

On the other side, YUV provides 16 bits per pixel and is used as part of the
color image pipeline. The Kinect color camera supports YUV data only at the
following resolution:

• 640 × 480 (at 15 frames per second)

Getting the Most out of Kinect Camera

[80]

The YUV image stream uses less memory than the RGB image stream to hold
bitmap data and allocates less buffer memory. You can choose this stream channel
if you compromise on the image quality and use the same memory buffer for other
purposes in your application.

The Kinect camera also returns a raw Bayer color image format with a combination
of red, green, and blue color; but the color filter pattern uses 50 percent green, 25
percent red, and 25 percent blue. The pattern is called a Bayer color filter array or
a Bayer filter. This color filter is used in this way because the human eye is more
sensitive to green and can see more changes in green lights. The pattern for the
Bayer color format is shown in the following figure, where half of the total number
of pixels are green while the other half are of the total number of red and blue:

The resolutions supported by the Bayer color format are the following formats:

• 640 x 480 (at 30 frames per second)
• 1280 x 960 (at 12 frames per second)

The sensor returns 16 bits per pixel infrared data with the following resolution
as a part of the color image stream:

• 640 × 480 (at 30 frames per second)

The Kinect SDK also exposes the IR emitter lights as infrared stream
data in a format of the color image stream.

Chapter 4

[81]

Different ways of retrieving the color
stream from Kinect
The image frames are a type of the ColorImageFrame class. Depending on the
type of images you are using, the sensor will return the image frame. To get any
color frame from the sensor, you need to either subscribe to the event handler or
explicitly send the request to the sensor to send a frame:

There are two ways of capturing the same in your application:

• Event model
• Polling model

Event model
Using the event model, the Kinect sensor sends the frame to the application
whenever a new frame is captured by the sensor. For that you need to subscribe to
the specific event handler using your code, where you need to process the incoming
frames. Before subscribing to the event, you must tell the SDK the color type and
resolution of image streams you are looking for. Once it's subscribed to, the sensor
will send the data continuously unless you disable and unsubscribe the channel, or
stop the sensor.

Getting the Most out of Kinect Camera

[82]

Polling model
The polling model is an on-demand model where you need to send a request to the
sensor whenever there is a necessity to get an image frame. For the polling model,
you have to pass the time interval after which the sensor will return the image frame.

If there is any open color channel and there is no subscriber event
on that channel, the SDK will automatically pick up the existing
channel to get an image frame. If there is no channel open, the
SDK will create a new channel to get the frame from the sensor.
You can't send a request for images to a channel that is already
subscribed by an event handler.

KinectCam – a Kinect camera application
The first thing that developers with Kinect programming often do is read the color
stream data from the sensor. This also verifies that the camera is working properly
and that you can successfully create and run a simple application.

In this section you are going to learn how to consume the color data stream from the
sensor and use other Kinect SDK APIs to play around with the color data. And you
will learn everything by building a complete application called KinectCam. Refer
to the following screenshot, which shows how the end application will look:

Chapter 4

[83]

And this is how the application will work:

1. On starting the application, the Kinect camera will start capturing the color
stream, and you can view the live stream in your application.

2. You can click on the Save button to save the current frame as an image.
3. The Start and Stop buttons will do the job of starting and stopping the

sensor, whereas the Exit button will close the camera.

Is this what you are going to build? Of course not! There is another button, which we
missed out. Yes, the Settings button. On clicking the Settings button, the application
will show you the KinectCam Settings dialog window, which is shown in the
following screenshot:

The setting options will allow you to:

1. Change the video format and camera elevation angle.
2. Enable and disable the frame rates and frame number.
3. Perform an automatic image capture.
4. Apply effects such as the RGB filter, grayscale, and inverted color on

the stream.

So let's go ahead and build the KinectCam application now.

Setting up the project
The very first thing that you need to do is create and set up the project by adding
the assemblies that are required for accessing the sensor. Follow these steps to set
up a blank project for your KinectCam application:

1. Start a new instance of Visual Studio.
2. Create a new project by navigating to File | New Project.

Getting the Most out of Kinect Camera

[84]

3. You will see the New Project dialog box. Choose Visual C# as our
development language, select WPF Application Template, and type
the name as KinectCam.

4. From Solution Explorer, right-click on the References folder and select
Add References.

5. Include a reference of the Microsoft.Kinect assembly.

Designing the application – XAML and data
binding
The application design is very simple and straightforward. This application displays
the information using the TextBlock and Image controls inside various types
of panel controls such as Grid and Stackpanel. There are several buttons that
perform different actions. The following is a part of the document outline view
from MainWindow.xaml, which shows how this UI is accomplished in XAML:

We will be following the same approach for data binding as we did for the
KinectInfoBox application in the previous chapter; however this data-binding
approach is not an area of concern as we will mostly be focusing on Kinect APIs.

Add a new class named MainWindowViewModel.cs that implements the
INotifyPropertyChanged interface and has the following listed property
that calls OnNotifyPropertyChange() if there is any value change:

Chapter 4

[85]

The XAML markup will be using these properties to bind the data. For example,
for displaying the frame number, you have to use the following XAML snippet:

<TextBlock Name="FrameNumberText" Text="{Binding FrameNumber}" />

The MainWindow constructor of the KinectCam application instantiates
MainWinodowViewModel and sets DataContext for the application:

MainWindowViewModel viewModel;
public MainWindow()
{
 InitializeComponent();
 viewModel = new MainWindowViewModel();
 this.DataContext = this.viewModel;
}

Getting the Most out of Kinect Camera

[86]

Now if your application updates the values this.viewModel.FrameNumber,
it will reflect in the UI. The same approach holds for all the properties of the
MainWindowViewModel class.

Capturing color image from the Kinect camera
Capturing the color image stream from the sensor and displaying it to the UI can be
done by following these steps:

1. Enable the color stream channel with an image format.
2. Attach the event handler with the stream channel.
3. Process the incoming image frames.
4. Render the image frames on the UI.
5. Starting the sensor before the sensor starts producing image frames and

stopping and monitoring the sensor status will be the common job for all
of your applications, which you are already familiar with.

Let's have a look inside the individual steps for capturing a color image.

Enabling the color stream channel
The KinectSensor class has a property ColorStream of type ColorImageStream,
which actually handles everything that is required for capturing the color image.
The first thing it must do is get the reference of the connected sensor and start it.

this.sensor = KinectSensor.KinectSensors.FirstOrDefault(sensorItem =>
sensorItem.Status == KinectStatus.Connected);
this.StartSensor();

Here sensor is an object of the type KinectSensor class. Once you have the sensor
object and reference of the Kinect sensor, you can enable the stream by calling the
Enable() method of the ColorImageStream class, as follows:

this.sensor.ColorStream.Enable();

When the sensor is running and the color stream is enabled, it will initialize the
Kinect sensor to generate a stream of color images.

The next thing you must do is to tell the sensor what to do when it has captured
a new image frame. To achieve this, you need an event handler that has to be
attached to the sensor stream channel.

Chapter 4

[87]

Enabling a channel with the image format
By default Enable does not accept any argument and enables the color stream with
a RgbResolution640x480Fps30 color image format, which is an enumeration of the
type ColorImageFormat.

The ImageStream class has an overloaded method for Enable(). If you want to
initialize the color stream with a different image format, use the overloaded method
that accepts ColorImageFormat as an argument, as shown in the following snippet:

this.sensor.ColorStream.Enable(ColorImageFormat.
RgbResolution640x480Fps30);

How to check if the color stream is already enabled or not
The ColorStreamImage class also includes an IsEnabled property,
which is read only. IsEnabled returns the current status of the color
stream channel. You can use the IsEnabled property just before
enabling the stream channel at any point in time, to check if the channel
is open for the color stream before you access the stream data. Here's
the code snippet that uses the IsEnabled property before enabling the
color stream.

if (!this.sensor.ColorStream.IsEnabled)
{
 this.sensor.ColorStream.Enable();
}

Choosing the image format
ColorImageFormat is a public enumeration defined in the Microsoft.Kinect
assembly. You can specify the color image format along with the resolution within
the single specified value. The following is a list of color image formats available of
the type ColorImageFormat enumeration that you can specify for your application:

• RgbResolution640x480Fps30

• RgbResolution1280x960Fps12

• YuvResolution640x480Fps15

• RawYuvResolution640x480Fps15

• InfraredResolution640x480Fps30

• RawBayerResolution640x480Fps30

• RawBayerResolution1280x960Fps12

• Undefined

Getting the Most out of Kinect Camera

[88]

For example, by specifying ColorImageFormat.RgbResolution640x480Fps30
with the Enable() method you are informing the sensor to send an image frame of
the RGB type with a resolution of 640 x 480. If you specify Undefined, the SDK will
throw an ArgumentException with the ImageFormatNotSupported message.

You can enable only one type of color stream at a time.

The following are a couple of things you must consider while enabling the
stream channel:

• If you are trying to enable the stream multiple times with different
color image formats, the last one will take precedence

• If you are trying to reenable the stream with the same image format, the
SDK does not perform anything and your application continues with the
existing stream channel

The call goes to the open stream channel only if it is a new request or the
requested ColorImageFormat is new.

Disabling the color stream channel
You can disable or close the stream channel by just calling the Disable() method
of the ImageStream class, as shown in the following line of code:

this.sensor.ColorStream.Disable();

The Disable() method just closes the connection channel for the current open
stream irrespective of ColorImageFormat that you have specified.

IsEnabled is automatically set to false internally when you stop the
sensor or disable the color stream by calling the Disable() method.

Till now what you have seen is how to enable the color stream and how you can
apply a color image format while enabling the stream. With that let's have a look at
how to attach the event handler.

Chapter 4

[89]

Attaching the event handler
The KinectSensor class has an event ColorFrameReady, which is invoked whenever
there is new frame sent by the sensor. You can subscribe to the event just by using
the following line:

this.sensor.ColorFrameReady += sensor_ColorFrameReady;

The event handler has two arguments; the first one is sender and the second one
is the ColorImageFrameReadyEventArgs.

The default method stub for the sensor_ColorFrameReady event handler will look
like the following code snippet:

void sensor_ColorFrameReady(object sender,
ColorImageFrameReadyEventArgs e)
{
}

How to generate the event handler automatically in Visual Studio
Visual Studio provides you with a nice feature; you can automatically
create the event handler by just pressing Tab twice after associating the
event name, as follows:

So if you put together whatever you have done so far in a method called
StartKinectCam(), the method should look like:

private void StartKinectCam()
{
 if (KinectSensor.KinectSensors.Count > 0)
 {
 this.sensor = KinectSensor.KinectSensors.FirstOrDefault
(sensorItem =>sensorItem.Status == KinectStatus.Connected);
 this.StartSensor();
 this.sensor.ColorStream.Enable();

Getting the Most out of Kinect Camera

[90]

 this.sensor.ColorFrameReady += sensor_ColorFrameReady;
 }
 else
 {
 MessageBox.Show("No device is connected with system!");
 this.Close();
 }
}

With this, the control of your application moves to the sensor_ColorFrameReady
event handler where image frame processing has to be done.

Processing the incoming image frames
Once the event handler is called, it means there is a new frame that has been sent
by the sensor and it's time to process it. The event arguments for this event handler
expose a method OpenColorImageFrame() that returns an image frame of the type
ColorImageFrame. You can now use this exact same code to work image frames.

void sensor_ColorFrameReady(object sender,
ColorImageFrameReadyEventArgs e)
{
 using (ColorImageFrame imageFrame = e.OpenColorImageFrame())
 {
 // Check if the incoming frame is not null
 if (imageFrame == null)
 {
 return;
 }
 else
 {
 // Get the pixel data in byte array
 this.pixelData = new byte[imageFrame.PixelDataLength];

 // Copy the pixel data
 imageFrame.CopyPixelDataTo(this.pixelData);

 // Calculate the stride
 int stride = imageFrame.Width * imageFrame.BytesPerPixel;

 // assign the bitmap image source into image control
 this.VideoControl.Source = BitmapSource.Create(
 imageFrame.Width,
 imageFrame.Height,

Chapter 4

[91]

 96,
 96,
 PixelFormats.Bgr32,
 null,
 pixelData,
 stride);
 }
 }
}

The number of lines in the previous code snippet can be overwhelming at
first sight. However, on a more meticulous and step-by-step inspection, we
can decipher the meaning of the individual lines quite easily. In reality the
steps are quite simple; whenever there is a new frame sent by the sensor, this
event handler invokes the ColorFrameReady handler, and in the first step, it
reads ColorImageFrame, which returns the image frame of the type returned
by the OpenColorImageFrame() method.

using (ColorImageFrame imageFrame = e.OpenColorImageFrame())
{
}

We have used the using block, which defines the scope of an object,
outside of which an object will be disposed. The imageFrame object
is declared in a using block. This means that when the execution
completes the block of code that follows the using statement, the
imageFrame object is no longer required and can be destroyed. It is
important to do this because the frame will take up a lot of memory as
there are about 30 frames in each second.

In the next step, we perform a null detection on the incoming image frame.

if (imageFrame == null)
{
 Return;
}

This is just to make sure that if there is any dropped frame in between frames,
your application should be smart enough to take care of it.

After that, we calculate the size of the incoming frame in the byte[] array.
PixeDataLength is a read-only property that returns the length of the pixel
data. Internally, this is an abstract property of the ImageFrame class and has
been overridden in the ColorImageFrame class. The pixel data length provides
the integer length of the image frame.

this.pixelData = new byte[imageFrame.PixelDataLength];

Getting the Most out of Kinect Camera

[92]

Copy the byte[] array of the pixel data into the color image frame by calling the
CopyPixelDataTo() method.

imageFrame.CopyPixelDataTo(this.pixelData);

Finally, create a bitmap image source with the incoming image frame and assign
the same in the image control:

this.VideoControl.Source = BitmapSource.Create(
 imageFrame.Width,
 imageFrame.Height,
 96,
 96,
 PixelFormats.Bgr32,
 null,
 pixelData,
 stride);

The BitmapSource.Create() method creates a BitmapSource from an array of
pixels. We have the pixel information stored in the imageframe and pixelData
variables. The only one parameter that you might need to know more about is the
last parameter that passes the stride value, which we have created as follows:

int stride = imageFrame.Width * imageFrame.BytesPerPixel;

Stride is the width in bytes of a single row of pixel data
including padding.

As shown in the following figure, the total image row width is the stride where
the pixel data is the actual image width (ImageFrame.width) and an extra pixel
is calculated for padding.

Chapter 4

[93]

What you have seen till now was for a single image frame; a similar succession of
similar image frame operations produces the video stream.

How to change the pixel format of a color image stream
You can display the image stream in a different pixel format. This pixel
format has to be defined while you are creating the object of writeable
bitmap. As shown in the following code snippet, we have changed the
pixel format to Cmyk32:

this.colorimageControl.Source = BitmapSource.Create(
imageFrame.Width,
imageFrame.Height,
96,
96,
PixelFormats.Cmyk32,
null,
pixelData,
stride);

The only thing you need to keep in mind while working with different
types of pixel formats is the buffer size for the pixel data, which should
be equal to or more than the required image frame buffer. Otherwise,
it won't be able to write, and will throw an exception because different
pixel format images use different sizes of buffer.

Rendering image frames on the UI
The final part is about displaying the frames in the UI. And you were already
done with most of the rendering part within the event handler while creating
BitmapSource from the image frame.

this.VideoControl.Source = BitmapSource.Create(
…

The BitmapSource was assigned to the source property of an image control. The
image control is defined in the MainWindow.Xaml file, which is shown as follows:

<Image Name="VideoControl" Stretch="Fill" />

Getting the Most out of Kinect Camera

[94]

Running the KinectCam
With this, you are done with the development of your first interactive application
that not only controls your sensor but also reads the color image stream from the
Kinect sensor.

Run your application (from Visual Studio press F5), and here is the result. You
will be able to view the video streaming on your application that was captured
by your sensor.

Our next job is to extend it to an advanced version where we can control the image
frames, capture images, calculate the frame rates, and so on. To do so, we need to
have a clear understanding of what else the Kinect SDK provides us.

Looking inside color image stream
helpers
You just developed the application by reading the image stream directly from the
Kinect sensor. When we walked through the code implementation, you must have
noticed that we were talking about two classes, and they are ColorImageStream
and ColorImageFrame. Truly, they are the core of image streaming from the sensor.
Both of these classes are derived from the ImageStream and ImageFrame base classes
respectively. Let's focus on the individual class members.

Chapter 4

[95]

The ColorImageStream class
The ColorImageStream class represents the succession of color image frames
coming from Kinect devices. ColorImageStream is nothing but a stream of
ColorImageFrame objects. The ColorImageStream class is derived from an
ImageStream base class. The ColorImageStream class is a sealed class, so you can't
inherit it in the next level. This class defines the properties and method for working
with the color image stream.

The ColorImageFrame class
The ColorImageFrame class is also a sealed class and is derived from an ImageFrame
class. This class defines the properties and method for working with the color
image frame.

The following class diagram shows the properties and methods available within
the ColorImageFrame class:

Getting the Most out of Kinect Camera

[96]

The following diagram is just for quickly recalling what we have discussed till now
about the color image frame. ColorImageFrame is derived from the ImageFrame base
class. Whenever there is a frame from the sensor, ColorFrameReady events fire up
with ColorImageFrameReadyEventArgs, which has the OpenColorImageFrame()
method exposed. OpenColorImageFrame() returns the type of ColorImageFrame with
the ColorImageFormat type that was specified during stream channel initialization:

How to retrieve the image format from current image frame
You can retrieve the color image format for the current
image frame using the ImageFrame.Format property.
ColorImageFrameReadyEventArgs exposes the
OpenColorImageFrame () method that returns the currently
received image frame from the sensors.

using (ColorImageFrame imageFrame =
e.OpenColorImageFrame())
{
 // Check if the incoming frame isnot null
 if (imageFrame != null)
 {
 this.ImageFormat = imageFrame.Format;
 }
}

Here ImageFormat is a user defined property and is defined as:
public ColorImageFormat ImageFormat {get;set;}

Once you have the ImageFormat assigned with this property, you
can use it anywhere in your application.

Chapter 4

[97]

ImageFrame.Format is a read-only property. You cannot set the
value directly to change the color image format. You have to enable
the stream with proper ColorImageFormat to change the value of
the image format.

Capturing frames on demand
The ColorImageStream class has a public method named OpenNextFrame(). Using
the OpenNextFrame() method, you can request an image frame from the sensor.
This is how the polling model works for retrieving image frames.

In the polling model, the application opens a channel for the stream, and whenever
the application needs a frame, it sends a request to get the frame. OpenNextFrame
() accepts one parameter called millisecondsWait, which specifies how long the
sensor should wait before it sends the image frame. If there is no frame ready within
the provided time, the method will return null. The following is the general syntax of
using OpenNextFrame(); in our case we have used a waiting time of 10 milliseconds:

int millisecondsWait = 10;
if (this.sensor.ColorStream.IsEnabled)
{
 ColorImageFrame colorImageFrame = this.sensor.ColorStream.
 OpenNextFrame(millisecondsWait);
}

The colorImageFrame class will return an image frame after the provided waiting
time. This frame will be the same as the frame captured using the ColorFrameReady
event. (Refer to the following screenshot that shows an image frame that was
captured using the polling model.) The only difference is that you have to send an
explicit request to the sensor to get the image frame:

Getting the Most out of Kinect Camera

[98]

You can't call OpenNextFrame() after the ColorFrameReady is
already attached to the color stream. By attaching an event handler,
you are notifying the sensor to send the image continuously. If you
are doing so, you will receive an InvalidOperationException.

Extending the KinectCam
So far we have built the basic KinectCam application, which can feed and display
the color stream from the sensor. Our next job is to extend it by leveraging the
features of Kinect for Windows SDK.

In this section, you will start with displaying frame numbers, displaying and
calculating the frame rates, followed by changing image formats, and finally
you will learn how to apply color effects by manipulating the color pixels.

Getting the frame number
The Kinect sensor sends the data as an individual frame, and every frame has a
number just to identify the frame. This number is incremented with every single
frame when you are using the event model to retrieve the image. Whereas for the
polling model, with the OpenNextFrame() method it returns the frame numbers of
that particular image frame. FrameNumber is a read-only property of the ImageFrame
class and can be accessed as follows:

int frameNumber=imageFrame.FrameNumber;

The FrameNumber property is a unique number that identifies the
frame. It increases with each frame, but it doesn't necessarily increase
by 1 or the same value each time. It might increase by 1 or more.

To make it generic, in our KinectCam application we will write a method
called GetCurrentFrameNumber(), which accepts the image frame and returns
the frame number:

private int GetCurrentFrameNumber(ColorImageFrame imageFrame)
{
 return imageFrame.FrameNumber;
}

Chapter 4

[99]

Now the frame number has to be updated from each and every frame, and we
process single frames inside the ColorFrameReady event handler. Hence the final
task you need to do would be to call the GetCurrentFrameNumber() method from
the ColorFrameReady event handler and assign the value to the FrameNumber
property of the view, which will update the UI automatically:

this.viewModel.FrameNumber = this.GetCurrentFrameNumber(imageFrame);

The ImageFrame class has a Timestamp property that gives you a
time value in milliseconds, representing when the frame was captured
by the sensor. The difference values from frame-to-frame will tell you
how much time elapsed between the frames.

Changing image format on the fly
You have seen that while enabling the color stream we provide the specific color
format using the ColorImageFormat enumeration. The ImageStream class has an
overloaded method for Enable (). If you want to initialize the color stream with a
different image format, use the overloaded method that accepts ColorImageFormat.

Let's have a look at how we can use this in our KinectCam application and
change the format.

Bind available image formats
The very first things we need to do are that we need to bind the available
image formats in a dropdown using binding. The dropdown will contain the
list of image formats whereas the label control is just used for showing a message.
The following is the XAML snippet for the combobox:

<ComboBox Name="ColorImageFormatSelection" ItemsSource="{Binding
ColorImageFormats}" SelectionChanged="ComboBox_SelectionChanged" />

In the next step, you need to bind the available color image formats. You can
bind them as a string value with the list controls and then use them as a value
converter when enabling the stream, but here we have done so using the property
ColorImageFormats which returns ObservableCollection of ColorImageFormat
as assigned, similar to ItemsSource of ComboBox.

private ObservableCollection<ColorImageFormat> colorImageFormatvalue;

public ObservableCollection<ColorImageFormat> ColorImageFormats

Getting the Most out of Kinect Camera

[100]

{
 get
 {
 colorImageFormatvalue = new ObservableCollection<ColorImageForm
 at>();
 foreach (ColorImageFormat colorImageFormat in Enum.GetValues
 (typeof(ColorImageFormat)))
 {
 colorImageFormatvalue.Add(colorImageFormat);
 }
 return colorImageFormatvalue;
 }
}

At this point, if you run the application and select the Video Format dropdown, you
should able to see all the image formats populated in the dropdown:

Changing the color image format
Now you have the list of color image formats, and you want to see them
in action when you are changing the selections from the combobox.
ChangeColorImageFormat looks like the following, which you can
call when the ColorImageFormatSelection selection is changed.

private void ChangeColorImageFormat()
{
 if (this.sensor.IsRunning)
 {
 this.viewModel.CurrentImageFormat = (ColorImageFormat)this.
 ColorImageFormatSelection.SelectedItem;
 this.sensor.ColorStream.Enable(this.viewModel.
 CurrentImageFormat == ColorImageFormat.Undefined ?
 ColorImageFormat.RgbResolution640x480Fps30 : this.viewModel.
 CurrentImageFormat);
 }
}

Chapter 4

[101]

Yes, this is very straightforward; just enable the color stream with the selected
value from the list control. In the case of an undefined image format we have used
RgbResolution640x480Fps30.

For the Bayer image format, you have to write your own conversion
logic that will convert Raw Bayer color to RGB color. To convert
an image from a Bayer filter format to an RGB format, we need to
interpolate the two missing color values in each pixel. The interpolation
algorithm for deriving the two missing color channels at each pixel
is called demosaicing. There are several standard interpolation
algorithms, such as nearest neighbor, bilinear interpolation, bicubic,
spline, and lanczos that can be used for this conversion. The KinectCam
application does not handle this conversion.

To know more about the Bayer color filter and the different conversion
algorithms for converting Bayer color to RGB, you can refer to the URLs
http://en.wikipedia.org/wiki/Demosaicing and http://
en.wikipedia.org/wiki/Bayer_filter.

Calculating frame rate
Frame rate is the number of frames produced per second and is denoted as fps.
In terms of the Kinect sensor image stream, the frame rate is the number of image
frames coming from the sensor per second. Frame rates depend on the resolution
and type of the color format you are using.

How to calculate frame rate
There is no direct API to read the frame rate of the current image stream. But you
must have noticed that the ColorImageFormat value has the frame rate mentioned
within it. For example, when you are providing the color image frame format as
ColorImageFormat.RgbResolution640x480Fps30, the color stream will have
a frame rate of 30 fps at maximum. But the frame number may vary due to the
compression and decompression on the image stream channel. The following
code snippet shows how you can keep track of the frame rate every time:

private int TotalFrames { get; set; }
private DateTime lastTime = DateTime.MaxValue;
private int LastFrames { get; set; }
int currentFrameRate = 0;

private int GetCurrentFrameRate()
{

 ++this.TotalFrames;

Getting the Most out of Kinect Camera

[102]

 DateTime currentTime = DateTime.Now;
 var timeSpan = currentTime.Subtract(this.lastTime);
 if (this.lastTime == DateTime.MaxValue || timeSpan >= TimeSpan.
FromSeconds(1))
 {
 currentFrameRate = (int)Math.Round((this.TotalFrames - this.
LastFrames) / timeSpan.TotalSeconds);
 this.LastFrames = this.TotalFrames;
 this.lastTime = currentTime;
 }
 return currentFrameRate;
}

Just as with the frame number, we have to invoke this method during frame
processing itself so that our counts keep updated with every frame if there is any
change. Call the GetCurrentFrameRate() method from the ColorFrameReady event
handler and assign the value to the FrameRate property:

this.viewModel.FrameRate = this.GetCurrentFrameRate();

To test the frame rate follow these steps:

1. Run the KinectCam application; at this point of time you can't view the
frame rates as this is not possible from Settings.

2. Check the Display Frame Rate checkbox from Settings. This will start
to display the frame rate in the application.

3. Change Video Format from the drop-down box to see the changed
frame rates.

Capturing and saving images
KinectCam not only allows you to display captured video, but also captures a
particular image frame and saves it as an image in your hard drive. Images can be
saved on a drive as follows:

private void SaveImage()
{
 using (FileStream fileStream = new FileStream(string.Format("{0}.
Jpg", Guid.NewGuid().ToString()), System.IO.FileMode.Create))
 {
 BitmapSource imageSource = (BitmapSource)VideoControl.Source;
 JpegBitmapEncoder jpegEncoder = new JpegBitmapEncoder();
 jpegEncoder.Frames.Add(BitmapFrame.Create(imageSource));
 jpegEncoder.Save(fileStream);
 fileStream.Close();
 }
}

Chapter 4

[103]

In the previous code block, we are first taking the reference of imageSource from the
source of our UI image control, named VideoControl, and then saving the image by
converting the image source to a .jpeg image using JpegBitmapEncoder:

Here we have used JpegBitmapEncoder to encode the images in the
.jpeg format; you can use other encoders such as PngBitmapEncoder
and PngBitmapEncoder as well.

The following highlighted code block calls the SaveImage() method. You can call
this method with some specific events, such as on the KinectCam application where
we have called it by clicking on the Save button.

if (this.sensor.IsRunning && this.sensor.ColorStream.IsEnabled)
{
 this.SaveImage()
}

Run the application, and capture a few images by clicking on the Save button.
Then click on the Captured Images expander to see the images that have been
captured by the application:

Saving images periodically
You can enable the automatic image save from the KinectCam settings. Saving
images periodically is also an easy task. You just need to call the SaveImage ()
method on a Tick event of DispatcherTimer. You can achieve the automatic image
save by performing the following steps:

1. Define the DispatcherTimer object, which you can find under the System.
Windows.Threading namespace:
private DispatcherTimer timer = new DispatcherTimer();

Getting the Most out of Kinect Camera

[104]

2. Write the start method, as shown in the following snippet, with an interval
of 10 seconds and attach the Tick event handler:
public void StartTimer()
{
 this.timer.Interval = new TimeSpan(0, 0, 10);
 this.timer.Start();
 this.timer.Tick += this.Timer_Tick;
}

3. On the Tick event handler, call the SaveImage() method. That's it.
public void Timer_Tick(object sender, object e)
{
 if (this.sensor.IsRunning && this.sensor.ColorStream.IsEnabled)
 {
 this.SaveImage();
 }
}

The timespan defined for the timer is 10 seconds. So Timer_Tick will be
invoked every 10 seconds and capture the image frame.

4. The only thing you need do next is call the StartTimer() method on the
checked event of the Auto Frame Capture checkbox.

Trying to save image frames directly
In the previous section, we saved the images by taking the reference of the image
source from the source property of an image control where the image frames are
already processed. Consider a situation where you want to save the images directly
from the image frame. The call to the SaveImage() method would look like:

using (ColorImageFrame imageFrame = e.OpenColorImageFrame())
{
 if (imageFrame != null)
 {
 …
 this.SaveImage(imageFrame);
 …
}

Chapter 4

[105]

Here the image frame is the current image frame captured by the sensor. Though
it looks quite simple and similar to how we performed saving earlier, the problem
will start when you try to access the image frame from the SaveImage() method.
It will throw an ObjectDisposedException exception, because the frame you are
trying to access on the imageFrame object has already been disposed of or might
have changed.

To handle this type of situation with the image frames, you can write a wrapper class
that implements the IDisposable interface, as follows:

internal class ColorImageWrapper :IDisposable
{
 public ColorImageWrapper(ColorImageFrame frame)
 {
 this.ImageFrame = frame;
 this.NeedDispose = true;
 }

 internal ColorImageFrame ImageFrame { get; set; }

 internal bool NeedDispose { get; set; }

 public void Dispose()
 {
 if (this.ImageFrame != null && this.NeedDispose)
 this.ImageFrame.Dispose();
 this.NeedDispose = false;
 }
}

Once you have the ColorImageWrapper class, you can define an ImageFrame
property of the type ColorImageWrapper within your application:

private ColorImageWrapper imageFramevalue;
ColorImageWrapper ImageFrame
{
 get
 {
 return this.imageFramevalue;
 }

Getting the Most out of Kinect Camera

[106]

 set
 {
 if (this.imageFramevalue != null &&
this.imageFramevalue.NeedDispose)
 this.imageFramevalue.Dispose();
 this.imageFramevalue = value;
 }
}

Now within the ColorFrameReady handler, take the reference of the current image
frame within the ImageFrame property:

ColorImageFrame imageFrame = e.OpenColorImageFrame();
{
 if (imageFrame != null)
 {
 …
 this.ImageFrame = new ColorImageWrapper(imageFrame);
 …
}

Finally, click on the Save button and pass imageFrame to the SaveImage() method,
as follows:

using (this.ImageFrame)
{
 ColorImageFrame imageFrame = this.ImageFrame.ImageFrame;
 this.SaveImage(imageFrame);
}

With this approach, you can save the current image frame directly to an image.
This is very useful when you are not displaying the captured stream in the UI
and want to save the frames directly or from the event handler.

Changing the sensor elevation angle
The Kinect sensor has a motor in the basement. This is used to change the camera
and the sensor's angles to get the correct position of players within the room. The
sensor motor can be tilted vertically up to 27 degrees, which means that the Kinect
sensor's angles can be shifted upwards or downwards by 27 degrees:

Chapter 4

[107]

The default elevation angle is 0 degrees, which indicates that the sensor is pointing
to a perpendicular gravity. So when the Kinect sensor is on the default angle, it
considers a perpendicular gravity as the base. Changing the sensor angle involves
just changing the base of the gravity with respect to the previous base, because the
base depends on the gravity and not on the sensor base.

Do not physically force the device into a specific angle; allow the position
to be set by your application automatically, as few times as possible.

Getting the Most out of Kinect Camera

[108]

Maximum and minimum elevation angles
The Kinect sensor can be tilted upwards or downwards by up to 27 degrees in a
vertical position; these values are fixed. The Kinect SDK has two read-only properties
MaxElevationAngle and MinElevationAngle, which return the maximum and
minimum elevation angle for the Kinect sensor. The values of these two properties
are simply defined with +27 and -27 in the class library.

The MaxElevationAngle and MinElevationAngle properties
defined the boundary values of the Kinect sensor elevation angle. You
can't move the angle beyond those two values. If you try to do so, it
will throw an ArgumentOutOfRangeException exception.

Adjusting the Kinect sensor angle
The sensor angle can be adjusted using the ElevationAngle property. You can
change the angle of the Kinect camera within the range of the ElevationAngle
property. The specified value is in degrees and must be between the
MaxElevationAngle and MinElevationAngle properties. The following
code snippet shows how you can change the sensor elevation angle:

//Sets the sensor angle.
private void SetSensorAngle(int angleValue)
{
 if(angleValue > sensor.MinElevationAngle || angleValue < sensor.
MaxElevationAngle)
 {
 this.sensor.ElevationAngle = angleValue;
 }
}

In the KinectCam application, we are controlling the sensor angle by a slider control,
where the slider max and min values are defined as +27 and -27; we are changing a
value of five on every tick of the slider.

<Slider TickPlacement="BottomRight" IsSnapToTickEnabled="True"
Minimum="-27" Maximum="27" SmallChange="5" LargeChange="5"
ValueChanged="Slider_ValueChanged" />

Call the SetSensorAngle() method on the Slider_ValueChanged event handler:

this.SetSensorAngle(Int32.Parse(e.NewValue.ToString()));

Chapter 4

[109]

One of the most important things to keep in mind while doing any implementation
with the elevation angle is to use the Kinect motor tilt operation only when it's
absolutely required. Changing the sensor angle frequently will result in an error code.

You can handle the changes in the sensor elevation angle in an
asynchronous mode such that it does not freeze the actual UI to deliver
the updates as to which sensor movement is happening. You are free to
use the BeginInvoke pattern in the Dispatcher thread to make sure
the UI thread affinity is maintained, yet calling the code asynchronously.

Playing around the color pixels
Each RGB pixel of the Kinect color image frame is an array of size four. The first
three values represent the values of blue, green, and red, whereas the fourth value
is the alpha value for that pixel:

The previous diagram is the representation of each pixel within an image frame.
The maximum value of each color is 255 and the minimum is 0. The following
screenshot shows the color values for blue, green, and red along with the alpha
values from an image frame:

We could use values from the array to set or change the color value. Pixel
manipulation has to be done while we are processing the images inside the
ColorFrameReady event handler, as this has to be taken care of for all the pixels.

Getting the Most out of Kinect Camera

[110]

Applying RGB effects
While processing color pixels, applying red, green, and blue effects is the easiest. You
can easily iterate through the array and set the value. The following code block refers
to how you can apply only red color effects on an image stream by just not setting 0
for green and blue:

for (int i = 0; i < this.pixelData.Length; i += imageFrame.
BytesPerPixel)
{
 this.pixelData[i] = 0; //Blue
 this.pixelData[i + 1] = 0; //Green
}

As every pixel is represented by an array of length four, which is nothing but
imageFrame.BitsPerPixel (32 bpp), we are increasing the loop with the same
number. Similar to changing the red value, you can set the values for green and
blue; you can even give a combination of these three values to apply some more
color effects on the images.

You can apply the effects from the Effects drop-down box of the KinectCam settings,
which holds the Red, Green, and Blue values. Changing these values will result in
the application of the effect. If you don't want any effects, set it to None, which is
set by default:

Making grayscale effects
Similar to RGB effects, you can apply grayscale effects on an image stream. To apply
the grayscale, you need to apply the same values for all the bytes of the array for a
single pixel, and the value should be the maximum byte of that pixel returned by
the sensor. The following code snippet shows how to apply grayscale effects on the
incoming image stream:

Chapter 4

[111]

for (int i = 0; i < this.pixelData.Length; i += imageFrame.
BytesPerPixel)
{
 var data = Math.Max(Math.Max(this.pixelData[i], this.pixelData[i +
1]), this.pixelData[i + 2]);
 this.pixelData[i] = data;
 this.pixelData[i + 1] = data;
 this.pixelData[i + 2] = data;
}

Inverting the color
Another interesting effect that you can try, which even KinectCam does, is inverting
the color values. The following code refers to how you can invert color pixel values:

for (int i = 0; i < this.pixelData.Length; i += imageFrame.
BytesPerPixel)
{
 this.pixelData[i] = (byte)~this.pixelData[i];
 this.pixelData[i + 1] = (byte)~this.pixelData[i + 1];
 this.pixelData[i + 2] = (byte)~this.pixelData[i + 2];
}

The ~ operator performs a bitwise complement operation on the
pixelData value, which has the effect of reversing each bit with
the array value.

In the KinectCam application, ViewModel holds the two properties
IsInvertColorEffectsEnabled and IsGrayScaleEnabled, and the value of these
two properties is set from the UI checkboxes. When the value of these properties is
true, the respective processing on the image frame is performed.

Similar to RGB, grayscale, and color inverting, you can apply
different additional effects on the image stream by just playing
around with the pixel data. The only thing you should keep in mind
while processing with a color pixel is the application performance.
This is because the loop for changing the color pixel will run for each
and every byte of each image frame.

Getting the Most out of Kinect Camera

[112]

Applying more effects to the camera
Well, this is not the end! Similar to other cameras, you can also apply several
common effects, such as changing the brightness, contrast, hue, gamma, sharpness,
white balance, gain, and saturation. The ColorImageStream class has the
CameraSettings property of the type ColorCameraSettings class that takes
care of all these effects very easily.

You can set the values of all these properties and fine-tune the camera capture
as per your needs. The SDK provides another set of properties to get the
maximum and minimum range for all of them. For example, the MaxBrightness
and MinBrightness properties of the ColorCameraSettings class return the
maximum and minimum values for the camera brightness.

Consider an application where you are applying the camera settings by changing
the value's controls. At first, set the maximum and minimum values for the slider
by getting the maximum and minimum values for the corresponding settings, and
set the current property setting to the slider value. As shown in the following code
snippet, we have set it for a slider control that controls the brightness:

this.sliderBrightness.Maximum = this.sensor.ColorStream.
CameraSettings.MaxBrightness;
this.sliderBrightness.Minimum = this.sensor.ColorStream.
CameraSettings.MinBrightness;
this.sliderBrightness.Value = this.sensor.ColorStream.CameraSettings.
Brightness;

This serves two purposes:

• The slider range is bounded between the maximum and minimum values
• The slider holds the default value initially

Now you must handle the changes to the camera setting properties in an
asynchronous mode, such that it does not freeze the actual UI while updating the
image frames as well as the slider control values:

private void sliderBrightness_ValueChanged(object sender, RoutedProper
tyChangedEventArgs<double> e)
{
 Dispatcher.Invoke(DispatcherPriority.Normal,
 new Action(
 delegate()
 {

Chapter 4

[113]

 this.sensor.ColorStream.CameraSettings.Brightness =
 e.NewValue;
 }
));
}

As shown in the previous code snippet, you can use the BeginInvoke pattern in the
Dispatcher thread to make sure the UI thread affinity is maintained, yet calling the
code asynchronously to update the setting's values.

To set the camera's WhiteBalance manually, you have to set
AutoWhiteBalance to false.

Applying the backlight compensation mode
All in-camera light follows the basic fundamental that only reflected light can be
measured. This means the best one can do is guess how much light is actually
reflecting from the object. When the object background is too bright or/and when
the object is too dark, backlight compensation takes the action of auto exposure of
the camera to make the object appear clearer.

The CameraSettings class has the AutoExposure property, which is by default set to
true. When the AutoExposure is true, you can change the backlight compensation
mode of the color data by doing the following:

this.sensor.ColorStream.CameraSettings.BacklightCompensationMode =
BacklightCompensationMode.CenterOnly;

BacklightCompensationMode is an enumeration, and you can select any of the
following values:

• AverageBrightness
• CenterPriority
• LowlightsPriority
• CenterOnly

AverageBrightness is the default value for
BacklightCompensationMode.

Getting the Most out of Kinect Camera

[114]

Applying slow motion effects
By changing the values of the FrameInterval property, you can apply slow
motion effects by delaying the frames. Frame intervals and frames rates are
inversely proportional, which means if you increase the frame interval, you
will see drops in the frames rates.

Kinect Camera Effects – application
Kinect Camera Effects is an application that is built on the basis of whatever we
have discussed as a part of applying camera effects on the camera. The following
screenshot shows the application screen with different settings applied. This
application is available for download from the book resources location.

Seeing in low light
As we all know, IR is invisible to the human eye as it has a longer wavelength
than the highest wavelength that a human eye can see in a spectrum. This same
disadvantage of human beings is used as an advantage by using an IR light to
see in the dark. The Kinect SDK provides an API that can help us read the same data.

Capturing IR stream data is as simple as capturing a color image stream, as the
SDK returns the infrared stream as a part of the color image stream data. The only
changes are ColorImageFormat and PixelFormats. You can simply change the
following two sections in the code block that we have discussed in the Capturing
color image from the Kinect camera section.

Chapter 4

[115]

1. Enable the ColorStream with InfraredResolution640x480Fps30:

this.sensor.ColorStream.Enable(ColorImageFormat.
InfraredResolution640x480Fps30);

2. Set the PixelFormats to Gray16 while creating the bitmap source as
assigning it to image control:

this.VideoControl.Source = BitmapSource.Create(
imageFrame.Width, imageFrame.Height, 96,96,
PixelFormats.Gray16,
null, pixelData, stride);

That's all! After all the previous changes are done, run your application; you will
find the video stream data full of IR dots. It will be quite fun if you do this testing
in a dark room, because the IR will still help to capture the grayscale image:

Apart from using the infrared stream to capture images in low light, you
can use this to calibrate the cameras while you are using multiple Kinect
sensors or using the Kinect camera with other camera devices.

Making your application perform better
You have seen that image processing happens up to 30 frames per second. This
means that memory allocation and clean-up is happening around 30 times per
second. This makes performance trail, though it does not matter for a small
application; but for a more complex application where there is major work
involved other than only a color camera, it could be a big concern.

Getting the Most out of Kinect Camera

[116]

To make your application perform better, the alternative way is to process images
using the WriteableBitmap object, which serves the purpose of frequently updating
the image pixel. You can find this WriteableBitmap object in the System.Windows.
Media.Imaging namespace. The WriteableBitmap object works in a different way
than BitmapSource. The WriteableBitmap object allocates the memory at once
and updates only the pixel data on frame change. WriteableBitmap improves the
performance by reducing the memory consumption as well as memory allocation
and deallocation.

