Programming Model 2

A. Introduction

Objectives

At the end of this lab you should be able to:

= Use direct and indirect addressing modes of accessing data in memory
= Create an iterative loop of instructions

= Display text on console using an 10 instruction

= Create a sub-routine, call and return from subroutine

= Pass parameters to a subroutine

B. Processor (CPU) Simulators

The computer architecture tutorials are supported by simulators, which are created
to underpin theoretical concepts normally covered during the lectures. The
simulators provide visual and animated representation of mechanisms involved and
enable the students to observe the hidden inner workings of systems, which would
be difficult or impossible to do otherwise. The added advantage of using simulators
is that they allow the students to experiment and explore different technological
aspects of systems without having to install and configure the real systems.

C. Basic Theory

The programming model of computer architecture defines those low-level
architectural components, which include the following

= CPU instruction set
= CPU registers
= Different ways of addressing instructions and data in instructions

It also defines interaction between the above components. It is this low-level
programming model which makes programmed computations possible. You should
do additional reading in order to form a better understanding of the different parts
of