The overall implementation approach for WriteableBitmap can be performed very
easily. First create the WriteableBitmap object:

private WriteableBitmap writeableBitmap;

Then enable the ColorStream channel and initialize the writeableBitmap object with
the frame width, height, and pixel formats. Then assign the writeableBitmap object to
the source property of image control. Then attach the ColorFrameReady event:

if (this.sensor !=null & this.sensor.IsRunning && !this.sensor.
ColorStream.IsEnabled)
{
 this.sensor.ColorStream.Enable();
 this.writeableBitmap = new
 WriteableBitmap(this.sensor.ColorStream.FrameWidth,
 this.sensor.ColorStream.FrameHeight, 96, 96,
 PixelFormats.Bgr32, null);
 VideoControl.Source = this.writeableBitmap;
 this.sensor.ColorFrameReady += sensor_ColorFrameReady;
}

Use the following code block for the ColorFrameReady event handler. The only
difference you will find in this event handler is the WritePixels() method, which
is being updated with the pixel data for every frame.

void sensor_ColorFrameReady(object sender,
ColorImageFrameReadyEventArgs e)
{
 using (ColorImageFrame imageFrame = e.OpenColorImageFrame())
 {
 if (imageFrame != null)
 {

Chapter 4

[117]

 byte[] pixelData = new byte[imageFrame.PixelDataLength];
 imageFrame.CopyPixelDataTo(pixelData);
 int stride = imageFrame.Width * imageFrame.BytesPerPixel;
 this.writeableBitmap.WritePixels(
 new Int32Rect(0, 0, this.writeableBitmap.PixelWidth,
 this.writeableBitmap.PixelHeight),
 pixelData,
 stride,
 0);
 }
 }
}

You can see that with the WritePixels() method, the reference to
writeableBitmap is getting updated with the new frame from the sensor.
This is just updating the frame's pixels and keeping other things unchanged.

Using the Coding4Fun toolkit
The Kinect Coding4Fun toolkit provides a set of extension methods and samples
that helps the developer develop applications much faster and in an easier
way. You can download the Kinect Coding4Fun toolkit from http://c4fkinect.
codeplex.com/. This toolkit provides both the WPF and WinFrom versions.

Installing the Coding4Fun Kinect toolkit
Using the Coding4Fun toolkit for Kinect is pretty easy and straightforward.
There are two ways that you can start with the Coding4Fun toolkit.

Using assembly
First, download the toolkit and add Coding4Fun.Kinect.Wpf.dll or Coding4Fun.
Kinect.Winfrom.dll as a reference assembly for your application.

Using the NuGet package
On the other hand, you can install it as a NuGet package, which is already published
at the following location:

http://www.nuget.org/packages/Coding4Fun.Kinect.Wpf

http://www.nuget.org/packages/Coding4Fun.Kinect.Wpf
http://www.nuget.org/packages/Coding4Fun.Kinect.Wpf

Getting the Most out of Kinect Camera

[118]

Follow these steps to install it as a NuGet package:

1. Start a new project or open an existing project where you want to use
the Coding4Fun toolkit.

2. Navigate to View | Other Window | Package Manager Console.
This will open the NuGet package manager consoles.

3. To install the toolkit for the WPF application, run the following
command from the package manager:

PM> Install-Package Coding4Fun.Kinect.Wpf

This will successfully install the NuGet package and add the Coding4Fun.Kinect.
Wpf.dll as a reference assembly with the project, as shown in the following
screenshot:

Using Coding4Fun Kinect libraries in your
application
To start using the toolkit, first of all you need to include the following namespace
with your application:

using Coding4Fun.Kinect.Wpf;

And then? Everything will turn out like magic. Well, see how this makes things easy.
You have already seen how to put an image frame in a stream and display it in an
image control. So let's have a look at how the Coding4Fun toolkit does the same task:

using (ColorImageFrame imageFrame = e.OpenColorImageFrame())
{
 if (imageFrame == null)
 {
 return;
 }

 this. VideoControl.Source = imageFrame.ToBitmapSource();
}

Chapter 4

[119]

Well, this is just a matter of one line. What it does to ToBitmapSource() is nothing
but an extension method that is actually doing the same thing that we used to do
step by step. So when we are using the Coding4Fun toolkit, we really don't need to
take care of all these things. Yes, this is very simple to use. Similarly, you can use the
following code snippet to save an image frame as an image by just using the Save()
extension method of BitmapSource.

imageSource.Save(string.Format("{0}.Jpg", imageFrame.FrameNumber.
ToString()), Coding4Fun.Kinect.Wpf.ImageFormat.Jpeg);

You can clearly see that this approach causes a drastic reduction in the number of
lines required to save images from an image frame, in contrast to the earlier section
where we have seen how to save images without using the Coding4Fun toolkit.

Additional downloads
Along with the KinectCam application, this chapter has several projects
for downloading that show the individual features that we have
explored over the chapter. The Kinect Camera Effects and Infrared
Stream applications are also available for download.

Summary
This chapter deals with the Kinect camera and the handling of the color image
streams with multiple image formats that are supported by the Kinect SDK. We
have meticulously covered aspects such as image frame processing, changing the
stream resolution at runtime, capturing standalone images, and playing around
with individual color pixels, by building a complete KinectCam application. You
have also learned how you can fine-tune color images by applying different settings
on the Kinect camera, and you have seen how the infrared streams help capture
images in low lights. You have also seen how to change the sensor angle via code,
and in the end you have seen how using the Coding4Fun toolkit can make your job
easy. Throughout this chapter, you have also learned many small tips and tricks;
these often play a vital role in big composite applications, and knowing them will
stand you in good stead as you embark upon the journey of developing bigger and
more functional applications. If you are comfortable with what we have covered, it's
time to proceed to the next chapter where we will study depth image.

The Depth Data – Making
Things Happen

In the previous chapter you have seen how the Kinect camera works, how you can
capture color image data from the sensor, and played around with the three basic
color components: red, green, and blue. In a similar fashion, you can capture the data
from the Kinect depth sensor; however, the working principle of the depth sensor
and information returned by the depth sensor are totally different than that of the
color camera. Each color frame consists of numbers of pixel values, which give the
values of red, green, and blue color components; whereas each pixel information in
the depth data represents the distance of an object from the sensor. Not to mention,
the depth data is one of the most important aspects of the Kinect device.

The basic depth data is really important for building any useful Kinect application.
If you are going to build an application that detects you, your computer table or
chair, or an application that controls a robot, or more, the depth data is what you
need to work with. In this chapter you will learn the fundamentals of how the IR
depth sensor and IR emitter work together to produce depth information of objects
in front of the sensor. This chapter also covers some basic concepts of depth data
processing and different techniques for using depth data in your applications.
We will also learn how to identify the distance of an object/user as well as how to
generate a 3D view of objects. At the end of this chapter you will be well-versed on
how to work with the depth data of Kinect. A brief overview of the different aspects
of this chapter is as follows:

• Understanding the depth data stream
• Depth data – behind the scenes
• Capturing and processing depth data
• Depth data and distance

The Depth Data – Making Things Happen

[122]

• Understanding player index
• Tracking objects in Near Mode
• A 3D view of depth data

Understanding the depth data stream
The Kinect sensor returns the depth stream data as a succession of the depth image
frame. The Kinect sensor returns raw depth with 16-bit grey scale format with a
viewable range of 43 degrees vertical and 57 degrees horizontal. Well, this is not
just an image; behind the scenes the Kinect sensor runs a series of algorithms on the
captured data to give you more than an image, which tells you how far each pixel in
that frame is. The depth pixel contains the distance between the Kinect device and
the objects in front of the device, in millimeters. The data is represented based on the
X and Y coordinates in the depth sensor view. For example, if a pixel coordinate is
200 x 300, the depth data for that pixel point contains distance in millimeters from
the Kinect device (refer to the following image):

The viewable angle range will remain the same with the change of
sensor elevation angle, as the change is considered as a change on
the base of the Kinect sensor.

The following resolutions are supported by the depth data stream with 30 frames per
second (FPS):

• 640 x 480 pixels
• 320 x 240 pixels
• 80 x 60 pixels

Chapter 5

[123]

The Kinect device can capture the data approximately 13.1 feet (4.0 meters) away
from the sensor as well as a very close range of 40 cm in front of the device without
losing accuracy or precision. The Kinect sensor also tracks objects beyond 4.0 meters,
but in such cases quality will be compromised because of the noise.

Depth data – behind the scenes
The Kinect device consists of an IR emitter and an IR depth sensor. Both the
components have to work together to produce the desired output. To the naked eye,
the IR emitter may look like a camera, but in reality it's an IR projector that emits
infrared light in a pseudorandom dot pattern constantly in front of the device.

These dots are invisible to us, as the wavelength of the IR
radiations are longer than the wavelength of visible light for
human eyes.

The second element is an IR depth sensor that reads the dots in the scene, processes
the data, and sends the depth information from which they were reflected. The
following illustration shows how the IR emitter and IR depth sensor work to
produce depth data:

At this point, you might think, how does a single IR camera provide the depth
information? How does the sensor get point information? There is an interesting
concept behind this, which is known as stereo triangulation.

The Depth Data – Making Things Happen

[124]

Stereo triangulation
Stereo triangulation is an analysis algorithm for computing the 3D position of points
in an image frame. In general stereo triangulation, two images are used to obtain the
two different views on a scene, in a similar fashion to human binocular vision. By
comparing these two images, the relative depth information is calculated.

To learn more about stereo vision, you can refer to the following URL:
http://en.wikipedia.org/wiki/Computer_stereo_vision

When it comes to Kinect, there is only one image, which is captured by the IR depth
sensor; then how does the stereo triangulation work? Actually, there are two images
instead of one. The second image is invisible – it's a pattern of the IR emitter that is
already defined with the IR laser. The IR laser is not modulated. All that the laser
does is project a pseudorandom pattern of specs on the Kinect environment. These
two images are not equivalent as there is some distance between the IR emitter and
IR depth sensor. These two images are considered as correspondence to the different
camera, and allow you to use stereo triangulation to calculate depth as shown in the
following image. It demonstrates how x1 and x2 are getting measured using stereo
triangulation for a point X in the scene:

Depth data depends on the IR lights, so the measuring of depth
data can be impacted if you are placing the Kinect in direct
sunlight or with any other device that interferes with IR lights.

Chapter 5

[125]

Capturing and processing depth data
To capture the depth data from the Kinect sensor, the program should use exactly
the same flow as we used to read the color data stream in the previous chapters.

1. Enable the depth stream channel with the type of depth image format.
2. Attach the event handler to the stream channel.
3. Process the incoming depth frames.
4. Render the frames on UI.

To start with, you can build a basic WPF application that can capture the raw depth
stream and display it. We will extend this application, going forward to explore
other features of depth data such as calculating distance and finding player indexes.
Perform the following steps to set up a blank project for your DepthCam application:

1. Start a new instance of Visual Studio.
2. Create a new project by navigating to File | New Project.
3. You will see the New Project dialog box. Choose Visual C# as your

development language, select WPF Application Template, and type
the name as DepthCam.

4. From Solution Explorer, right-click on the References folder and select
Add References.

5. Include a reference of the Microsoft.Kinect assembly.

Enabling the depth stream channel
Identify the connected Kinect sensor and enable the depth stream channel.
The following code snippet finds the Kinect sensor and then enables the
depth stream channel:

this.sensor = KinectSensor.KinectSensors[0];
this.sensor.DepthStream.Enable();

By default Enable() does not accept any arguments. You can simply call this
method with the Depthstream property of the current sensor, as follows:

this.sensor.DepthStream.Enable();

The Depth Data – Making Things Happen

[126]

The ImageStream class has an overloaded method for Enable(). By default, the
sensor enables the depth stream with the Resolution640x480Fps30 depth image
format. If you want to initialize the depth stream with a different image format, use
the overloaded method that accepts DepthImageFormat as an argument as shown in
following snippet:

this.sensor.DepthStream.Enable(DepthImageFormat.
Resolution320x240Fps30);

Only one depth stream channel can be activated at a time and you can
select any type from the DepthImageFormat enumeration. If you are
trying to enable multiple times with different DepthImageFormat
enumerations, the latest one will take precedence.

You can use the IsEnabled property before enabling the stream channel or at any
point of time to check if the channel is open for the depth stream or not. Following is
the code snippet using the IsEnabled property before enabling the depth stream:

if (!this.sensor.DepthStream.IsEnabled)
{
this.sensor.DepthStream.Enable(DepthImageFormat.
Resolution640x480Fps30);
}

To disable the stream channel, you can call the Disable() method,
which just closes the connection channel for the current open stream
irrespective of the DepthImageFormat enumeration that you have
specified. IsEnabled is automatically set to false internally when
you call the Disable() method or stop the sensor.

Attaching the event handler
Once the sensor is identified and the depth stream is enabled, attach the
DepthFrameReady event handler to an event that is raised each time a new depth
frame is available:

sensor.DepthFrameReady += new EventHandler<DepthImageFrameReadyEventAr
gs>(sensor_DepthFrameReady);

As shown in the previous snippet, each time a new depth frame is available, the
method sensor_DepthFrameReady() will be invoked, where you need to process
the raw depth data.

Chapter 5

[127]

Processing the depth frames
The DepthFrameReady event handler invokes with
DepthImageFrameReadyEventArgs, which has the OpenDepthImageFrame()
method to return the current depth image frame sent by the sensor.

The default method stub for DepthFrameReady will look as follows:

void sensor_DepthFrameReady(object sender,
DepthImageFrameReadyEventArgs e)
{
}

To retrieve the depth image frame, you need to follow the step similar to the one we
followed for the color image stream process. The following code block shows the
depth image frame ready handler:

using (DepthImageFrame depthimageFrame = e.OpenDepthImageFrame())
{
 if (depthimageFrame == null)
 {
 return;
 }
 short[] pixelData = new short[depthimageFrame.PixelDataLength];
 int stride = depthimageFrame.Width * 2;
 depthimageFrame.CopyPixelDataTo(pixelData);
 depthImageControl.Source = BitmapSource.Create(depthimageFrame.
Width, depthimageFrame.Height, 96, 96, PixelFormats.Gray16, null,
pixelData, stride);
}

In the previous code block, we retrieve the depth image frame using the
OpenDepthImageFrame() method. This will return the raw depth data from the
sensor. pixelData creates the buffer size for the incoming depth image frame.

For depth data, pixel data size is a type of short[]
array, because it's a 16-bit data.

The Depth Data – Making Things Happen

[128]

Like the color image frame, the depth frame has similar properties that copy the pixel
data to the newly created buffer. CopyPixelDataTo() is used to copy the byte[]
array of pixel data from the currently received image frame to the newly created
buffer. Before copying the pixel data, you have to first calculate the buffer size using
the PixelDataLength property, and then copy the same byte[] array image as
DepthImageFrame. As the raw depth image frame is a 16-bit grayscale image, we
have specified PixelFormats as Gray16 while creating the bitmap source for depth
image control.

You must have noticed the value of stride used here is
depthimageFrame.Width * 2, where 2 is nothing but the
value of BytesPerPixel (2 bytes) of the depth image frame.

Finally, we created the BitmapSource object and assigned it to the image control
depthImageControl, which is defined in the XAML to display the stream data,
as follows:

<Image Name="depthImageControl" Stretch="Fill" />

Depth data at first look
That's all; run the application and you will be able to see the depth image data from
the sensor in your application:

Chapter 5

[129]

If you come closer or bring some object closer to the sensor, you will find yourself or
the object disappear and the color becoming white (second window in the screenshot),
and if you move backwards you will find everything changing back into black
(third window in the screenshot):

That was all about capturing the basic raw depth data from the Kinect sensor. So
far you have enabled the depth stream and attached the event handler, which will
invoke automatically whenever there is a depth frame. The frame will have the raw
depth data that you need to handle within the depth frame ready event handler. So,
let's have a look at the other properties and methods for the depth stream, which
help to capture and process the data.

The DepthImageStream class has a public method, named
OpenNextFrame(). Using the OpenNextFrame() method, you can
request a depth image frame from the sensor. This is how the polling
model works for retrieving the image frame. This works in a similar
fashion to capturing streams on demand. We have discussed these
details in Chapter 4, Getting the Most Out of the Kinect Camera.

Looking inside depth image stream
helpers
DepthImageFrame and DepthImageStream are the two classes that actually take care
of all the depth data processing.

The Depth Data – Making Things Happen

[130]

The following class diagram is a representation that will help you quickly
understand the overall depth image frames and their associations, which we
have discussed earlier. Each individual depth frame is represented by the
DepthImageFrame class. The DepthImageFrame class is a sealed class and is
derived from an ImageFrame base class. Whenever there is a frame from the sensor,
DepthFrameReady events fire up with DepthImageFrameReadyEventArgs, which has
the OpenDepthImageFrame() method exposed. OpenDepthImageFrame() returns
the type of DepthImageFrame with the DepthImageFormat type that was specified
during stream channel initialization. The data that is returned from the sensor can be
processed further inside the DepthFrameReady event handler.

The depth image stream represents the succession of the depth image frame
coming from Kinect devices. DepthImageStream is nothing but a stream of
DepthImageFrame objects. The DepthImageStream class is derived from an
ImageStream base class. This class defines the properties and methods for working
with the depth image stream, such as to enable or disable the stream and setting
the range and mode of the depth data. The following image shows the overall class
diagram of the DepthImageStream class, along with its associations:

Chapter 5

[131]

You have noticed that based on your movement, or by changing objects in front
of the sensor, depth data is changing; so there is something that depends on the
distance of the objects, which is being captured by the sensor. So let's have a look
at how to play around with distance and depth data.

Depth data and distance
The depth vision for the Kinect sensor ranges from around 800 mm to approximately
4000 mm (2.6 feet to 13.1 feet), which is the default range for the depth stream.
However, the sensor can capture the information beyond 4000 mm, in which
case the quality of data will be compromised as the sensor is not built for that.

The DepthImageStream and DepthImageFrame classes have the
MaxDepth and MinDepth properties, which return the maximum
and minimum depth ranges for that particular stream or captured
image frame, in millimeters. This range value returns the best range
where distance can be measured properly. Keep in mind, these are
read-only properties; these values will change automatically based on
the selection of DepthRange for the stream.

The Depth Data – Making Things Happen

[132]

The following image shows the default depth range for a Kinect sensor where the
sensor can track the objects and measure the distances:

The Kinect depth sensor calculates distance based on the straight distance between
the object and sensor. When there is a pixel in any of the diagonal views of the
sensor, it internally draws a line that is perpendicular to the sensor and then
calculates the distance directly from there, as shown in the following image:

Chapter 5

[133]

How the distance is calculated
The Kinect sensor returns 16-bit raw depth frame data. The first three bits are used
to represent the identified players and the remaining 13 bits give you the measured
distance in millimeters. We will discuss player index (first three bits) more in a later
part of this chapter. Let's focus on the upper 13 bits, which represent the actual
distance of the pixel value from the sensor.

From the available 16-bit data, we need the upper 13 bits to get the distance. So, first
of all we need to perform a bitwise shift operation (>>) to move the bits to their
correct position.

The DepthImageFrame class has a defined constant field
PlayerIndexBitmaskWidth with a value of 3 to use during
the logical shift operation.

Here is the generic formula for the distance calculation with depth data, where
depthFrame is a short[] array:

int depth = depthFrame[depthIndex] >> DepthImageFrame.
PlayerIndexBitmaskWidth;

The Depth Data – Making Things Happen

[134]

For example, consider in a particular frame, one of the pixel values is 20952. Now
look at the following diagram, which explains how the depth in millimeters is
calculated from a particular pixel value by applying bit shifting:

The easiest and most straightforward way to get your hands dirty with distance
calculation is to calculate the distance of a particular pixel index from screen positions.

Getting the distance from a particular pixel
To get the distance from a particular pixel, first of all you need to calculate
pixelIndex from the current selected position. Add a new event handler for
depthImageControl_MouseDown, which will handle the distance calculation.
Get the selected position by using the following code:

Point currentPoint = e.GetPosition(depthImageControl);

In the next step, calculate pixelIndex from the X and Y coordinates of the
selected position:

int pixelIndex = (int)(currentPoint.X + ((int)currentPoint.Y * this.
frame.Width));

And finally, get the distance by using bit masking:

int distancemm = this.pixelData[pixelIndex] >> DepthImageFrame.
PlayerIndexBitmaskWidth;

Chapter 5

[135]

The following screenshot shows the distance information of a particular position
selected using the mouse cursor:

Accessing the range of distance
In the previous section you saw how to get the depth for a particular pixel.
Here you will learn how to take control over a range of distance. The easiest
way to learn this is by changing the bit values within a specific range of distances
and seeing the effects.

As shown in the following snippet, a bitwise (~) complement operation
is performed on bits whose values fall between 1500 mm and 3500 mm.
The ReversingBitValueWithDistance() method accesses depthImageFrame
and pixelData and reverses the bit values for the selected range:

private short[] ReversingBitValueWithDistance(DepthImageFrame
depthImageFrame, short[] pixelData)
{
 short[] reverseBitPixelData = new short[depthImageFrame.
PixelDataLength];
 int depth;
 for (int index = 0; index < pixelData.Length; index++)
 {

The Depth Data – Making Things Happen

[136]

 depth = pixelData[index] >> DepthImageFrame.
PlayerIndexBitmaskWidth;
 if (depth < 1500 || depth > 3500)
 {
 reverseBitPixelData[index] = (short)~pixelData[index]; ;
 }
 else
 {
 reverseBitPixelData[index] = pixelData[index];
 }
 }
 return reverseBitPixelData;
}

Colorize depth data processing
To enhance the 16-bit raw depth data and identify the range of distances with
different colors, you can convert the raw data into a 32-bit RGB frame where
each pixel can represent an RGB color value based on the distance.

We have created one custom method GetColorPixelDataWithDistance()
as follows, which accepts the raw depth data from the sensor and converts
it into a 32-bit byte[] array:

private void GetColorPixelDataWithDistance(short[] depthFrame)
{
 for (int depthIndex = 0, colorIndex = 0; depthIndex < depthFrame.
Length && colorIndex < this.depth32.Length; depthIndex++, colorIndex
+= 4)
 {
 int distance = depthFrame[depthIndex] >> DepthImageFrame.
PlayerIndexBitmaskWidth;
 if (distance <= 1000)
 {
 depth32[colorIndex + 2] = 115;
 depth32[colorIndex + 1] = 169;
 depth32[colorIndex + 0] = 9;
 }
 else if (distance > 1000 && distance <= 2500)
 {
 depth32[colorIndex + 2] = 255;
 depth32[colorIndex + 1] = 61;
 depth32[colorIndex + 0] = 0;
 }
 else if (distance > 2500)

Chapter 5

[137]

 {
 depth32[colorIndex + 2] = 169;
 depth32[colorIndex + 1] = 9;
 depth32[colorIndex + 0] = 115;
 }
 }
}

In the previous code block, we iterate through each and every pixel and calculate the
distance by using bit shifting. depth32 is the placeholder for the color depth image
with a size of new byte[depthImageFrame.PixelDataLength * 4]. For every
depth array, 0, 1, and 2 represent blue, green, and red respectively, and the 4th bit
represents the values of alpha, which is not assigned here. This is the main reason
behind increasing the color index by 4.

Distance and color values are given just as an example; you can change
them as per your application's requirements.

Place a checkbox in XAML in the Kinect DepthCam application and on selection, call
GetColorPixelDataWithDistance() from the depth frame ready event handler:

depth32 = new byte[depthimageFrame.PixelDataLength * 4];
this.GetColorPixelDataWithDistance(pixelData);
depthImageControl.Source = BitmapSource.Create(
depthimageFrame.Width, depthimageFrame.Height, 96, 96, PixelFormats.
Bgr32, null, depth32, depthimageFrame.Width * 4
);
}

To colorize the depth data, you have to specify the PixelFormats type
as Bgr32 (highlighted in the previous code block), as pixel information
for color image frames holds 32-bit data.

The Depth Data – Making Things Happen

[138]

Run the same application, and select the Enable Color Data checkbox to see the
colorized depth data:

Colorizing the data based on distance is just for making it clear how the distance can
be used. This type of calculation is tremendously helpful when you deal with some
object detection within a specific range of distance.

Working with depth range
The Kinect sensor captured data within a certain range of distance, which is specified
by the Range property of the DepthStream class. The Range property sets the
viewable range for the Kinect sensor, which is a type of DepthRange enumeration.

A DepthRange enumeration has the following two values:

• Default
• Near

By default, DepthRange is set to Default and the range varies from 800 mm to
4000 mm. You can change the range of the depth data stream as follows:

sensor.DepthStream.Range = DepthRange.Near;

Chapter 5

[139]

The Near Mode feature helps us track a human body within a very close range
(approximately 40 centimeters), and the range varies from 400 mm to 3000 mm.
The following image shows the reliable range for both the default and Near Modes:

This feature is limited to only the Kinect for Windows sensor. If you are
using the Xbox sensor, you won't be able to work with Near Mode and
the application will throw InvalidOperationException.

To play around with different modes, let's extend our existing application by adding
a combobox that has two values, Default and Near, and set the DepthRange property
on selection change:

As shown in the previous screenshot, you can see that for the same pixel value,
we are getting a distance in Near Mode but not in the default mode.

The Depth Data – Making Things Happen

[140]

Special depth range values
DepthImageStream defines three additional read-only properties named
TooFarDepth, TooNearDepth, and UnknownDepth, which help us have better control
over distance by providing a range where getting the depth values is not possible:

• TooFarDepth: It provides the depth point where the object is beyond the
range of the sensor

• TooNearDepth: It provides the depth point where the object is too close
to the sensor

• UnknownDepth: There are instances when a depth is completely indeterminate;
this can be considered as an unknown depth, and the value will be zero

Depth data distribution
One of the best ways to graphically represent distribution of data is the
histogram. Histograms visually tell how the current data values are distributed
for a given data set. From a histogram, we can identify how frequently and how
well data is distributed.

Depth values contain distances for the different possible ranges, shadows,
or even unknown depth information. With histogram representation, the following
is made possible:

• Identifying the depth data range for filtering data
• Occurrence of a certain range of values

Chapter 5

[141]

• Probability distribution for a specific range of data
• Defining the range for capturing data

Generating a histogram is very easy, as the representation is as simple as a bar chart.
You can simply use any .NET Chart Control and assign the depth value for every
pixel to the chart control elements; alternatively, you can use basic WPF controls
such as StackPanel to represent or draw the depth data as a bar chart.

Player index with depth data
So far, we have seen how to work with the raw depth data from the sensor and
manipulate the data based on the distance. In this section you will learn how Kinect
returns the player information and how to deal with the player who is standing in
front of the Kinect sensor.

While we were discussing depth data and distance, you have seen that for a 16-bit
raw depth data, the first three bits represent the player index and the higher 13
bits represent the distance. You have already learned how the distance calculation
works with those higher 13 bits; let's have a look at how those first three bits
represent a player.

Player tracking requires the skeleton stream to be enabled. If you have
enabled only the depth stream, the sensor won't be able to return the
player information. The sensor returns the player index values within
the depth pixel bits only if the skeleton stream is enabled. We will
discuss skeleton tracking in the upcoming chapters.

How player index works
A Kinect sensor can detect up to six players, numbered one to six. A pixel with
a player index value of 0 means there is no player recognized. For calculating
the player index value, we do a logical AND operation with the pixel value
and PlayerIndexBitmask. PlayerIndexBitmask is a constant defined in the
DepthImageStream class, which represents a fixed value 7. So, there is a logical
AND operation between these two values.

The Depth Data – Making Things Happen

[142]

The following diagram shows the player index calculation with a pixel data value
10001010011110 (pixel value 8862) along with the player index:

Well, that was all about the theoretical concepts of the player index calculation.
Let's have a look at how to work with the player index using code.

Identifying players
To get the player index and change the color values, you need to perform an
operation similar to the one you did for the colorization of depth data. The only
difference is the way PlayerIndexBitmask is calculated, and highlighting the player
pixels with different colors.

private void TrackPlayer(short[] depthFrame)
{
 for (int depthIndex = 0, colorIndex = 0; depthIndex < depthFrame.
Length && colorIndex < this.depth32.Length; depthIndex++, colorIndex
+= 4)
 {
 int player = depthFrame[depthIndex] & DepthImageFrame.
PlayerIndexBitmask;
 if (player > 0)
 {
 depth32[colorIndex + 2] = 169;
 depth32[colorIndex + 1] = 62;

Chapter 5

[143]

 depth32[colorIndex + 0] = 9;
 }
 }
}

This will change the value of all the pixels associated with a player to brown and
will set the background as black as we haven't set any colors for other pixels. The
following screenshot shows the output of this code:

As per the previous code, it will set the same color to all the tracked players.
You can track different players based on the player index, which will be covered
in the next chapter.

Capturing color and depth data together
You can build an application that can enable both the color and the
depth stream at the same time, which means you can capture both the
color and the depth data at the same time. If you want to use both the
cameras, we just have to enable both streams:

sensor.DepthStream.Enable();

sensor.ColorStream.Enable();

Then you can just attach the event handler for the stream and process
the data inside the event handler:

sensor.ColorFrameReady += sensor_ColorFrameReady;

sensor.DepthFrameReady +=sensor _DepthFrameReady;

The Depth Data – Making Things Happen

[144]

Though using color and depth data streams is usually very common and most of your
applications would require that, here is one interesting scenario where you can use
both of them very nicely. Consider you are a building a home security solution and
you are using Kinect as an intrusion detector. You can track the intruder by identifying
the player index values, and based on the distance, check how far the intruder is; if it's
coming near the sensor, capture a color photo and save it. You can also take advantage
of the infrared stream, if you want to track the same in low lights.

Getting the depth and player index
automatically
You have seen how the Kinect sensor returns the raw depth data and how you
can calculate the depth and player index by applying bit masking. You can get the
depth and player index automatically as well from the depth data with the help of
Kinect for Windows SDK. The SDK provides a structure named DepthImagePixel,
which represents the individual pixels in DepthImageFrame. The DepthImagePixel
structure holds the information about each individual pixel such as depth and
player index. Different properties of the DepthImagePixel structure are listed
in the following table:

Name Description
Depth Directly returns the depth for the current pixel, in millimeters. So,

there is no bit masking required on pixel values.
IsKnowDepth IsKnownDepth indicates if the depth value is a known value. This

is similar to validating with the UnknownDepth property of the
DepthImageStream class. This means, if the depth information is
not UnknownDepth, it will return true, otherwise false.

PlayerIndex Similar to depth information, this property returns PlayerIndex
for the current pixel value.

Overall implementation will remain the same as the ones you are already familiar
with. To work with DepthImagePixel, you need to perform the following steps:

1. First, define the storage for the pixel data; you can define the size with the
FramePixelDataLength property of the DepthImageStream class:
private DepthImagePixel[] depthImagePixels;
depthImagePixels = new DepthImagePixel[sensor.DepthStream.
FramePixelDataLength];

Chapter 5

[145]

2. This will create a buffer to store the pixel information. Then, in the
DepthFrameReady event handler, use the OpenDepthImageFrame() method
to access the depth frame returned from the sensor. Once you have the
frame, use the CopyDepthImagePixelDataTo() method to copy the data to
depthImagePixels. CopyDepthImagePixelDataTo() copies each individual
frame to the created buffer by calculating the depth and player index
information.
using (DepthImageFrame depthimageFrame = e.OpenDepthImageFrame())
{
 if (depthimageFrame == null)
 {
 return;
 }
 depthimageFrame.CopyDepthImagePixelDataTo(this.
depthImagePixels);
}

3. You can display the pixels in UI using the earlier approach, which you are
already familiar with. The thing you might be interested in is the depth
values for individual pixels. To quickly check that, use the debugger
visualizer by just adding a break point as shown in the following screenshot:

4. To get access to the individual pixel information, you can iterate through
each of them:
for (int i = 0; i < depthImagePixels.Length; i++)
{
 short depth = depthImagePixels[i].Depth;
 short playerIndex = depthImagePixels[i].PlayerIndex;
}

The DepthImagePixel array size must be equal to the PixelDataLength or
FramePixelDataLength property.

The Depth Data – Making Things Happen

[146]

A 3D view of depth data
So far, you have seen the display and rendering of the depth data on a 2D surface,
but there are more interesting and useful things we can do using the depth data.
Our screen is only two dimensional; the camera takes a picture of an object in front
of it and then projects it on a plane surface. We can construct a 3D view of the depth
data returns by the Kinect sensor, with the help of the 3D rendering engine. In this
section you will learn how to leverage the 3D functionality in Windows Presentation
Foundation to give a 3D view to the depth data.

3D functionality enables the developer to represent complex illustrations
of the data. Working with 3D graphics requires very good knowledge of
the coordinate system, understanding of Mesh, Modeling, Materials, and
Camera projections. If you are new to 3D graphics, please refer to the
following URL: http://msdn.microsoft.com/en-us/library/
ms747437.aspx (3-D Graphics Overview), which covers details on using
3D graphics in WPF.

The basic idea behind creating a 3D view on an object is to have a three-dimensional
model. We can render the 2D projection into a bitmap using the 3D rendering engine.
The engine defines what object to draw, color of the objects, camera projection, and
the lights of the surface area.

The basics of the coordinate system
The most important thing to keep in mind is that the WPF 3D uses a different
coordinate system, as shown in the following figure:

Chapter 5

[147]

This representation of the coordinate system mostly helps you for interacting
with the object, applying modeling, setting up the camera view, and performing
coordinate conversions.

Basic elements of 3D graphics
To build any kind of 3D application, there are a few basic elements that are required.
They are the following:

• 3D Model: This is defined by the mesh objects (representation of 3D surface)
and materials (represent the appearance of 3D objects). The geometry model
of the 3D rendering engine creates the 3D object from the mesh and the
materials.

• View Port: This takes care of rendering of data (3D Model) in the 3D
coordinate system.

• Camera: Every 3D scene should have one camera. Without the camera view,
we won't be able to render the objects. The camera defines the Position,
LookDirection, and UpDirection properties of the view area.

Apart from that, you can apply light effects on 3D scenes, and also different rotations
and animations on the view port.

To know more about 3-D Graphics How-to Topics, refer to http://
msdn.microsoft.com/en-us/library/ms746607.aspx.

Let's start building a simple application that reads the depth information from the
Kinect sensor and renders it as 3D. The 3D display will change automatically as and
when there is a new frame provided by the sensor. We will also apply some camera
effects on the rendered object.

Setting up the project
Setting up the project is quite easy, just create a new WPF Application project in
Visual Studio and name it Depth3DView. And then from the solution explorer,
include the reference for Microsoft.Kinect.

Open MainWindow.xaml.cs. Along with Using Microsoft.Kinect, you have to
add using System.Windows.Media.Media3D, which supports the 3D graphics in
the WPF application.

The Depth Data – Making Things Happen

[148]

Give it a 3D effect
We have discussed the basic elements of 3D elements and their uses.
Let's put the elements together and see how they work to represent a 3D object.

Creating the ViewPort
First of all, we need an instance of the ViewPort3D object as it takes care of rendering
the element's overall 3D components on the UI. For building the application layout,
we'll use a grid with two rows. The first row will have one Viewport3D object, and in
the second row we will have a scrollbar to control the camera.

Open the MainWindow.xaml file and add a Viewport3D control in XAML and also
specify the grid row, height, and width:

<Viewport3D x:Name="viewport" Grid.Row="0" Width="300" Height="300">
</Viewport3D>

Using the camera
The camera allows the views for a 3D scene. You can use either PerspectiveCamera
or OrthographicCamera for viewing the scene. In this exercise, we will be using
PerspectiveCamera by just adding the following below the XAML snippet inside
Viewport3D:

<Viewport3D.Camera>
 <PerspectiveCamera x:Name="camera" FarPlaneDistance="5000"
NearPlaneDistance="100"
LookDirection="0,0,1" UpDirection="0,-1,0" Position="120,110,-1000"
FieldOfView="10" />
</Viewport3D.Camera>

LookDirection is what the camera looks at and Updirection is the vertical axis
of the camera. FarPlaneDistance and NearPlaneDistance represent the range of
the display area for the elements within the viewport that the camera will display.
Position represents the X, Y, and Z positions for the view.

Controlling the camera position
To give some additional effects on the view area, you can apply some changes to
the position of the camera. Add three different sliders for controlling the X, Y, and Z
positions of camera. Below the XAML snippet place a slider control that controls the
Y axis of the camera:

<StackPanel Orientation="Horizontal">
 <TextBlock Text="Y :" />

Chapter 5

[149]

 <Slider Width="250" x:Name="YSlider" ValueChanged="YSlider_
ValueChanged" TickFrequency="1" SmallChange="1" LargeChange="1"
Minimum="100" Maximum="180" Value="120" />
</StackPanel>

Similar to the previous slider, you can add two more for controlling the X and Z
axes, and set the minimum and maximum values as per the display range.

On the slider's ValueChanged event, you need to handle the position value. The
following snippet shows the changing of the Y axis for the camera:

Dispatcher.Invoke(DispatcherPriority.Normal,
new Action(
 delegate()
 {
 perspectiveCamera.Position = new Point3D(
 e.NewValue,
 camera.Position.Y, Camera.Position.Z);
 }
));

Similar to the previous code block, you can easily implement the slider's
ValueChanged event handler that controls the values for the X and Y axis
of the camera.

Creating the 3D Model
We are done with setting up the viewport and the camera. Now we need to define
the content for the viewport, which will be the instance of the ModelVisual3D
element. This ModelVisual3D object will contain the mesh object, brush information,
lighting, and so on. As of now, we don't have the mesh object ready, but at this point
of time, we can define ModelVisual3D in XAML:

<ModelVisual3D x:Name="model">
 <ModelVisual3D.Content>
 <Model3DGroup x:Name="modelGroup">
 <AmbientLight Color="Gray"/>
 <DirectionalLight Color="Gray" Direction="-1,-3,-2"/>
 <DirectionalLight Color="Gray" Direction="1,-2,3"/>
 </Model3DGroup>
 </ModelVisual3D.Content>
</ModelVisual3D>

ModelVisual3D.Content holds the actual elements for viewport. We have content
inside the Mode3DGroup element as we have defined multiple lights, and of course,
we have to add the mesh objects in model.

The Depth Data – Making Things Happen

[150]

Building the mesh object
Mesh is a representation of a surface of a 3D object, built using different triangles.
Each triangle will have 3D vertices. The vertices are joined together to define the
triangle with a front and a back side; only the front side will be rendered:

We can create the mesh object that consists of triangles using the MeshGeometry3D
object, and then wrap up it using the GeometryModel3D object. First, add a new
private member to the class:

private GeometryModel3D geometryModel;

We have created a method CreateTriangleModel(), which accepts three points for
each triangle and constructs the GeometryModel3D object by applying Material as
SolidColorBrush:

private GeometryModel3D CreateTriangleModel(Point3D p0, Point3D p1,
Point3D p2)
{
 MeshGeometry3D mesh = new MeshGeometry3D();
 mesh.Positions.Add(p0);
 mesh.Positions.Add(p1);
 mesh.Positions.Add(p2);
 mesh.TriangleIndices.Add(0);
 mesh.TriangleIndices.Add(1);
 mesh.TriangleIndices.Add(2);
 Material material = new DiffuseMaterial(new
SolidColorBrush(Colors.Dark));
 geometryModel = new GeometryModel3D(mesh, material);
 return geometryModel;
}

Chapter 5

[151]

Setting up the initial data points
To create the basic 3D points, consider the image frame we will be receiving from
the sensor with the resolution of 320 x 240. Hence, we have defined the array of
GeometryModel3D with the same size:

private GeometryModel3D[] modelPoints = new GeometryModel3D[320 *
240];

Here, you can choose a higher resolution as well, but you have to be
careful about the performance of the application, as the same object
is going to be rendered for each and every frame pixel.

Once you have defined the array, create the basic data points by calling the
SetData() method as shown in the following code. Consider PosZ as 0 at this point,
as currently we don't have its value. Once we have data from the sensor, this value
will be updated by the pixel depth value:

int pixelHeight = 240;
int pixelWidth = 320;

private void SetData()
{
 int i = 0;
 int posZ = 0;
 for (int posY = 0; posY < pixelHeight; posY += 2)
 {
 for (int posX = 0; posX < pixelWidth; posX += 2)
 {
 modelPoints[i] = CreateTriangleModel(new Point3D(posX,
posY, posZ), new Point3D(posX, posY + 2, posZ), new Point3D(posX + 2,
posY + 2, posZ));
 modelPoints[i].Transform = new TranslateTransform3D(0, 0,
0);
 modelGroup.Children.Add(modelPoints[i]);
 i++;
 }
 }
}

When we call this method, all the objects will be automatically added into the child
element of model.

The Depth Data – Making Things Happen

[152]

Getting the depth data from Kinect
The final task of this exercise is getting the depth data from the sensor and creating
the mesh data out of it. The basics of starting the sensor, enabling the data stream,
and getting the depth data from the sensor are already known to you; the only area
you have to focus on is updating the position of mesh object Z (PosZ) by updating
the translation transformation. The Z value, here, is nothing but the depth of that
particular pixel:

void sensor_DepthFrameReady(object sender,
DepthImageFrameReadyEventArgs e)
{
 using (DepthImageFrame depthImageFrame = e.OpenDepthImageFrame())
 {
 if (depthImageFrame == null)
 {
 return;
 }
 short[] pixelData = new short[depthImageFrame.
PixelDataLength];
 depthImageFrame.CopyPixelDataTo(pixelData);
 int translatePoint = 0;
 for (int posY = 0; posY < depthImageFrame.Height; posY += 2)
 {
 for (int posX = 0; posX < depthImageFrame.Width; posX +=
2)
 {
 int depth = ((ushort)pixelData[posX + posY *
depthImageFrame.Width]) >> 3;
 if (depth == sensor.DepthStream.UnknownDepth)
 {
 continue;
 }

Chapter 5

[153]

((TranslateTransform3D)modelPoints[translatePoint].Transform).OffsetZ
= depth;
 translatePoint++;
 }
 }
 }
}

As shown in the previous code block, we are calculating the depth for every pixel
value on every incoming depth frame, and updating the mesh object transformation.
You have also noticed that we have discarded the unknown depth value while
processing the frames.

We have also moved two pixels in each iteration of the depth frame.
You can just increase it by one to get the 3D view of every pixel, but
this requires lots of CPU processing and can decrease the performance
of the application. If you are getting bad performance with even
moving two pixels, you can change to three or four.

If you are comfortable with WPF 3D graphics and prefer to do stuff
using C# code rather using XAML, you can refer the 3D Point Cloud
with the Kinect post showcased at the Coding4Fun Kinect gallery at
the following URL: http://channel9.msdn.com/coding4fun/
kinect/3D-Point-Cloud-with-the-Kinect. Refer the details of
this post for more information on designing a 3D Point Cloud.
Project Information URL: http://www.i-programmer.info/
ebooks/practical-windows-kinect-in-c/4126-kinect-
sdk1-a-3d-point-cloud.html

Have a look at 3D depth
That's all! On the Windows_Loaded event, enable the depth data start, start the
sensor, and then call the SetData() method.

The Depth Data – Making Things Happen

[154]

And finally, run the application and move the Kinect sensor around. You will be
able to view constructed 3D points of depth data representations, as shown in the
following screenshot. Change the camera position to see the changes in the view of
the display view port area.

Chapter 5

[155]

In the example, we discussed the basics of 3D data processing with the Kinect sensor.
With this fundamental knowledge of 3D, you can go forward and try to build some
real-life applications such as constructing 3D images from objects and marking/
identifying 3D objects.

One amazing use of 3D data with the Kinect sensor is KinectFusion.
KinectFusion is a real-time 3D surface constructor using Kinect sensor.
It can quickly create a highly detailed 3D model of people, objects,
or even a complete room. Check out the video demo available on the
Microsoft Research website, at http://research.microsoft.
com/apps/video/dl.aspx?id=152815. Another detailed paper is
available at http://research.microsoft.com/pubs/155416/
kinectfusion-uist-comp.pdf.

Summary
In this chapter we discussed one of the most important aspects of the Kinect sensor
and the Kinect for Windows SDK; that is, depth data processing. We have taken a
closer look inside depth data, how the Kinect sensor processes depth data, and how
the pixel values are used to calculate the distance. We have also seen how the player
index is calculated from the depth data. We have explored several demo applications
throughout this chapter, which give you a clear understanding of what depth data
is, how it works, and what its uses are. You have also learned how you can get depth
and pixel information directly from pixel data instead of performing bit masking.
In the last section, we have discussed a 3D representation of depth data. An in-
depth knowledge of depth data is very important going forward, because most of
the complex applications depend on depth data processing and skeleton tracking.
In the next chapter we will explore the skeleton tracking features of the Kinect for
Windows SDK.

Human Skeleton Tracking
The Kinect sensor returns the raw depth data, where each pixel contains a value that
represents the distance between the sensor and the object. In the previous chapter we
explored depth image processing techniques, how depth sensors work, how we can
measure the distances, and how each pixel value represents the player information.
The depth data gives us unlimited possibilities to play around with Kinect. To build
an interactive application and enable a rich user experience, we need to gain control
over the application using our body motion. When we talk about how to build an
application that interacts with human body motion, first of all we need to capture
the information about the users standing in front of the Kinect, and from then on
the skeleton tracking comes into the picture.

The complete skeleton-tracking feature is built on the depth data processing, internal
machine learning, and color vision algorithms. Using skeleton tracking, the Kinect
sensor can track the human body with various joint points. Using the Kinect for
Windows SDK, you can track up to six players and up to 20 joints for each skeleton.
Only two users can be tracked in detail, which means the sensor can return all the
twenty tracked joint points information; whereas, for reset users, it just gives the
overall position. This is because it would require a lot of processing to track joint
information for all the six users.

In this chapter we will start with the fundamentals of skeleton tracking, events, and
the skeleton object model. We will learn how to work with skeleton joints and bones.
Detailed information on each of the topics listed below will be provided. We will also
develop a few applications that harness these features. In the end, we will have an
integrated solution that showcases different features of skeleton tracking:

• How skeleton tracking works
• Skeleton tracking with Kinect for Windows SDK
• Start tracking joints, and looking inside skeleton stream helpers
• Building an intrusion-detection camera

Human Skeleton Tracking

[158]

• Learn how to track a skeleton in seated mode
• Choosing a skeleton for your application
• A deep look inside skeleton joints and bones hierarchy
• Providing live feedback to users based on their positions
• Making the skeleton movement softer
• Advanced Skeleton Viewer – a tool for viewing skeleton data
• Debugging skeleton applications

How skeleton tracking works
The Kinect sensor returns raw depth data from which we can easily identify
the pixels that represent the players. Skeleton tracking is not just about tracking
the joints by reading the player information; rather, it tracks the complete body
movement. Real-time human pose recognition is difficult and challenging because
of the different body poses (consider; a single body part can move in thousands of
different directions and ways), sizes (sizes of humans vary), dresses (dresses could
differ from user to user), heights (human height could be tall, short, medium),
and so on.

To overcome such problems and to track different joints irrespective of body pose,
Kinect uses a rendering pipeline where it matches the incoming data (raw depth
data from sensor) with sample trained data. The human pose recognition algorithm
used several base character models that varied with different heights, sizes, clothes,
and several other factors. The machine learned data is collected from the base
characters with different types of poses, hair types, and clothing, and in different
rotations and views. The machine learned data is labeled with individual body
parts and matched with the incoming depth data to identify which part of the
body it belongs to. The rendering pipeline processes the data in several steps
to track human body parts from depth data.

Chapter 6

[159]

The Kinect sensor can identify the pixel range of a player from the depth data. In the
initial steps of the rendering pipeline process, the sensor identifies the human body
object, which is nothing but raw depth data that is similar to another object captured
by the sensor. In the absence of any other logic, the sensor will not know if this is a
human body or something else. The following image shows what a human body looks
like when it is represented with depth data; the sensor recognizes it as a big object:

To start recognizing a human body, the sensors start matching each individual pixel
of incoming depth data with the data the machine has learned. This match is done
within the sensor with very high speed of processing. The data each individual
machine has learned is labeled and has some associated values to match with
incoming data. This complete matching is based on the probability that the
incoming data matches with the data the machine has learned.

Human Skeleton Tracking

[160]

The immediate next step in pose recognition is to label the body parts by creating
segments. This segment creation is done by matching similar probable data. Kinect
uses a trained tree structure (known as a decision tree) to match the data for a
specific type of human body. This tree is known as a Decision Forrest.

A Decision Forrest is a collection of independently trained
decision trees.

All the nodes in this tree are different model character data labeled with body part
names. Eventually, every single pixel data passes through this tree to match with
body parts. The complete process of matching data is run over and over. Whenever
there is matched data, the sensor starts marking them and starts creating body
segments, as shown in the following image:

Once the different body parts are identified, the sensor positions the joint points with
the highest probable matched data. With identified joint points and the movement of
those joints, the sensor can track the movement of the complete body. The following
image shows the tracked joints of different body segments:

Chapter 6

[161]

The joint positions are measured by three coordinates (X, Y, and Z), where X and Y
define the position of the joint and Z represents the distance from the sensor. To get
the proper coordinates, the sensor calculates the three views of the same image: front
view, left view, and top view, by which the sensor defines the 3D body proposal. The
three views are shown in the following screenshot:

Human Skeleton Tracking

[162]

Steps to remember
The following are steps you need to remember:

1. Depth data is processed in the rendering pipeline process and matches with
decision forrest labeled data and generates the inferred body segments.

2. Once all parts are identified based on the labeled data, the sensor identifies
the body joints.

3. The sensor then calculates the 3D view from the top, front, and the left of the
proposed joints.

4. Then the sensor starts tracking the human skeleton and body movement
based on the proposed joint points and the 3D view.

The following image shows the overall process flow that creates joint points from
raw depth data:

To get an insight on how skeleton tracking works, please refer to the
following URL: http://research.microsoft.com/apps/pubs/
default.aspx?id=145347

Chapter 6

[163]

Skeleton tracking with the Kinect SDK
The Kinect for Windows SDK provides us with a set of APIs that allow easy access
to the skeleton joints. The SDK supports the tracking of up to 20 joint points. Each
and every joint position is identified by its name (head, shoulders, elbows, wrists,
arms, spine, hips, knees, ankles, and so on), and the skeleton-tracking state is
determined by either Tracked, Not Tracked, or Position Only. The SDK uses
multiple channels to detect the skeleton. The default channel tracks all 20 skeletal
joint positions with the Tracked, Not Tracked, or Inferred tracking mode. The
following diagram represents a complete human skeleton facing the Kinect sensor,
shaped with 20 joint points that can be tracked by the Kinect for Windows SDK:

Human Skeleton Tracking

[164]

Kinect can fully track up to two users, and can detect a maximum of six users within
the viewable range; the other four are known as proposed skeletons. You can only
get the complete 20 joints for the fully tracked skeletons; for the other four people,
you will get information only about the hip center joint. Among the two tracked
skeletons, one will be active and the other will be treated as passive based on how
we are using the skeleton data. If a skeleton is tracked fully, the next successive
frames will return the full skeleton data, whereas for passively tracked skeletons,
you will get only proposed positions. The following image shows the fully tracked
skeletons for two users:

The Kinect for Windows SDK also supports tracking of a seated skeleton. You can
change the tracking mode to detect a seated human body that returns up to 10 joint
points, as shown in the following image:

Chapter 6

[165]

So far we have covered how skeleton tracking works and the different types of
joints returned by skeleton tracking. Our ultimate goal is to be able to write an
application that detects a human standing in front of the Kinect and getting the
joint movements. To start with, we first walk through the basic options available
for skeleton tracking and see how to get skeleton data.

Start tracking skeleton joints
Kinect returns skeleton data in the form of SkeletonStream. We can set up either
the default tracking or the seated tracking mode using the SkeletonTrackingMode
enumeration during the initialization of the skeleton stream. The process flow for
capturing skeleton data will remain the same as the one we used for the color and
depth data streams. We can capture the data by using either event model or polling
model. The KinectSensor object has an event named SkeletonFrameReady, which
fires each time new skeleton data becomes available from the sensor. Each frame
of SkeletonStream produces a collection of Skeleton objects. Each Skeleton
object contains the data for a series of Joint points, which are wrapped inside
the JointCollection object. Each joint has its own type of tracking mode and
additional information to represent the positions.

Our initial focus is to write an application that can leverage the skeleton tracking
APIs provided in the Kinect for Windows SDK.

Tracking the right hand
In this section, we are going to create a simple application that will track our right
hand joint position and display the hand movement in our application screen.
Throughout this exercise, we will also learn various steps such as enabling and
disabling the skeleton, skeleton event handling, processing skeleton frames, and
tracking joints. This is going to be really fun and interesting, as you will be able to
see the real joint movements in your application.

Setting up the project
Following are the steps for implementing the code as we did for other applications:

1. Start a new instance of Visual Studio.
2. Create a new project by navigating to File | New Project.

Human Skeleton Tracking

[166]

3. You will see the New Project dialog box. Choose C# as your development
language, select WPF Application Template, and type the name as
TrackingHand.

4. From Solution Explorer, right-click on the Reference folder and select
Add References.

5. Include a reference of the Microsoft.Kinect assembly.

Creating a joint placeholder
The very first thing we will do here is create a placeholder that will represent the
joint on our application's screen. To start with, open the MainWindow.Xaml file from
Solution Explorer. To display the joint, replace the default Grid control with a
Canvas control, and add an Ellipse control inside it and name it as righthand. The
following XAML snippet describes how Ellipse is placed inside Canvas:

<Canvas>
 <Ellipse Canvas.Left="0" Canvas.Top="0" Fill="Blue" Height="15"
Name="righthand" Width="15" />
</Canvas>

Canvas represents the overall view area, whereas ellipse represents the single joint
point. For this application it will represent the right-hand joint.

The ellipse control name is given based on the mapping of the
joint so that you can easily recall which ellipse represents which
joint. You are free to choose any name, but make sure you are
doing the right mapping in your code.

Get Kinect running and instantiate skeleton
tracking
To retrieve the skeleton data, first of all you need to get the reference of the currently
connected sensor and then enable the skeleton stream channel. Write the following
code block for enabling and instantiating the skeleton stream in the MainWindow.
xaml.cs file:

KinectSensor sensor;
void MainWindow_Loaded(object sender, RoutedEventArgs e)
{
 this.sensor = KinectSensor.KinectSensors.Where(item => item.
Status == KinectStatus.Connected).FirstOrDefault();
 if (!this.sensor.SkeletonStream.IsEnabled)
 {

Chapter 6

[167]

 this.sensor.SkeletonStream.Enable();
 this.sensor.SkeletonFrameReady += sensor_SkeletonFrameReady;
 }
 this.sensor.Start();
}

The code block is written inside the MainWindow_Loaded event handler, which
is invoked when MainWindows loads. First, we have created an instance of the
KinectSensor class and taken the reference of the connected Kinect device.
Once you have the reference of the sensor, enable SkeletonStream by calling
the Enable() method. Then attach the SkeletonFrameReady event for the
skeleton stream, which will invoke the sensor_SkeletonFrameReady()
method automatically whenever the sensor returns a new skeleton frame.

Enabling and disabling the skeleton stream
We know Kinect uses a multichannel pipeline to process the data stream, hence
we need to enable the proper channel to get the desired data from the sensor.
SkeletonStream has a method named Enable(), which needs to be invoked before
raising the SkeletonFrameReady event handler to capture skeleton frame data.

You can simply call the Enable() method with the SkeletonStream property of
the current sensor as follows:

this.sensor.SkeletonStream.Enable();

We can apply smoothing to the skeleton data with TransformSmoothParameters.
You need to pass TransformSmoothParameters during the enabling of the stream
data. SkeletonStream has an overloaded method for Enable(), which accepts the
smoothing parameter as shown in the following code:

this.sensor.SkeletonStream.Enable(TransformSmoothParameters
smoothParameters);

We will discuss more about smoothing skeleton data in a later part of this
chapter.

The SkeletonStream class also includes an IsEnabled property, which is read-only.
IsEnabled returns the current status of the skeleton stream channel. You can use
the IsEnabled property before enabling the stream channel or at any point in time
to check if the channel has an open skeleton stream or not. Here's the code snippet
using the IsEnabled property before enabling the SkeletonStream stream:

if (!this.sensor.SkeletonStream.IsEnabled)
{
 this.sensor.SkeletonStream.Enable();
}

Human Skeleton Tracking

[168]

SkeletonStream also has a Disable() method that disables the channel for
skeleton data.

IsEnabled is automatically set to false internally when you stop
the sensor or call the Disable() method for SkeletonStream.

We have seen that the Disable() method is associated with all the data streams
(color, depth, and skeleton). Disabling stream data is very rare and depends on
the kind of application we are building. For the skeleton stream, we might need
to call the disable methods explicitly in some scenarios.

• Skeleton data needs a good amount of processing, so it's always good
to disable it when we don't need it. For example, if you are developing
a security-based solution using the Kinect sensor and you want to track
the human body only when it's required (during a specific time period);
in such a scenario you can enable the stream when needed and disable
it when it's not required. On the other hand, you can keep your color or
depth stream running.

• Another scenario could be developing an application using multiple Kinect
sensors. Even though you can track a skeleton on multiple Kinect sensors at
the same time, you need enough CPU processing power, or you might want to
do a context switching for skeleton tracking (stop one sensor skeleton tracking
and start another one). In this case you can use skeleton stream disabling.

At this point of time, we have our basic screen to display the joint movements, we
have attached the event handler for the skeleton, and enabled the skeleton stream
channel. Let's explore what is happening inside the frame ready event handler.

Processing the skeleton frames
Whenever there is a new skeleton frame readied by the sensors, the
sensor_SkeletonFrameReady() method will be invoked as it is registered
with the SkeletonFrameReady event. When the method is called, it will give
an argument of type SkeletonFrameReadyEventArgs. The event argument
has a method called OpenSkeletonFrame() that reads the current SkeletonFrame
object from the sensor.

Chapter 6

[169]

The default method stub for the SkeletonFrameReady event handler will look
as follows:

void sensor_SkeletonFrameReady(object sender,
SkeletonFrameReadyEventArgs e)
{
}

To retrieve the skeleton frame, you need to follow some basic steps similar
to the ones used for capturing the color or depth image frame. The following
code block shows the SkeletonFrameReady event handler, which processes
the individual frames:

void sensor_SkeletonFrameReady(object sender,
SkeletonFrameReadyEventArgs e)
{
 using (SkeletonFrame skeletonFrame = e.OpenSkeletonFrame())
 {
 if (skeletonFrame == null)
 {
 return;
 }
 skeletonFrame.CopySkeletonDataTo(totalSkeleton);
 Skeleton firstSkeleton = (from trackskeleton in totalSkeleton
 where trackskeleton.TrackingState == SkeletonTrackingState.
Tracked
 select trackskeleton).FirstOrDefault();
 if (firstSkeleton == null)
 {
 return;
 }
 if (firstSkeleton.Joints[JointType.HandRight].TrackingState ==
JointTrackingState.Tracked)
 {
 this.MapJointsWithUIElement(firstSkeleton);
 }
 }
}

Human Skeleton Tracking

[170]

In the previous code block, the first step of the skeleton frame ready event handler is
to retrieve the current skeleton frame using the OpenSkeletonFrame() method and
store it into the skeletonFrame object. Once we have the skeleton frame information
for the currently captured frame, we copy the complete set of data into the array
totalSkeleton using the CopySkeletonDataTo() method. totalSkeleton is a
class-level array that is defined as follows:

Skeleton[] totalSkeleton = new Skeleton[6];

The reason behind creating this array of length six was to create a placeholder for
individual skeletons as the sensor can track up to six skeletons.

You can also use the FrameSkeletonArrayLength property of
SkeletonStream instead of directly specifying the array length as 6;
however, FrameSkeletonArrayLength is nothing but a read-only
property with a value 6 defined inside the Kinect SDK library.

For this example, we are considering capturing data for a single skeleton. The
method uses a LINQ statement to work through each of the skeletons and looks
for those skeletons that are Tracked, and finally selects the first one from the
totalSkeleton array. The firstSkeleton variable holds the joint points of the
skeleton selected first.

Our immediate next step will be to map the joint point with the UI element that we
have already created as part of the XAML design. To do that, we invoke a method
named MapJointsWithUIElement() from the sensor_SkeletonFrameReady()
method:

this.MapJointsWithUIElement(firstSkeleton);

This mapping is required for individual skeleton joints. This is because by mapping
every frame's data we will able to get the joint's movement with each frame. That's
the whole reason behind calling MapJointWithUIElement(). Let's have a look at
what is happening inside this method to map UI elements with the joint points.

Mapping the skeleton joints with UI elements
Mapping and scaling is another aspect of skeleton tracking and this is more
relevant in terms of representing and displaying the skeleton joint points in the UI.
The MapJointWithUIElement() accepts the skeleton details, which contains joint
positions. The following code snippet shows the mapping between the ellipse and
the joints. As we are tracking only the right hand, we mapped with the JointType.
Handright point for this example:

Chapter 6

[171]

private void MapJointsWithUIElement(Skeleton skeleton)
{
 Point mappedPoint = this.ScalePosition(skeleton.Joints[JointType.
HandRight].Position);
 Canvas.SetLeft(righthand, mappedPoint.X);
 Canvas.SetTop(righthand, mappedPoint.Y);
}

To understand mapping in a better way, have a look at the following image that
represents the mapping between a right hand joint from the Tracked skeleton data
and the UI ellipse element named righthand.

The overall representation of the skeleton data within global space is known as
skeleton space. The origin of the skeleton space is the depth images that return
the skeleton data with a set of joint positions. In the end, each joint position is
represented with (x,y,z) coordinates. The ScalePosition() method, shown as
follows, converts SkeletonPoint to DepthImagePoints, which is used as a mapping
coordinate for the UI elements:

private Point ScalePosition(SkeletonPoint skeletonPoint)
{
 DepthImagePoint depthPoint = this.sensor.CoordinateMapper.
MapSkeletonPointToDepthPoint(skeletonPoint, DepthImageFormat.
Resolution640x480Fps30);
 return new Point(depthPoint.X, depthPoint.Y);
}

depthPoint will return the X and Y points corresponding to the skeleton points.
The mapping conversion is taken care of by the Kinect SDK internally.

Human Skeleton Tracking

[172]

There are several ways you can use to display joints on the UI, such
as drawing the elements at runtime and assigning the joint values to
predefined elements. Here we have used the second approach, where
we mapped UI elements with skeleton joint positions. In a later part
of this chapter we will explore the first approach, where we display
the joints directly on the UI rather than map them through elements.

Running the application
The application will provide us output similar to that shown in the following
screenshot when you stand in front of the Kinect sensor and it tracks your right
hand. The dot in the screenshots represent the positions of the right hand. So, just
stand and wave your hand to see the movement of the dot.

Adding more fun
You can even make this application more interesting by displaying images rather
than dots and showing the position of joints as shown in the following screenshots.
The three images show the three different positions of the hand joint that is tracked
by the Kinect sensor:

Chapter 6

[173]

If you really liked what you have seen in the previous screenshots and if you want
to implement it right away, it's very straightforward. You just need to modify the
XAML a little bit; just replace the earlier ellipse control with the following snippet:

<StackPanel Canvas.Left="0" Canvas.Top="0" Name="righthand" >
 <Image Source="/myhand.png" Height="48" Width="55" />
 <Label x:Name="myhandPosition" Content="" Background="#F7F7F7"
FontSize="16" Foreground="Black" Canvas.Left="0" Canvas.Top="0" />
</StackPanel>

Now StackPanel is the parent container, named righthand, and it contains an
Image control that shows the hand image (you can get the hand image from the
book's resources; add the image to this solution), and a Label control named
myhandPosition to display the current position of the joint.

Now, add the highlighted line within the MapJointsWithUIElement() method,
which will display the joint's position:

private void MapJointsWithUIElement(Skeleton skeleton)
{
 Point mappedPoint = this.ScalePosition(skeleton.Joints[JointType.
HandRight].Position);
 myhandPosition.Content = string.Format("X:{0},Y:{1}",
mappedPoint.X, mappedPoint.Y);
 Canvas.SetLeft(righthand, mappedPoint.X);
 Canvas.SetTop(righthand, mappedPoint.Y);
}

If you run this application now and move your hand in front of the sensor, once
the sensor tracks your hand you will able be able to see the movement of your hand
image as per the current position, as shown in previous images.

The sample project Hand Tracking with Joint Position Display is available for
download in the book's resource location. The application tracks your right hand
and displays the hand movement and joint position.

You can easily extend the application and display all the joint points in a similar way
as we have done for a single joint. You have to add other elements to represent joints
in the UI and then you need to do a proper mapping.

Human Skeleton Tracking

[174]

Flow – capturing skeleton data
The following image represents the overall process flow for capturing skeleton data.
This is just to give you a quick overview of what we have covered till now. First
check if there is a sensor connected to the system or not. In the next step, enable the
skeleton stream, attach the event handler for skeleton tracking, and then start the
sensor. Once the sensor returns any skeleton data, read the skeleton frame and map
it with UI elements.

An intrusion detector camera application
With the knowledge you have gained so far in this chapter on the basics of skeleton
tracking, you can build a small and interesting application – an intrusion detector
camera. Kinect will be used as a watchdog at home or any other place where you
want to monitor. The application will capture a photo and store it in your system
whenever there is a human intrusion detected.

To build this application, you need to know how to capture the color stream from the
sensor and save it in the system. We have already discussed capturing and saving
image frames in Chapter 4, Getting the Most out of Kinect Camera.

Set up a new project and perform the basic and common tasks for identifying and
getting a reference for the sensor. Once the sensor is identified, enable both the
ColorStream and SkeletonStream channels and attach the event handler for
both in the Loaded event of the application, as shown in the following code block:

this.sensor.ColorStream.Enable();
this.sensor.SkeletonStream.Enable();
this.sensor.ColorFrameReady += sensor_ColorFrameReady;
this.sensor.SkeletonFrameReady += sensor_SkeletonFrameReady;

This code will enable both the color and skeleton stream channels and register
the sensor_ColorFrameReady and sensor_SkeletonFrameReady event handlers,
which will fire when the sensor returns the data.

Chapter 6

[175]

You handle the color image processing and display the color stream data with the
sensor_ColorFrameRead() method. How do you do that? It's already discussed
in the Capturing color image from Kinect camera section in Chapter 4, Getting the Most
out of Kinect camera.

Once you have implemented the color frame ready event handler, and if you run
the application at this point, you will be able to view color camera data on the
application screen.

Now, add a SaveImage() method to the application, which will save the image
frame. You can use this method from the Capturing and saving images section
in Chapter 4, Getting the Most out of Kinect camera. Once this is done, call the
SaveImage() method from the sensor_ColorFrameRead() method.

Now run the application again; the application screen will still display the color
camera data, but if you open the application execution directory specified by the
save image path, you will find that every frame is captured and saved.

So far, what we have implemented is working. But this is not what we are looking
for. We want our camera to capture only when it detects some human intrusion.
This can be done within the sensor_SkeletonFrameReady() method. You are
already familiar with how to track the skeleton and check the joint tracking state.
What you need to do here is remove SaveImage() from sensor_ColorFrameRead()
since we are no longer calling it from here. Then add the following lines of code in
the SkeletonFrameReady() method after the line where we are getting the skeleton
data from the sensor:

if (firstSkeleton.Joints[JointType.Head].TrackingState ==
JointTrackingState.Tracked)
{
 this.SaveImage();
}

Whenever the sensor detects a skeleton, we just make sure that the head joint is
being tracked and then call the SaveImage() method.

Now, if you run the application it will capture the image only when the skeleton
is tracked and the head joint is visible to Kinect.

Human Skeleton Tracking

[176]

Adding night vision
Skeleton tracking uses IR lights to track a human skeleton, hence it can recognize
human intrusion even in dark or low light. However, at night the color camera will
capture either low light or dark images. You can extend this application one step
further and allow night vision using infrared stream data. Refer the Seeing in low
lights section in Chapter 4, Getting the Most out of Kinect camera, to see how it works
and how to implement it.

The following screenshots show three different modes (full light, low light, and dark
light) of the application. The skeleton and the head joint can be tracked and saved in
the application's directory location.

At present this application has a limitation; we are capturing images for each
and every frame once the sensor starts recognizing a human. That's not desirable
because the application will create hundreds of images within a few seconds. We can
smartly handle this by capturing images only when the skeleton is detected the first
time, and start tracking again once the sensor loses the currently tracked skeleton. We
will discuss more about this and extend the application in a later part of this chapter.

The sample project Intrusion Detector Camera is available for download in
the book's resource location. The application will capture images and store the
application's execution directory (/bin) when a new skeleton is tracked.

Chapter 6

[177]

Looking inside skeleton stream helpers
The SDK provides an ample amount of APIs to interact with the sensors and play
around with skeleton data. There are several classes and structures associated
with skeleton tracking. SkeletonFrame and SkeletonStream are the two classes
that actually take care of skeleton data processing. They are the core of skeleton
stream data. Unlike color and depth streams, these two classes are not derived from
ImageFrame and ImageStream because the skeleton data is not an image frame. Let's
focus on the individual class members and their uses.

The skeleton frame
The SkeletonFrame class is a sealed class and contains the individual skeleton
information that is tracked by the sensor. This class defines the properties and
methods for working with skeleton frames. Like ImageFrame for color and depth
images, SkeletonFrame represents a single frame from SkeletonStream. The
OpenSkeletonFrame() method of SkeletonFrameReadyEventArgs returns the
current SkeletonFrame from SkeletonStream. You can also use OpenNextFrame()
to get a skeleton frame while using the polling model instead of the event model.
The following screenshot shows the class diagram for the SkeletonFrame class
and its association:

Human Skeleton Tracking

[178]

The skeleton stream
The skeleton frame information is represented as SkeletonStream. The
SkeletonStream class defines the properties and methods for working with
skeleton data and enables us to take control over all the skeleton data. The
SkeletonStream class also defines the properties for setting up TrackingMode for
Skeleton and allows us to choose the right skeleton for the application using the
AppChooseSkeletons() method. The following screenshot shows the overall class
diagram of the Skeleton class along with its association:

As you can see from the previous screenshot, the skeleton stream consists of skeleton
frames and every skeleton frame has the information about individual skeletons.

We have covered details of these properties and methods in a later part of this chapter.

Chapter 6

[179]

Skeleton-tracking mode
The fundamental purpose of skeleton tracking is to track the body's joint points,
and so far what we have seen is tracking skeleton joints for a complete body
when a player is standing in front of the sensor. This is what the skeleton-tracking
engine tracks by default. We can control the selection mode of skeleton tracking
programmatically by using the TrackingMode property of the SkeletonStream
class. TrackingMode is a type of the SkeletonTrackingMode enumeration, which
has the following values:

• Default
• Seated

You can use only one tracking mode at a time. The tracking-mode
selection can be done during the enabling of the skeleton stream or
on the fly when required. If you are applying both, the latter one
will take preference.

Default skeleton tracking
When you enable the skeleton stream, the SDK sets TrackingMode to Default
automatically. So, you really don't need to set the Default mode explicitly. In this
tracking mode, the Kinect sensor can track a maximum of 20 joint points and the
root joint for default tracking is the hip joint. If you want to set the tracking mode
explicitly, you can use the following line of code:

sensor.SkeletonStream.TrackingMode = SkeletonTrackingMode.Default;

Seated skeleton tracking
Consider you are building some application where the player is seated on a chair or
elsewhere; in this case, most of the body joints below the hip are not visible to the
sensor. We can also argue that if we are building an application that needs to track
only the user's hands, why do we need to track all the joint points?

The seated-skeleton tracking mode is specially designed to serve the purpose of
capturing seated people in front of the sensor. The Kinect for Windows SDK can
track up to 10 joint points (joints from the upper body part) by ignoring all the leg
joints including hip joints.

Human Skeleton Tracking

[180]

It can also track the same set of joint points while the user is
standing. The only difference is it will not track the lower body's
joint points. While tracking the skeleton in seated mode, you have
to make sure the head and torso are visible to the sensor. This will
ensure that the sensor starts tracking the skeleton in seated mode.

To enable seated skeleton tracking, you have to set TrackingMode to Seated
as follows:

sensor.SkeletonStream.TrackingMode=SkeletonTrackingMode.Seated;

Using seated-skeleton tracking
This really helps the developer to write optimized code by tracking specific
skeletons for seated scenarios. Following are a few scenarios where you can
use seated-skeleton tracking:

• A paint application to draw using your hand movements
• Moving some objects using hands
• Developing some application that involves exercise of the hands, the head,

and shoulders
• Developing a musical instrument playing application

For all the above mentioned scenarios, we really don't need to track complete
skeletons. We can just track the upper body part and easily access the tracked
joints as we did earlier.

Points to be considered with seated-skeleton
tracking
A seated skeleton brings lots of opportunities for developers to develop applications
with a seated posture. This section highlights a few key facts that we really need to
know when dealing with a seated skeleton:

• For a seated skeleton, the default or root joint is the Shoulder Center.
• The seated-skeleton mode uses the same underlying classes, objects, and

structures as the Default mode does. The only difference is you will get
the NotTracked status for all the lower body parts' joints, including Hip
Center and Spine.

Chapter 6

[181]

• This will also work while the player is standing.
• The Seated mode delivers lower frames per second than the Default

mode; also, the data is noisier than the default mode skeleton. This is
because the tracking skeleton with seated mode is more challenging
than standing-body tracking.

• You can use the near-mode range for seated-skeleton tracking if your
application is intended to track a player from a close range.

Skeleton tracking in near mode
The Kinect for Windows SDK provides support for tracking a skeleton while the
depth data range is set to near as well. In Chapter 5, The Depth Data – Making Things
Happen, we have discussed about the near mode and we have seen how the sensor
can give a player range that is very small (40 cm) using depth near range.

The SDK leverages the near-range features for skeleton tracking as well. Both the
default and seated skeleton can be tracked using the near range.

Enabling skeleton tracking in near mode is straightforward. First of all make sure
near mode is enabled for DepthDataStream. You can set it using the following code:

this.sensor.DepthStream.Range = DepthRange.Near

Once the near mode is set properly, we can just set EnableTrackingInNearRange
as true for the skeleton data stream as follows:

this.sensor.SkeletonStream.EnableTrackingInNearRange = true;

The EnableTrackingInNearRange property has both the get and set accessories;
so you can use this property to check if the tracking is already enabled for near
range or not.

By default EnableTrackingInNearRange is set to false, which
means even if the DepthRange is set to Near, the sensor won't be
able to return the skeleton data when the player is within near range.
So, it must be explicitly set as true to enable the tracking.

Human Skeleton Tracking

[182]

The following image illustrates the important steps for enabling skeleton tracking
within near range:

When we set the tracking range to Near, it is intended to track a player within a
very close range. If you are building an application that tracks people very close
to the Kinect, the best combination is seated-skeleton tracking with near mode
tracking enabled.

The Skeleton
Skeleton is the unit of SkeletonStream. It contains the information about joints,
tracking states, current positions, and the identification ID for the skeleton. The
following screenshot shows the overall representation of the Skeleton class and
its association with the SkeletonPoint and SkeletonTracking states:

Chapter 6

[183]

Skeleton-tracking state
The tracking state determines if the skeleton is being tracked by the Kinect sensor or
not. The SDK provides a SkeletonTrackingState enumeration to check associated
values. The following table lists the details of the SkeletonTrackingState
enumeration:

Name Description
NotTracked The SDK will return NotTracked when the sensor does not have

any information about the skeleton. In this case, all the skeleton's
joint points will have a value of zero.

PositionOnly PositionOnly is returned when the skeleton is detected, but the
sensor does not have complete information about the skeleton
or it is not tracked completely.

Tracked The status Tracked means the skeleton is tracked with the position
and joint details.

Counting the number of tracked skeletons
Consider that the skeleton object holds the reference of the tracked skeleton; in this
case, you can get the number of total joints tracked for that particular skeleton by
using the following snippet:

int totalTrackedJoints = skeleton.Joints.Where(item => item.
TrackingState == JointTrackingState.Tracked).Count();

While interacting with skeleton data, it's always recommended
to check the skeleton-tracking state before accessing the skeleton
data, especially for the Tracked state. This will ensure you are
processing the data that has skeleton information.

Choosing which skeleton to track
Kinect for Windows can track more than one skeleton, hence it is important to
identify which skeleton is being tracked or which skeleton is to be used by the
application. Each and every skeleton is identified by a unique identification number.
The skeleton-tracking engine assigns each skeleton a unique integer identifier to
track the skeleton. You can get access to the tracking ID as the Skeleton class has
a property TrackingId that returns the unique ID for the skeleton.

Human Skeleton Tracking

[184]

Skeleton-tracking ID
A TrackingId property of value zero means an empty skeleton, or that the
skeleton is not being tracked. The application uses a collection to store the skeleton
information. The collection size is six, as the sensor can track up to six skeletons.
When there is a skeleton tracked by the sensor, the skeleton-tracking engine assigns
the TrackingId for that tracked skeleton and pushes the skeleton information within
a collection. This TrackingId will remain the same unless there is a new skeleton
being tracked for that particular position within the collection. From the next time,
if the sensor loses track of the player for that TrackingId, the skeleton-tracking
engine will remove the entry from the collection.

TrackingId is a positive integer value and represents the attempt
at which the sensor tracked the skeleton. The ID of the skeleton
that was tracked last should always be greater than the previously
tracked skeleton's ID.

We can use TrackingId to specify which skeletons are to be tracked or used by the
application. For that, you have to first inform the skeleton stream that you want to
choose the skeleton on your own, instead of the pipeline returning you the skeleton.
To enable this you have to use the following code block:

sensor.SkeletonStream.AppChoosesSkeletons = true;

After setting AppChoosesSkeletons to true, you need to call the
ChooseSkeletons() method of the SkeletonStream object. The
ChooseSkeletons() method will give you control over choosing the skeleton.
The ChooseSkeletons() method has two overloads where you can pass the
TrackingId. So, if you have identified which skeleton is to be used for your
application, you can do the following:

sensor.SkeletonStream.AppChoosesSkeletons = true;
sensor.SkeletonStream.ChooseSkeletons(skeleton.TrackingId);

This will ensure that the skeleton tracking engine tracks only the skeleton
that you have identified and ignores the others.

Chapter 6

[185]

The TrackingID property is extremely important and can be used
in many real-life applications to track skeleton changes. For example,
you are developing a health care application where a patient is
doing exercise in front of the Kinect and it measures how the user is
performing the exercises. Now, if the patient moves out and someone
else started exercising, your application can easily alert the end user
that the earlier patient got changed and the exercise will start again.
Even if the first patient comes back after the sensor loses tracking, the
application will get a new TrackingId value; the application can issue
a notification about this as well.

Monitoring changes in the skeleton
You can use the TrackingID property of the Skeleton class object to check if the
previously tracked skeleton got changed or not. To do so, you can use a local variable
to store the currently tracked ID. Let's consider the variable defined as follows:

public int CurrentSkeletonID =0

Now, when the skeleton has been tracked, assign the ID only when there is a
difference between the tracking ID and the previously stored ID.

if (skeleton != null && this.CurrentSkeletonID != skeleton.TrackingId)
{
 this.CurrentSkeletonID = skeleton.TrackingId;
}

Now, the current ID will only update when there is a new skeleton tracking ID.
You can easily compare these two values:

Refer to the previous image; you can clearly identify the change in the tracking ID.
Initially the tracking ID was 2, then when the skeleton changed the first time (tracked
again after the sensor loses track of player) the ID became 55 and similarly for the
second time the ID became 68.

Human Skeleton Tracking

[186]

These IDs are not sequential in nature. However, Kinect sends a
request to the skeleton engine to track the skeleton sequentially, but the
skeleton tracking ID updates only when the sensor tracks the skeleton.

The sample project Monitoring Skeleton Change is available for download in
the book's resource location. The application shows the list of skeleton tracking
IDs, tracked time along with the total number of joints tracked for the skeleton.
The list updates only when there is a new skeleton tracked by the sensor for the
first skeleton position.

Limiting tracking for the intrusion-detector camera
When we built the intrusion detector camera we found that the camera was
capturing photos continuously from the time the skeleton was tracked. But we
wanted to capture the picture only when the skeleton was tracked for the first time,
or when the skeleton changed. Using TrackingId we can easily implement this. You
can use the skeleton tracking method we detailed in the previous example, but here
we will do something different and more interesting.

Once the sensor tracks the skeleton, we will capture a photo using a color frame
and store the tracking ID in a local variable. Then we will force the skeleton engine
to track that particular skeleton as long as the sensor has information about it. Till
that time the sensor won't be sending information about any other skeleton. This
also demonstrates how you can choose a particular skeleton and force the skeleton
tracking engine to focus on it.

You need to use the following piece of code in the sensor_SkeletonFrameReady
event:

Skeleton skeleton;
if (CurrentSkeletonID != 0)
{
 skeleton = (from trackSkeleton in totalSkeleton
 where trackSkeleton.TrackingState == SkeletonTrackingState.Tracked
&& trackSkeleton.TrackingId == CurrentSkeletonID
 select trackSkeleton).FirstOrDefault();
 if (skeleton == null)
 {
 CurrentSkeletonID = 0;
 this.sensor.SkeletonStream.AppChoosesSkeletons = false;

Chapter 6

[187]

 }
}
else
{
 skeleton = (from trackSkeleton in totalSkeleton
 where trackSkeleton.TrackingState == SkeletonTrackingState.Tracked
 select trackSkeleton).FirstOrDefault();
 if (skeleton == null)
 {
 return;
 }
 else
 {
 CurrentSkeletonID = skeleton.TrackingId;
 this.sensor.SkeletonStream.AppChoosesSkeletons = true;
 his.sensor.SkeletonStream.ChooseSkeletons(CurrentSkeletonID);
 }
 if (skeleton.Joints[JointType.Head].TrackingState ==
JointTrackingState.Tracked)
 {
 this.SaveImage();
 }
}

In the first section of the code block, what we are doing is matching the currently
tracked skeleton ID with the previously saved ID. This will ensure that the skeleton
object returned by the application is always the same person, that is, the ID that
was saved in CurrentSkeletonID. If the skeleton is returning null, it means the
player is no longer present. At this time, we are asking the skeleton engine to track
the skeleton automatically by setting AppChooseSkeleton back to false and setting
the CurrentSkeletonID to 0, so that next time when the skeleton is tracked it will
track a new skeleton with a new tracking ID. This is where we capture the photo (as
shown in the highlighted code).

The sample project Intrusion Detector Camera is available for download in the
book's resource location. The extended version of this application will capture
images only when the Kinect sensor tracks a new skeleton. The application will force
the skeleton tracking engine to send information about that skeleton as long as it is
available. If the sensor loses track of it, the application will capture the photo once
again when there is a new skeleton.

Human Skeleton Tracking

[188]

The building blocks – Joints and
JointCollection
Joints and JointCollection are the building blocks of Skeleton. Each Skeleton
object has a property named Joints, which is a type of JointCollection and
contains all the traceable joints. JointCollecton contains a set of Joints and can
be accessed by specifying the index value. When you pass JointType to get the
Joint point, it will return the Joint object.

Let's consider you have an object of a tracked skeleton as follows:

Skeleton skeleton = (from trackskeleton in totalSkeleton
where trackskeleton.TrackingState == SkeletonTrackingState.Tracked
select trackskeleton).FirstOrDefault();

In the previous code, the skeleton object now contains Joints in the form of
JointCollection. Now to get the reference of a particular joint type, you need to
pass the type within the collection as shown in the following example for the
Head JointType:

Joint headJoint= skeleton.Joints[JointType.Head]);

headJoint now refers to HeadJoint of the skeleton object, with tracking state
and position.

In general we can represent the joints with any shape because they are totally based
on the coordinate system, and we can understand where the position is. We must be
clear about the basic definitions of the skeleton joint coordinate systems. All the joints
are represented as three dimensions (x, y, z) and the right-handed coordinate system is
used by convention, meaning that the z axis is the positive cross product of the x and y
axes, with x pointing to the right, y pointing up, and z pointing at the viewer.

Chapter 6

[189]

Each individual position represents using a well-defined structure Joint within the
SDK. The structure of every joint is represented using three main properties:

• JointType
• Positions
• TrackingState

The JointType property is a value in the JointType enumeration, which has
the names of all 20 joints. Each and every joint position represents an object of
SkeletonPoint. The Position property is a type of SkeletonPoint, which
represents the x, y, and z values of Joint.

It may happen that all the joints are not visible to the sensor due to some obstacle
or human position. Once the sensor has tracked the skeleton and a couple of
joints thatare clearly visible to the sensor, it will try to infer the location for the
rest of the joints. If it fails to infer, then they will be marked as NotTracked. The
JointTrackingState property describes if the joint is being tracked, inferred,
or not tracked.

Joint-tracking state
All the skeleton joints are associated with the property JointTrackingState,
which returns the tracking state for the current joint. JointTrackingState is
an enumeration defined in the SDK library.

JointTrackingState Enumeration

Name Description
Tracked When the tracking state is Tracked, the sensor has a clear vision of

the joint position and all the three coordinates (x, y, z) are captured
properly.

NotTracked Joint tracking state returns NotTracked when the joints are not
visible to the sensor and the sensor is not able to track.

Inferred When the tracking status is Inferred, the Kinect sensor does
not have the actual joint position data, but it has made some
calculations for the joint points based on other tracked joints.

Human Skeleton Tracking

[190]

Steps to be followed for joint tracking
Before playing around or accessing the joint information such as Position,
JointType, and TrackingState, it's important to make sure that you have a tracked
joint to work with. So, before proceeding to work with joints, the tracking first checks
whether the skeleton is being tracked or not using SkeletonTrackingState. Once
the skeleton is being tracked by the sensors, pass that skeleton data to the next step
for processing. And in the next step check for the joint tracking status. As discussed
in the previous section, joint tracking also has three different states that allow you to
determine what action to take. To make sure you are on the right path, you have to
keep in mind the following steps while developing an application using skeleton
and joints:

You can't add or remove any item from the joint collection. because
JointsCollection in Skeleton does not implement an Add()
or Remove() method . This is because it must always contain
exactly 20 elements, corresponding to the 20 trackable body joints.

Create your own joints data point
As we discussed, JointCollection is limited to a maximum of 20 joints as the
Kinect for Windows SDK can support a maximum of 20 joints tracks. But if you
want to create your own data point (not new joint) for a skeleton joint you can use
the following approach where you can first create a skeleton point with respective
positions for the x, y, and z axis:

Chapter 6

[191]

SkeletonPoint position;
position.X = 1.1f;
position.Y = -1.1f;
position.Z = 1.8f;

Once the position is defined, create a joint point and assign the joint position with the
previously created joint point:

Joint joint;
joint.Position = position;
joint.JointType= JointType.Head;
joint.TrackingState = JointTrackingState.Tracked;

In the end assign the joint the value of the respective joint type. As per this example
we have assigned the position for the Head joint within collection:

JointCollection collection = new JointCollection();
collection[JointType.Head] = joint;

You can use this approach to set a joint point to a specific location and then use the
same joint once the sensor tracks the skeleton.

Bones – connecting joints
Bones are the visual representation between joints. They don't have any physical
presence and that is why we are calling them virtual. The complete hierarchy of a
skeleton is composed of a series of bones, which is the connection of all the tracked
joints with the joint collection of that skeleton.

The skeleton representation is a hierarchical representation of a bone and each bone
in a skeleton hierarchy has a parent joint and a child joint. This also implies that
every joint can be a parent and child joint unless it is a leaf joint, such as Head Joint,
Hand Joints, and so on. Parent joints are always above child joints in the hierarchy.

Human Skeleton Tracking

[192]

For example, consider the Right Leg of a skeleton which consists of Hip Center, Hip
Right, Knee Right, Ankle Right, and Foot Right joints. Now for a bone between Hip
Center and Hip Right, Hip Center is the parent and Hip Right is the child. Similarly,
for another bone between Hip Right and Knee Right, Hip Right is a parent joint and
Knee Right is a child joint. As shown in the following diagram, for every hierarchy
we will have a set of bones with parent and child joints:

Parent joints drive the transformations of their respective child joints. Thus, when we
translate or rotate a parent joint, we also need to translate or rotate all of its related
child joints. For example, when one moves a knee joint, the child joint, that is, the
knee also moves. However every joint has a degree of freedom, for example, a knee
can only move in one direction, whereas a head can move in all directions.

With the Kinect for Windows SDK we don't have any direct API that can draw bones
between joints, but we can easily draw them using few lines of code. Let's have a
look at how it works.a

Chapter 6

[193]

Bone sequence
The highest joint in a skeleton is known as a root joint and every skeleton can
have only one root joint. For a default skeleton the root joint is Hip Center and
for a seated skeleton it is Shoulder Center. As the root joints are different for both
tracking modes, they have different bone sequences as well.

Bone sequence for a default skeleton
By considering the Hip Center as root, there could be five different sequences as
shown in the following diagram:

As shown in the previous diagram we can have a total five sequences of bones (1 to
5). We can move and orient the entire skeleton in the skeleton space by translating
and rotating the root joint.

Human Skeleton Tracking

[194]

Bone sequence for a seated skeleton
The following diagram shows the hierarchical bone sequence for a seated skeleton
with Shoulder Center as root joint:

Note that the sensor does not track Spine Joint in seated mode as well.

Drawing bones between joints
In this section we will learn how to draw a bone between two joints in the simplest
way. As we have already seen, the approaches for drawing bones totally depends
on us; the main thing is the underlying backend logic. Bones are the visual
representation between joints and can be represented by a line or any other object.
One of the simplest approaches to draw bones is by just connecting joints by a line.
The following code snippet shows the same:

void drawBone(Joint trackedJoint1, Joint trackedJoint2)
{
 Line skeletonBone = new Line();
 skeletonBone.Stroke = Brushes.Black;
 skeletonBone.StrokeThickness = 3;
 Point joint1 = this.ScalePosition(trackedJoint1.Position);
 skeletonBone.X1 = joint1.X;

Chapter 6

[195]

 skeletonBone.Y1 = joint1.Y;
 Point joint2 = this.ScalePosition(trackedJoint2.Position);
 skeletonBone.X2 = joint2.X;
 skeletonBone.Y2 = joint2.Y;
 myCanvas.Children.Add(skeletonBone);
}

The drawBone() method accepts two tracked joints and draws a line between
them. If you pass a sequence of joints one by one that constructs one complete bone
sequence, it will draw the bone sequence completely. myCanvas is a Canvas control
that draws the bone elements. The ScalePosition() method does the mapping
between SkeletonImagePoint (3D) and DepthImagePoint (2D).

The sample project Drawing Bones is available for download in the book's resource
location. This solution tracks all the joints that construct the complete right hand bone
sequence. This will work in both the seated and default skeleton tracking modes.

Adjusting the Kinect sensor automatically
and giving live feedback to users
If you are familiar with playing games with the Xbox console and Kinect sensor, you
must have noticed that before starting many of the games the game start screen gives
you live feedback on where you are standing and also notifies you if there is a need to
change your position.

The Kinect sensor can track all the joints when the player is completely visible to the
sensor. If any of the joints are not visible, the sensor returns the status of the joints
as either Skeleton class Not Tracked or Inferred. You can make your application
smart enough to tell your end user which part of the body is going out of the Kinect
view area, and sometimes you can change the sensor elevation angle to adjust the
sensor as per the user's position.

The Skeleton class has a property named ClippedEdges, which is of type
FrameEdges, that describes which parts of the skeleton are out of the Kinect's
view. FrameEdges is a Flag enumeration with the following flags:

• None
• Right
• Left
• Top
• Bottom

Human Skeleton Tracking

[196]

All the values are self-explanatory. They indicate which portion of the body is
getting cut off from the Kinect sensor view area. Based on this value you can
provide live feedback to users on standing properly. You can call the following
CheckForClippedEdges() method from the SkeletonFrameReady event handler,
where you can pass the individual skeleton frame to check if any body area is
getting cut off.

private void CheckForClippedEdges(Skeleton skeleton)
{
 switch (skeleton.ClippedEdges)
 {
 case FrameEdges.Bottom:
 GiveLiveFeedback(FrameEdges.Bottom);
 break;
 case FrameEdges.Left:
 GiveLiveFeedback(FrameEdges.Left);
 break;
 case FrameEdges.None:
 GiveLiveFeedback(FrameEdges.None);
 break;
 case FrameEdges.Right:
 GiveLiveFeedback(FrameEdges.Right);
 break;
 case FrameEdges.Top:
 GiveLiveFeedback(FrameEdges.Top);
 break;
 default:
 break;
 }
}

The CheckForClippedEdges() method accepts the tracked skeleton and checks the
ClippedEdges property if any of the FrameEdges flags have been set. Depending
on the flag values, call the GiveFeedBack() method, where you can write your own
implementation to notify the user.

For FrameEdges Bottom and Top, you can make real use of the Kinect motor by
changing the sensor elevation angle automatically to adjust. We have discussed
this in the Changing sensor elevation angle section in Chapter 4, Getting the Most out
of the Kinect Camera.

Chapter 6

[197]

The sample project Live Feedback to User is available for download in the book's
resource location. The application will give an indication of the direction in which the
user needs to move so that the Kinect can track properly. You can also explore how the
sensor elevation change works when it's required to move up. The application output
is given in the following screenshot. This works for both, the seated and default mode
of skeleton tracking.

Skeleton smoothing – soften the
skeleton's movement
At the beginning of this chapter we have discussed that skeleton processing is one
of the most complex features because of its internal algorithm, data structures, joints
representation, and data processing. Over this chapter you have gained a good
understanding of skeleton data and while playing around with the applications
you must have realized that the joint movements are not that smooth and there is
some jitter present. Overall, this shaky movement of skeleton data does not provide
a good end user experience and we need to overcome this problem to enable a rich
user experience.

What causes skeleton jitters
Though the skeleton jitters could be caused by the application performance due to
both software and hardware, there are several internal possible reasons for skeleton
joints jittering. One of the main reasons is processing large amounts of data over a
period of time during skeleton tracking. Because of the processing of large data,
it's very difficult to calculate the accuracy of the joint movements.

Human Skeleton Tracking

[198]

Making skeleton movement softer
The Kinect for Windows SDK exposes some APIs for smoothing and filtering
out the skeleton data. We can set smoothing parameters while setting up the
skeleton stream data. The smoothing parameters solve the jittering problem by
filtering the skeleton data and applying a smoothing algorithm to it. We have
already seen that the SkeletonStream class has an overloaded Enable() method.
This method accepts SmoothParameters as a parameter, which is a type of
TransformSmoothParameters structure.

For example, the following code enables a skeleton stream using
TransformSmoothParameters.

// create the smooth parameters
var smoothParameters = new TransformSmoothParameters
{
 Correction = 0.1f,
 JitterRadius = 0.05f,
 MaxDeviationRadius = 0.05f,
 Prediction = 0.1f,
 Smoothing = 1.0f
};
// Enable the skeleton stream with smooth parameters
this.sensor.SkeletonStream.Enable(smoothParameters);

Smoothing parameters
TransformSmoothParameters is a public structure defined in the Microsoft.
Kinect assembly. It has five public properties that enable the overall smoothing
of skeleton data. The following table lists out the properties:

Name Description
Correction The Correction parameter specifies the amount of correction

needed for the raw data. The value must be within the range of
0 to 1.0 and the default value is 0.5. With lower values more
correction is applied, the raw data is corrected, and the data looks
smoother.

Smoothing The Smoothing parameter determines the amount of smoothing
applied while processing. The value must be within the range of 0 to
1.0 and the default value is 0.5. If you increase this value you will
get smoother skeleton data, however, it increases the latency. With
the smoothing value as zero, you will get the raw skeleton data.

Chapter 6

[199]

Name Description
JitterRadius Using JitterRadius we can limit the radius value for jittery

data. This is measured in meters and the default value is 0.5. If
the position of a jitter is outside the set radius, it is corrected to be
positioned at the radius.

MaxDeviation
Radius

This is the max limit of the deviation that is allowed to
be considered for determining a jitter. If any of the points
fall outside of the MaxDeviationRadius range they are not
considered as jitter. Out of this range, the value is considered as a
valid position.

Prediction As the complete process of smoothing depends on statistical
data analysis, sometimes we need the predicted values.
Prediction returns the number of frames predicted into the
future. The property is a float value with a default value of 0.5.
The prediction value must be greater than or equal to zero.

How to check if skeleton smoothing is
enabled
The SkeletonStream has a read-only property IsSmoothingEnabled to check if the
smoothing is enabled. For example, you can use the property as follows:

bool isSmoothingEnable = this.sensor.SkeletonStream.
IsSmoothingEnabled;

The IsSmoothingEnabled property is automatically set to true when the stream is
enabled with TransformSmoothParameters and false when the default Enable()
method is used.

If a sensor is already running and returning the skeleton data,
enabling smoothing will reset or reinitialize the stream data.

Human Skeleton Tracking

[200]

Exponential smoothing
The Kinect for Windows SDK exposes an API to apply the smoothing parameter
while enabling the skeleton stream and once it's applied, all the joint positions
returned by the skeleton tracking engine will be smooth. The smoothing parameters
are applied to the data returned by the skeleton engine over time. The overall
smoothing process uses statistical analysis to generate a moving average of joints,
which reduces the noise. The Kinect for Windows SDK uses the Holt double
exponential smoothing procedure to reduce the jitters from skeletal joint data. The
exponential smoothing is applied to a series of time-based data to make a forecast.

The skeleton engine returns the skeleton frame in a regular time interval. The
smoothing algorithm applies to each set of data and calculates a moving average
based on the previous set of data. During the calculation of moving average, it uses
the values passed by the smoothing parameter. For example, from the following
sample chart you can see the difference between the raw skeleton and smoothed
data. If you noticed, the trend of data movement always remains the same as the
original data but the deviation is less.

To learn more about exponential smoothing, please refer to the
following link: http://en.wikipedia.org/wiki/Exponential_
smoothing

Applying smoothing on skeleton data could be very expensive in terms of
application performance. This is because the skeleton stream data itself is massive,
and applying smoothing filtering on it makes data processing slow and this highly
depends on the parameters you are using.

Chapter 6

[201]

There are no such standard values for smoothing for any application.
This could vary based on the application and the type of user experience
you need, which you can test and apply during your development phase.

Skeleton space transformation
The Kinect sensor represents the skeleton data in a 3D coordinate system. With
respect to the Kinect sensor and human body points, the x axis and y axis define
the position of the joint and z axis represents the distance from the sensor. The
overall representation of the skeleton data within global space is knows as skeleton
space. The origin of the skeleton space is the depth images, which return the skeleton
data with the set of joint positions. In the end, each joint position is represented with
(x, y, z) coordinates.

With only the skeleton data, it is difficult to directly interact with the user. This is
because the user's coordinate space is different than the skeleton joint information.
So we need some approach to transform the skeleton joint's coordinate system into
a global space where both the users and the application understand each other's
coordinate system.

The Kinect for Windows SDK provides us with a set of APIs that allows us
to easily translate the skeleton space to either depth space or color space and
vice versa. The CoordinateMapper property of the KinectSensor class takes care
of the image's space transformation. The CoordinateMapper property is of type
CoordinateMapper class, which has several methods that convert SkeletonPoint
to either DepthImagePoint or ColorImagePoint.

For example, the ScalePosition() method that we wrote about earlier was taking the
skeleton joint positions (SkeletonPoint), which have values for all three coordinates,
as input. Within the ScalePosition() method we called the CoordinateMapper
.MapSkeletonPointToDepthPoint() method, which takes skeletonPoint as an
argument and maps it with the specified DepthImageFormat value.

private Point ScalePosition(SkeletonPoint skeletonPoint)

{
 DepthImagePoint depthPoint = this.sensor.CoordinateMapper.
MapSkeletonPointToDepthPoint(skeletonPoint, DepthImageFormat.
Resolution640x480Fps30);
 return new Point(depthPoint.X, depthPoint.Y);
}

Human Skeleton Tracking

[202]

The Kinect SDK handles this coordinate transformation internally and returns
DepthImagePoint (with only X, Y) with respect to the current space.

The CoordinateMapper class also has a set of methods that can map frame to frame,
such as mapping color frame to depth frame or skeleton frame.

The Advanced Skeleton Viewer
application
Advanced Skeleton Viewer is built on the overall concepts that we have discussed
so far. We can say this is an integrated solution to explore skeleton tracking in a
better way. This application has the following features:

• Enable near range while tracking the skeleton in both default and
seated mode

• Display the tracked joints, joint names, and drawing bones
• Visualize different bone sequences for both tracking modes
• Visual indication for total tracked skeleton
• Record and play a fixed set of skeleton collections
• Select a specific frame and display

The following screenshot shows the overall application. Click on Start Tracking
to initiate skeleton tracking. Then, you can click on Record, which will store
the skeleton information and the frame number of the collection. You can use
the collection later to play the recorded skeletons. The collection element is also
displayed in a list from which you can select any skeleton for viewing. Also, by
selecting different bone sequence options, you will be able to view the specific
bone sequence for the skeleton in the display area. The progress bar shows the
total number of skeletons tracked.

Chapter 6

[203]

The sample project Hand Tracking with Joint Position Display is available for
download in the book's resource location. This will work for both the seated and
default modes and you see different bone sequences by selecting bone options.
Record and playback is available for a fixed number of frames (limited to 1000
skeleton frames). Click on Start Tracking to start tracking the skeleton.

Human Skeleton Tracking

[204]

Debugging the applications
Debugging an application with skeleton tracking is difficult and time consuming.
This is because to test or debug the application you have to stand or sit in front of
the sensor properly, so the sensor can detect required joints. We use breakpoints to
pause the execution of the application in a specific location and continue with further
debugging. The sensor returns approximately 30 frames per second, so all the frames
may not have the right data you are looking for. Hence, you have to go back and
track the skeleton again and come back. To overcome this situation and to make
your debugging faster, you can use the following two approaches.

Using conditional breakpoints
Visual Studio allows you to put a conditional breakpoint at any particular line of
code. The application will pause the program's execution at the breakpoint only
when the given condition is satisfied.

Now, think about a scenario where you want to debug your application only when
the Head joint is tracked. So, rather than checking with every frame for a Head joint,
put a condition in the break point condition, so that execution will pause only when
a Head joint is tracked. To do this, first of all you need to put a breakpoint on the line
where you want to pause execution. Then just right-click on the red breakpoint icon.
From the context menu you just click on Condition, and specify the condition in the
Condition textbox as shown in the following screenshot:

Click on OK and start executing your application. Now, the application execution
will only pause on the specified line when the Head joint is tracked.

Chapter 6

[205]

You can also use the conditional breakpoint to see if some value has changed. For
example, you want the application to hit the breakpoint only when a particular
skeleton tracking ID has changed; in this case you can use the breakpoint condition
for the Has changed option. Refer to the following screenshot, where we have
specified the condition with the Has changed option selected:

Visual Studio supports IntelliSense within the Condition
textbox as well.

Using Kinect Studio
You will get this tool as a part of the Kinect Developer Toolkit. In Chapter 2, Getting
Started, we talked a little bit about Kinect Studio. It's a tool which can record and
sense data streams. This tool is really helpful for debugging applications where
skeleton tracking is involved. Before you start debugging your application, you
can record your body movement using Kinect Studio. Then use the same stream
to debug your application as long as you want. You can save the recorded data
for future use as well.

Human Skeleton Tracking

[206]

First launch Kinect Studio and connect the application you want to debug to it:

Click on Connect, and then click on the Record button to start recording. Perform the
necessary operations that you want to do for your application, and when done, stop
the recording in Kinect Studio. Now you can play the stream within Kinect Studio to
see what was recorded and the data can be sent to your application when it's in the
debug mode by selecting the Play in Application option.

Chapter 6

[207]

From then on you just need to connect your application with Kinect Studio and
play it from there. You will receive the same data stream from your application as
recorded earlier. This will make your job much easier while debugging applications.

Getting data frames together
We have covered three (color, depth, skeleton) types of data streams that
are returned by the sensor. One of the common things we have noticed is
the frame ready events with each of the streams (ColorFrameReady for
ColorStream, DepthFrameReady for DepthStream, and SkeletonFrameReady for
SkeletonStream). We had to subscribe to the events individually for different
stream data and every corresponding event argument has a method that pulls the
frames from stream data (OpenColorImageFrame, OpenDepthImageFrame, and
OpenSkeletonFrame). The application raises the appropriate type of handler only
when the subscribed stream data is ready. For example, SkeletonFrameReady will
only be invoked when the sensor returns the skeleton data.

For a real application, we have seen that most of the time we need all three types of
data streams. Rather than using different event handlers for different streams, we
can use a single event AllFramesReady, which will do the job for all three of them.
The AllFramesReady event fires when new frames are available for the color, depth,
and skeleton streams.

Even if we are subscribing to the single event handler AllFramesReady,
we have to enable the proper data stream to get the data from the sensor.
For example, if you want to enable color and depth streams, you have to
explicitly call the Enable() method for both the streams as we did for
individual streams.

You can register the AllFramesReady event handler as follows:

this.sensor.AllFramesReady+=sensor_AllFramesReady;

With the help of the AllFrameReady event we can get access to all frames by
subscribing to a single event handler with AllFramesReadyEventArgs:

void sensor_AllFramesReady(object sender, AllFramesReadyEventArgs e)
{

}

Human Skeleton Tracking

[208]

The AllFramesReadyEventArgs class has support for accessing all kinds of data.
As shown in the following screenshot, the event argument has three different
methods for different stream channels; we have already used them in individual
frame ready events.

The following screenshot illustrates the mapping of AllFramesReady with
individual event handlers for data subscription:

Using AllFramesReady does not necessarily mean that you have to use all three
types of data, you can use it for any single data stream as well.

Chapter 6

[209]

Summary
This chapter primarily explores the skeleton tracking capability of the Kinect for
Windows SDK. In order to completely grasp the different facets of human body
movement and their implications on developing motion-oriented applications, it's
essential to get a thorough understanding of human skeleton tracking. In this chapter
we have delved deep into the functioning of Kinect skeleton tracking, not only in
terms of the API, but we have also explored one of the most interesting parts of how
Kinect sensors work internally to track human skeletons. Our approach towards
covering the intricacies of the various APIs that support skeleton tracking has been
even more comprehensive and detailed. The relevant text is richly supplemented
with well labeled schematic diagrams, especially those pertaining to the body
segments, joints, and bone direction. This chapter has also touched on the topic
of tracking skeletons for both default and seated human bodies, and we have also
seen how we can track a skeleton within near mode range. We have also discussed
a number of tips and tricks that can help you during development of applications.
Additionally, we have discussed different features like smoothing and tracking a
particular skeleton, debugging skeleton applications, and so on. This chapter is also
supported with different sample projects that harness the skeleton tracking features.
It is essential that you thoroughly understand the information presented in this
chapter before proceeding and experimenting with applications that need
human interaction.

Using Kinect's Microphone
Array

The Kinect device consists of a microphone array that supports a multitude of audio
features. The Kinect device has four separate downward-facing microphones that are
placed at the bottom of the Kinect device in a linear fashion.

The microphone array allows the following:

• Capturing better quality sound and providing inbuilt signal processing,
including noise suppression and echo cancellation

• Identifying the source direction of the incoming sound
• Based on the sound to each microphone in the array, it can automatically

find out the direction that the sound is coming from and listen to a specific
microphone by suppressing the other noises

Once the direction of the sound source is set, the Kinect sensor is intelligent enough
to change the direction as and when the source moves. One of the common examples
of such a scenario is playing a game using voice commands. If the player moves, the
sound source's direction moves automatically.

The Kinect sensor has an inbuilt audio-processing pipeline that takes care of the
complete audio-processing capabilities. Another important aspect of the Kinect
microphone array is speech recognition. The microphone array helps to recognize
human speech very clearly by focusing only in a particular direction and canceling
noises in the environment.

Using Kinect’s Microphone Array

[212]

This chapter digs deep into the understanding of Kinect audio data processing
using the microphone array and playing around with the Kinect SDK Audio APIs.
The major areas we will cover in this chapter are as follows:

• Verifying the Kinect audio configuration
• The Kinect SDK architecture for audio
• How Kinect processes audio signals
• Inside Kinect's microphone array
• Capturing and playing audio
• Processing audio data by suppressing and canceling noise
• Understanding sound source localization and beam formation.

Verifying the Kinect audio configuration
Before starting development with the Kinect Audio API, the very first thing you
must check is whether your system is recognizing the Kinect microphone array
as an audio device and can listen to it.

To make sure the audio devices are set up properly, navigate to Control Panel |
Device Manager, look for the Kinect for Windows node, and there you will find
Kinect for Windows Audio Array Control (refer to the following screenshot), which
indicates that the Kinect microphone array is installed and recognized by your
system properly:

In addition to the Kinect for Windows node, the SDK installs audio driver
components under the Sound, video and game controllers node:

Chapter 7

[213]

The Kinect for Windows USB Audio component has the sound drivers for the
microphone array. If you change the Device Manager view from Device by type to
Device by Connection, you will find that Kinect for Windows Audio Array Control
and Kinect for Windows USB Audio are part of a USB composite device (refer to
the following screenshot), which means on combining, these two will work together
under a single USB root hub and do more than one job.

Troubleshooting: Kinect USB Audio not recognizing
If there is a problem during the installation of the SDK, you may encounter
a problem with the audio drivers, and the Kinect USB Audio device displays
a warning symbol in the Device Manager as shown in the following screenshot:

To overcome such scenarios, follow these steps:

• While installing the SDK make sure the Kinect device is unplugged
• Before using Kinect, restart your system once the installation is done

The single USB controller, which shares many devices such as
headphones, webcams, USB keyboard, and mouse along with the
Kinect device, can be the main culprit causing the non-detection
of the driver. It's always recommended to assign a dedicated USB
Controller to the Kinect sensor.

Using Kinect’s Microphone Array

[214]

Using the Kinect microphone array with
your computer
Once the Kinect is connected and you have verified the installed drivers, you can
identify the Kinect microphone like any other microphone connected to your PC
in the Audio Device Manager section.

Navigate to Control Panel | Sound and switch to the Recording tab. You will
find Kinect's Microphone Array as a recording device:

To test it out, set Microphone Array as the default microphone device.

Now, open the default Windows sound recorder; you will be able to start recording
sound using the Kinect microphone array.

Chapter 7

[215]

The Kinect SDK architecture for Audio
The SDK installs the Kinect USB Audio components that actually interact with
the microphone array of the Kinect sensor and the SDK components. For speech
recognition, Kinect uses the underlying speech API of the Windows operating
system. Kinect has its own internal pipeline that processes the captured audio data;
however, when it comes under the operating system level, the audio API is built on
existing audio framework components. From the following diagram, you can see that
the captured audio from the Kinect microphone array is passed to the application via
the Kinect and Windows Audio Components:

Along with the device drivers, the following are the two major components:

• DirectX Media Object (DMO)
• Windows Speech Recognition API (SAPI)

The majority of audio functionality, such as as Noise Suppression (NS), Acoustic
Echo Cancellation (AEC), and Automatic Gain Control (AGC) is controlled by the
DMO. However, these are not new functionalities for DMO; the SDK exposes a set of
APIs that can control the previously mentioned features via the Kinect application.
When there is a need to process some data using the Kinect application, you need
to invoke those sets of methods from the Kinect SDK, and they internally call the
existing DMO method to perform the action.

Using Kinect’s Microphone Array

[216]

On the other side, the complete Kinect Audio Speech Recognition is based on the
Windows Speech API. We will discuss speech recognition more in our next chapter.

Kinect microphone array
The microphone array is the heart of Kinect audio. Before we start talking about
what a microphone array is and how it works, let's first have a quick look at what
the major challenges and focus area of Kinect audio were.

The major focus area of Kinect audio
The major focus area of Kinect's audio processing was human speech recognition
and recognizing the voice of the players when they are moving around and are in
different positions.

• The first challenge was identifying audio with loud sound. Consider a
situation where you are playing a game and a loud sound is coming from
some different source, such as a TV. That creates difficulty in recognizing
the player's voice because of the loud sound as well as the echo and noises
in the room.

• The second major challenge was to identify the speech within a dynamic
range of area. While playing, the player could change his position, or
multiple players could be speaking from different directions.

To overcome all these problems and to provide one of the best solutions for
speech recognition, Kinect has a microphone array to capture the voice and
deal with high-quality sounds.

Why microphone array
The Kinect sensor has four microphones; three of them are on the right side and
the other one on the left. The following screenshot shows how the microphones
are positioned and the distance between the microphones within the Kinect device:

Chapter 7

[217]

The logic behind placing microphones in different places is to identify the following:

• The origin of the sound
• The direction of the incoming sound

As all the microphones are placed in different positions, the sound will arrive at each
of the microphones at different time intervals, which means there should be some
delay in sound reception between each microphone. By this, the Kinect sensor can
understand the direction from which the sound is coming. Kinect is also intelligent
enough to calculate the approximate distance based on the wave and the time
difference of sound from the actual source, similar to how our ears and brain work.

Having a longer distance (149 mm) between the first microphone
and the second one allows the Kinect to see a difference between the
inputs in terms of delay of sound as well as calculating the sound
source's direction. There is a delay of the duration of up to seven
samples between the left-most microphone and the next microphone,
whereas there is a little less delay for the other three microphones.

Audio signal processing in Kinect
Kinect has its own inbuilt sophisticated audio-processing pipeline to filter the audio
data. Once the source and position of the sound is calculated, the audio-processing
pipeline merges the signals of all microphones and produces a signal with high-quality
sound. Kinect can identify the sound within a range of +50 to -50 radians.

Using Kinect’s Microphone Array

[218]

The range of angle within which Kinect can listen is
called source angle.

As Kinect is responsible for human voice recognition, the audio-processing pipeline
also applies a filter on the wave frequency by suppressing all the frequencies that go
out of the frequencies of the human voice (between 80 and 1100 Hz). Along with that,
the pipeline is also responsible for filtering out other noise, removing the echoes, and
producing an amplified voice.

The Kinect audio-processing pipelines use several digital signal processors (DSP)
that have all the complex algorithms to produce better voice recognition, irrespective
of the circumstances.

Combining different sound signals by identifying the sound source
and listening to a particular direction is called beamforming.

The following are a few key components of the audio-processing pipeline:

• Acoustic Echo Cancellation (AEC)
• Beam Former (BF)
• Sound Source Localizer (SSL)
• Noise Suppression (NS)
• Automatic Gain Controller (AGC)

Combining the Beam Former (BF) and Sound Source Localizer (SSL) makes Kinect
a highly directional microphone so that it can listen to a particular direction. BF
changes the beam angle based on the response of the SSL.

The process of changing beam angle automatically is called Beam
Steering. The angle returned by the beam former is the beam angle,
which is nothing but the angle in which Kinect is listening.

Just like other microphones in this domain, Kinect uses Acoustic Echo Cancellation
(AEC) to remove the sounds that are coming from the loudspeaker. Noise
Suppression (NS) is used to suppress the unwanted sounds that we don't need.
Automatic Gain Controller (AGC) sits at the end of the pipeline and is used as an
amplifier. This allows you to gain voice control as well as keep the captured audio
level high while the player is moving around.

Chapter 7

[219]

Taking control over the microphone array
The Kinect for Windows SDK exposes a set of properties and methods that help to
capture audio from the Kinect microphone array and process the audio data. The
SDK has a top level KinectAudioSource class that is primarily responsible for
capturing and manipulating the audio data.

Kinect audio stream
The microphone array can supply four channels of 32-bit audio at 16 KHz. This isn't
surprising since the Kinect is made up of four microphones.

To view the default format that the Kinect microphone array provides, navigate
to the Advanced tab of the Microphone Array Properties dialog window from
Control Panel:

Starting and stopping the Kinect audio stream
Kinect sensors return raw audio streams to our application. The audio
channel needs to be enabled before the sensors start sending the audio stream.
The KinectAudioSource class exposes a method called Start() to enable the
audio channel and initiate the audio stream to capture audio:

// Start Kinect Audio Stream
Stream audioStream = this.sensor.AudioSource.Start();

The Kinect sensor must be in the running state in order to start the audio
stream. If you try to start the audio stream and the sensor is not running,
the application will throw an InvalidOperationException. So, it
is always good to check the IsRunning property of KinectSensor
before starting the audio stream. If IsRunning returns false, start the
sensor before the audio stream.

Using Kinect’s Microphone Array

[220]

Once finished with the operation, you need to stop the channel by calling the
Stop() method:

//Stop Kinect Audio Stream
this.sensor.AudioSource.Stop();

AudioSource is a property of the KinectSensor class, which is a type of the
KinectAudioSource class; the sensor object represents the instance of the
currently connected sensor.

Starting audio streaming after a time interval
The KinectAudioSource class has an overloaded method for starting the audio
stream. The only difference in this method is that it takes a time span as an argument,
which ensures the sensor will start capturing the audio stream only after the specified
timeout period.

For example, if you run the following code block, the application will start capturing
the audio stream after 10 milliseconds:

Stream audioStream = this.sensor.AudioSource.Start(TimeSpan.
FromMilliseconds(10));

If you don't read the stream value within the specified time period,
the DMO discards the buffer data and new data will be captured.

Once the audio stream is started, the sensor starts sending the audio stream,
and then you can easily use the stream data.

You can have only one running audio stream channel at a time from
a Kinect device. If you are starting the audio stream and there is
already an open audio stream, the SDK will first stop the existing
running stream before starting the new stream channel.

Kinect sound recorder – capturing Kinect
audio data
In this section you are going to learn how to record and play raw audio data streams
from the Kinect microphone array. You will also learn how you can leverage the
Kinect SDK Audio API's capability to process the captured audio stream data and
apply noise suppression and echo cancellation.

Chapter 7

[221]

Setting up the project
The very first thing you need to do is create and set up the project by adding the
required assemblies that are required for accessing the sensor. Perform the following
steps to set up a blank project for your KinectSoundRecorder application:

1. Start a new instance of Visual Studio.
2. Create a new project by navigating to File | New Project.
3. You will see the New Project dialog box. Choose Visual C# as your

development language, select WPF Application Template, and type the
name as KinectSoundRecorder.

4. From the Solution Explorer, right-click on the References folder and select
Add References.

5. Include a reference of the Microsoft.Kinect assembly.

Designing the application – XAML and data
binding
Open the MainWindow.Xaml file from Solution Explorer. The basic UI using
XAML, as shown in the next screenshot, contains three button controls to start, stop,
and play the recorded sound. We have placed a progress bar control just to display
the amount of time the recording has been going on; the progress bar will also
indicate how much time is remaining while playing. We have placed one additional
label control, which will display the status message of the current operation. To play
the captured audio, we have also used a WPF media element control.

<Button x:Name="buttonStart" IsEnabled="{Binding CanStartRecording}"
Content="Start" Click="buttonStart_Click" />
<Button x:Name="buttonStop" IsEnabled="{Binding CanStopRecording}"
Content="Stop" Click="buttonStop_Click" />
<Button x:Name="buttonPlay" IsEnabled="{Binding CanPlayback}"
Content="Play" Click="buttonPlay_Click" />
<ProgressBar x:Name="audioProgress" Maximum="10" Minimum="0" />
<Label VerticalAlignment="Center" Foreground="Blue"
x:Name="labelStatusMessage" Content="Status Message" />
<MediaElement Name="kinectaudioPlayer" />

Using Kinect’s Microphone Array

[222]

Use the previous XAML snippet within WPF Grid container and specify the
Grid. Row and Grid.Column properties to generate the UI as shown in the
following screenshot:

Add a new class named MainWindowViewModel.cs, which implements
the INotifyPropertyChanged interface and has the properties, listed in
the following screenshot, that call the OnNotifyPropertyChanged() method
if there is any value change:

The MainWindowViewModel class also has a set of methods to enable and disable
the UI buttons during start, stop, and playback of the recorded audio. For example,
when we click on the Start button, it invokes the StartRecording() method, which
sets the CanStartRecording and CanPlayback properties to false.

Chapter 7

[223]

public void StartRecording()
{
 this.CanStartRecording = false;
 this.CanStopRecording = true;
 this.CanPlayback = false;
}

If you have noticed the XAML UI, we did the binding of all the controls with the
MainWindowViewModel class properties. Now the property change will automatically
take care of updating the UI controls. But, before the binding comes into action, you
need to set the data context:

public MainWindowViewModel ViewModel { get; set; }
public MainWindow()
{
 InitializeComponent();
 Loaded += new RoutedEventHandler(MainWindow_Loaded);
 this.ViewModel = new MainWindowViewModel();
 this.DataContext = this.ViewModel;
}

We are done with the handling of controls for start, stop, and play.
Now the remaining part is capturing and playing the audio.

Recording the Kinect audio
Recording is a very simple and straightforward process and can be done by
performing the following steps:

1. Create a buffer for recording the audio.
2. Read the Kinect audio stream into the buffer.
3. Write the buffer data into the file system.

The main recording is done by the RecordAudio() method, which can record an
audio from the Kinect source for 10 seconds at 16 KHz.

public void RecordAudio()
{
 int recordingLength = (int)10 * 2 * 16000;
 byte[] buffer = new byte[1024];

 using (FileStream fileStream = new FileStream("d:\\kinectAudio.
wav", FileMode.Create))
{
 WriteWavHeader(fileStream, recordingLength);

Using Kinect’s Microphone Array

[224]

 using (Stream audioStream = this.sensor.AudioSource.Start())
 {
 int count, totalCount = 0;
 while ((count = audioStream.Read(buffer, 0, buffer.
Length)) > 0 && totalCount < recordingLength)
 {
 fileStream.Write(buffer, 0, count);
 totalCount += count;
 }
 }
 }
}

Before writing the data into a WAV file, note that the WAV file
requires a special header format. You can find out the details for the
header format from the following URL:
http://msdn.microsoft.com/en-us/library/windows/
desktop/ee419050%28v=vs.85%29.aspx

We have implemented the same in the WriteWavHeader() method.

Starting the recording
The next step for the sound recorder implementation is starting the recording.
We have already created the view model that takes care of all the UI-related binding.
So once we call the StartRecording() method, the recorder screen will disable the
Stop and Play buttons in the UI unless the recording is finished. We have used a
dispatcher timer over here just to show a timer progress during your recording.
This progress will indicate the recording time as well as the time remaining while
playing the audio. The line highlighted in the following code block is where we
call the record audio from our helper class:

this.ViewModel.StartRecording();
this.PlugDispatcher();
var audioThread = new Thread(new ThreadStart(RecordAudio));
audioThread.SetApartmentState(ApartmentState.MTA);
audioThread.Start();

Chapter 7

[225]

You have to use multithreaded apartment (MTA) to avoid the
Interop layer exception. The managed Audio APIs run the DMO
in a background thread, which requires an MTA threading model.

WPF requires single-threaded apartment (STA) to run an application, hence
we have used an MTA thread to start recording the audio. This will be totally
independent of the UI. This thread will invoke the RecordAudio() method, which
will eventually start recording sound from the Kinect audio source for 10 seconds.

Playing the recorded audio
Once the recording is done, the Play button will be enabled automatically. In the UI,
we have used the WPF media element to play the sound. The following highlighted
code shows how we have loaded the recorded audio source into the media element
and played the audio:

If (!string.IsNullOrEmpty("d:\\kinectAudio.wav") && File.Exists
("d:\\kinectAudio.wav"))
{
 this.PlugDispatcher();
 kinectaudioPlayer.Source = new Uri("d:\\kinectAudio.wav", UriKind.
RelativeOrAbsolute);
 kinectaudioPlayer.LoadedBehavior = MediaState.Play;
 kinectaudioPlayer.UnloadedBehavior = MediaState.Close;
 labelStatusMessage.Content = "Playing in Progress";
 playinginProgress = true;
}

Running the Kinect Sound Recorder
Now you are done with the development of the sound recorder and have gone
through the major area of implementation. Let's have a look at the behavior once
you run the application.

Using Kinect’s Microphone Array

[226]

To run the application, press F5 or select Start Debugging from the Debug menu.
The following screen will appear:

Click on Start to start recording. The progress bar will indicate the time remaining
for the recording to complete.

Once the recording is done, the Play button will be enabled automatically.
Then click on Play to play the recorded audio from the Kinect sensor.

Processing the audio data
The KinectAudioSource class not only helps to capture the audio data from
the sensors but also offers to take control over many aspects of audio data
processing by interacting with the underlying DMO.

Chapter 7

[227]

Echo cancellation
Echo cancellation helps to increase the sound quality. The Acoustic Echo
Cancellation (AEC) component within the audio-processing pipeline is responsible
for removing the echoes that we are sending to the microphone. To make the AEC
work, you need to set the EchoCancellationMode property of kinectAudioSource.

EchoCancellationMode uses a set of enumeration values to set the type of echo
cancellation as listed in the following table:

Name Description
CancellationOnly With the value of CancellationOnly, the audio

DMO will perform only cancellation of acoustic
echo.

CancellationAndSuppression This enables the cancellation of echo as we perform
the echo suppression using AES (Acoustic Echo
Suppression).

None No echo cancellation will be performed by AEC.

By default, the value of EchoCancellationMode is set to None.
So, if you are not setting this property explicitly, the DOM will
neither be performing echo cancellation nor noise suppression.

Along with the EchoCancellationMode property, you will need to provide an
integer value to EchoCancellationSpeakerIndex, which indicates the speaker,
that is, from where the sound is coming. The following code snippet shows how
to use the previously mentioned properties within your code:

this.sensor.AudioSource.EchoCancellationMode = EchoCancellationMode.
CancellationOnly;
this.sensor.AudioSource.EchoCancellationSpeakerIndex = 0;

Noise suppression
Noise is the sound that Kinect does not understand, or which we do not want to use.
While playing around with audio, there could be different possibilities of sound;
noise could be coming from different sources. The noise suppresser is used in the
audio-processing pipeline and suppresses the unwanted audio signals and ignores
them for further levels of processing. You can use the NoiseSuppression property
to set the noise suppression of Kinect audio.

Using Kinect’s Microphone Array

[228]

The following code snippet shows how to use NoiseSuppression with the Kinect
audio source:

this.sensor.AudioSource.NoiseSuppression = true;

The noise suppression is enabled by default.

Automatic gain control
The Kinect audio pipeline has an Automatic Gain Controller (AGC) placed at the
end, which is used as an amplifier for the incoming sound source. This allows you
to gain voice control irrespective of how far away the player is standing and the
volume at which the sound is coming. With the Kinect SDK Audio API, you have
some flexibility to control the gain control of DMO.

The AutomaticGainControlEnabled property of the KinectAudioSource class
enables the automatic gain control. You can use AutomaticGainControlEnabled
as shown in the following snippet:

this.sensor.AudioSource.AutomaticGainControlEnabled = true

The default value of AutomaticGainControlEnabled is false.
With the AutomaticGainControlEnabled set as true, if you
record the sound, you will notice an improvement in the sound volume
if you walk around the room during recording.

So far you have seen the different audio-processing APIs that are present in the
Kinect for Windows SDK. Let's put them together with our existing Kinect sound
recorder control and build a complete sound recorder with which you can record
clear and good quality sound irrespective of the environment.

Audio data processing with the Kinect
sound recorder
We will be extending our existing application by adding three checkboxes that
control the noise suppression, automatic gain control, and echo cancellation
capabilities from the UI. The following is the additional XAML code:

<Expander Header="Process Audio">
 <GroupBox Name="processingGroup" Margin="5" Height="57">
 <StackPanel>

Chapter 7

[229]

 <CheckBox x:Name="checkNoiseSuppression" Content="Noise
Suppression" IsChecked="{Binding IsNoiseSuppression}"></CheckBox>
 <CheckBox x:Name="checkEchoCancelation" Content="Echo
Cancelation" IsChecked="{Binding IsEchoCancelation}"></CheckBox>
 <CheckBox x:Name="checkGainControl" Content="Automatic
Gain Control" IsChecked="{Binding IsGainControl}"></CheckBox>
 </StackPanel>
 </GroupBox>
</Expander>

With the additional checkboxes for audio processing, the Kinect sound recorder will
look like the following screenshot:

You have added an extra control that needs binding. Add the following three
properties of type boolean in the MainWindowViewModel class:

Now you can bind these properties with the Kinect audio source to enable the noise
suppression and automatic gain control:

this.audioSource.NoiseSuppression = ViewModel.IsNoiseSuppression;
this.audioSource.AutomaticGainControlEnabled = ViewModel.
IsGainControl;

Using Kinect’s Microphone Array

[230]

For echo cancellation, you can first check if the echo cancellation is enabled or not;
if it's enabled, set the mode along with the speaker index:

if (ViewModel.IsEchoCancellation)
{
 this.audioSource.EchoCancellationMode = EchoCancellationMode.
CancellationOnly;
 this.audioSource.EchoCancellationSpeakerIndex = 0;
}

Finally, run the application and select the required checkbox to enhance the audio
quality of your sound recorder:

The easiest way to check is to record a piece and look at its visualization inside
an audio editing tool; you can use a tool such as Audacity (http://audacity.
sourceforge.net/).

The following image shows a short recorded audio using the Kinect Sound Recorder,
where first one was recorded by disabling the noise suppression and second one
was recorded by enabling noise suppression. From the visualization, you can easily
identify the noise reduction in the second recording when the noise suppression was
set to true.

http://audacity.sourceforge.net/
http://audacity.sourceforge.net/

Chapter 7

[231]

Sound source localization
The fundamentals of sound source localization are based on identifying the sound
source angle and the beam angle, and the response to the changes as well.

Sound source angle
The source angle is the range area that Kinect can listen to and it's valid from +50
to -50 radians. The KinectAudioSource class has the SoundSourceAngle property,
which returns the current source angle.

Once we start the Kinect audio source, the SoundSourceAngle
property starts updating automatically.

Using Kinect’s Microphone Array

[232]

The Kinect source angle is calculated based on the current Kinect camera
coordinates, where the x and y axes define the horizontal plane.

You can use the MaxSoundSourceAngle and MinSoundSourceAngle properties of the
KinectAudioSource class to get the maximum and minimum values of the sound
source angle.

The SDK raises the SoundSourceAngleChanged event if there is any change in
the source angle. The SoundSourceAngleChangedEventArgs class contains two
properties that return the current source angle and the confidence that the sound
source angle is correct.

Confidence level
The confidence level of the sound source angle is used to determine the correctness of
the sound that was captured by the sensor. The value of the confidence level ranges
from 0.0 to 1.0, where 0.0 is no confidence and 1.0 is full confidence.

The best scenario for using confidence level is speech recognition.
You can accept or reject some speech based on the confidence level
of the sound.

Chapter 7

[233]

The KinectAudioSource class exposes the SoundSourceAngleConfidence property,
which returns the confidence level of a particular source angle.

Beamforming
One of the novel features of the Kinect SDK is beamforming, which is the ability
to determine the direction of an audio source by analyzing the audio streams
captured by the microphone array.

A zero angle indicates that the sound is coming from the front of the sensor; a
positive angle means that the sound is coming from the user's left, and from the
right for a negative angle.

Beam angle mode
The SDK provides a property BeamAngleMode, by which we can set the mode of the
beamforming. With this value of beam angle mode, the DMO level decides whether
the application has to control the beamforming or DMO has to take care of it. The
SDK has the following set of modes that can be set for the beam angle mode.

Name Description
Automatic This is the default beamforming mode, where the system calculates

the beam angle based on the strongest incoming signal and sets the
beam. Here, by system we mean that the underlying DMO will take
care of beamforming.

Adaptive With the Adaptive mode of beamforming, the beam angle is
controlled by the internal algorithm of Kinect. It builds up a weighting
function over time and then selects the strongest signal from the
weighted values.

Manual When the mode is set to Manual, the application has to take care of
the beam angle change.

The KinectAudioSource class exposes the BeamAngle property, which returns
the current beam angle irrespective of the mode we have used for changing the
angle. BeamAngleChanged is invoked automatically whenever there is a change
in the beam angle. To get the maximum and minimum beam angle, you can
use the MaxBeamAngle and MinBeamAngle properties, which are exposed by the
KinectAudioSource class. Both of these properties are read-only, and the maximum
and minimum values are defined as constants.

mk:@MSITStore:C:\Program Files\Microsoft SDKs\Kinect\v1.0\Documentation\KinectSDK.chm::/BeamAngleChanged_KinectAudioSource_MK_E.htm

Using Kinect’s Microphone Array

[234]

Setting the beam angle manually
BeamAngle is a read-only property that cannot be used to set the
beam angle directly. If you want to set the beam angle manually, you
have to set the angle using the ManualBeamAngle property, and the
BeamAngleMode property must be set to Manual.

The SoundSourceAngleConfidence property works only when BeamAngleMode is
set to either Automatic or Adaptive.

Extending the Kinect Sound Recorder
with sound source localization
In this section we are going to display the sound source angle, the beam angle,
and the sound source confidence level while recording audio from Kinect.

Add the following properties in the MainWindowViewModel class and make sure
all of them are notifying the property change, while setting the values:

Add three textblock controls in the UI and use the previously mentioned properties
as binding values. For example, to display and bind the confidence level, use the
following XAML snippet:

<StackPanel Margin="5" Orientation="Horizontal">
 <TextBlock Text="Confidence Level : "/>
 <TextBlock Text="{Binding SoundConfidenceLevel}"/>
</StackPanel>

The source of the sound, the source angle, and the beam angle can be identified
during the capturing of audio from the Kinect device. You have to add the following
highlighted code snippet within the RecordAudio() method to display the values for
the source angle, the beam angle, and the confidence level.

public void RecordAudio()
 {
 ...
 using (Stream audioStream = this.sensor.AudioSource.Start())
 {
 int count, totalCount = 0;

Chapter 7

[235]

 while ((count = audioStream.Read(buffer, 0, buffer.Length)) >
 0 && totalCount < recordingLength)
 {
 _fileStream.Write(buffer, 0, count);
 totalCount += count;
 this.ViewModel.SoundSourceAngle = this.sensor.
 AudioSource.SoundSourceAngle.ToString();
 this.ViewModel.SoundConfidenceLevel = this.sensor.
 AudioSource.SoundSourceAngleConfidence.ToString();
 this.ViewModel.SoundBeamAngle = this.sensor.AudioSource.
 BeamAngle.ToString();
 }
 }
 }

Whenever there is a change in the sound source angle, the
SoundSourceAngleChanged event is raised automatically. You need to register the
event handler before the sensor starts capturing audio:

// Attaching the event handler
this.sensor.AudioSource.SoundSourceAngleChanged+= AudioSource_
SoundSourceAngleChanged;

The event argument has two properties that hold the current source angle and the
confidence level:

// SoundSourceAngelChanged event handler
void AudioSource_SoundSourceAngleChanged(object sender,
SoundSourceAngleChangedEventArgs e)
{
 this.ViewModel.SoundSourceAngle = e.Angle.ToString();
 this.ViewModel.SoundConfidenceLevel = e.ConfidenceLevel.
ToString();
}

The BeamAngleChanged event handler is invoked when the beam angle of the
microphone array changes, and can be handled as follows:

Void AudioSource_BeamAngleChanged(object sender,
BeamAngleChangedEventArgs e)
{
 this.ViewModel.SoundBeamAngle = e.Angle.ToString();
}

Using Kinect’s Microphone Array

[236]

Run the Kinect Sound Recorder once again; now, within a few seconds of audio
capturing, you will able to see the changes in the sound source as well as the beam
angle while recording the audio. Move around the room, you will able to see the
changes in the source angle and the beam angle.

Summary
Exploring the audio capabilities of the Kinect sensor is the essence of this chapter.
In order to fully grasp the expanse of the auditory abilities of this novel device,
it is essential for us to have an understanding of the underlying hardware and
how it functions. Hence, we have delved deep into the functioning of the Kinect
microphone array and the need for it. You have learned the reason behind having
four microphones and how the design makes the Kinect device a directional audio
source detector. You have also learned about all the major terms relating to the
Kinect microphone array, such as beamforming, source angle, and beam steering.
You have also seen how data is processed in the Kinect audio-processing pipeline.
The demo provided demystifies the exact technique of capturing and consequently
using the captured audio data. In the next chapter we will raise the bar further by
venturing into speech recognition of Kinect audio.

Speech Recognition
One of the key aspects of Natural User Interface (NUI) is speech recognition. The speech
recognition application allows users to say any command in front of the microphone,
and on the other side the computer executes a certain action depending on the
recognized command. The Kinect microphone array works as an excellent input device
for speech-enabled applications. This provides much better quality in audio capturing
compared to a single microphone by providing noise suppression, echo cancelation, and
by listening to a particular direction with the help of sound source localization.

In the previous chapter, you have seen how the Kinect SDK interacts with the
microphone array and you can build an application by capturing the audio stream.
While the KinectAudioSource class is envisioned primarily for streaming and
processing audio, combining it with the SpeechRecognitionEngine class actually
shows the power of using a Kinect microphone array.

In this chapter, you will be learning about speech recognition using a Kinect
microphone array and we will build some speech-enabled drawing applications.
The major areas that we will cover in this chapter are as follows:

• How speech recognition works
• Using Kinect with your Windows PC speech recognition
• Exploring Microsoft Speech API (SAPI)
• Creating your own grammar and choices for the speech recognition engine
• Draw What I Want – building a speech-enabled application

Speech Recognition

[238]

How speech recognition works
An application can have different types of user interface (UI), and controlling
the UI using speech is one of the approaches of user interaction. Using the speech
recognition system, users say what they want and the computer executes the
command and the results are reflected on the UI.

We can categorize the patterns of speech recognition in the following two ways:

• Command mode: This is the mode where you say a command and the
speech recognition engine recognizes the speech. As an example, you may
want to start and stop a game by just saying "start" and "stop".

• Sentence mode or diction mode: This is the mode where you can say a
sentence to perform an operation. As an example, to rotate a line you can say
"rotate the line".

At the first glance, speech recognition looks like a simple matching logic, but indeed
it is not. The speech recognition engine consists of the following two major modules:

• Acoustic model
• Language model

Each one of the modules has a sole responsibility for recognizing speech.

Speech recognition is a pattern-recognition task, which is
performed in different steps with the speech recognition engine.

The following is the list of operations performed for recognizing the user's speech:

1. Microphones capture the audio stream and in the first step they convert
the analog audio data into a digital wave, which can be understood by the
computer. This operation is actually done in the very first stage of the audio
processing pipeline, as the audio needs a better acoustic representation to be
further processed by the speech recognition engine.

Chapter 8

[239]

2. In the next step, the audio sound signals are sent to the speech recognition
engine to recognize the audio.

3. The acoustic model of the speech recognition engine analyzes the audio and
converts the sound into a number of basic speech elements; we call them
phonemes. The acoustic model is one of the major components of the speech
recognition engine. This also includes internal learning algorithms.

The phonemes are the units of speech, which are
used to match with the voice.

4. The language model is the second major component of the speech recognition
engine. The language model analyzes the content of the speech and tries
to match the word by combining the phonemes within an inbuilt digital
dictionary. So what it does is, it combines the phonemes created by the acoustic
module with a word and compares that with the inbuilt digital dictionary.

5. If the word exists in the dictionary, the speech recognition engine recognizes
the what you said.

The speech recognition engine also uses the lexicon lists for a large
number of words in the language, and provides information on how
to pronounce each word. This helps in better recognition of voice, as
far as the factor of pronunciation is concerned.

The speech recognition engine matches the context-sensitive patterns, which is
extremely helpful for matching very similar words such as "their" and "there".
Though these two words sound very similar, the meanings are totally different. As
an example, if you say, "keep it there", only "keep it" will help the speech recognizer
understand to select "there" or "their".

Speech Recognition

[240]

The following figure shows the basic speech recognition process using different
modules of a speech recognizer:

For example, the word "welcome", which is captured by the microphone, is converted
into a digital signal. The acoustic model of the speech recognition engine splits the word
into phonemes that say "we", "lco", and "me". Then the language model combines each
one of them and tries to match them with the inbuilt dictionary. In the dictionary, there
are several words that fall under a combination of the same set of characters. As we
have already defined the word "welcome", the speech recognition engine will return a
success value with the matched word.

Using Kinect with your Windows PC
speech recognition
Once your system detects the Kinect microphone array as an audio device, you
can configure it for speech recognition to control your computer using the speech
command. Let's have a look at how you can use the Windows speech recognition
with the Kinect microphone array. To do so we have to perform the following steps:

Chapter 8

[241]

1. Navigate to Control Panel | Manage Audio Devices | Recording. Set
Microphone Array as the default audio device.

2. Right-click on the default device and select Configure Speech Recognition
from the context menu as shown in the next screenshot:

3. From the speech recognition configuration windows, you can start the
speech recognition, but before that you need to link the microphone array
with the speech recognition system. To enable that, first click on the Set up
microphone option as shown in the next screenshot:

Speech Recognition

[242]

4. From the Set up microphone window dialog, select the Other option, as the
Kinect microphone array does not fall under the rest two categories. Click on
Next and follow the steps for detecting devices and voices.

5. Once everything is set up, click on Start Speech Recognition from the speech
configuration windows as shown in the next screenshot:

This will launch the default Windows speech recognition application and you can
control your PC using voice commands and your Kinect sensor used as an input
device as shown in the next screenshot:

Beginning with Microsoft Speech API
(SAPI)
The Kinect SDK uses Microsoft Speech Library for speech recognition. The SDK
Installer installs the Microsoft Kinect Speech Recognition Language Pack (En-US)
along with all other required components.

Chapter 8

[243]

The Speech Application Programming Interface (SAPI) works as a middleware and
provides an interface between the application and speech recognition engine.

While installing the SDK, you have to make sure you don't have any
previous version of a speech language pack installed; if yes, then
first uninstall it, otherwise the installation will not proceed.

Steps for building speech-enabled
applications
To develop any speech-enabled application, you need to typically perform the
following basic steps:

1. Enable the Kinect audio source.
2. Start capturing the audio data stream.
3. Identify the speech recognizer.

Speech Recognition

[244]

4. Define the grammar for the speech recognizer.
5. Start the speech recognizer.
6. Attach the speech audio source to the recognizer.
7. Register the event handler for speech recognition.
8. Handle the different events invoked by the speech recognition engine.

Microsoft Speech API provides the SpeechRecognitionEngine class, which works
as a backbone for the speech-enabled application. The very first job to start with
SpeechRecognitionEngine is to identify the recognizer itself.

The recognizer is nothing but the installed runtime for speech
recognition, which contains the acoustic model, language model, and
all other essential information for speech recognition. Each and
every recognizer is identified by their unique ID.

The InstalledRecognizers method of the SpeechRecognitionEngine class returns
the lists of installed recognizers in the system, and we can filter them out based on
the recognizer ID.

The SpeechRecognitionEngine class accepts an audio stream from the Kinect
sensor and processes it. The SpeechRecognitionEngine class raises a sequence
of events when the audio stream is detected. This sequence is as follows:

• First SpeechDetected is raised if the audio appears to be a speech.
• SpeechHypothesized then fires multiple times when the words

are tentatively detected. This is when it tries to match them with
the inbuilt dictionary.

• Finally SpeechRecognized is raised when the recognizer finds the speech.

The speech recognizer also provides all the information based on the confidence
level of the sound source on the speech that was identified. If the speech is
detected but does not match properly or is of very low confidence level, the
SpeechRecognitionRejected event handler will fire.

Basic speech-recognition approach
The straightforward way to use speech recognition is to create an instance of the
SpeechRecognitionEngine class. To use that class, first of all, you need to add
the Microsoft.Speech.dll assembly as a reference assembly and then add the
Microsoft.Speech.Recognition namespaces. You can then attach an event handler
to the SpeechRecognized event, which will fire whenever the audio is internally

Chapter 8

[245]

converted into text and identified. The following code shows how you can create
an instance of SpeechRecognitionEngine and register the Speech Recognized
event handler.

SpeechRecognitionEngine speechRecognizer = new
SpeechRecognitionEngine();
speechRecognizer.SpeechRecognized += speechRecognizer_
SpeechRecognized;

Once the speech is recognized, you can perform the required operation using the
SpeechRecognizedEventArgs.Result property as follows:

void speechRecognizer_SpeechRecognized(object sender,
SpeechRecognizedEventArgs e)
{
 Console.WriteLine("Recognized Text {0} ", e.Result.Text);
}

The SpeechRecognizer event handler has a Result property of type
RecognitionResult class. The Result property contains what has been identified
and the quality in terms of confidence level. The following table shows a few of the
property names and their uses:

Name Description
Text This returns the text identified by the speech recognition engine.

Confidence This is the value assigned by the recognizer on which the
recognition engine accepts the command. This is a float value with
ranges from 0 to 1.

Alternates This returns the alternate matches for the input sound. The return
value is the read only collection of RecognizedPhrase.

Audio This property returns the original audio that is being used for the
recognized commands. You can get hold of this audio with the help
of the RecognizedAudio class.

Words This returns the words generated by the speech recognizer. Words
is a collection of the type RecognizedWordUnit class. This is quite
useful when we deal with a sentence to match.

Speech Recognition

[246]

Building grammar
We have seen how speech recognition works and the events it raises when the
speech is matched or rejected. But one thing is missing here, and that is, what to
recognize? We want to perform an operation whenever speech is recognized; but
what are those speeches or commands and with whom do we need to match?
How do we define such commands in our application? How will the recognizer
understand our voice command?

Well, this can be done by specifying grammar based on Speech Recognition
Grammar Specification (SRGS). Grammar is the set of commands that tell the
speech recognition engine what to match. This could be a single word or a sentence.
As for example, if you want to start or stop a game by just saying "start" or "stop",
you need to define them as grammar so that the speech recognition engine looks into
the set of grammars and returns the matched one that you were looking for.

Using Microsoft Speech API library, there are two ways by which you can build
grammar commands explained in the sections ahead.

Using Choice and GrammarBuilder
The GrammarBuilder class helps us to build the grammars in a declarative way
using the Choices class. The Choices class is responsible for providing a set of
alternatives for speech recognition grammar. The GrammarBuilder class builds
the grammar based on the Choices object provided as shown in the next figure:

For example, you want to draw an object with a specific set of colors using a speech
command. So first of all, we have to define the choices as follows:

Choices colorObjects = new Choices();
colorObjects.Add("red");
colorObjects.Add("green");
colorObjects.Add("blue");
colorObjects.Add("yellow");

Chapter 8

[247]

In the next step, we have to build a grammar for the previously defined choices
as follows:

GrammarBuilder grammarBuilder = new GrammarBuilder(colorObjects)

 Appending new grammars
You can play around with the GrammarBuilder class to create a special type of
sequence of grammar as per your requirement.

As shown in the following code, we are appending a set of choices for the object,
which you want to draw by calling the Append method:

grammarBuilder.Append(new Choices("circle", "triangle", "rectangle",
"square"));

With the declaration of grammar in this code with the same grammarBuilder object,
it constructs a declarative grammar that accepts a two-word input, where the first
word has four possibilities of colors and the second word has five types of objects.

In such cases, the commands "red circle", and "green square" will be recognized, but
"red diamond" won't be recognized.

Also, you have to keep in mind that the sequences of choices need
to be the same. As per the previous example, "red circle" will be
recognized; however "circle red" will not.

Similarly, you can add multiple sets of choices in GrammarBuilder as shown in the
next figure:

Speech Recognition

[248]

Grammar Wildcard
The grammar can also follow the rules of a normal wildcard, where the
grammar element matches any input to the current sequence.

grammarBuilder.AppendWildcard();

With the wildcard, you can say anything for the current element. For
instance, "draw red circle", and "need blue square" will be recognized if
we are defining the first word as a wildcard.

Building grammar using XML
The alternative way to construct the grammar is to load it from an Speech
Recognition Grammar Specification (SRGS) document. The SRGS document
is nothing but an XML document with a set of rules to specify grammar as shown
in the next figure:

To do this, you need to use the srgsDocument class from the System.Speech.
Recognition.SrgsGrammar namespace and load the same using the Grammar
class into a speech recognizer as follows:

SrgsDocument grammarDoc = new SrgsDocument("mygrammar.xml");

The typical formats of the SRGS grammar XML file are shown in the following code
where the highlighted area defines the set of colors:

<?xml version="1.0" encoding="UTF-8" ?>
<grammar version="1.0" xml:lang="en-US"
xmlns="http://www.w3.org/2001/06/grammar"
tag-format="semantics/1.0" root="Main">
 <rule id="color" scope="public">

Chapter 8

[249]

 <one-of>

 <item>red</item>
 <item>green</item>
 <item>blue</item>
 </one-of>
 </rule>
</grammar>

Creating grammar from GrammarBuilder
The GrammarBuilder object just builds the grammar; to use the grammar we need to
create an instance of the Grammar class with the created instance of GrammarBuilder
as follows:

Grammar grammar = new Grammar(grammarBuilder);

Similarly, you can create the grammar from an SRGS document as follows:

Grammar grammar = new Grammar(grammarDoc);

Loading grammar into a recognizer
Once you are done with defining the grammar, in the next step, you need to load
the grammar to the speech recognizer. We need to load the instance of the Grammar
class with the already created instance of GrammarBuilder into the speech recognizer
as follows:

Grammar grammar = new Grammar(grammarBuilder);
speechRecognizer.LoadGrammar(grammar);

Speech Recognition

[250]

Loading multiple grammars
You can create different grammar builders and load them into a speech
recognizer one by one (refer to the following figure). This helps you to
create a versatile set of commands.

Unloading grammars
The SpeechRecognitionEngine class has the UnloadGrammar method. Using
that you can unload the grammars when required. You can even use the
UnloadAllGrammars method to unload all the grammars.

To unload a grammar, you have to pass the grammar name as an argument in the
UnloadGrammar method. Once the grammar is unloaded, you have to load it again
for further use.

Draw What I Want – a speech-enabled
application
Draw What I Want is a cool demo application, which will draw a set of predefined
objects with a specific color using your voice command. For example, if you say
"draw red circle", the application will draw a red circle. Let's start building the
application by applying the learning from whatever concepts we have covered.

Setting up the project
The steps for implementing the code are as follows:

1. Start a new instance of Visual Studio.
2. Create a new project by navigating through File | New Project.
3. You will see the New Project dialog box. Choose C# as our development

language and select WPF Application Template and type the name as
DrawWhatIWant.

Chapter 8

[251]

4. From the Solution Explorer window, right-click on the Reference folder and
select Add References.

5. Include a reference of the Microsoft.Kinect assembly.
6. As we are going to interact with Microsoft Speech API, include a reference

to the Microsoft.Speech assembly.

7. From Solution Explorer open the MainWindow.xaml file to design the
required UI.

Designing the application – XAML and data
binding
The XAML snippet shown in the following code is from the MainWindow.xaml file,
where you can see a canvas to draw the color objects and a text block control for
showing the command words.

<Canvas Grid.Row="0" Grid.Column="0" Height="322" Width="362"
x:Name="PlaceHolder" VerticalAlignment="Top" Margin="0">
</Canvas>
<StackPanel Background="GhostWhite" Grid.Row="0" Grid.Column="1" >
 <StackPanel Margin="5"
 Orientation="Horizontal">
 <TextBlock Text="Words : " FontWeight="Bold" />
 <TextBlock Text="{Binding Words}"/>
</StackPanel>
<StackPanel Margin="10"

Speech Recognition

[252]

Orientation="Horizontal">
 <TextBlock Text="Say - Close The Application - to Quit"
Background="AliceBlue" FontWeight="Bold" Height="18" Width="217" />
</StackPanel>

Similar to the TextBlock control for displaying words, in the UI we have used
multiple sets of TextBlock controls to display the various parameters such as source
angle, beam angle, confidence level, and the hypothesized word. The design view of
the application is shown in the next screenshot:

Data binding
Once we are done with the UI implementation, add a new class named
MainWindowViewModel and inherit from INotifyPropertyChanged and
implement the OnNotifyPropertyChanged method as shown in the
following code:

using System.ComponentModel;
public class MainWindowViewModel : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;
 private void OnNotifyPropertyChanged(string propertyName)

 {

 if (this.PropertyChanged != null)

Chapter 8

[253]

 {
 this.PropertyChanged.Invoke(this, new PropertyChangedEvent
Args(propertyName));
 }
 }
}

Add a new property Words in the MainWindowViewModel class as shown in the next
code block:

private string words;
public string Words
{
 get { return words; }
 set
 {
 if (this.words != value)
 {
 this.words = value;
 this.OnNotifyPropertyChanged("Words");
 }
 }
}

Similar to the Words property, add the following properties that will notify a
change whenever there is a change in the source angle, or the beam angle, or
in the confidence level.

Speech Recognition

[254]

Set the data context for the UI with the newly created ViewModel in the MainWindow.
Xaml.cs file. This will automatically bind up the UI with the properties when the
application starts. If there are any changes on the property values, ViewModel will
notify the UI and update the values accordingly as follows:

public MainWindowViewModel ViewModel { get; set; }
public MainWindow()
{
 InitializeComponent();
 Loaded += new RoutedEventHandler(MainWindow_Loaded);
 this.ViewModel = new MainWindowViewModel();
 this.DataContext = this.ViewModel;
}

Instantiating speech recognizer
To instantiate the speech recognition engine, first you have to identify the recognizer
based on the recognizer ID.

The following code block shows how to start the recognizer for Kinect. The code
blocks are very much generic like the other speech recognition applications; the only
difference is the recognizer ID that you are defining for your application.

const string RecognizerId = "SR_MS_en-US_Kinect_11.0";
private void StartKinectRecognizer()
{
 RecognizerInfo recognizerInfo = SpeechRecognitionEngine.
InstalledRecognizers().Where(r => r.Id == RecognizerId).
FirstOrDefault();
 if (recognizerInfo == null)
 {
 MessageBox.Show("Could not find Kinect speech recognizer");
 return;
 }
 Thread newThread = new Thread(new ParameterizedThreadStart(BuildGr
ammarforRecognizer));
 newThread.Start(recognizerInfo);
}

If the InstalledRecognizers method finds the defined ID in the system, it will
proceed further to deal with the speech recognizer, otherwise the application will
show the defined message and return back.

Chapter 8

[255]

Working with the speech recognition engine
We have now reached the main section where we need to create the speech recognition
engine to handle everything. With the StartKinectRecognizer method, a new
thread will span and invoke a method called BuildGrammarforRecognizer. In the
BuildGrammarforRecognizer method, the first thing you need to configure is the
Kinect audio source and then create the grammar for the speech recognition engine.

Configuring Kinect audio
You are already familiar with the following code block, where we have just taken the
reference of the current sensor AudioSource and attached the required event handler:

private void EnableKinectAudioSource()
{
 source = sensor.AudioSource;
 source.BeamAngleChanged += new EventHandler<BeamAngleChangedEventA
rgs>(source_BeamAngleChanged);
 source.SoundSourceAngleChanged += new EventHandler<SoundSourceAngl
eChangedEventArgs>(source_SoundSourceAngleChanged);
 source.AutomaticGainControlEnabled = false;
 source.NoiseSuppression = true;
}

Creating grammar
In this demo, we are going to draw an object with a voice command, so our grammar
needs to be declarative. As for example, if we say "draw red triangle", the application
will draw a triangle in red. The following is the grammar definition:

var grammarBuilder = new GrammarBuilder { Culture = (recognizerInfo as
RecognizerInfo).Culture };

// first say Draw
grammarBuilder.Append(new Choices("draw"));

var colorObjects = new Choices();
colorObjects.Add("red");
colorObjects.Add("green");
colorObjects.Add("blue");
colorObjects.Add("yellow");
colorObjects.Add("gray");

// New Grammar builder for color
grammarBuilder.Append(colorObjects);

Speech Recognition

[256]

// Another Grammar Builder for object
grammarBuilder.Append(new Choices("circle", "square", "triangle",
"rectangle"));

// Create Grammar from GrammarBuilder
var grammar = new Grammar(grammarBuilder);

// Creating another Grammar and load
var newGrammarBuilder = new GrammarBuilder();
newGrammarBuilder.Append("close the application");
var grammarClose = new Grammar(newGrammarBuilder);

In this code block, you can also find that we have loaded two different types
of grammars and it's very much understandable that we are using that, as "close
the application" is a separate set of words, and can't be fitted with color choices or
object choices.

Start the speech recognizer
The final job is to run the speech recognizer and load the created grammar
as shown in the first highlighted block and then attach the required event handler:

using (var speechRecognizer = new SpeechRecognitionEngine((recognizerI
nfo as RecognizerInfo).Id))
{
 speechRecognizer.LoadGrammar(grammar);
 speechRecognizer.LoadGrammar(grammarClose);
 speechRecognizer.SpeechRecognized += SreSpeechRecognized;
 speechRecognizer.SpeechHypothesized += SreSpeechHypothesized;
 speechRecognizer.SpeechRecognitionRejected +=
 SreSpeechRecognitionRejected;

 using (Stream s = source.Start())
 {
 speechRecognizer.SetInputToAudioStream(s, new SpeechAudioForm
atInfo(EncodingFormat.Pcm, SamplesPerSecond, bitsPerSample, channels,
averageBytesPerSecond, blockAlign, null));
 while (keepRunning)
 {
 RecognitionResult result = speechRecognizer.Recognize
 (new TimeSpan(0, 0, 5));
 }
 speechRecognizer.RecognizeAsyncStop();
 }
}

Chapter 8

[257]

Drawing an object when speech is recognized
Speech recognizer invokes the SpeechRecognized event handler whenever the
speech is detected. The event handler has a property called Result that contains
most of the information. Whenever the speech is recognized, we are invoking a
method to parse the command. Here you can check the confidence level values
before invoking the command parser. As shown in the following code block, the
threshold value for confidence is set to 0.6; you can change it as per your needs
and the required clarity of the voice you want to capture.

private void SreSpeechRecognized(object sender,
SpeechRecognizedEventArgs e)
{
 ViewModel.SoundConfidenceLevel = e.Result.Confidence.ToString();
 float confidenceThreshold = 0.6f;
 if (e.Result.Confidence > confidenceThreshold)
 {
 Dispatcher.BeginInvoke(new Action<SpeechRecognizedEventArgs>
 (CommandsParser), e);
 }
}

The CommandParser method accepts the SpeechRecognizedEventArgs class, which
has a property called Result. In the CommandParser method you have to parse each
and every word to match.

For example, the first word we need to match is "draw" then "red", followed by
the word "triangle". The Words property contains the individual word, which is
recognized by the speech recognition engine. Our job is to perform an action
against those words as follows:

private void CommandsParser(SpeechRecognizedEventArgs e)
{
 var result = e.Result;
 Color objectColor;
 Shape drawObject;
 System.Collections.ObjectModel.ReadOnlyCollection<RecognizedWordUn
 it> words = e.Result.Words;
 DisplayWords(result);

 if (words[0].Text == "draw")
 {
 string colorObject = words[1].Text;
 switch (colorObject)
 {
 case "red": objectColor = Colors.Red;

Speech Recognition

[258]

 break;
 case "green": objectColor = Colors.Green;
 break;
 case "blue": objectColor = Colors.Blue;
 break;
 case "yellow": objectColor = Colors.Yellow;
 break;
 case "gray": objectColor = Colors.Gray;
 break;
 default:
 return;
 }

 var shapeString = words[2].Text;
 switch (shapeString)
 {
 case "circle":
 drawObject = new Ellipse();
 drawObject.Width = 100;
 drawObject.Height = 100;
 break;
 case "square":
 drawObject = new Rectangle();
 drawObject.Width = 100;
 drawObject.Height = 100;
 break;
 case "rectangle":
 drawObject = new Rectangle();
 drawObject.Width = 100;
 drawObject.Height = 60;
 break;
 case "triangle":
 var polygon = new Polygon();
 polygon.Points.Add(new Point(0, 0));
 polygon.Points.Add(new Point(-169, 0));
 polygon.Points.Add(new Point(60, -40));
 drawObject = polygon;

Chapter 8

[259]

 break;
 default:
 return;
 }

 PlaceHolder.Children.Clear();

 drawObject.SetValue(Canvas.TopProperty, 100.0);
 drawObject.SetValue(Canvas.LeftProperty, 120.0);
 drawObject.Fill = new SolidColorBrush(objectColor);
 PlaceHolder.Children.Add(drawObject);
 }

 if (words[0].Text == "close" && words[1].Text == "the" &&
words[2].Text == "application")
 {
 this.Close();
 }
}

The main area of this code block is getting the words from recognized event
arguments as follows:

System.Collections.ObjectModel.ReadOnlyCollection<RecognizedWordUnit>
words = e.Result.Words;

As we have three grammars defined, the collection of the words will have maximum
three items, where the first value "draw", and the second and third values hold the
values for color and drawing object. Based on the values of color and object type,
we have drawn on the canvas.

We have also handled the SpeechHypothesized event handler to enable a quick
view to see what you are saying and how the speech recognition engine is trying
to identify your commands:

private void SreSpeechHypothesized(object sender,
SpeechHypothesizedEventArgs e)
{
 ViewModel.HypothesizedText = e.Result.Text;
}

Speech Recognition

[260]

Testing your application
You are all set to run you application. Press F5 or from the debug menu run the
application. By default, you will get an output like the following screenshot:

Now say "draw red circle" or "draw green square". You will be able to see the drawn
objects on the screen as shown in the next screenshot:

To close the application, just say "close the application"; the application will
terminate automatically. While speaking, you can also view the hypothetical
word in the footer area of the application.

Chapter 8

[261]

You must have noticed more interesting stuff over here. Check out the Words section
in the right column shown in the next screenshot. We are able to recognize each and
every individual word from the set of recognized sentences.

You can simply achieve this by reading the values from the e.Result.Words
property and iterating through the words as shown in the next code:

private void DisplayWords(RecognitionResult result)
{
 StringBuilder sb = new StringBuilder();
 foreach (var word in result.Words)
 {
 sb.Append(string.Format("[{0}]", word.Text));
 }
 ViewModel.Words = sb.ToString();
}

Speech Recognition

[262]

Summary
This chapter attempts to highlight certain uses of Kinect SDK Audio APIs and
leverage the Microsoft SAPI to build the speech-enabled application. Before delving
into any code, we have purposefully harped on about the basics of the speech
recognition system and how it works, so that you feel at ease while running the
codes. To aid the understanding process we have also provided a well sketched
schematic diagram. You have learned how to create your own grammar either
by using code or loading from an XML file and finally learned how to load the
grammar into the speech recognizer. We have also shown how to create different
grammar builders and load them into the speech recognizer one by one. This helps in
increasing the versatility of the command set. Finally the chapter ends with a really
cool demo to make the contents of the chapter crystal clear to you.

In the next chapter, we will learn about gesture recognition using a Kinect device.

Building Gesture-controlled
Applications

You've learned about the different features of the Kinect for Windows SDK; also
you've seen how things work in the Kinect for Windows sensor and how you
can interact with the sensor using the Kinect for Windows SDK APIs. We have also
explored the Kinect color stream, depth stream, and also skeleton tracking, along
with the underlying techniques. However, there is one area that is conspicuous
by its absence. Can you guess what it is? It's gestures. Gesture recognition is one of
the hallmarks of the Kinect. The amount of innovation and research that has gone
into the development of gesture technology is unparalleled. Gestures, in layman's
terms, can be described as bodily actions that convey a message. This simple action
could be a waving of the hands, moving of wrists, or a complicated action involving
multiple body parts. The technology used for identifying gestures and converting
them to a form that can be recognized by gesture-based devices is called gesture
recognition. Gesture recognition relies on a cocktail of mathematical algorithms
and skeleton tracking to recognize and classify the gestures. When we talk about a
natural user interface, gesture recognition is the primary thing that comes to minds.
Gesture recognition provides a seamless integration of the natural environment and
the device.

In this chapter, we will explore different concepts of gesture recognition with
the Kinect for Windows SDK. We will look at the different approaches to gesture
recognition and apply them in a number of applications.

Building Gesture-controlled Applications

[264]

In this chapter we will walk through the following topics:

• Fundamentals of gesture recognition
• Different approaches to recognizing gestures
• Understanding basic and algorithmic gesture recognition
• Quick introduction to the weighted-network and template-based

recognition approaches
• Implementing gesture-enabled applications and controls

What is a gesture
A gesture is a human body motion or action that is intended to communicate a
message, and these gestures let our application know what we want to do. In the
context of the Kinect for Windows SDK, a gesture can be interpreted as a bodily
action by which the player conveys some messages or information to the application.
It is similar to the concept of typing on a keyboard, or drawing with the help of
paper and a pad, or using touch on a touch-based device. In all these cases the input
was meant for a particular purpose, which the device needs to understand and then
provide the desired output by interacting with the application.

Similarly, a gesture acts as an input for a Kinect device. Based on this input,
the application needs to perform certain functions. There is actually no physical
connection between users and the device in case of gesture technology. Thus, this
technology forms the backbone of the NUI for Kinect.

Approaches for gesture recognition
Recognizing gestures is one of the most interesting processes, and it involves
different calculations, algorithms, approaches, and methodologies.

The Kinect for Windows SDK does not provide any built-in APIs for
gesture recognition. Therefore, it totally depends on the developers to
define their own approaches and write their own logic to recognize and
play around with gestures.

Chapter 9

[265]

The approaches can be varied depending upon the gestures you choose and
how you are applying them to your application, thus turning the gestures from
simple to complex. We can classify the approaches for gesture recognition in the
following ways:

• Basic gesture recognition
• An algorithmic approach
• Weighted-network approach
• Template-based approach

Choosing among the gesture recognition approaches totally depends on the
developers and the requirements of the application. Sometimes, a gesture for
an application could be simple, for example, just raising both hands, measuring
distances between joints; or maybe some advanced gestures such as a swiping
motion with both hands. On the other hand, it can be as complex as doing some
jumping exercises or swinging a racket.

Before proceeding with the development of any kind of gesture-related
application, make sure that you are clear about the requirements,
implications of the gesture, required accuracy, acceptance of processing
delay, and the time frame given for development.

Refer to the following diagram to understand the overall high-level interaction
happening between the users and the application.

Building Gesture-controlled Applications

[266]

The user interacts with the Kinect sensor, which captures the user's actions and
passes them to the application as a skeleton data stream. Gesture-based applications
will have a component called the gesture recognition engine, which will recognize
the gestures based on the user's actions and the approach defined in the application.
On recognizing the gestures, the application can then perform the necessary action
and notify the user. The recognition engine typically performs the following tasks:

• It accepts user actions in a form of skeleton data
• It matches the data points with predefined logic for a specific gesture
• It executes actions if the gesture is recognized
• It responds to the users

It's essential to have a good understanding of skeleton tracking with
the Kinect for Windows SDK to work with gestures. We have
covered a detailed discussion on skeleton tracking in Chapter 6,
Human Skeleton Tracking.

Basic gesture recognition
The fundamental approach of gesture recognition is to play around with the
skeleton's joint points and apply basic logic to perform some action. Basic gesture
detection depends on some pre-defined set of conditions, known as the result set.
If the performed action is matched with the result set, we can say that the user has
performed a certain gesture, otherwise not.

Implementing the basic gestures is relatively easy and straightforward,
however, this approach is the fundamental base of building any kind of
gesture-controlled application.

In this section, we will learn a few approaches to recognize the basic gestures and
will build an application that leverages the basic gesture recognition approach.

Gesture-detection technique
Gesture detection depends on the tracked joints of the human skeleton because we
define the condition of gestures based on the joints. Before jumping into further
details, let's have a quick look at the representation of skeleton joints.

Chapter 9

[267]

Representing skeleton joints
Each skeleton joint is measured in a three-dimensional (X,Y,Z) plane. The X and Y
coordinates specify the location of the joint in the plane, and the player facing the
Kinect sensor is in the Z direction.

When a joint is represented with X, Y, and Z coordinates in a three-dimensional
plane, the X and Y coordinates actually indicate the joint location in the plane, and
Z indicates how far the joint is from the sensor. If the joints move from the right-
hand side to the left-hand side or vice versa, the X axis of the joint will change.
Similarly, for moving joints in the upwards or downwards direction, the value of the
Y axis will change. Changes in the Z axis will reflect if the joints move forward or
backwards from the sensor.

Calculations for the basic gestures can be done by either of the following:

• Calculating the distance between different joints
• Comparing the joints' positions and the deviation between the

joints' positions

Calculating the distance between two joints
Skeleton data representation is three dimensional; however, before looking into the
3D coordinate plane, let's first consider the points in a 2D coordinate plane with only
X and Y axis and see how to calculate the distance between two points.

Building Gesture-controlled Applications

[268]

In general mathematics, to calculate the distance between two points, we need to
make use of the Pythagorean Theorem. The theorem states that:

For a right-angled triangle, the square of the hypotenuse is equal to the sum of the
squares of the other two sides.

Refer to the following diagram, which shows how the Pythagorean theorem can be
applied to calculate the distance between two joints:

Consider that you have a point A (X1,Y1) and a point B (X2,Y2) in a two-dimensional
coordinate plane. You want to calculate the distance (let's call it "d") between point
A and point B (refer to the image marked as 1). To calculate the distance using the
Pythagorean theorem, we have to first draw a parallel line to the X axis from point A
and another line from point B, which is parallel to the Y axis. Consider both the lines
meeting at point C (X2,Y1). As we know, the X and Y axes are perpendicular to each
other; the triangle formed by the points A, B, and C is a right-angled one (refer to the
image marked as 2).

Now, the value of "d", the distance between points A and B, will be the hypotenuse
of the right-angled triangle that was formed by the points A, B, and C. The distance
between A and B, now can be calculated using following formula:

Chapter 9

[269]

The Pythagorean theorem works well for three dimensional planes as well, and
the distance between points (X1,Y1,Z1) and (X2,Y2,Z2) can be calculated by the
following formula:

To articulate the discussion on joint distance calculation and put it in the form of
code, you can write a method like the following:

private float GetJointDistance(Joint firstJoint, Joint secondJoint)
 {
 float distanceX = firstJoint.Position.X - secondJoint.
 Position.X;
 float distanceY = firstJoint.Position.Y - secondJoint.
 Position.Y;
 float distanceZ = firstJoint.Position.Z - secondJoint.
 Position.Z;
 return (float)Math.Sqrt(Math.Pow(distanceX, 2) + Math.
 Pow(distanceY, 2) + Math.Pow(distanceZ, 2));
 }

The GetJointDistance() method accepts two joints as arguments; it measures the
distance from the joints for every axis in the coordinate system and finally returns
the distance between the joints.

Math.Sqrt returns the square root value of a specified number, and
Math.Pow returns the specified power value of a given number.

For example, if you want to calculate the distance between the HandLeft and
HandRight joints, the GetJointDistance() method can be invoked as follows:

 Joint handRight = skeleton.Joints[JointType.HandRight];
 Joint handLeft = skeleton.Joints[JointType.HandLeft];
 if (handRight.TrackingState == JointTrackingState.Tracked &&
 handLeft.TrackingState == JointTrackingState.Tracked)
 {
 this.GetJointDistance(handRight, handLeft);
 }

The reason behind checking the TrackingState property of joints before calling the
GetJointDistance() method is to just make sure the joints are tracked and have
valid positions for calculating the distance.

Building Gesture-controlled Applications

[270]

It may be possible that Kinect is unable to see the joints and thus
TrackingState will not be tracked. However it may also be possible
that Kinect can infer the position. Thus you can also use the code
based on TrackingState == JointTrackingState.Inferred
and calculate the distance with one of the joints as tracked and the
other as inferred.

Let's try to build a simple gesture application by calculating the distance between
joints and see how it works.

Building a clapping-hands application
In this section we will build a clapping-hands application. The application will play
a clapping sound whenever the joints of the right and the left hand are very close to
each other.

Setting up the project
You can start building this application by creating a new WPF project in Visual
Studio. Name the project Clapping Hands.

This application needs both the depth and skeleton streams to be enabled and
captured. Once you are done with creating the project, you have to perform the
following tasks:

• Identify and initialize the Kinect sensor
• Capture the depth stream data from the sensor and display the depth data to

the application screen. (You can use color stream or IR data to display on the
screen as well; for this application we will be using the depth data)

• Capture the skeleton stream data and detect the first tracked skeleton

By now, you are very familiar with all of the previously mentioned tasks, and can
implement it very quickly. Once you are finished with the implementation of these
tasks and run the Clapping Hands application, if you stand in front of the Kinect
sensor, you should be able to view the depth stream data in your application as
shown in next image:

Chapter 9

[271]

Once a skeleton is tracked we can start measuring the distance between the joints.
For the time being, leave this application in this state, and let's focus on how to
implement the gesture recognizer engine for our application.

Implementing the gesture recognizer
The core of a gesture-enabled application is the gesture recognizer. The gesture
recognizer will have a Gesture Recognition Engine that will accept the user data,
validate the data against predefined conditions, and execute the action depending
on the gesture.

First we will create a new Class Library project in Visual Studio and give the
library a name, GestureRecognizer. The default template of the Class Library
project gives us an empty Class1.cs class to start with. Right-click on Class1.cs
and select Delete so that we can start everything from scratch. We can now
right-click on the project file in the Solution Explorer window and select Add
New Item. We will be adding four class files into our project as shown in the
following screenshot:

Once done, add the Microsoft.Kinect.dll assembly as a reference from the Add
Project Reference option of the project context menu. All the added classes have
their own responsibilities, and together all of them will build the gesture recognizer.
We will start with the GestureType.cs file.

Building Gesture-controlled Applications

[272]

Defining the types of gestures
For any gesture, we need a type to specify what kind of gesture it is. We used the
GestureType.cs files to define an enumeration for the type of the gesture that is
indicated by the GestureType enumeration. The definition looks like the following:

public enum GestureType
 {
 HandsClapping
 }

You can extend the types of enumerations according to the types of
gestures you want. For this demo, we will be using the GestureType.
HandsClapping enumeration.

Defining the types of recognition results
Along with the type of gestures, every gesture action needs a result, which we can
use to notify the user or help us to take further actions. The RecognitionResult
enumeration defines the following result status for a basic gesture recognition:

public enum RecognitionResult
 {
 Unknown,
 Failed,
 Success
 }

Creating the event argument for the gesture
Using an event, a class can notify its client when something happens. We have defined
RecognitionResult for gestures that could be either Success, Failed, or Unknown.
Whenever a particular status of the gesture is identified, it's the responsibility of
recognition engine to notify back to the application and the end user. The EventArgs
class is a base for encapsulating any data that can be passed with the event. We have
defined the GestureEventArgs class, which will hold the RecognitionResult event
as an argument. This is shown in the following code block:

public class GestureEventArgs : EventArgs
 {
 public RecognitionResult Result { get ; internal set; }
 public GestureEventArgs(RecognitionResult result)
 {
 this.Result = result;
 }
 }

Chapter 9

[273]

When a gesture is recognized or failed, the recognition engine will raise an event
with GestureEventArgs, which will hold the result in it. You can surely customize
it if you want to pass any additional information, message, and so on.

Wrapping up everything with the gesture recognition engine
So far, we have defined the following entities:

• Types of gestures in the GestureType enumeration
• Result of the recognition in the RecognitionResult enumeration
• GestureEventArgs; it holds the arguments for gesture related events

The final and most important part of building the Gesture Recognizer is to wrap
up the above components into the GestureRecognitionEngine class and let the
recognition engine know the source of the data and what to recognize.

In the GestureRecognitionEngine class we will be handling skeleton joints
information, you have to refer to the Kinect assembly namespace in this class
file. GestureRecognitionEngine will have a default constructor with two
public properties for defining GestureType and assigning skeleton data from the
application. This class will also have an event handler for handling the action when
the gesture is recognized with GestureEventArgs. The class will look as follows:

 public class GestureRecognitionEngine
 {
 public GestureRecognitionEngine()
 {
 }
 public event EventHandler<GestureEventArgs> GestureRecognized;
 public event EventHandler<GestureEventArgs>
 GestureNotRecognized;

 public GestureType GestureType { get; set; }
 public Skeleton Skeleton { get; set; }
 }

Add a new method called StartRecognize(), which will be invoked by the
recognizer to start recognizing the gesture. The method checks for the GestureType
property and calls the corresponding method to match the gesture. As shown in the
following code block, the MatchHandClappingGesture() method is called to match
the clapping gesture.

 public void StartRecognize()
 {
 switch (this.GestureType)
 {
 case GestureType.HandsClapping:

Building Gesture-controlled Applications

[274]

 this.MatchHandClappingGesture(this.Skeleton);
 break;
 default:
 break;
 }
 }

The MatchHandClappingGesture() method implements the logic or conditions for
the clapping gesture. It accepts the skeleton and then calculates the distance between
two hand joints as follows:

float previousDistance = 0.0f;

private void MatchHandClappingGesture(Skeleton skeleton)
 {
 if (skeleton == null)
 {
 return;
 }

 if (skeleton.Joints[JointType.HandRight].TrackingState ==
 JointTrackingState.Tracked && skeleton.Joints[JointType.
 HandLeft].TrackingState == JointTrackingState.Tracked)
 {
 float currentDistance = GetJointDistance(skeleton.
 Joints[JointType.HandRight], skeleton.
 Joints[JointType.HandLeft]);
 if (currentDistance < 0.1f && previousDistance > 0.1f)
 {
 if (this.GestureRecognized != null)
 {
 this.GestureRecognized(this, new GestureEventA
 rgs(RecognitionResult.Success));
 }
 }

 previousDistance = currentDistance;
 }
 }

The method first validates the skeleton data for the null reference and then returns
the control to the application if the skeleton data is null. Then it will check if both
the HandRight and HandLeft joints are being tracked. If they are being tracked,
it will calculate the distance by calling the GetJointDistance method. We have
already walked through the piece of code for the GetJointDistance() method,
and we will use the same code block in this class as well. The currentDistance
variable holds the distance between the joints. Once the distance is calculated, we
are checking the value with a predefined value (0.1, which means the joints are
very close to each other).

Chapter 9

[275]

We have used another variable called previousDistance, which keeps track of
previously calculated distance between joints. This allows the program to only play
the sound when the hands are very close to each other and not all the time. Also, the
starting value given to previousDistance will ensure that even if your hands are
together at the starting position, it won't be recognized.

Once the overall condition is satisfied, the RecognitionEngine class raises the
GestureRecognized event handler with RecognitionResult.Success. As we did
for GestureRecognized, you can put some condition where the gesture recognition
can fail, and raise the GestureNotRecognized event handler.

If we put everything in the form of a class diagram, the overall
GestureRecognitionEngine class will look like the following:

Now you should be able to build the class library. This will produce
the GestureRecognizer.dll assembly. Our next job will be using
the GestureRecognizer.dll assembly in our previously built
ClappingHands application.

Plugging gestures into the application
Resume work with the ClappingHands application from the position we
left it at. The GestureRecognizer library project generates an assembly
GestureRecognizer.dll that can be used with any Kinect-based application for
gesture recognition. Let's integrate this with our ClappingHands application and
see how it works.

Building Gesture-controlled Applications

[276]

This can be done simply by performing the following steps:

1. Add the GestureRecognizer.dll assembly as a reference assembly to
the ClappingHands application, from the Add References window.

2. Add the following namespace in the application:
 using GestureRecognizer;

3. Define a new class level variable for the GestureRecognitionEngine class,
as follows:
GestureRecognitionEngine recognitionEngine;

4. In the MainWindow_Load event handler, add the following line just after
where you have enabled the skeleton and depth streams:
recognitionEngine = new GestureRecognitionEngine();
recognitionEngine.GestureType = GestureType.HandsClapping;
recognitionEngine.GestureRecognized += new EventHandler<GestureEve
ntArgs>(recognitionEngine_GestureRecognized);

These lines of code are clear enough; we created an instance of the
GestureRecognitionEngine class and then set the GestureType property
and registered the GestureRecognized event handler. The definition for the
recognitionEngine_GestureRecognized method looks like the following:
 void recognitionEngine_GestureRecognized(object sender,
GestureEventArgs e)
 {
 kinectSoundPlayer.Play();
 }

kinectSoundPlayer is an object of the SoundPlayer class with a specified
sound location for the clapping sound.
You can download the Clap.wav sound files from the book resource location.

5. As a final step, add the following highlighted lines at the end of
SkeletonFrameReady event handler. This will pass the skeleton data for
every frame to recognitionEngine and then call the StartRecognize()
method to verify if the gesture condition is satisfied or not.

void sensor_SkeletonFrameReady(object sender,
SkeletonFrameReadyEventArgs e)

Chapter 9

[277]

 {
 using (SkeletonFrame skeletonFrame =
 e.OpenSkeletonFrame())
 {
 . . .
 if (firstSkeleton == null)
 {
 return;
 }

 recognitionEngine.Skeleton = firstSkeleton;
 recognitionEngine.StartRecognize();

 }
 }

Testing your application
That's all. Run your ClappingHands application in Visual Studio and then stand in
front of the Kinect sensor and perform the gesture we generally make for clapping!
You will be able to hear a clapping sound from the application. The following image
shows the three different poses for the clapping gesture; when the user's action is
similar to pose three, where both the hand joints are very close, the application will
play the sound.

The working solution of the ClappingHands application is a sample project available
in the ClapingHands directory of the resource location of this book.

Building Gesture-controlled Applications

[278]

In this exercise we have just measured the distance between joint points. We haven't
consider the points where the joints are positioned. So, if you clap by putting
your hands above your head or below your hips, the application will still play the
clapping sound. When we think about making it more precise by identifying a
clapping gesture only when the hands are in between the shoulder and hip joint,
or not beyond the left or right shoulders, the algorithmic gestures come into play
as we need to handle more complex logic than the current one.

A virtual rope workout application
Another simple but interesting solution you can build based on basic gesture
recognition is a virtual rope workout application. Choose the joints for your exercise
and see how much you can stretch them or how close you can bring them. You can
also set a threshold value between two joints and try to reach your targeted distance.

The working solution of a virtual rope workout is available in the
VirtualRopeWorkout directory of the resource location of this book as a sample
project. Sample measurements of the exercises are shown in the following screenshot.
You can choose from the options for your exercise type and try to reach the target
you have specified, as shown:

Calculating the distance between joints and performing the actions based on the
value of the distance are examples of basic gestures to start with developing and
understand how gestures work.

Chapter 9

[279]

Understanding the positions of joints and calculating the distance are
very important for gesture-enabled application development. This is
true not only for the basic approaches, but also for algorithmic or other
approaches. Overall, the understanding of basic gesture recognition will
give you a base for further understanding and implementation of gesture-
enabled applications.

Distance calculation will help you measure the distance between joints, but it does
not say in which direction the joints are moving or where they are positioned. For
example, the distance between the head and the right hand joint can be calculated in
different directions, but it does not mean the hand is above the head or below it.

For this kind of calculation, we need to compare with the point-to-point data in the
three-dimensional plan. We can come to some conclusions about joint movement and
positions based on the change in the direction and values of coordinates. Let's have a
look at how we can recognize the gesture of the hands raised up.

Hands-raised-above-head gesture recognition
There are several different types of gesture that can be identified for this scenario.
They are as follows:

• Both hands are raised above the head
• Only the right hand is raised above the head
• Only the left hand is raised above the head
• Neither hand is raised above the head

The poses mentioned are shown in the following picture, where the user is facing the
Kinect sensor:

Building Gesture-controlled Applications

[280]

Overall, this gesture recognition involves three different joints; namely, the head,
right hand, and left hand. We cannot recognize these gestures by just calculating
distances between these three joints; rather, we need to measure the joint positions
with respect to the coordinate plane.

So, let's consider that you want to detect if both the hands are raised above the head.
Movement of the hands in either the upwards or the downwards direction will be
based on the y axis of the coordinate plane. First of all, consider the y axis of the head
joint position as the reference point for the other two hand joint positions, let's call
them target points. Then you need to compare the values of both the targeted joints'
y axis movement with respect to the reference points. Once the targeted value crosses
the reference point, you can say that the gesture is identified. Additionally, you can
use a threshold value with reference points to make sure that the targeted joints are
crossing as expected.

The following code block shows how we can check the gesture of both hands raised
above the head:

float threshold = 0.3f;
if (skeleton.Joints[JointType.HandRight].Position.Y > skeleton.
Joints[JointType.Head].Position.Y + threshold
 && skeleton.Joints[JointType.HandLeft].Position.Y >
skeleton.Joints[JointType.Head].Position.Y + threshold)
 {
 if (this.GestureRecognized != null)
 {
 this.GestureRecognized(this, new GestureEventArgs
 (RecognitionResult.Success));
 }
 }

Chapter 9

[281]

In the code block we just saw, the first part of the condition checks if the right hand
is above the head joint and the second part of the head joint checks if the left hand is
above the head. When both are true at the same time, the gesture recognition engine
raises a GestureRecognzied event.

Recognizing gestures by comparing different joint positions is really
useful and is at the core of algorithmic gesture recognition.

Steps to recognize basic gestures
Gesture recognition based on a calculation between or among joints is a pattern that
is implemented using calculation. Yes, overall implementation of gestures is based
on similar patterns where you have to use your own logic based on the gesture
definitions. Finally, match those patterns based on the joints' information. The
following diagram illustrates the overall steps for identifying basic gestures:

Building Gesture-controlled Applications

[282]

Algorithmic gesture recognition
Algorithmic gesture recognition is built on top of basic gesture recognition, hence
the understanding of basic gesture recognition is essential for going ahead with the
algorithmic approach. The algorithmic approach uses a set of predefined conditions
and parameters to detect and validate a gesture against each of them. With the
algorithmic approach, we basically validate a gesture as it is being performed, by
ensuring the start points, constraints, parameters, and the end points are always valid.

Which gestures can be considered as
algorithmic
You can consider the gestures to be measured by an algorithmic approach when
gestures need to be validated against multiple conditions, multiple joints are
involved, and where you need to measure the multiple states of gesture. If your
application needs all the conditions to be validated and measured based on time
or frames, you should go ahead with the algorithmic approach. So, before you go
ahead and start implementing, first consider the different boundary conditions,
entry and exit criteria for the gestures, and validation states. In general, most of the
applications follow the algorithm for regular gesture implementation. Following are
a few example gestures which can be considered as algorithmic:

• Hand moving in the same direction
• A swipe to the right or the left
• Zooming in and out
• Waving hands

From the gesture types mentioned, you can understand how the approach could
be different from basic gesture detection. The algorithmic approach not only
recognizes the gestures, but it also tracks if the gesture is performed correctly or not.
Though they are very closely related to each other, we can even say that all the basic
approaches are nothing but a smaller set of algorithmic approaches, whereas the
algorithmic gestures are more advanced and are calculated with various conditions
and parameters.

To summarize, choose the algorithmic approach when the application needs to play
around a series of joints. This involves a number of calculations for each and every
frame with start criteria, validation of different states, and end criteria.

Chapter 9

[283]

Understanding the algorithmic gesture
detection approach
To help you understand, lets articulate the components that are required for
algorithmic gesture recognition in a list:

• Start
• Condition
• Validation
• Finish

To start with any gesture, there will always be an initial position—we call it the
"start" position. This is the entry point for any gesture and has to be validated before
validating other positions. Once the start position is validated and the gesture is
being performed by the end user, every single frame has to be validated under the
predefined "condition" for the particular gesture types. If any of these conditions
fail to satisfy during the complete execution cycle, we can stop the gesture tracking
and wait for it to start again. Finally, there should be a condition that triggers the
end of the gesture and "validates" the final position, which indicates that gesture
recognition is "finished".

Building Gesture-controlled Applications

[284]

For example, consider you need to perform a SwipeToLeft gesture using your right
hand. The following images show us the steps for the same, where the user is facing
the Kinect sensor:

To validate this gesture, you need to perform the following steps very closely:

1. Before starting, the left hand joint should be below the left elbow and the spine
joint. Also, the right hand joint should be below the right shoulder joint and
above the right elbow joint.

2. The user should move the hand from right to left while maintaining the right
hand and left hand joint positions.

3. This condition needs to be validated for a couple of predefined frames, and
should result in success every time it checks if the hand is moving to the left.

4. After a specific number of frames when the gesture reaches to validate the
last condition, it will check if the distance between the right hand joint and
the left shoulder has reduced from the starting point.

By considering the preceding points for every skeleton frame, we can determine if a
SwipeToLeft gesture has been detected or not. The validation should be performed
for each and every frame, and you can add a time or frame number to validate.

Chapter 9

[285]

Implementing an algorithmic gesture
In this section we will learn how to implement the gesture recognition engine by
following the earlier approaches. We will be extending the GestureRecognizer class
library developed earlier. Overall project structures for the new GestureRecognizer
class library are given in the following screenshot:

In the earlier implementations we passed the GestureType
enumeration to the gesture recognizer engine to inform it what
we need to detect. In this implementation we rather pass the
types, the gesture recognizer will return the type of gesture
that has been detected. This is because we will have multiple
GestureType enumerations in these scenarios.

Adding gesture types
Open the GestureType.cs file from the Solution Explorer and define the following
types of gestures.

public enum GestureType
 {
 SwipeToRight,
 SwipeToLeft,
 ZoomIn,
 ZoomOut
 }

Building Gesture-controlled Applications

[286]

Extending the Event argument
Using Events, the recognition engines can notify the subscriber of events that occur.
We have already used the RecognitionResult class for the gesture recognition
engine, which would result in either Success, Failed, or Unknown. The EventArgs
class is the base class for encapsulating any data that can be passed with an event.
The following code block defines the GestureEventArgs class that will hold the
RecognitionResult class as well the GestureType property, as an argument:

public class GestureEventArgs : EventArgs
 {
 public RecognitionResult Result { get ; internal set; }
 public GestureType GestureType { get; internal set; }

 public GestureEventArgs(RecognitionResult result,
 GestureType type)
 {
 this.Result = result;
 this.GestureType = type;
 }
 }

When a gesture is recognized, the recognition engine will raise an event with
GestureEventArgs, which will hold the RecognitionResult class as well as the
GestureType property.

Adding a GestureHelper class
We can add a new class named GestureHelper.cs. The GestureHelper.cs class
works as a utility class that contains reusable methods. At this time, we have placed
the GetJointDistance() method as a public static method, which has been called to
calculate the distance between joints in several places for gesture recognition. Earlier,
we had this method inside the GestureRecognitionEngine class; you have to just
move the same method inside the GestureHelper.cs class.

Chapter 9

[287]

Defining the GestureBase class
Now we will create a GestureBase class that will contain the basic structure for all
the gestures. All the gesture classes will implement the GestureBase class to validate
the gestures. The GestureBase class is shown in the following code block:

 public abstract class GestureBase
 {
 public GestureBase(GestureType type)
 {
 this.CurrentFrameCount = 0;
 this.GestureType = type;
 }

 public bool IsRecognitionStarted { get; set; }

 private int CurrentFrameCount { get; set; }

 public GestureType GestureType { get; set; }

 protected virtual int MaximumNumberOfFrameToProcess { get {
 return 15; } }

 public long GestureTimeStamp { get; set; }

 protected abstract bool ValidateGestureStartCondition
 (Skeleton skeleton);

 protected abstract bool ValidateGestureEndCondition
 (Skeleton skeleton);

 protected abstract bool ValidateBaseCondition
 (Skeleton skeleton);

 protected abstract bool IsGestureValid(Skeleton skeleton);
 public virtual bool CheckForGesture(Skeleton skeleton)
 {
 if (this.IsRecognitionStarted == false)
 {
 if (this.ValidateGestureStartCondition(skeleton))
 {
 this.IsRecognitionStarted = true;
 this.CurrentFrameCount = 0;
 }

Building Gesture-controlled Applications

[288]

 }
 else
 {
 if (this.CurrentFrameCount == this.
 MaximumNumberOfFrameToProcess)
 {
 this.IsRecognitionStarted = false;
 if (ValidateBaseCondition(skeleton) &&
 ValidateGestureEndCondition(skeleton))
 {
 return true;
 }
 }

 this.CurrentFrameCount++;
 if (!IsGestureValid(skeleton) && !
 ValidateBaseCondition(skeleton))
 {
 this.IsRecognitionStarted = false;
 }
 }

 return false;
 }

 }

The constructor of the GestureBase class accepts the GestureType property as
the parameter and sets it into the class-level public property named GestureType.
The abstract base class we just saw has a CheckForGesture() method that accepts
the skeleton data and returns a Boolean value to indicate if the gesture was
recognized or not.

First, the ValidateGestureStartCondition() method is called to check if the
gesture satisfies the start condition. Once the start condition is validated, it will
set IsRecognitionStarted to true and set the CurrentFrameCount count to
0. By setting IsRecognitionStarted to true, it indicates that the start position
is validated and gesture recognition is in progress. If any further condition fails
to recognize the gesture, IsRecognitionStarted will be set to false so that
recognition will again start validating the start position.

Chapter 9

[289]

Once the start position is validated, for all other congestive frames it will call the
ValidateBaseCondition() and IsGestureValid() methods until the frame count
reaches the number specified as MaximumNumberOfFrameToProcess. The default
value of MaximumNumberOfFrameToProcess is set to 15, which means the recognition
will validate the stability of the gesture for 15 frames. The IsGestureValid()
method will validate if the user is still performing the action and moving to the right.

The ValidateBaseCondition() method will verify if the user is performing
the action in the right way. For example, for the SwipeToLeftGesture class, the
IsGestureValid() method will verify if the hand is moving from the right-to-
left direction and the distance between the right hand joint and the left shoulder is
decreasing. Whereas, the ValidateBaseCondition() method will check if the right
hand position is between the shoulder and the spine joint.

Finally, it will validate the final condition by calling the
ValidateGestureEndCondition() method; also, it will validate the
base condition by calling the ValidateBaseCondition() method. If the
ValidateGestureEndCondition() method returns a true value, this means the
current gesture satisfies all the predefined conditions and the CheckForGesture()
method will return true. At any time, if the condition fails, the CheckForGesture()
method will return false and will reset the gesture by initializing the values.

Once the base gesture class is ready, we can implement any types of gesture that are
valid under the given circumstance and can be implemented. For example, here we
will follow the example of implementing SwipeToLeftGesture using the right hand.

Implementing the SwipeToLeftGesture class
The following code block is a concrete implementation of the GestureBase class
for a SwipeToLeftGesture class:

 public class SwipeToLeftGesture : GestureBase
 {
 public SwipeToLeftGesture() :
 base(GestureType.SwipeToLeft) { }
 private SkeletonPoint validatePosition;
 private SkeletonPoint startingPostion;
 private float shoulderDiff;
 protected override bool
 ValidateGestureStartCondition(Skeleton skeleton)
 {
 // return true if start condition is valid else return false

 }
 protected override bool IsGestureValid(Skeleton

Building Gesture-controlled Applications

[290]

 skeletonData)
 {
 // return true if current position of gesture is still valid
 else return false
 }

 protected override bool
 ValidateGestureEndCondition(Skeleton skeleton)
 {
 // return true if end condition is valid else return false
 }

 protected override bool ValidateBaseCondition(Skeleton
 skeleton)
 {
 // return true if base condition is valid else return false
 {
 }

The SwipeToLeftGesture class we just saw inherits from the GestureBase class and
implements all the abstract methods defined in the base class for gesture recognition.
The very first thing you notice is the constructor of the SwipeToLeftGesture class,
where we have set the GestureType property to SwipeToLeft. This will let our base
class know that the current recognition is set for SwipeToLeft.

We haven't given the code block for each and every condition
for the validating methods. The conditions for every method will
be very logical, as we discussed in the Understanding algorithmic
approach section. You can get the complete workable solution
downloaded from the book's resource location.

Adding the ZoomIn, ZoomOut, and SwipeToRight
gesture classes
Similar to the SwipeToLeftGesture class, we will have three other classes,
namely SwipeToRight, ZoomIn, and ZoomOut, and all of them are inherited from
the GestureBase base class and implement all the methods, as shown in the
following diagram:

Chapter 9

[291]

If you want to add any other type of gesture, you just have to
define the type of gesture in the GestureType enumeration, and
implement a new class that derives from GestureBase. Finally,
write the conditional logic for validating the gesture's start, end,
and other conditions.

So far we have defined the GestureType, RecognitionResult, GestureEventArgs,
and GestureHelper classes, and finally we have implemented different gesture
classes derived from the GestureBase base class.

Now we need to inject the created gesture class's information to
GestureRecognitionEngine so that GestureRecognitionEngine takes
input from the application and instantiates the process of recognition.

Implementing the GestureRecognitionEngine class
Within the RecognitionEngine class (RecognitionEngine.cs), first remove all the
existing code that we have written during the basic gesture recognition and just keep
the namespaces.

Add the following class-level member in the class:

 int SkipFramesAfterGestureIsDetected = 0;
 public event EventHandler<GestureEventArgs> GestureRecognized;
 public GestureType GestureType { get; set; }

 public Skeleton Skeleton { get; set; }

Building Gesture-controlled Applications

[292]

Then, create a List class of the GestureBase class and name it gestureCollection
to hold lists of different gesture classes:

 private List< GestureBase > gestureCollection = null;

Add a new method, InitilizeGesture(), to add all the gestures into
gestureCollection one by one as shown in the following code block:

private void InitilizeGesture()
 {
 this.gestureCollection = new List<GestureBase>();
 this.gestureCollection.Add(new ZoomInGesture());
 this.gestureCollection.Add(new ZoomOutGesture());
 this.gestureCollection.Add(new SwipeToRightGesture());
 this.gestureCollection.Add(new SwipeToLeftGesture());
 }

The initialization of all the gestures needs to be done when the application
instantiates the GestureRecognitionEngine class. This can be done by
calling the InitilizeGesture() method from the constructor of the
GestureRecognitionEngine class, as shown in following code block:

public GestureRecognitionEngine()
 {
 this.InitilizeGesture();
 }

So, when the GestureRecognitionEngine class instantiates, the recognition engine
will create a list of specified gestures and store them into gestureCollection.

The StartRecognize() method serves the following two purposes:

• Skips some specified frames after gesture detection
• Invokes the CheckForGesture() method for individual gestures

The StartRecognize() method is defined as follows:

public void StartRecognize()
 {
 if (this.IsGestureDetected)
 {
 while (this.SkipFramesAfterGestureIsDetected <= 30)
 {
 this.SkipFramesAfterGestureIsDetected++;
 }
 this.RestGesture();
 return;

Chapter 9

[293]

 }

 foreach (var item in this.gestureCollection)
 {
 if (item.CheckForGesture(this.Skeleton))
 {
 if (this.GestureRecognized != null)
 {
 this.GestureRecognized(this, new GestureEventA
 rgs(RecognitionResult.Success, item.
 GestureType));
 this.IsGestureDetected = true;
 }

 }
 }
 }

This method first checks if any gesture is recognized using the IsGestureDetected
property. If the value of IsGestureDetected is true, the method will wait for 30
frames to skip and then will reset the initialization of gestureCollection. This is
done to avoid the overlapping of gestures. The next part of the method, which is
highlighted, iterates through gestureCollection and calls the CheckForGesture()
method by passing the Skeleton data as the argument. Once the gesture is
recognized, the CheckForGesture() method returns a true, and in the next
statement the GestureRecognized event will be raised with RecognitionResult
set as successful and the GestureType property as a GestureType of the current
element of gestureCollection.

The following is the code block for resetting the gestures:

private void RestGesture()
 {
 this.gestureCollection = null;
 this.InitilizeGesture();
 this.SkipFramesAfterGestureIsDetected = 0;
 this.IsGestureDetected = false;
 }

This block of code just reinitializes gestureCollection and resets the class member
to the initial state.

Building Gesture-controlled Applications

[294]

Using the GestureRecognitionEngine class
We are done with the implementation of GestureRecognitionEngine, and now
it's time to plug it into our applications. The use of GestureRecognitionEngine is
similar to that which we used for basic gesture recognition. The only different here
is that we have a collection of gestures and instead of passing GestureType to the
GestureRecognitionEngine when a gesture is recognized, the recognition engine
returns back the recognized gesture type with the GestureEventArgs argument. The
following steps show how to use the recognizer in any Kinect application where you
want to use this gesture recognizer:

1. Add GestureRecognizer.dll as a reference assembly application from the
Add References dialog window.

2. Add the following namespace in the application:
 using GestureRecognizer;

3. Define a new class-level variable for the GestureRecognitionEngine class,
as shown:
GestureRecognitionEngine recognitionEngine;

4. Add the following code snippet to instantiate the
GestureRecognitionEngine class and register the event:
recognitionEngine = new GestureRecognitionEngine();
recognitionEngine.GestureRecognized += new EventHandler<GestureEve
ntArgs>(recognitionEngine_GestureRecognized);

The lines of code we just saw are clear enough; we created an instance of the
GestureRecognitionEngine class and registered the GestureRecognized
event handler. The definition for the recognitionEngine_
GestureRecognized() event handler is as follows:
 void recognitionEngine_GestureRecognized(object sender,
 GestureEventArgs e)
 {
 MessageBox.Show(e.GestureType.ToString());
 }

Here we are just showing the types of the recognized gestures using a
message box. For the actual implementation, you can call for specific actions
depending on the types of gestures it recognizes.

5. As the final step, add the following highlighted lines of code at the end of
the SkeletonFrameReady event handler. This will pass the skeleton data for
every frame to recognitionEngine and then call the StartRecognize()
method to verify if the gesture condition is satisfied or not. The code block
is as follows:

Chapter 9

[295]

void sensor_SkeletonFrameReady(object sender,
SkeletonFrameReadyEventArgs e)
 {
 using (SkeletonFrame skeletonFrame =
 e.OpenSkeletonFrame())
 {
 . . .
 // getting skeleton code goes here
 if (firstSkeleton == null)
 {
 return;
 }

 recognitionEngine.Skeleton = firstSkeleton;
 recognitionEngine.StartRecognize();

 }
 }

If you run the application, and perform the necessary actions that recognize
these gestures, your application will show a message box with the type of
the recognized gesture.

A demo application
The following screenshot shows a Gesture Detector application. One side of the
application will show us the skeleton with all the tracked joints, and on the other
side, it will show us the recognized gestures from the user's actions:

Building Gesture-controlled Applications

[296]

The working solution of the gesture detector is a sample project available in the
GestureDetector folder of the resource location for this book. This application
leverages the algorithmic gesture recognition engine we just built, and can detect
four types of specified gestures. You will also be able to view the skeleton joints
within this application.

Making it more flexible
To take another granular look into the algorithmic gesture recognition approach,
and to simplify the implementation, we can further break down the complete
condition block into multiple smaller modules, and call it them "phases". Each phase
of a gesture will have its own result set or conditions that measure the success or
failure of the phase. The result of the phases will be dependent on each other,
which means recognition will move to the next phase if the previous phase result
was passed. It could also happen that all the conditions in a phase are not satisfied.
This does not always mean that the phase has failed, it could be that the user is "on
hold" or "in progress" on that particular position for sometime. We can mark the state
of the phase as pause and wait for the next action for a few frames. These phases
can communicate with one another using Inter Phase Communication, to share the
information, result, and data with each other. The next screenshot shows how we can
divide the complete Gesture Recognition Phase into multiple phases and validate the
gestures against each phase:

Chapter 9

[297]

Weighted network gesture recognition
Gesture detection using weighted networks is one of the advanced approaches
in gesture detection. In this section we will have a quick walkthrough about
this approach and we will see how this works, rather than doing an actual
implementation. We have seen most of the measurements of gestures are done on
the basis of skeleton joint movements, and for all the earlier cases, joints were clearly
visible to the sensors (which we have checked with the joints-tracking state). On the
other hand, can we just say that gesture detection of joints can be done only for the
tracked joints?

Think about some body movements that are very dynamic in nature. For example,
bending exercises (forward, sideways) where we initially start with a straight position,
then slowly raise our hands forward, and try to touch our toes (forward bending)
or standing upright with legs apart, keeping one hand on the waist and raising
the other hand while trying to bend sideways (sideways bending). In both these
cases, body movements are dynamic where every time a user cannot reach to same
position; moreover, every user can't do it perfectly if we measure with the actual
hands and legs joint positions. There is also a good chance of joints overlapping or it
could also happen that some of the joints are going out of Kinect's viewable range.

Let's consider one more example, the jump exercise. At first look, it appears to be
one of the simplest gesture recognition approaches, but that isn't the case. Similar to
bending exercises, a jumping exercise can be varied based on the way a user jumps
(normal jump, rope workout, high jump, and so on), and based on the movement it
could again cause a visibility issue of joints as every user can do it in different ways.

If you want to implement the mentioned exercises with gestures, you really need
to think hard on it. This is because they are not straightforward approaches and
we can only provide some calculations on joints. Thus, we need some alternative
approach that can say to what degree the users are performing the exercise correctly,
rather than just saying yes or no. In technical terms, we need a flexible data structure
representation that can calculate the probabilities and can reach a decision based
on the user's inputs. One of the best approaches to solve this kind of problem with
computer engineering is a Neural network.

Building Gesture-controlled Applications

[298]

What is a neural network
Neural networks are a set of nodes (called neurons) connected with each other as a
group. This is similar to the human brain and the synopsis they form. The concept
of the neural network came from human neurons, and is mostly used for biological
neural networks. In Computer Science, we use it as a machine-learning construct
that has an input layer (set of input nodes / neurons) and an output layer (set of
output nodes / neurons). The input and output layers are connected somewhere
in between. This layer is called the hidden or abstract layer, which has another set of
decision-making nodes. The abstract layer consists of another set of nodes (decision
maker) that are connected with each other, and on combining their decisions a result
can be given.

The following diagram shows a very basic neural network with two input nodes (I1
and I2) and one output node (O1). The intermediate layer is an abstract layer with
a set of smaller nodes that are connected together. These smaller nodes work as the
decision makers; based on the input provided by I1 and I2, the output O1 will be
received. This is similar to the nature of neurons in the human brain.

I1 I2

01

Input Layer

Abstract Layer

Output Layer

For more about neural networks, visit
http://en.wikipedia.org/wiki/Neural_network.

Gesture recognition with neural networks
Gesture detection on a neural network is always based on the probability ratio rather
than the exact values. The output would say that the user performed x percent of the
exercise correctly and did not perform y percent correctly. Based on this ratio, we can
make a decision.

Chapter 9

[299]

Each node within the network is an algorithm to evaluate small elements of a
gesture or movement. Output of one node (action result) will decide which nodes
to move next; thus, the sequence flow in this approach will never be the same.
Nodes are connected via a link, and each link has an associated value called weight
(In the following diagram, the weight of the lines denotes the weight of the link).
This weight value defines that some links are more important than the others.
The purpose of having weights with each of the nodes is to make decisions more
accurate. Based on the weight value measured, gestures move on to next step.
Higher weight always gets higher preference. At the end of the complete network,
we have a resultant calculation called calculated output for the user input action.
This is matched with the predefined expected output or the best-values output
for the detected gesture. As these results are calculated based on probability, it's
very common that the result can never be exactly the same and they will have at
least some difference or error. If the difference is within a predefined boundary
(threshold), the result will be accepted, otherwise the network will perform the
operation repeatedly to produce correct or very close gesture-action results.

I1 I2
I3 I4

n1

n2

n4
n7

n6

n4
n5

O1
O2

O3

n8

Input
Nodes

Abstract
Layer

Output
Nodes

Building Gesture-controlled Applications

[300]

Jump tracking with a neural network – an
example
Let's quickly discuss the example of jump tracking and see how the weighted network
can help to design such kinds of gestures. The following diagram shows us the basic
illustration of a jump exercise, which shows two postures of a jump:

To start with, we can just check if the head joint has crossed the upper base line,
and we can draw a weighted graph like the following:

Input
Nodes

Abstract
Layer

Head Joint >Upper Base Limit

Head
Joint

Upper
Base Limit

Jump
Output
Nodes

We discussed the different positions of the jump that can cause problems during
tracking and measurement. Refer to the following screenshot, which shows the
different postures during the jump and some of the cases when the human body
parts are not within Kinect's view area:

Chapter 9

[301]

To overcome these kinds of problems, our data graph has to be intelligent
enough based on what decisions we take, and whether the user performs the
jump operation or not. Typically, the neural network for the jump exercise would
look like the following diagram. The weight between the nodes represents the
weighted value of that connection. Each node represents a small set of algorithms
within the abstract layer.

Input
Nodes

Abstract
Layer

Head Joint >Upper Base Line

Head
Joint

Base Line
Limit

Knee
Joints

Leg
Joints

Left Knee >Jumped Line

Head Joint <Upper Base Line

Right Knee >Jumped Line

Leg Joint >Jumped Line

Leg Joint < Jumped Line

Knee Joint > Jumped Line

Jump
Output
Nodes

Building Gesture-controlled Applications

[302]

This is just an example of gesture detection using the weighted network approach.
While the neural network approach looks very interesting and accurate,
building them is not a normal task for the majority of application developers.
The implementation of the neural network needs good understanding of fuzzy
logic and artificial intelligence, and it is very hard to debug.

Overall, this approach is complex, and it needs more study for implementation.
This involves a number of inputs and parameters and they can grow with each and
every outcome from every single node. Use it only when gestures are really complex
and can change based on user movements or there is a chance that all users cannot
perform similar steps.

Template-based gesture recognition
Template-based gesture recognition is also known as pattern-based gestures.
This gesture can potentially be used when we are not sure about how robust the
recognition is. With this recognition system, the gesture-recognition engine matches
the user movements with predefined gestures, and measures how correctly it was
being performed. In this approach, gestures are first recorded and stored into a
location in the normal way. While matching the gestures, the same set of user actions
are taken as input parameters and validated against the stored data. The final result
is driven from a probability ratio by matching the data between the existing data
set and the data set that is currently being performed. Overall, the template-based
recognition system involves the following phases:

• Template creation
• Gesture tracking
• Template matching

The first phase of the template-based recognition system is template creation. In this
phase, gestures are recorded and stored with joints information along with the
metadata. The metadata contains the gesture's name, types of gestures, time interval
for the gestures, minimum and maximum duration, and so on. The second phase is
all about gesture tracking when the user actually performs the actions in front of the
sensor and the application passes the information to the gesture recognizer. When
the gesture ends, we can compare it with a predefined set of templates to find if the
gesture is one of those stored templates. This phase is known as template matching.
These phases are depicted in the following diagram:

Chapter 9

[303]

As shown in the preceding diagram, gesture tracking and template matching work
side-by-side. While the user is actually performing the action, data can be matched
multiple times to see if it is matching correctly. As a data storage, we can use any
database, XML, or flat files. You can also choose your own algorithm to match the
data from the store location; because most of the times we will get the exact result
on match for all the points; rather if we do not get matching results we prefer the
nearest values for matching.

Building gesture-enabled controls
Gesture-enabled control is one of the common components of gesture-enabled
applications. The controls that we generally use for any applications such as
button control and checkbox control do not have built-in support for gestures. The
interaction medium for gestures is different than a regular mouse or keyboard. So,
to build an application that needs user interaction and needs to execute some events
such as clicking on a button or selecting a checkbox using gestures, we either need to
create custom controls or need to hook up the gesture information within existing
controls. Following are the tasks involved in building gesture-enabled controls:

• Making a hand cursor
• Identifying the objects
• Enabling actions for objects

Building Gesture-controlled Applications

[304]

Making a hand cursor
The very first task for any gesture-enabled application is to build the hand cursor,
which will control the application just as a mouse does for any other application.
Building the hand cursor is relatively easy, where we just need to map the hand
movements with the application elements such as image control.

In Chapter 6, Human Skeleton Tracking, in the Tracking your hand section, we
have already seen how to track a hand and map it using image control.

In addition to getting the hand movement on the application screen, we need the
position of the cursor.

Getting the hand-cursor point
In the application, we need the cursor point on every move so that we can find out the
exact position of the screen where the cursor currently is. You can use the following
block of code to find out the center position of the cursor on the screen:

public CursorPoint GetCursorPoint()
 {
 Point elementTopLeft = this.PointToScreen(new Point());
 double centerX = elementTopLeft.X + (this.ActualWidth / 2);
 double centerY = elementTopLeft.Y + (this.ActualHeight / 2);
 return new CursorPoint { X = centerX, Y = centerY };
 }

The GetCursorPoint() method returns the cursor position by calculating the center
point of the hand cursor object as the variables of the CursorPoint class.

The CursorPoint class is defined as below:

public class CursorPoint
 {
 public double X { get; set; }
 public double Y { get; set; }
 }

PointToScreen() is the method that returns the screen
coordinates of the controls, which will be nothing but the top-left
positions of the control.

Chapter 9

[305]

Identifying the objects
The next task, immediately after making the hand cursor, will be the interaction of
other objects of your application using that hand cursor. For example, you have a
button in your application and you want to click on it using the hand cursor. The
hand cursor is a free floating object that is moving based on the hand joints. It does
not have any clue about the other controls present in your application, where they
are, and how to interact with them. So, the very first thing you have to understand
is how the hand cursor knows where the objects are placed and with whom it
should interact:

The preceding image illustrates how the hand cursor can identify the object. The
complete backend logic is based on the coordinate system. The hand cursor will
have a position that will keep changing with every skeleton frame. You will get
the position of the hand cursor as CusrsorPoint by calling the GetCursorPoint()
method of the HandCusror class.

In a similar way, we can also get the position of the other objects that are used in the
application. If we consider that we have a button control, we can simply write an
Extension method for the Button class that will return the ButtonPostion class, a
custom class that returns the button's Left, Right, Top, and Bottom positions. We
can do this using the following code block:

public static class ButtonExtension
 {
 public static ButtonPosition GetPosition(this Button button)
 {
 Point buttonPosition = button.PointToScreen(new Point());
 return new ButtonPosition { Left = buttonPosition.X,
 Right = buttonPosition.X + button.ActualWidth,
 Top = buttonPosition.Y,
 Bottom = buttonPosition.Y + button.Height };
 }
 }

Building Gesture-controlled Applications

[306]

So, for any Button object, if you call the button.GetPosition() method, it will
return the ButtonPosition class, which is defined as follows:

public class ButtonPosition
 {
 public double Left { get; set; }
 public double Right { get; set; }
 public double Top { get; set; }
 public double Bottom { get; set; }
 }

By now you have the center coordinates for the cursor and the boundary range for
the button control. From these two set of values you can easily find out if the cursor
position falls within the button control, by using the following conditional block:

if ((centerX < buttonRange.Left || centerX > buttonRange.Right)
 || (centerY < buttonRange.Top || centerY >
 buttonRange.Bottom))
 {
 // Hand cursor not in button position
 }
 else
 {
 //Hand cursor with in button position
 }

You have to calculate the positions for the cursor and the buttons for each and every
skeleton frame, and correspondingly validate the earlier conditions to see if the hand
cursor is within the range of the objects or not.

Another alternative approach that you can use to find out if the
coordinate values fall within the rendered contents is Hit Testing in the
Visual Layer. Refer to this URL for more information on Hit Testing:
http://msdn.microsoft.com/en-us/library/ms752097.aspx

Chapter 9

[307]

Enabling action for the objects
Until now we have identified the object on the screen using the hand cursor. The
next task for us will be executing some actions from the object. We could have easily
raised an event when the cursor was within the button position range, but that will
not provide a good end user experience. This is because users can move the cursor
over multiple objects and finally any of them can be chosen for an action. Now the
question is how or when you will fire an event such as a click event. We need to
provide something to the user so that they can hold on for some time and wait till
the action is complete. This will make sure the user selects what they really want and
that the touch was intended. While waiting, we can show a visual indicator to the
end user depicting what action they are currently performing, and after a specific
time, if the cursor position is still in the valid range, execute the respective action.
The complete process of action execution can be classified into the following entities:

• Action Entry
• Action Exit
• Action Completed
• Action Not Started
• Action Status

The following diagram shows the process flow that we need to follow to execute
an action:

Action
Entry

Skeleton Data Reset Previous Status if Not
Same

Action
Exit

Yes

No

Give visual Effects To Control

Execute Event Handler / Perform Action

Action
Completed

Validate
Control
Position

Wait For Predefined Time

Building Gesture-controlled Applications

[308]

By default, the state will be Action Not Started; once the cursor position is identified
within the range of objects, the Action Entry phase will start. This will validate for
a predefined time to check if the cursor is still within range of the object. During
this time the application can provide a visual feedback to the end user, and once the
time period is over the application fires the intended event by declaring the state as
Action Completed. If the cursor loses its focus from the object after Action Entry or
Validate Control Position, the state will be called as Action Exit. This will reset the
timer as well.

So, if we put this in the form of code and consider ActionEntry and ActionExit as
methods, they can be called in the following way:

if ((centerX < buttonRange.Left || centerX > buttonRange.Right)
 || centerY < buttonRange.Top || centerY >
 buttonRange.Bottom)
 {
 ActionExit();
 }
 else
 {
 ActionEntry()
 }

You can use any approach to display visual feedback to the user. One of the common
is using WPF's DoubleAnimation class, because using this animation you can specify
the start and end values of the animation; when the animation is complete, it fires
a Completed event. The image below shows a running screenshot of the Gesture
Enabled KinectCam application. Which changes the Kinect color stream using
gesture-enabled button control:

Chapter 9

[309]

The working solution for Gestured Enabled Kinect Cam can be found in the
GesturedEnabledKinectCam directory of the resource location for this book.

The Basic Interaction – a WPF application
Basic interaction – WPF is a WPF project written in C# that is available for download
with the Kinect for Windows Developer Toolkit. It demonstrates the basic user
interaction model using skeleton tracking and gestures. The following screenshot
shows the UI of the reference application. You can explore and play around with
the source code of this application, which will give you more context on how you
can build and use gesture-enabled controls in an application:

Key things to remember
While gesture detection sounds very inspiring and motivating, and can encourage
developers to use their imagination, there are a few options we need to consider
while implementing a gesture-enabled application. They are as follows:

• User actions
• Development
• Data matching
• Testing

Building Gesture-controlled Applications

[310]

User actions or inputs are the key elements for any gesture-enabled application.
Wrong inputs can mislead the application if they are not handled properly. So, make
sure the user knows what needs to be done for what action. This can be done by
training them or by providing live feedback in the application's UI.

While developing, make sure you capture all the conditions that come from user
input. Also, you must validate the boundary conditions for the entry and exit criteria
of the gestures. If the user input matches with the data set, invoke the desire action,
otherwise send the message back to the user. This makes your development a bit
complex as you need to check for both positive and negative inputs. Before starting
development, be aware of the timeline available for implementation, because even
an easy gesture can take a good deal of time depending on the criteria and validation
scenarios.

Debugging plays a major role during gesture application development.
It's always better to record the gestures once using Kinect Studio and play
it into the application as long as you need them. Also, use of conditional
breakpoints can make life even easier. We have discussed this in Chapter 6,
Human Skeleton Tracking, in the Debugging the application section.

If the application is all about matching the data and pattern matching with gestures,
data collection plays a crucial role. So, you have to make sure that the data you are
collecting for the judgment is normalized with all the factors on which the user can
perform the actions. Also, matching stored data with live user action data can affect
performance. So make sure you are using the best possible algorithm for matching
the data.

And finally, test, test, and test. This is how you can make your application perfect.
Testing gesture-enabled applications requires a good amount of time and effort.

Summary
This chapter addressed quick concepts of different gesture-detection approaches, and
took them forward into the programming concepts for Kinect. This chapter also guided
us through some sample applications related to different gestures. This chapter also
gave you a quick overview on building a gesture-enabled control, which is a very
common need for any gesture-enabled application. The knowledge, concepts, and
sample applications provided in this chapter will encourage and motivate you to
use your practical skills for building more complex gestural applications.

Developing Applications
Using Multiple Kinects

Over the course of the last few chapters, you have gained enough knowledge in
developing applications using Kinect for Windows SDK, and now the time is ripe
to take the development process one step further by including multiple Kinects in
our development domain. Applications can be developed for multiple Kinects using
Kinect for Windows SDK. Kinect for Windows SDK supports as many as four Kinect
sensors to plug into a single system. With the aid of multiple Kinects, we can make
even more feature-rich and interactive applications, such as capturing data from a
specific sensor, a failover application where one Kinect acts as a backup and starts
automatically when the other one is down, building a security system that detects
intrusion in different locations, 3D modeling of data and so on. This takes the app
experience to a completely different level.

We need to keep a few things in mind before proceeding to developing applications
using multiple Kinects. The area that we need to be careful about is the setting up of
the environment for using multiple Kinects. This chapter deals with multiple Kinects,
covering fundamentals of development with multiple Kinects, where you will learn
how to configure an environment for multiple Kinects, identify and capture data
from multiple devices, control individual sensors, and so on. The following areas
will be primarily covered in this chapter:

• Setting up the environment for multiple Kinects
• Multiple Kinects – how to reduce interference
• Detecting multiple Kinects
• Developing an application using multiple Kinects
• Controlling multiple sensor status change
• Handling a failover scenario using Kinects
• Challenges faced in developing applications using multiple Kinects
• Applications where multiple Kinects can be used

Developing Applications Using Multiple Kinects

[312]

Setting up the environment for multiple
Kinects
In Chapter 2, Getting Started, we have discussed details about the installation and
verification of Kinect device drivers and setting up the development environment.
There is not much difference with respect to the setup or the driver installation when
we deal with more than one Kinect. The problem will start once you have plugged in
multiple devices in a single system. Let's have a look at what will happen if you start
plugging in the sensors one by one; we will consider having two Kinect sensors at
this time.

Plugging the first Kinect sensor
Once you have plugged in the first Kinect, navigate to Control Panel | Device
Manager, look for the Kinect for Windows node and you will find the list of
components detected as shown in the following screenshot:

Plugging the second Kinect sensor
Now, plug in another sensor into the system and again navigate to Control Panel |
Device Manager; look for the Kinect for Windows node (if you are already there,
you will find the device manager refreshing automatically) and you will find the list
of components as shown in the following screenshot:

Chapter 10

[313]

From the detected component list, it looks like every component is detected twice
as there are two Kinects plugged in. If you take a closer look into the list of detected
components, you will find that one of the Kinect for Windows Camera devices
shows the exclamation mark.

Double-click on the particular node that shows the warning and check for the
device's status. If it shows This device cannot start. (Code 10), it clearly indicates
that one of the Kinect cameras could not be loaded due to some reason. This is
shown in the following screenshot:

Most of the time, developers do not notice this warning and start
with the development, which causes an exception during the
initialization of that particular Kinect sensor.

We will encounter a similar problem with other sensors as well if you try to add
more devices. Before going ahead with further development, you should know the
reason behind it and how to troubleshoot the issue.

Kinect sensors require an individual USB
Controller
Kinect sensors consume a good amount of bandwidth of the USB port; hence, more
than one Kinect can't be operated by a single USB Controller. While you are working
with multiple Kinects, the only thing you need to take care of is that each of the
Kinects has to be connected to a different USB Controller.

Developing Applications Using Multiple Kinects

[314]

A USB Controller is different from a USB port, and multiple USB
ports can be controlled by the same controller. The number of
controllers your machine has can be seen in the device manager.

At this point, if you change the view of the device manager from Device by type to,
Device by connection, you will find something similar to the following screenshot
where you can see that both the Kinect sensors are plugged under a single USB
Controller (293C):

As the USB bandwidth is important, Kinect reserves the bandwidth for
the camera for the first time when the drivers load. So, the first Kinect
that is loaded will hold the bandwidth it needs. Then, any further
connected Kinects will fail to load their camera drivers. Even if you
aren't using the first loaded device, it will still hold the bandwidth for its
own use. During unload, Kinect releases the bandwidth.

Once you have devices plugged into different USB Controllers, and external power
has been supplied for both the devices, you will be able to locate both the devices
with camera and audio control within the device manager section as shown in the
following screenshot:

Chapter 10

[315]

To be sure that your devices are plugged into multiple USB Controllers, again
change the view to Device by connection and you will find that both the devices
are connected to different USB Controllers (293A and 293C) as shown in the
following screenshot:

Typically, laptops come with a single USB Controller whereas PCs come
with one USB Controller in the front and one at the back. Many of the
laptops have the docking station, which has different USB Controllers,
while with PCs generally you can change the USB port to try it out or
check it from the device manager for the number of USB Controllers.
There are a number of external USB Controllers available that you
can use in such scenarios.

Developing Applications Using Multiple Kinects

[316]

Multiple Kinects – how to reduce
interference
When we talk about multiple Kinects, the first question that comes to our mind
is interference. We know that Kinect measures the depth data by reading the IR
patterns projected by an IR emitter. When there are multiple sensors placed in the
same area the projected IR from the multiple sensors can interfere with one another.
In such scenarios, Kinect sensors will return incorrect data, that is, X, Y, and Z values
for interference affect the IR dots.

Why can't Kinect distinguish its own projected IR from the IR
projected by other sensors? This could have fixed the interference
issue. The answer to this is that the IR laser is not modulated.

You can think of some examples of technology that can modulate the individual
patterns coming from each Kinect. Based on the pattern sensor, you can identify its
corresponding "dot". However, no support for this exists in Kinect SDK.

When there are multiple Kinects, the IR from each of them can interfere with one
another, and as Kinect IR is not modulated, the sensor does not have any clue which
IR dots to read. Using Shake 'n' Sense, we can just shake the sensors a little so that
the position of the IR dots is moved. So, by shaking the position the IR points are
moved a bit and the sensor can read the data on every move. This shake is done
generally by an external motor.

The Microsoft Research division at http://research.microsoft.com/ explains the
Shake 'n' Sense technology as follows:

Shake 'n' Sense is a novel yet simple mechanical technique for mitigating the
interference when two or more Kinect cameras point at the same part of a physical
scene. The technique is particularly useful for Kinect, where the structured light
source is not modulated. It requires only mechanical augmentation of the Kinect,
without any need to modify the internal electronics, firmware or associated host
software.

You can also watch the video of this technology for more understanding of how
this technology works, at http://research.microsoft.com/apps/video/
dl.aspx?id=160616.

http://research.microsoft.com/apps/video/dl.aspx?id=160616
http://research.microsoft.com/apps/video/dl.aspx?id=160616

Chapter 10

[317]

With this, you are absolutely ready to start developing and playing around with
multiple Kinects. Basic development with multiple Kinects are straightforward and
it is similar to what you have done for a single Kinect. The only thing is to take
control over individual Kinect sensors. So let's begin with the development and
start with detecting multiple Kinects.

Detecting multiple Kinects
The KinectSensor class has a static property of type KinectSensorCollection,
named KinectSensors, which consists of the collection of sensors that are connected
with the system. The KinectSensor class returns the collection of connected Kinect
devices with your system. KinectSensorCollection is a read-only collection of
type Kinect sensor. Each KinectSensorCollection contains an indexer of the
KinectSensor object and an event named StatusChanged.

The following code block shows the definition of the KinectSensorCollection class:

public sealed class KinectSensorCollection : ReadOnlyCollection<Kinect
Sensor>, IDisposable
{
 public KinectSensor this[string instanceId] { get; }
 public event EventHandler<StatusChangedEventArgs>
 StatusChanged;
 public void Dispose();
}

We need to get hold of the KinectSensor property most of the time to get access to
the sensor information.

Getting access to the individual sensor
We can get the instance by just defining the position index of the sensor as
KinectSensor.KinectSensors[index];. The index starts with 0, which indicates
the first device. The following code snippet shows how to get access to an individual
sensor when there are two devices connected:

 // Get the first Sensor
 KinectSensor sensor1 = KinectSensor.KinectSensors[0];
 // Get the second sensor
 KinectSensor sensor2 = KinectSensor.KinectSensors[1];

Developing Applications Using Multiple Kinects

[318]

KinectSensor.KinectSensor.Count will return the total
number of Kinect sensors that are connected.

On the other hand, you can iterate through individual sensors from the
KinectSensorCollection class as shown in the following code snippet:

KinectSensorCollection sensorCollection = KinectSensor.KinectSensors;

 foreach (KinectSensor sensor in sensorCollection)
 {
 if(sensor.Status=KinectStatus.Connected)
 {
 …
 }
 }

Different ways to get a Kinect sensor's
reference
The easiest way to get the instance of the connected sensor using LINQ is shown
in the following code snippet:

 this.sensor = KinectSensor.KinectSensors.FirstOrDefault(
sensorItem => sensorItem.Status == KinectStatus.Connected);

This code returns the first connected sensor from the collection of sensors, or a
default one if the collection contains no sensors. You can also use the following
code block to get the list of all connected sensors from the list of sensors:

var connectedSensors = KinectSensor.KinectSensors.Where(sensoritem =>
sensoritem.Status == KinectStatus.Connected).ToList<KinectSensor>();

Developing an application with multiple
Kinects
In this demo, we will be developing a small application using two Kinect sensors.
To start off with, we will just read some basic information such as device ID, status,
and connection ID from the individual Kinect sensors. The fundamentals of this
application are very similar to the Kinect Info Box application that we developed
in Chapter 3, Starting to Build Kinect Applications. The only difference is we will be
reading the information for all the connected sensors. Later in the chapter, we will
handle the sensor status individually.

Chapter 10

[319]

Setting up the project
We will start building the application from scratch, so let's first create the solution and
set up the project file for the same. Use the following steps to create the project file:

1. Start a new instance of Visual Studio.
2. Create a new project by navigating to File | New Project.
3. You will see the New Project dialog box. Choose C# as our development

language and select the WPF Application template and type the name as
Multiple Kinect Viewer.

4. From the Solution Explorer option, right-click on Reference folder and
select Add References.

5. Include a reference of Microsoft.Kinect assembly.

Designing the UI
Open the MainWindow.Xaml file from the Solution Explorer. We need a container
to display the list of items; the container can be defined using a data template. The
basic UI using XAML is shown in the following code block that contains a WPF
ListBox control with a template defined. Within the data template, we have placed
few Textblock controls (here we have only shown for DeviceID, similarly we can
have different Textblock controls for ConnectionID and Status) to display the
information for the sensor.

<ListBox Name="lstsensor" ItemsSource="{Binding}"
 <ListBox.ItemTemplate>
 <DataTemplate>
 <Expander Header="{Binding deviceCount}" >
 <StackPanel>
 <StackPanel VerticalAlignment="Center"
 Orientation="Horizontal">
 <Label FontWeight="Bold" Content="Device ID" />
 <TextBlock Text="{Binding Path=DeviceID}"
 VerticalAlignment="Center" />
 </StackPanel>
 </StackPanel>
 </Expander>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

You must have noticed that we have used a couple of bindings in the XAML, such
as the ItemSource for the ListBox control, and Text for the TextBox control. This
is quite understandable as our ultimate goal is to assign the collection of sensor
information to the list control.

Developing Applications Using Multiple Kinects

[320]

Creating the KinectInfoCollection
The ListBox property is used to display the basic information of an individual
Kinect sensor, which contains the DeviceID, ConnectionID, and Status properties.
Create a new class called KinectInfo to hold these basic information as shown in
the following code block:

public class KinectInfo
 {
 public string deviceCount { get; set; }
 public string DeviceID { get; set; }
 public string Status { get; set; }
 public string ConnectionID { get; set; }
 }

The mainwindow.xaml.cs file defines a collection of KinectInfo class, which will
contain the list of sensor information:

 ObservableCollection<KinectInfo> kinectSensorInfo = new Observabl
eCollection<KinectInfo>();

Getting information from Kinects
Now, it is our time to get information from the Kinect sensor. In the mainwindow.
xaml.cs file, include Microsft.Kinect as the namespace.

First, check the number of sensors connected with the system and if it's greater than
0, add the sensor information within the KinectInfo list, and finally assign the list
as an item source of the Listbox control. Add the following lines of code in the
MainWindow_Loaded event:

int count = KinectSensor.KinectSensors.Count;

 this.ViewModel.NumberofDevice = count;
 if (count > 0)
 {
 foreach (KinectSensor sensor in
 KinectSensor.KinectSensors)
 {
 kinectSensorInfo.Add(new KinectInfo
 { deviceCount = string.Format("Device {0}",
 numberofDevice++),
 DeviceID = sensor.UniqueKinectId,
 ConnectionID = sensor.DeviceConnectionId,
 Status = sensor.Status.ToString() });
 }
 lstsensor.DataContext = kinectSensorInfo;
 }

Chapter 10

[321]

The preceding code is self-explanatory; we are iterating through the collection
of devices and adding the required information into our custom collection.
deviceCount is not something that we are getting from the sensor, rather we can
calculate manually to get the count index (labeling the devices with a number) for
that particular device (for example Device 1, Device 2, and so on.). Finally, we set
the DataContext value for lstsensor as KinectSensorInfo.

Running the application
To run the application, press F5 or from the Debug menu select Start without
debugging, and you will find the details of both the devices as shown in following
output screen. If you have more than two sensors connected before the start of this
application, the information of those sensors will be updated automatically:

Controlling multiple sensor status
changes
Controlling Kinect status changes is one of the key factors and essential for
development. Initially in Chapter 3, Starting to Build Kinect Applications, we have
discussed the Status property of the KinectSensor class and how we handle it
using the StatusChanged event handler in the Dealing with Kinect Status section.

mk:@MSITStore:C:\Program Files\Microsoft SDKs\Kinect\v1.1-M1\Documentation\KinectSDK.chm::/Status_KinectSensor_MK_P.htm

Developing Applications Using Multiple Kinects

[322]

To quickly recall how you can handle the status change, first of all you have to
first register for the StatusChanged event as shown below.

 KinectSensor.KinectSensors.StatusChanged +=
 KinectSensors_StatusChanged;

The StatusChanged event is attached to the KinectSensor class and raised when
the KinectSensor.Status property of a Kinect sensor in the collection changes.

You really don't need to attach the event handler to each and
every instance of the sensor, rather the KinectSensor does a
global event registration of the status change event for all the
connected sensors.

Finally, whenever there is an event change the event handler is called by sending
the StatusChangedEventArgs argument. This event's argument holds the
KinectStatus property and the reference of KinectSensor for the Kinect
device, by which this event has been raised. Refer to the following code block:

 void KinectSensors_StatusChanged(object sender,
StatusChangedEventArgs e)
 {
 KinectSensor sensorStatus = e.Sensor;
 //handle the status here
 }

As shown in the preceding code block, the sensorStatus property holds the reference
of Kinect, which has the changed status. Now we will see how we can extend to the
Multiple Kinect Viewer application with status change in the next section.

Extending Multiple Kinect Viewer with status
change
In the very first step we will make the KinectInfo class to implement the
INotifyPropertyChange interface, as we need to update the status as and when
the status changes. These changes are highlighted in the following code block:

public class KinectInfo : INotifyPropertyChanged
 {
 public string deviceCount { get; set; }
 public string DeviceID { get; set; }
 private string status;

mk:@MSITStore:C:\Program Files\Microsoft SDKs\Kinect\v1.1-M1\Documentation\KinectSDK.chm::/Status_KinectSensor_MK_P.htm

Chapter 10

[323]

 public string Status
 {
 get
 {
 return this.status;
 }
 set
 {
 this.status = value;
 this.OnPropertyChange("Status");
 }
 }
 public string ConnectionID { get; set; }

 public event PropertyChangedEventHandler PropertyChanged;

 public void OnPropertyChange(string propertyName)
 {
 if (this.PropertyChanged != null)
 {
 this.PropertyChanged.Invoke(this, new
 PropertyChangedEventArgs(propertyName));
 }
 }
 }

With this change in the code, the Status property of KinectInfo class should
automatically reflect to the UI whenever there is a status change.

Registering and handling the status change
The StatusChanged event will only fire if the event handler is attached with the
KinectSensor class. To do so, attach the event handler on the MainWindow()
method as shown in the following code block:

public MainWindow()
 {
 InitializeComponent();
 Loaded += new RoutedEventHandler(MainWindow_Loaded);
 KinectSensor.KinectSensors.StatusChanged += new
 EventHandler<StatusChangedEventArgs>
 (KinectSensors_StatusChanged);
 this.ViewModel = new MainWindowModelView();
 this.DataContext = this.ViewModel;
 }

Developing Applications Using Multiple Kinects

[324]

When there is a change in the sensor status, the StatusChanged event will fire
with the StatusChangedEventArgs argument, which contains the reference of the
sensor that causes the status change. In the following code block, we are matching
the ConnectionID value of the device from the list of sensor elements with the
ConnectionID value of the sensor that raised the StatusChanged event:

void KinectSensors_StatusChanged(object sender, StatusChangedEventArgs
e)
 {
 KinectInfo kinfo =
 this.kinectSensorInfo.FirstOrDefault(item =>
 item.ConnectionID.Equals(e.Sensor.
 DeviceConnectionId));
 if (kinfo != null)
 {
 kinfo.Status = e.Status.ToString();
 }
 }

If the ID gets matched, we are just updating the Status value of the particular
element from the list. As we have already implemented the PropertyChanged
attribute, the data will bind automatically with the UI.

Running the application
Run the Multiple Kinect Viewer application again. First you will find that both the
devices have Connected status as shown in the left part of the screenshot. Then try
to unplug one of the sensors, thereby disconnecting it from the system. You will find
the status is getting updated automatically. Refer to the right part of the screenshot,
where the NotPowered status is shown for the Device 2:

Chapter 10

[325]

Identifying the devices automatically
With the help of the StatusChanged event, you can also identify the device
automatically when they are connected to the system. Just consider the scenario
where you have one device connected when you run the Multiple Kinect Viewer
application; you will find the list item showing only one device connected.

Now, if you plugged in another device, the list won't reflect the information of a
newly-added device as our system knows there is a new device connected, but
our application is still not aware about it. In such scenarios we can make use of the
StatusChanged event itself to identify when the sensor is getting connected, because
the StatusChanged event can recognize the new devices when it's connected. So, if
the event is registered, the application invokes the event handler for a status change
for a new connected device as well. To recognize and update the collection of devices
in our application, we have to add a few extra lines of code in the StatusChanged
event handler as shown in the following code block:

KinectInfo kinfo = this.kinectSensorInfo.FirstOrDefault(item => item.
ConnectionID.Equals(e.Sensor.DeviceConnectionId));
 if (kinfo != null)
 {
 kinfo.Status = e.Status.ToString();
 }
 else
 {
 kinectSensorInfo.Add(new KinectInfo { deviceCount
 = string.Format("Device {0}", numberofDevice++),
 DeviceID = e.Sensor.UniqueKinectId, ConnectionID =
 e.Sensor.DeviceConnectionId, Status = e.Sensor.Status.
 ToString() });
 }

The changes we made here reflect that if the device ConnectionID value does not
match, then the device is not in the list and the item needs to be added to the list.
That's all.

Developing Applications Using Multiple Kinects

[326]

Run the application with one sensor plugged in as seen in the left part of the
following screenshot. Then plug in the other sensor; you will get the list updated
with two sensors as shown in the right part of the following screenshot:

Integrating with KinectStatusNotifier
We have developed one KinectStatusNotifier component as part of the Building
KinectStatusNotifier exercise in Chapter 3, Starting to Build Kinect Applications, which
is not self-executable; it generates a KinectStatusNotifier.dll assembly, which
can be used with a Kinect-based application. We have also integrated the same with
the Kinect Info Box application in the Using KinectStatusNotifier section. If you follow
the same steps with the Multiple Kinect Viewer application, you will be able to see a
system tray notification with a status change as shown in the following screenshot:

Chapter 10

[327]

Well, using KinectStatusNotifier, you can customize the notification messages
and display other information as well on status change. As shown in the following
screenshot, you can see that we are able to identify which device status is getting
changed and the status as well as the Device ID:

To achieve this, you just need to disable the Auto Notification feature from the Status
Notifier by using the following code:

 this.notifier.AutoNotification = false;

By doing this, the KinectStatusNotifier will stop showing automatic notifications
in our system and the control is transferred to the user. In the next step, in sensor
status change, read the information from KinectInfo Collection, and invoke the
notification message as shown in the following code block:

 if (kinfo != null)
 {
 kinfo.Status = e.Status.ToString();
 this.notifier.NotifierTitle = kinfo.deviceCount;
 this.notifier.NotifierMessage = string.Format("Sensor
 Status :{0} \nDevice Id: {1}", kinfo.Status,
 kinfo.DeviceID);
 this.notifier.NotifyStatus();
 }

As you can see from the preceding code, we are assigning the NotifierTitle
property with the deviceCount property and assigning the NotifierMessage
property with Status as well as DeviceId. Then, we are calling the NotifyStaus()
message explicitly to notify us in the system tray.

Until now, we have discussed how we can configure, connect, and check the status
of multiple Kinects. Now let's have a look at how we can use two Kinect sensors and
capture the depth and color stream data.

Developing Applications Using Multiple Kinects

[328]

Capturing data using multiple Kinects
If your sensors are connected properly and you are able to access individual Kinects,
capturing data from multiple sensor is fairly easy. You are already familiar with
capturing color and depth data stream from a sensor, so rather than going into a
step-by-step discussion, just look at the following steps for capturing data:

1. Identify the individual Kinect sensors.
2. Attach the event handler to the individual Kinect sensors.
3. Handle the events for the attached event handler.
4. Check the sensor status and control the start and stop based on

your requirement.

Using these steps you can a build an application that can capture different data
streams from the Kinect sensor as shown in the following screenshot:

Both these images show that the color and depth data are being captured from
multiple Kinects.

The overall implementation will be the same as we did for individual
Kinect sensors, except identifying and attaching an event handler for
a particular sensor. You can enable the color, depth, as well as the
skeleton stream for multiple Kinects. Skeleton processing requires heavy
CPU processing, so make sure your CPU has enough power to process
skeleton data for both the sensors.

This application is available for download from the book resource location.

Chapter 10

[329]

Handling a failover scenario using
Kinects
One of the very useful scenarios where you can use multiple Kinects is failover.
Failover is used to make the system more fault-tolerant by providing automatic
switching to a redundant or standby system. Here, we can consider Kinect as a
system, if you are building one Kinect application that needs to be run constantly to
capture data. It could happen, that one system fails (gets disconnected, power turns
off) and your application fails to capture data. In such a situation, you can start the
other connected sensor automatically to capture data and turn it off once the first
device starts again.

You can easily build this scenario with the knowledge you have gained in this
chapter. The StatusChanged event handler is the key here. You can monitor
sensor status and once it's getting disconnected or powered off, start the other
connected sensor.

The following screenshot shows a failover application built using Kinect sensors,
where the primary sensor returns color stream data and the other sensor works as a
backupand activity logs showing the device information along with the start time.
Once one sensor is down, the other sensor automatically starts capturing the data:

This application is available for download from the book resource location.

Developing Applications Using Multiple Kinects

[330]

Challenges faced in developing
applications using multiple Kinects
Building an application using multiple Kinects is complex when it comes under data
synchronization or merging. Following is a list of a few challenges that can be faced
while using multiple Kinects:

• Interference
• Synchronization of frames
• Data smoothing

Applications where multiple Kinects can
be used
One common scenario with multiple Kinect sensors is the failover application,
which we have already discussed. Additionally, we can use multiple Kinects
in the following places:

• 3D body scanner using multiple Kinects
• Robotics
• 3D-view construction of an environment
• Tracking objects in 3D
• Building security solutions

Summary
This chapter mainly works as an introductory chapter for building applications
using multiple Kinects. Dealing with multiple Kinects is very easy, as it is doing
nothing but taking care of individual Kinect sensors. But the first major hurdle we
usually face is while configuring both the Kinects so that Windows can recognize
both the devices correctly, and the devices work properly without interfering into
each other's functioning. Some of the most common errors involved in setting up
multiple Kinects to work with Windows have been highlighted and the method of
troubleshooting has also been dealt with in fair detail. We have also demonstrated
how the devices can work together without overlapping individual domains. We
have developed a small application using multiple Kinects to track and notify the
status change of individual sensors. We have also built a couple of demos that show
the uses of multiple Kinects.

Putting Things Together
Over the course of the previous chapters, we have explored the various aspects
of the Kinect for Windows SDK and have seen how the SDK helps us to interact with
a Kinect device to build interactive applications. You have seen how Kinect returns
depth information of objects, how it tracks a human skeleton, or even how
it recognizes human voice, and you have also learned about building gesture-
enabled applications.

Finally we have reached the last chapter of this book. In this chapter, we will
go beyond the Kinect SDK and will explore how we can take advantage of this
motion-sensing device by integrating it with other devices. Additionally, we
will also look into a couple of solutions available with the Kinect for Windows
Developer Toolkit.

The objective of this chapter is not to discuss step-by-step codes, but rather we
will walk through the different possibilities of using Kinect by integrating it with
other devices, such as Windows Phone, a Netduino microcontroller. In this chapter
we will be discussing about the following:

• Taking Kinect to the Cloud
• Remoting Kinect using Windows Phone
• Connecting Kinect with a Netduino microcontroller
• Using Kinect for augmented reality
• Introduction to face tracking using Kinect
• Working with XNA and a 3D avatar

Putting Things Together

[332]

Taking Kinect to the Cloud
When you take Kinect to the Cloud, the sky is the limit for making applications. In
this section we will discuss how to design a very simple application that can upload
image frames to the Cloud using Windows Azure.

Required components
To build this solution, we will be using the following technologies:

• Windows Azure
• Windows Azure SDK
• Kinect device and the Kinect for Windows SDK

The following diagram shows the overall application design. This diagram describes
how the Kinect device is connected with Windows Azure Storage via the Kinect for
Windows SDK and Windows Azure SDK:

Windows Azure
We will use Windows Azure cloud storage for read/write operations of the image
streams. Windows Azure storage has Blobs, Tables and Queues.

Blobs are used for storing larger files, which can be uploaded or downloaded as
chunks called a blob. As of today, blobs allow you to store files up to 1 TB.

Tables should not be confused with the SQL Azure tables. The Azure storage table
is similar to SQL tables, but are non-relational tables. Tables are created as entities
and differentiated by a partition key and a row key. The Azure table can hold up to
100 TB of data and is capable of providing a throughput of 500 entities per second
per partition. (The throughput can go up to few thousands per second when multiple
partitions are involved.)

Chapter 11

[333]

Queue storage mimics the behavior of a conventional queue accepting messages in
a First In First Out (FIFO) format. A message can be up to 64 KB and can hold any
number of messages and a queue can store a total of 100 TB.

For more information on Azure Storage Services please
visit http://msdn.microsoft.com/en-us/library/
windowsazure/ee924681.aspx.

The Windows Azure SDK
The Windows Azure SDK allows you to develop Cloud-based applications in your
favorite language. As in our example we will use the SDK for .NET.

The SDK is freely available at http://windowsazure.com
for download.

The SDK offers two ways of communicating with Azure Storage:

• REST API
• Storage services

The REST API allows the programmer to transfer content over a REST protocol
without worrying about the platform.

In our case, since we are using .NET we will take the advantage of Storage services
to insert the image frames to store an image frame in Azure tables.

The Kinect for Windows SDK
This is something that you are already familiar with. The Kinect SDK has a bigger
edge running on the native .NET platforms, and therefore integrating with Azure is
as simple as referring the Azure SDK to the application.

In this concept, we will poll the Kinect device at regular intervals and update the
storage in Windows Azure with image frames.

http://msdn.microsoft.com/en-us/library/windowsazure/ee924681.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/ee924681.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/ee924681.aspx
http://windowsazure.com

Putting Things Together

[334]

Designing the solution
Let's start with the schema for the entity as shown in the following screenshot to
which we are going to upload the image frame:

In order to create a table entity, we are inheriting our custom type CamAudit from
TableEntity using the following code block:

public class CamAudit : TableEntity
 {
 public DateTime ShotTime
 {
 get { return DateTime.Parse(this.RowKey); }
 set { this.RowKey = value.ToString(); }
 }

 public string Location
 {
 get { return this.PartitionKey; }
 set { this.PartitionKey = value; }
 }

 public byte[] Picture { get; set; }
 }

As we have already discussed that the entity has to be differentiated by the RowKey
and PartitionKey properties, in our case we have to decide the unique timestamp
when the image is captured to be the row key, and the location (assuming we have
Kinect placed in multiple locations) as the partition key. The image shot will be
uploaded as a byte array using the picture property.

Following is the code that will insert the picture in to the storage table:

// Retrieve the storage account from the connection string.
 CloudStorageAccount storageAccount =
 CloudStorageAccount.Parse(

Chapter 11

[335]

 CloudConfigurationManager.GetSetting
 ("StorageConnectionString"));

 // Create the table client.
 CloudTableClient tableClient =
 storageAccount.CreateCloudTableClient();

 // Create the CloudTable object that represents the
 "people" table.
 CloudTable table =
 tableClient.GetTableReference("CamAudit");
 table.CreateIfNotExists();

 // Create a new customer entity.
 CamAudit cam = new CamAudit();
 cam.ShotTime = DateTime.Now;
 cam.Location = cameraLocation;
 cam.Picture = this.GetCurrentImageAsByteArray();

 // Create the TableOperation that inserts the customer
 entity.
 TableOperation insertOperation =
 TableOperation.Insert(cam);

 // Execute the insert operation.
 table.Execute(insertOperation);

Now that our code for the Azure part is ready, for the remaining part the Kinect
captures the image at regular intervals and uploads it to Azure.

We have already discussed about how we can capture image frames and
save them as images in local storage in Chapter 4, Getting the most out of the
Kinect camera in the Capturing and saving images section. We can plug in
similar code to get this current solution running. Here we just need to get
the image byte's array, as shown in the highlighted code block.

Real-time implementations
Once the data is uploaded to Azure, it is ready to be consumed by any platform
and from anywhere. Since the Azure table service also supports REST, you can
pretty much access the data from any device or platform with absolutely no code
specific to Azure.

Putting Things Together

[336]

For example, let's assume that using the earlier code we uploaded a picture using the
following parameters:

• ShotTime: 02/21/2012 6:46:31 PM
• Location: KinectDevice1
• Picture: <<Some Picture>>

This inserted data can be retrieved using the following URL:

http:// <<azure storage account>>.table.core.windows.net/
CamAudit (PartitionKey= KinectDevice1, RowKey='02/21/2012
6:46:31 PM')?$select=Picture

Refer to the following diagram which shows how the data captured by the Kinect
sensor can be consumed by different application from Windows Azure:

Now you can monitor location where you have placed the Kinect sensor and get
the information you need from a URL. Your imagination is the only limit when
developing applications based on this concept.

Using this approach you can try to extend the solution of Human Intrusion
Detector, which we developed in Chapter 6, Human Skeleton Tracking.

Remotely using the Kinect with Windows
Phone
We have already learned how to leverage the Kinect sensor using Azure. Now we will
take it one step further by integrating it with Windows Phone along with the solution
that we have previously built. In this application, we will try to send a command from
a Windows Phone that will be passed to a Kinect device through Azure.

Chapter 11

[337]

The overall solution will look like the following diagram:

Required components
As this is an extension of the previously designed solution, along with the previously
used components we will be using the following:

• Windows Azure Service Bus
• Windows Phone SDK

The Windows Azure Service Bus
Service bus allows us to send or receive messages between two platforms remotely.
It also supports different modes of messaging.

For more information about Windows Azure Service Bus refer to
http://www.windowsazure.com/en-us/home/features/
messaging/.

In our application, we are going to use a WCF service to point to a remote endpoint
hosted in Windows Azure Service Bus and communicate between a Windows Phone
and a Kinect device.

The Windows Phone SDK
Windows Phone SDK runs on a .NET runtime with Silverlight or XNA as a platform
for building applications. In our application we are going to consume a WCF service
whose endpoint is in the Cloud and hosted on your local machine or where the
Kinect application is running.

The Windows Phone SDK is freely available at
http://windowsphone.com for download.

http://www.windowsazure.com/en-us/home/features/messaging/
http://www.windowsazure.com/en-us/home/features/messaging/

Putting Things Together

[338]

Designing the solution
Let's start with creating a namespace in Azure. For this you will need to create a
service as shown in the following screenshot:

You will be required to create a unique namespace for communication. For our
example, we will be using http://kinectautomation.servicebus.windows.net.
Now that the endpoint is created in Azure, we will write a WCF service that uses
this URL as the endpoint.

The service that we are creating here communicates with the Kinect device and
instructs it to take a picture and upload it to Azure as discussed in the earlier design.
This WCF service will be hosted on the same machine where the Kinect device is
connected. The WCF service will not be any different than the
classic service.

Chapter 11

[339]

We can define the WCF attributes as follows:

• ServiceContract: IKinectService
• OperationContract: TakePicture

Assuming that you have defined the ServiceContract and the OperationContract
attributes as previously mentioned and implemented them, our next task is to make
the service listen to the endpoint we created in Azure.

To do this, we will need to define a custom behavior through which a remote
endpoint can be connected. This can be done using the following code snippet:

private TransportClientEndpointBehavior serviceEndpointBehaviorValue;
 private TransportClientEndpointBehavior
 ServiceEndpointBehavior
 {
 get
 {
 if (serviceEndpointBehaviorValue == null)
 {
 serviceEndpointBehaviorValue = new
 TransportClientEndpointBehavior();
 serviceEndpointBehaviorValue.TokenProvider =
 TokenProvider.CreateSharedSecret
 TokenProvider(
 "username",
 "token"
);
 }

 return serviceEndpointBehaviorValue;
 }
 }

Putting Things Together

[340]

This property defines a custom behavior that uses the token provided for the
authentication. The username and the token for the namespace that you have
created can be captured from the Azure Dashboard.

Refer to the following code block:

ServiceHost host = new ServiceHost(new KinectService());
 ServiceEndpoint endpoint =
 host.AddServiceEndpoint(typeof(Application
 namespace.IKinectService), new
 BasicHttpRelayBinding(),
 "https://kinectautomation.servicebus.windows.
 net/soap12/");
 endpoint.Behaviors.Add(ServiceEndpointBehavior);
 host.Open();

In this code block, KinectService is the type that implements IKinectService.

As you can see, we are using SOAP 1.2 as the protocol for listening to the endpoint.
When the preceding set of code is executed, there will be a connection opened
between the application and Azure. The WCF service will be self-hosted, listening
to the remote endpoint we just defined. Now whenever you call the service method
TakePicture from any device that can access the Internet, the piece of code
implemented inside the OperationContract implementation will be called.
In our case, we will take a new picture and upload it to Azure.

Chapter 11

[341]

Now that the Kinect and Azure part of code is ready, we will build the application for
Windows Phone, which can connect to Azure using the following code block:

private KinectReceiverClient serviceClientValue;
 public KinectReceiverClient ServiceClient
 {
 get
 {
 if (this.serviceClientValue == null ||
 this.serviceClientValue.State ==
 CommunicationState.Closed ||
 this.serviceClientValue.State ==
 CommunicationState.Closing ||
 this.serviceClientValue.State ==
 CommunicationState.Faulted)
 {
 this.serviceClientValue = new
 KinectReceiverClient("BasicHttpBinding_
 IKinectReceiver");
 }

 return this.serviceClientValue;
 }
 }

 public Action<bool> KinectCommandCallback { get; private set;
 }

 public void SendCommandToKinect(Action<bool> callbackMethod,
 string command)
 {
 Deployment.Current.Dispatcher.BeginInvoke(() =>
 {
 this.KinectCommandCallback = callbackMethod;
 this.ServiceClient.SendMessageCompleted += new
 EventHandler<SendMessageCompletedEventArgs>
 (ServiceClient_SendMessageCompleted);
 this.ServiceClient.TakePictureAsync();
 }
);
 }

 private void ServiceClient_SendMessageCompleted(object
 sender, SendMessageCompletedEventArgs e)
 {

Putting Things Together

[342]

 this.KinectCommandCallback(e.Error == null &&
 string.Compare(e.Result.Acknowledgement, "ok",
 StringComparison.InvariantCultureIgnoreCase) == 0);
 }

The code that we just saw will call the WCF method that is hosted on your machine
and is listening to the Azure port.

Real-time implementations
We make an asynchronous call to the WCF endpoint, which is triggered on the
machine to which the Kinect is connected, and it works just like any normal WCF
service. From here you can choose to upload the picture to Azure, then read the
same, and display it in your phone.

You can use the concepts that we just discussed to build a complete
home security system using Kinect, Windows Azure, Windows Phone,
and Windows 8. Refer the following URL for more information
http://abhijitjana.net/2012/04/16/home-security-system-
using-kinect-azure-windows-phone-and-windows-8/.

Using Kinect with a Netduino
microcontroller
Another fun part of development is when we integrate Kinect with a microcontroller
and send signals or data from a Kinect-based application to do some activities. With
the microcontroller, we can wire up different electronic gadgets, such as a 7-segment
board, digital alarm, LED display board, and many more.

Integrating these two technologies can help us to build a robust and real-life
application, such as a home automation system, security system, controlling a robot,
and so on. In this section we will learn how we can connect a Netdunio microcontroller
with a Kinect and control the Netdunio on-board LED.

Required components
Other than Kinect, the Kinect for Windows SDK, and Visual Studio, to build this solution
we need the following components:

• Microsoft .NET Micro Framework
• Netduino
• Netdunio SDK (32-bit or 64-bit depending on the Operating System)

Chapter 11

[343]

Microsoft .Net Micro Framework
The .Net Micro Framework is a subset of the .Net Framework, which does not require
a host operating system to run. The Micro Framework has a hardware abstraction
layer, which allows us to deploy the solution on a microcontroller and run it.

You can download the Micro .NET Framework and find
additional information on the Micro Framework website
located at http://www.netmf.com/.

Netduino
Netdunio is an Open Source Microcontroller, which runs on the Microsoft .NET Micro
Framework. Why is this an Open Source Microcontroller? Because the detailed
specifications of this board are completely open/public. You can build a device on
your own or you can purchase a pre-built one. The Netdunio family consists of three
types of electronics boards:

• Netduino
• Netduino Mini
• Netduino Plus

The following screenshot shows a Netduino Plus device with a USB cable plugged in,
which we will be using for this solution:

Putting Things Together

[344]

The Netduino SDK
The Netdunio SDK installs the device driver that talks to the Netduino device.
This SDK is available for both 32-bit and 64-bit devices. Make sure you select the
one based on your operating system. Install it before connecting the Netduino to
the computer.

Once you plug in the Netduino to your computer using the USB cable, you should
see the LED on the board lighting up, as shown in the following screenshot:

For more information on Netduino devices, its platform, its
family and Netdunio SDK, refer to the Netduino website
http://www.netduino.com/.

To get started, we take a quick look at the Netduino SDK and Netduino
microcontroller. Let's try to create an application to build the on-board LED light.

http://www.netduino.com/

Chapter 11

[345]

Blinking of the on-board LED
Once you have the .NET Micro Framework and Netdunio SDK installed, you will
find a Micro Framework template in the Installed Templates section in the New
Project dialog window of Visual Studio. Select Netdunio Plus Application from
the right panel as shown in the following screenshot and then choose a project
name and select OK.

Putting Things Together

[346]

The default template for the Netduino Plus application contains all the assembly files
required to start building an application. These references includes the required
DLL files for the Microsoft .NET Micro Framework and the Netduino SDK. The
following screenshot shows the added assembly (in Solution Explorer) and
the used namespaces:

Replace the Program class with the following code block:

public class Program
 {
 public static void Main()
 {
 var OnBoardledPort = new OutputPort(Pins.ONBOARD_LED,
 false);
 for (int i = 0; i < 10; i++)
 {
 OnBoardledPort.Write(true);
 Thread.Sleep(200);
 OnBoardledPort.Write(false);

Chapter 11

[347]

 Thread.Sleep(200);
 }
 }
 }

In this code block, we have first set up the on-board LED and set it to false so it
is turned off. Within the loop, we are turning it on and off ten times. The Thread.
Sleep() method is used to add a pause in between the blink.

Changing the Deployment Transport
When we run the application, code is first deployed to the Netduino board and
then it starts its execution. By default, Visual Studio runs the application in an
emulator. Change the Deployment target from Emulator to USB and select the
NetduinoPlus_NetduinoPlus device from the Device drop-down as shown in
the following screenshot. You will get the following details from the Project
Property window in the .Net Micro Framework tab:

The device information will be available in the device drop-down only if
the Netduino device is plugged in to the computer and the device drivers
are installed.

Running the application
If you run the application now from Visual Studio you will find that the blue LED
light is blinking (we have restricted our code to blink only 10 times).

Putting Things Together

[348]

You can also find a similar project examples from the Netduino website at
http://www.netduino.com/projects/. Play around with them in
order to explore what the Netduino can do.

So far we have seen the basics of a Netduino application; let's have a look at how we
can integrate it with a Kinect sensor.

Connecting Kinect to a Netduino
At first, it may look very easy to add the Kinect reference with the Netduino
application and get it working. But this won't work. The Microsoft.Kinect.dll
requires .NET Framework 4.0; whereas the Netduino works on a subset of the .NET
Framework, which is the Microsoft .NET Micro Framework. These two frameworks
aren't directly compatible. However, we can connect the devices over the Internet
either by using socket programming or sending web requests as shown in the
following diagram:

Using an Internet connection
The Netduino Plus device has an Ethernet port and an Ethernet router. You can plug
the Ethernet cable into the device and connect it to the Internet.

The following code block will give you the IP address of your device, which you can
use for further communication with the Netduino:

Microsoft.SPOT.Net.NetworkInformation.NetworkInterface.
GetAllNetworkInterfaces()[0].IPAddress

Chapter 11

[349]

The typical structure for the development environment for this kind of application
will look like the following screenshot:

Listening to the request
Once the development environment is set up and both the computer and
the Netduino are connected to the Internet, you should able to ping the IP
addresses of the Netduino. Further development is straightforward using
basic socket programming.

Get more information about the Socket class and its methods from
http://msdn.microsoft.com/en-us/library/attbb8f5.aspx.

You can use the following code block within your Netduino application, which
listens for an incoming request:

 public class Program
 {
 private static Socket socket = null;

 private static OutputPort OnBoardledPort = new
 OutputPort(Pins.ONBOARD_LED, false);

 public static void Main()
 {

 socket = new Socket(AddressFamily.InterNetwork,
 SocketType.Stream, ProtocolType.Tcp);
 socket.Bind(new IPEndPoint(IPAddress.Any, 80));
 socket.Listen(100);
 while (true)
 {
 using (Socket clientSocket = socket.Accept())

Putting Things Together

[350]

 {
 int available = clientSocket.Available;
 if (available > 0)
 {
 byte[] buffer = new byte[available];
 int byteCount =
 clientSocket.Receive(buffer, available,
 SocketFlags.None);
 string request = new
 string(Encoding.UTF8.GetChars(buffer));
 if (request.IndexOf("SkeletonTracked") > 0)
 {
 for (int i = 0; i < 10; i++)
 {
 OnBoardledPort.Write(true);
 Thread.Sleep(200);
 OnBoardledPort.Write(false);
 Thread.Sleep(200);
 }
 }
 }
 }
 }
 }
 }

Once a request reaches the socket, we can just check if the request has specific
information on which Netduino intends to execute an action. As in the preceding
highlighted code, we are just blinking the LEDs when the request contains the
information SkeletonTracked.

Sending a request from a Kinect application
The final part of this solution is to send information from a Kinect application.
This information could be anything, such as some depth information, player
information, joint information, or even a signal based on the speech command.
In the following code block, we have used the skeleton tracking features of the
Kinect for Windows SDK

 void sensor_SkeletonFrameReady(object sender,
 SkeletonFrameReadyEventArgs e)
 {
. . .
 Skeleton firstSkeleton = (from trackskeleton in
 totalSkeleton

Chapter 11

[351]

 where trackskeleton.TrackingState ==
 SkeletonTrackingState.Tracked select
 trackskeleton).FirstOrDefault();

 if (firstSkeleton != null &&
 this.CurrentSkeletonID !=
 firstSkeleton.TrackingId)
 {
 this.CurrentSkeletonID = firstSkeleton.TrackingId;
 SendSignalToNetduino();
 }
 }
 }

In this code, we just send a signal to the Netduino application when there is a new
skeleton tracked by calling the SendSignalToNetduino() method, which can be
written as follows:

private static void SendSignalToNetduino()
 {
 WebRequest webRequest =
 WebRequest.Create("http://xxx.xxx.xxx.xxx/
 SkeletonTracked");
 Stream objStream;
 objStream =
 webRequest.GetResponse().GetResponseStream();
 }

In this code block, we are creating an instance of the WebRequest class and sending
the requests to the IP address of the Netduino application.

Instead of sending a web request, you can also send requests using the
Socket.Send() method with request messages.

If both applications are running, whenever the sensor tracks a skeleton with a new
tracking ID you will see that the on-board LED is blinking.

Taking it further
What we have discussed so far demonstrates how these two devices can work
together. You could extend this application by connecting an alarm to the
Netduino and playing it with a human skeleton track.

Putting Things Together

[352]

To take it to a more advanced stage, you can program a robot using a Netduino
microcontroller and control it using the Kinect sensor.

If you are new to the Microsoft .NET Micro Framework and Netduino
microcontroller, you can refer to the books Getting Started with Netduino,
O'Reilly Media by Chris Walker and Getting Started with Internet Things,
O'Reilly Media by Cuno Pfister.

While the cross-device application with Kinect is interesting and gives you other
areas of development to explore, there are some additional programming features
that you can use with the Kinect sensor to build more real-life applications.

Augmented reality applications
Augmented reality is another great innovation in the computer world. This is a
process where we can mix up the real-world data and computer-generated objects.
It overlays computer images, video, audio, and other objects from computer screens
onto real-time environments. The Kinect sensor will be used to obtain the player
data by capturing depth information or skeleton information and positioning it in
the application. For example, you could place a virtual hat on a player's head. You
can just perform this by tracking the human skeleton and positioning one hat image
based on the head joint position.

For a quick example of an augmented reality application, you can take a look at the
Green Screen sample application available with the Kinect for Windows Developer
Toolkit. The Green Screen application renders the player body over the background
image by removing the live background pixels of the player index using depth data
as shown in the following screenshot:

Chapter 11

[353]

Working with face tracking
The face tracking SDK comes with the Kinect for Windows Developer ToolKit. The Face
tracking SDK detects and tracks the positions and orientations of faces and it can also
animate in real time the eyebrow positions and the mouth shape .The face tracking
SDK could be used in several places such as recognizing facial expressions, NUI
interaction with the face, and face-related tasks.

Using the face tracking SDK we can perform the following tasks:

• Track one or more faces
• Track 100 points on a face. Following image shows 87 tracked points

out of a total of 100 points:

Image courtesy of
http://msdn.microsoft.com/en-us/library/jj130970.

• Animate lips, jaw, brows, and so on

The developer toolkit installs two libraries for face tracking (compiled in 32- and
64-bit versions):

• FaceTrackData.dll

• FaceTrackLib.dll

Putting Things Together

[354]

If you are building an application using C++, you can use the libraries directly.
But with a managed application, you should use the wrapper.dll, which is
available as follows:

• Microsoft.Kinect.Toolkit
• Microsoft.Kinect.Toolkit.FaceTracking

The FaceTrackFrame class is the core of the face tracking system, which represents
the face for every frame. You can get the face point and shape information from
the instance of this class itself. The following screenshot shows the properties and
methods of the FaceTrackFrame class:

You can find the details for the face tracking APIs by exploring the documentation
available with the developer toolkit. The Kinect SDK developer toolkit also has two
sample applications that leverage the features.

Read more information about Face Tracking using the Kinect SDK at
http://msdn.microsoft.com/en-us/library/jj130970.aspx.

Chapter 11

[355]

Working with XNA and a 3D avatar
You can use the Kinect SDK with an XNA game. For that you must install XNA Game
Studio 4.0 on your computer. Using XNA you can build 3D interactive solutions
with Kinect.

One great example of using an XNA application with a Kinect sensor is controlling a
3D avatar using human skeleton joint movements. Avateering, which is available with
the Kinect for Windows Developer Toolkit, uses skeleton joint orientation and moves
a 3D avatar based on that.

The following screenshot shows a sample avatar that uses the XNA
Avateering application:

Image courtesy of
http://msdn.microsoft.com/en-us/library/jj131041.asx.

Putting Things Together

[356]

Summary
In this chapter, you have learned how Kinect can be used with a range of other
Microsoft technologies along with other devices. You have learned how you can
connect Kinect with Windows Azure and control the Kinect sensor using Windows
Phone. You were also introduced to the Netduino microcontroller and how Kinect
worked with it. Finally, we also had a quick look at the face tracking SDK, an
augmented reality application, and the 3D Avateering sample application which are
available as a part of Kinect for Windows Developer Toolkit. Overall, this chapter
gives you a quick view on how Kinect can be used in different areas.

Index
Symbols
3D avatar

working with 355
3D graphics, elements

3D Model 147
camera 147
View Port 147

3D Model
creating 149
mesh object, building 150

3D object effect
3D Model, creating 149
camera position, controlling 148
camera, using 148
initial data points, setting up 151
ViewPort, creating 148

3D view, depth data
3D depth 153-155
3D graphics, elements 147
about 146
coordinate system basis 146
depth data, from Kinect 152, 153
project, setting up 147

 Kinect for Windows Audio Array
Control option 30

A
Acoustic Echo Cancellation. See AEC
Acoustic Echo Suppression. See AES
acoustic model 239
Action Completed 308
Action Entry phase 308
Action Exit 308
Action Not Started 308

Advanced Skeleton Viewer application
features 202

AEC 215
AES 227
AGC 215
algorithmic gesture

demo application 295, 296
Event argument, extending 286
GestureBase class, defining 287-289
GestureHelper class, adding 286
GestureRecognitionEngine, implementing

291-293
GestureRecognitionEngine, using 294, 295
implementing 285
SwipeToLeftGesture, implementing 289,

290
SwipeToRight gesture class, adding 290,

291
types, adding 285
ZoomIn class, adding 290, 291
ZoomOut class, adding 290, 291

algorithmic gesture recognition
about 282
algorithmic gesture, implementing 285
detection approach 283, 284

AllFramesReadyEventArgs class 208
AppChooseSkeletons() method 178
application developing, multiple Kinects

used
application, running 321
information, obtaining 320, 321
KinectInfo Collection, creating 320
project, setting up 319
UI, designing 319

application performance
improving 115, 116

[358]

applications
conditional breakpoints, using 204, 205
debugging 204
interacting, with Kinect sensor 48
Kinect Studio, using 205-207

Audacity 230
audio data, processing

about 226
AGC 228
echo cancellation 227
Kinect sound recorder, using 228-230
noise suppression 227

audio signal processing , Kinect
about 217, 218
key components 218

Augmented reality application 352
auto exposure 113
Automatic Gain Control. See AGC
AutomaticGainControlEnabled property

228
AutoNotification property 72
Avateering 355

B
Bayer color filter array 80
Bayer filter 80
beam angle 218
BeamAngle

setting manually 234
Beam Former (BF) 218
beamforming

about 218, 233
beam angle mode 233

beam steering 218
BeginInvoke pattern 113
bitwise shift operation (>>) 133
Blobs 332
body segments 160
bones

about 191
bone sequence 193
drawing, between joints 194, 195
parent joints 192

bone sequence
about 193

for default skeleton 193
for seated skeleton 194

BuildGrammarforRecognizer method 255
building block, skeleton

joints 188, 189
Joint tracking state 189

button.GetPostion() method 306
ButtonPosition class 306

C
camera effects

applying 112
backlight compensation mode, applying

113
Kinect Camera Effects 114
slow motion effects, applying 114

CameraSettings class 113
CameraSettings property 112
CheckForClippedEdges() method 196
CheckForGesture() method 288, 293
child joint 191
ChooseSkeletons() method 184
clapping hands application

about 270
gesture recognizer, implementing 271
gestures, plugging into 275, 276
project, setting up 270
testing 277

CMOS 12
Coding4Fun Kinect Toolkit

about 45
downloading 45

Coding4Fun toolkit
about 117
installing 117
libraries, using 118, 119

Coding4Fun toolkit installation
about 117
assembly, using 117
NuGet package, using 117

color camera 10
ColorFrameReady event 97
colorImageFrame class 97
color image stream

pixel format, changing 93
ColorImageStream class 112

[359]

color image stream helpers
about 94
ColorImageFrame class 95-97
ColorImageStream class 95

ColorImageWrapper class 105
color pixels

about 109
color, inverting 111
grayscale effects, making 110
RGB effects, applying 110

color stream channel
disabling 88
enabling 86
enabling, with image format 87
event handler, attaching 89
image format, choosing 87, 88
image frames, rendering on UI 93
incoming image frames, processing 90-93

color stream, retrieving from Kinect
event model 81
polling model 82
types 81

CommandParser method 257
Complimentary Metal-Oxide-Semiconduc-

tor. See CMOS
CoordinateMapper class 202
CopyDepthImagePixelDataTo() method

145
CopyPixelDataTo method 92
Correction property 198

D
data binding, Kinect Info Box

DataContext, setting 64
information, setting 65
INotifyPropertyChanged 63
INotifyPropertyChanged, using 63

data frames
bringing together 207, 208

debugger visualizer 145
debugging 310
Decision Forrest 160
decision tree 160
default tracking 165
demosaicing 101

depth data
3D view 146
distance, calculating 133, 134
distance, obtaining from particular pixel

134, 135
distance range 132
distance range, accessing 135, 136
distributing 140
player index 141
processing colorization 136-138

depth data distribution
about 140
depth values 140

depth data processing
working 12, 13

depth data stream
about 122
capturing 125
channel, enabling 125, 126
depth frames, processing 127, 128
depth image data, running 128, 129
DepthImageFrame 129
DepthImageStream 129
event handler, attaching 126
helpers 129-131
IR depth sensor 123
IR emitter 123
processing 125
resolutions 122
stereo triangulation 124
viewable angle range 122

depth image data stream
Near Mode feature 36
processing 36

DepthImagePixel
working with 144, 145

DepthImageStream class 130
depth range

about 138
TooFarDepth value 140
TooNearDepth value 140
UnknownDepth value 140
working 139

DepthStream class 138
Developer Toolkit

downloading 23

[360]

development setup 44, 45
device testing

Kinect microphone array, testing 32, 33
Kinect sensors, testing 32

digital signal processors. See DSP
Disable() method 88, 126
Download the Developer Toolkit option 25
drawBone() method 195
Draw What I Want. See speech-enabled ap-

plication
DSP 218
Dynamic Link Library (DLL) 34

E
ElevationAngle property 108
Enable() method 207
EnableTrackingInNearRange property 181
environment set up, multiple Kinects

about 312
first Kinect sensor, plugging 312
Kinect sensors 313-315
second Kinect sensor, plugging 312, 313

e.Result.Words property 261
EventArgs class 286
Event model 81

F
FaceTrackFrame class 354
face tracking

about 353, 354
tasks 353, 354

Face Tracking SDK 42
failover scenario

handling, Kinects used 329
ForceInfraredEmitterOff property 61
frame format

calculating 101, 102
FrameNumber property 98
FrameSkeletonArrayLength property 170
frames per second (FPS) 10

G
gesture 264
gesture-detection technique

about 266

joint distance, calculating 267-269
skeleton joints, representing 267

gesture-enabled application
implementing, options 309

gesture-enabled application class 308
gesture-enabled control

about 303
actions, enabling for objects 307
hand cursor, creating 304
objects, identifying 305

gesture recognition
about 263
approaches 264-266
clapping hands application 270
gesture-detection technique 266
gesture recognition engine 266
possibilities 279-281
steps 281
virtual rope workout application 278, 279

gesture recognition engine
about 266
tasks 266

GestureRecognitionEngine class 275
gesture recognizer, implementing

about 271
gesture event argument, creating 272
gesture types, defining 272
recognition results types, defining 272
summarizing 273-275

GetCurrentFrameRate method 102
GetCursorPoint() method 305
GetJointDistance() method 269, 286
GiveFeedBack() method 196
grammar

building 246
building, XML used 248
creating, from GrammarBuilder 249
GrammarBuilder class, using 246-248
loading, into Recognizer 249, 250
unloading 250

H
Has changed option 205
Holt double exponential smoothing 200

[361]

I
image format

binding 99, 100
color image format, changing 100, 101

ImageFrame class 99
ImageFrame.Format 97
ImageFrame property 105
image frames 78
images

capturing 102, 103
saving 102, 103
saving, directly 104-106
saving, periodically 103, 104

Infrared (IR) emitter 12, 13
InitilizeGesture() method 292
INotifyPropertyChanged 63
installation

Coding4Fun Kinect toolkit 117-119
InstalledRecognizers method 244, 254
intrusion detector camera application

about 174, 175
night vision, creating 176

IR depth sensor 11, 121
IR emitter 11, 121
IR stream data

capturing 114
IsEnabled property 126
IsGestureValid() method 289

J
JitterRadius property 199

K
Kinect

about 7, 8
audio signal processing 217
connecting, with Netduino 348
removing, Windows Phone used 336
taking, to Cloud 332
using, areas 16, 17
using, with Windows PC speech

recognition 240-242
with Netduino microcontroller 342

Kinect audio
recorded audio, playing 225
record, starting 224

Kinect audio configuration
about 212
Kinect Microphone Array, using 214
Kinect USB Audio, troubleshooting 213
verifying 212

KinectAudioSource class 233
KinectCam

about 82
color image, capturing 86
data binding 84, 85
extending 98
frame format, calculating 101
frame number, getting 98, 99
frame rate, calculating 101
image format 99
image format, modifying 99
images, saving directly 104-106
project, setting up 83
running 94
setting options, actions 83
working 83
XAML application, designing 84, 85

Kinect camera 77
Kinect, connecting with Netduino

about 348
Internet connection, using 348
request, listening to 349, 350
request, sending from Kinect

application 350, 351
Kinect device

microphone array 211
Kinect, for Developer Toolkit

about 42
Face Tracking SDK 42
Kinect Studio 43

Kinect, for Windows
color camera 10
components 8, 9
image 9
internal view 9
IR depth sensor 11
IR emitter 11

[362]

LED 15
Microphone array 14
Tilt motor 13
versus Kinect for Xbox 15, 16

Kinect, for Windows SDK
evaluation 22
features 35
installing 24
system requirements 20

Kinect, for Windows SDK features
audio stream, capturing 38
color image data stream, capturing 36
data, obtaining from sensor accelerometer

41
depth image data stream, processing 36
human gesture recognition 40
human skeleton, tracking 37, 38
infrared emitter, controlling 41
infrared stream, capturing 37
join movements, tracking 37, 38
motor, controlling 41
speech recognition 39

Kinect, for Windows SDK installation
Developer Toolkit, installing 25
installed components 26
installed drivers, verifying 28-31
management service 26
pre-requisites 24, 25
sensor, connecting 27

Kinect, for Xbox
versus Kinect, for Windows 15, 16

KinectFusion 153, 155
Kinect image stream

Bayer color image format 80
color image stream 78
cplor image format, types 79
depth image stream 78
working with 77

Kinect Info Box
about 50
data, binding 62
information, displaying 62
Kinect sensor, getting 53
Kinect sensor, identifying 58
Kinect sensors, initializing 55, 56
Kinect sensor, stopping 60
UI, designing 62

Visual Studio project, creating 50
Kinect microphone array

testing 32, 33
Kinect remoting, Windows Phone used

about 336
real-time implementations 342
solution, designing 338-342
Windows Azure Service Bus 337
Windows Phone SDK 337

Kinects
used, for failover scenario handling 329

Kinect SDK
about 34
contents, viewing 34
downloading 23
Kinect driver 34
overall layered components 34
skeleton-tracking 163-165

Kinect sensor
about 21, 53
adjusting 195, 196
applications, interacting with 48
defining 54
examples 17
feedback, giving to users 195, 196
for Kinect sensor 21
for Xbox sensor 21
identifying 58
initializing, device connection ID used 59
KinectStatusNotifier, using 74
obtaining 53
SDK APIs classification 49
sensor collection 54, 55
skeleton-tracking 158
Stop() method, using 60, 61
stopping 60

KinectSensorCollection class 317
KinectSensor property 317
KinectSensor.Status property 322
Kinect sound recorder

application, designing 221-223
Kinect audio, recording 223
project, setting up 221
running 225, 226

Kinect startup
data streams, enabling 58
sensor.Start() method 57

[363]

steps 55, 56
Kinect status

about 65, 67
application, resuming 69
change, monitoring 67
connected 66
DeviceNotGenuine 66
DeviceNotSupported 66
disconnected 66
error 66
Initializing 66
InsufficicentBandwith 66
KinectStatusNotifier, building 70
NotPowered 66
NotReady 66
StatusChangedEventArgs class, properties

68
Undefined 66

KinectStatusNotifier
application, setting up 70
building 70
testing 75
using 74, 75
working 72-74

Kinect Studio 43, 44
Kinect, taking to Cloud

about 332
Kinect for Windows SDK 333
real-time implementations 335, 336
required components 332
solution, designing 334, 335
Windows Azure 332
Windows Azure SDK 333

Kinect USB Audio
about 215
DirectX Media Object (DMO) 215
SAPI 215

Kinect, with Netduino microcontroller
about 342
Microsoft .Net Micro Framework 343
Netduino 343
Netduino SDK 344
on-board LED 345, 346

L
language model 239
LED 15
ListBox property 320

M
MainWindow_Loaded event 320
MatchHandClappingGesture() method 274
MaxDeviationRadius property 199
MaxElevationAngle property 108
microphone array

about 211, 216, 219
Kinect Audio, focus area 216
Kinect audio stream 219
Kinect audio stream, starting 219, 220
Kinect audio stream, stopping 219, 220
need for 216

Microphone array 14, 15
Microsoft .Net Micro Framework 343
Microsoft Speech API. See SAPI
MTA 225
multiple Kinects

about 311
application, developing 318
application developing, challenges 330
detecting 317
environment, setting up 312
individual sensor access, getting 317, 318
interference, reducing 317
sensor's reference, ways 318
using, for applications 330

multiple Kinect Viewer, extending
application, running 324
status change, handling 323, 324
status change, registering 323, 324

multiple sensor status change
controlling 321
data, capturing, multiple Kinects used 328
devices, identifying 325
integrating, with KinectStatusNotifier 326,

327
Multiple Kinect Viewer, extending with

status change 322, 323
registering 323

multithreaded apartment. See MTA

[364]

N
Natural User Interface. See NUI
near mode

skeleton tracking 181, 182
Near Mode feature 36, 139
Near Mode tracking 16
Netduino

about 343
electronics boards 343
website 344

Netduino SDK 344
neural network

about 297, 298
gesture recognition 299
jump tracking 300-302

NotifierMessage property 327
NotifyIcon 71
NUI 7, 49, 237

O
on-board LED

application, running 347
deployment Transport, modifying 347
Netdunio Plus Application 345, 346

OnNotifyPropertyChanged method 222, 252
OpenDepthImageFrame() method 127, 145
OpenNextFrame method 97

P
parent joint 191
phonemes 239
picture property 334
player index

about 141
color, capturing 143
depth data, capturing 143
obtaining 142, 143

Play in Application option 206
PointToScreen() method 304
polling model 82, 129
Prediction property 199
PrimeSense 12
properties, DepthImagePixel structure

depth 144

IsKnowDepth 144
PlayerIndex 144

proposed skeletons 164

Q
Queue 333

R
recognizer 244
RecordAudio method 234
rendering pipeline 158
ReversingBitValueWithDistance() method

135
right hand joint

application, running 172, 173
joint placeholder, creating 166
project, setting up 165, 166
skeleton data, retrieving 166, 167
skeleton frames, processing 168-170
skeleton joints, mapping with UI elements

170, 171
skeleton stream, disabling 167, 168
skeleton stream, enabling 167, 168

root joint 193

S
SAPI

about 237, 243
grammar, building 246
speech-enabled applications, building 243
speech recognition approach 244

Save extension method 119
SaveImage() method 175
ScalePosition() method 171
SDK 8
seated skeleton 164
seated skeleton tracking

about 179, 180
important points 180
using 180

seated tracking 165
SendSignalToNetduino() method 351
sensor elevation angle

changing 106, 107

[365]

Kinect sensor angle, adjusting 108
maximum angle 108
minimum angle 108

sensor_SkeletonFrameReady() method 175
SetKinectInfo method 65
Shake n Sense technology 316
single-threaded apartment. See STA
skeleton

about 182
building block 188
exponential smoothing 200
joint tracking steps 190
movement, making softer 198
own joints data point, creating 190, 191
skeleton jitters 197
smoothing 197
smoothing, enabling check 199
smoothing parameters 198, 199
tracking state 183

skeleton data
capturing 174

skeleton joints
right hand, tracking 165
tracking 165

skeleton space
about 201
transforming 201

skeleton stream helpers
about 177
skeleton frame 177
skeleton stream 178

skeleton-tracking
about 157-161
ID 184
important steps 162
in near mode 181, 182
Kinect SDK, using 163-165
plugging, into intrusion detector

camera 186, 187
selecting 183
skeleton change, monitoring 185

skeleton tracking mode
about 179
default 179
seated 179, 180

skeleton tracking state
about 183

NotTracked 183
PositionOnly 183
Tracked 183
tracked number, counting 183

Smoothing property 198
Socket.Send() method 351
Software Development Kit. See SDK
SoundSourceAngleChanged event 235
SoundSourceAngleConfidence property

233, 234
SoundSourceAngle property 231
sound source localization

about 231
beamforming 233
Kinect Sound Recorder, extending 234
source angle 231
source angle, confidence level 232

Sound Source Localizer. See SSL
source angle 218
Speech Application Programming Interface.

See SAPI
speech-enabled application

about 250
data binding 252, 254
designing 251, 252
object, drawing 257, 259
project, setting up 250, 251
speech recognition engine, working

with 255
speech recognizer, instantiating 254
testing 260, 261

speech recognition
about 237
acoustic model 238
command mode category 238
language model 238
sentence mode category 238
users speech, recognizing 238-240
working 238

speech recognition engine
grammar, creating 255
Kinect audio, configuring 255
speech recognizer, starting 256
working with 255

SpeechRecognitionEngine class 237, 244
Speech Recognition Grammar Specification.

See SRGS

[366]

SpeechRecognized event 244
SRGS 246
SSL 218
STA 225
StartKinectCam 89
StartRecognize() method 292, 294
StartSenosr() method 58
StatusChanged event 67, 324
StatusChangedEventArgs class 68
StatusChanged event handler 329
StatusChanged property 324
StatusNotifer class 74
StausChanged events 68
stereo triangulation 124
Stop() method 60
system requirements, Kinect for Windows

SDK
development tools 21
Kinect sensor 21
supported operating systems 20
system configuration 20

T
Tables 332
template-based gesture recognition

about 302
gesture tracking 302
phases 302
template creation 302
template matching 302

Tilt motor 13, 14
TrackingID property 185

U
UnloadAllGrammars method 250
User Access Control (UAC) 24
user actions 310
user interface (UI) 238

V
ValidateBaseCondition() method 289
Validate Control Position 308

ValidateGestureEndCondition()
method 289

ValidateGestureStartCondition()
method 288

ValueChanged event 149
Visual Studio project

creating 50
Kinect libraries, adding 52, 53

W
WCF attributes 339
weighted network gesture recognition

about 297
neural network 298
neural network, using 298, 299

Windows Azure
about 332
blobs 332
queue 333
tables 332

Windows Azure SDK 333
Windows Azure Service Bus 337
Windows_Loaded event 153
Windows PC speech recognition

Kinect, using with 240, 242
Windows Phone SDK 337
Windows SDK

Kinect 19
Words property 257
WPF application 309
WritePixels method 116

X
XNA

working with 355

Y
YUV image stream 80

Thank you for buying
Kinect for Windows SDK
Programming Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

3D Graphics with XNA Game
Studio 4.0
ISBN: 978-1-84969-004-1 Paperback: 292 pages

Create attractive 3D graphics and visuals in your
XNA games

1. Improve the appearance of your games by
implementing the same techniques used by
professionals in the game industry

2. Learn the fundamentals of 3D graphics,
including common 3D math and the
graphics pipeline

3. Create an extensible system to draw 3D models
and other effects, and learn the skills to create
your own effects and animate them

XNA 4.0 Game Development
by Example: Beginner's
Guide – Visual Basic Edition
ISBN: 978-1-84969-240-3 Paperback: 424 pages

Create your own exciting games with Visual Basic
and Microsoft XNA 4.0

1. Visual Basic edition of Kurt Jaegers' XNA 4.0
Game Development by Example. The first book
to target Visual Basic developers who want to
develop games with the XNA framework

2. Dive headfirst into game creation with Visual
Basic and the XNA Framework

3. Four different styles of games comprising a
puzzler, space shooter, multi-axis shoot 'em
up, and a jump-and-run platformer

Please check www.PacktPub.com for information on our titles

Microsoft XNA 4.0 Game
Development Cookbook
ISBN: 978-1-84969-198-7 Paperback: 356 pages

Over 35 intermediate-advanced recipes for taking
your XNA development arsenal further

1. Accelerate your XNA learning with a myriad of
tips and tricks to solve your everyday problems

2. Get to grips with adding special effects, virtual
atmospheres and computer controlled characters
with this book and e-book

3. A fast-paced cookbook packed with screenshots
to illustrate each advanced step by step task

4. Apply the techniques learned for wiring
games for PC, Xbox 360 and Windows
Phone

Windows Phone 7 XNA Cookbook
ISBN: 978-1-84969-120-8 Paperback: 450 pages

Over 70 recipes for making your own Windows
Phone 7 game

1. Complete focus on the best Windows Phone 7
game development techniques using XNA 4.0

2. Easy to follow cookbook allowing you to dive
in wherever you want.

3. Convert ideas into action using practical recipes

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Understanding the Kinect Device
	Components of Kinect for Windows
	Inside the Kinect sensor
	The color camera
	IR emitter and IR depth sensor
	Tilt motor
	Microphone array
	LED

	Kinect for Windows versus Kinect for Xbox
	Where can you use Kinect?
	Summary

	Chapter 2: Getting Started
	System requirements for Kinect for Windows SDK
	Supported operating systems
	System configuration
	The Kinect sensor
	The Kinect for Windows sensor
	The Kinect for Xbox sensor

	Development tools and software

	Evaluation of Kinect for Windows SDK
	Downloading the SDK and Developer Toolkit
	Installing Kinect for Windows SDK
	Installing Developer Toolkit
	Components installed by SDK and Developer Toolkit
	Kinect management service

	Connecting the sensor with the system
	Verifying the installed drivers

	Testing your device
	Testing Kinect sensors
	Testing the Kinect microphone array

	Looking inside the Kinect SDK
	Features of Kinect for Windows SDK
	Capturing the color image data stream
	Processing the depth image data stream
	Near Mode

	Capturing the infrared stream
	Tracking human skeleton and joint movements
	Capturing the audio stream
	Speech recognition
	Human gesture recognition
	Tilting the Kinect Sensor
	Getting data from the accelerometer of the sensor
	Controlling the infrared emitter

	Kinect for Windows Developer Toolkit
	Face Tracking SDK
	Kinect Studio

	Making your development setup ready
	The Coding4Fun Kinect Toolkit
	Summary

	Chapter 3: Starting to Build Kinect Applications
	How applications interact with the Kinect sensor
	Understanding the classification of SDK APIs

	Kinect Info Box – your first Kinect application
	Creating a new Visual Studio project
	Adding the Kinect libraries

	Getting the Kinect sensor
	The Kinect sensor
	Defining the Kinect sensor
	The collection of sensors

	Starting up Kinect
	Inside the sensor.Start() method
	Enabling the data streams

	Identifying the Kinect sensor
	Initializing the sensor using device connection ID

	Stopping the Kinect sensor
	The Stop() method does the clean-up operation

	Displaying information in Kinect Info Box
	Designing the Info Box UI
	Binding the data

	That's all!

	Dealing with the Kinect status
	Monitoring the change in sensor status
	Properties of the StatusChangedEventArgs class

	Resuming your application automatically
	Building KinectStatusNotifier
	Setting up an application
	How it works

	Using KinectStatusNotifier
	Test it out

	Summary

	Chapter 4: Getting the Most out of Kinect Camera
	Understanding the Kinect image stream
	Types of color images

	Different ways of retrieving color stream from Kinect
	Event model
	Polling model

	KinectCam – a Kinect camera application
	Setting up the project
	Designing the application – XAML and data binding
	Capturing color image from the Kinect camera

	Enable the color stream channel
	Enabling channel with image format
	Choosing the image format
	Disabling the color stream channel
	Attaching the event handler
	Process the incoming image frames
	Rendering image frames on the UI

	Running the KinectCam

	Looking inside color image stream helpers
	The ColorImageStream class
	The ColorImageFrame class

	Capture frames on demand
	Extending the KinectCam
	Getting the frame number
	Changing image format on the fly
	Bind available image formats
	Changing the color image format

	Calculating frame rate
	How to calculate frame rate?

	Capturing and saving images
	Saving images periodically
	Trying to save image frames directly

	Changing sensor elevation angle
	Maximum and minimum elevation angle
	Adjusting Kinect sensor angle

	Playing around color pixels
	Applying RGB effects
	Making grayscale effects
	Inverting the color

	Applying more effects to camera
	Applying backlight compensation mode
	Applying slow motion effects
	Kinect Camera Effects – application

	Seeing in low light
	Making your application perform better
	Using Coding4Fun toolkit
	Installing Coding4Fun Kinect toolkit
	Using assembly
	Using the NuGet package

	Using Coding4Fun Kinect libraries in your application

	Summary

	Chapter 5: The Depth Data – Making Things Happen
	Understanding the depth data stream
	Depth data – behind the scenes
	Stereo triangulation

	Capturing and processing depth data
	Enabling depth stream channel
	Attaching the event handler
	Processing the depth frames
	Depth data at first look

	Looking inside depth image stream helpers
	Depth data and distance
	How the distance is calculated
	Getting the distance from a particular pixel
	Accessing the range of distance
	Colorize depth data processing

	Working with depth range
	Special depth range values

	Depth data distribution
	Player index with depth data
	How player index works
	Identifying players

	Getting the depth and player index automatically
	A 3D view of depth data
	The basics of the coordinate system
	Basic elements of 3D graphics
	Setting up the project
	Give it a 3D effect
	Creating the ViewPort
	Using the camera
	Creating the 3D Model
	Setting up the initial data points

	Getting the depth data from Kinect
	Have a look at 3D depth

	Summary

	Chapter 6: Human Skeleton Tracking
	How skeleton tracking works
	Steps to remember

	Skeleton tracking with the Kinect SDK
	Start tracking skeleton joints
	Tracking the right hand
	Setting up the project
	Creating a joint placeholder
	Get Kinect running and instantiate skeleton tracking
	Processing the skeleton frames
	Map the skeleton joints with UI elements
	Running the application
	Adding more fun

	Flow – capturing skeleton data
	An intrusion detector camera application
	Adding night vision

	Looking inside skeleton stream helpers
	The skeleton frame
	The skeleton stream

	Skeleton tracking mode
	Default skeleton tracking
	Seated skeleton tracking
	Using seated-skeleton tracking
	Points to be considered with seated-skeleton tracking

	Skeleton tracking in near mode
	The Skeleton
	Skeleton tracking state
	Choosing which skeleton to track
	Skeleton tracking ID
	Monitoring the skeleton change
	Limiting tracking for the intrusion detector camera

	The building blocks – Joints and JointCollection
	Joint tracking state

	Steps to be followed for joint tracking
	Create your own joints data point

	Bones – connecting joints
	Bone sequence
	Bone sequence for default skeleton
	Bone sequence for seated skeleton

	Drawing bones between joints

	Adjusting the Kinect sensor automatically and giving live feedback to users
	Skeleton smoothing – soften the skeleton movement
	What causes skeleton jitters
	Making skeleton movement softer
	Smoothing parameters

	How to check if skeleton smoothing is enabled
	Exponential smoothing

	Skeleton space transformation
	Advanced Skeleton Viewer application
	Debugging the applications
	Using conditional breakpoints
	Using Kinect Studio

	Getting data frames together
	Summary

	Chapter 7: Using Kinect's Microphone Array
	Verifying the Kinect audio configuration
	Using the Kinect microphone array with
your computer

	The Kinect SDK architecture for Audio
	Kinect microphone array
	The major focus area of Kinect audio
	Why microphone array?

	Audio signal processing in Kinect
	Taking control over the microphone array
	Kinect audio stream
	Starting and stopping the Kinect audio stream
	Starting audio streaming after a time interval

	Kinect sound recorder – capturing Kinect audio data
	Setting up the project
	Designing the application – XAML and data binding
	Recording the Kinect audio
	Start the recording
	Playing the recorded audio

	Run the Kinect Sound Recorder

	Processing the audio data
	Echo cancellation
	Noise suppression
	Automatic gain control
	Audio data processing with the Kinect
sound recorder

	Sound source localization
	Sound source angle
	Confidence level

	Beamforming
	Beam angle mode

	Extending the Kinect Sound Recorder
with sound source localization

	Summary

	Chapter 8: Speech Recognition
	How speech recognition works
	Using Kinect with your Windows PC speech recognition
	Beginning With Microsoft Speech API (SAPI)
	Steps for building speech-enabled applications
	Basic speech recognition approach
	Building grammar
	Using Choice and GrammarBuilder
	Building grammar using XML
	Creating grammar from GrammarBuilder
	Loading grammar into a recognizer
	Unloading grammars

	Draw What I Want – a speech-enabled application
	Setting up the project
	Designing the application – XAML and data binding
	Data binding

	Instantiating speech recognizer
	Working with speech recognition engine
	Configure the Kinect audio
	Creating grammar
	Start the speech recognizer

	Drawing an object when speech is recognized
	Testing your application

	Summary

	Chapter 9: Building Gesture-controlled Applications
	What is a gesture
	Approaches for gesture recognition
	Basic gesture recognition
	Gesture-detection technique
	Representing skeleton joints
	Calculating the distance between two joints

	Building a clapping hands application
	Setting up the project
	Implementing the gesture recognizer
	Plugging gesture into the application
	Testing your application

	A virtual rope workout application
	Hands raised above head gesture recognition
	Steps to recognize basic gestures

	Algorithmic gesture recognition
	Which gestures can be considered as algorithmic
	Understanding the algorithmic gesture detection approach
	Implementing an algorithmic gesture
	Adding gesture types
	Extending the Event argument
	Adding a GestureHelper class
	Defining the GestureBase class
	Implementing the SwipeToLeftGesture
	Adding the ZoomIn, ZoomOut, and SwipeToRight gesture classes
	Implementing the GestureRecognitionEngine
	Using the GestureRecognitionEngine
	A demo application

	Making it more flexible

	Weighted network gesture recognition
	What is a neural network
	Gesture recognition with neural networks
	Jump tracking with neural a network – an example

	Template-based gesture recognition
	Building gesture-enabled controls
	Making a hand cursor
	Getting the hand-cursor point

	Identifying the objects
	Enabling action for the objects

	The Basic Interaction – WPF application
	Key things to remember
	Summary

	Chapter 10: Developing Applications Using Multiple Kinects
	Setting up the environment for multiple Kinects
	Plugging the first Kinect sensor
	Plugging the second Kinect sensor
	Kinect sensors require an individual USB Controller

	Multiple Kinects – how to reduce interference
	Detecting multiple Kinects
	Getting access to the individual sensor
	Different ways to get Kinect sensor's reference

	Developing an application with multiple Kinects
	Setting up the project
	Designing the UI
	Creating the KinectInfo Collection
	Getting information from Kinects
	Running the application

	Controlling multiple sensor status change
	Extending Multiple Kinect Viewer with status change
	Registering and handling the status change
	Running the application

	Identifying the devices automatically
	Integrating with KinectStatusNotifier
	Capturing data using multiple Kinects

	Handling a failover scenario using Kinects
	Challenges faced in developing applications using multiple Kinects
	Applications where multiple Kinects can be used
	Summary

	Chapter 11: Putting Things Together
	Taking Kinect to the Cloud
	Required components
	Windows Azure
	Windows Azure SDK
	Kinect for Windows SDK

	Designing the solution
	Real-time implementations

	Remotely using Kinect with Windows Phone
	Required components
	Windows Azure Service Bus
	Windows Phone SDK

	Designing the solution
	Real-time implementations

	Using Kinect with a Netduino microcontroller
	Required components
	Microsoft .Net Micro Framework
	Netduino
	Netduino SDK

	Blinking of the on-board LED
	Changing the Deployment Transport
	Running the application

	Connecting Kinect to a Netduino
	Using an Internet connection
	Listening to the request
	Sending a request from a Kinect application

	Taking it further

	Augmented reality applications
	Working with face tracking
	Working with XNA and a 3D avatar
	Summary

	Index

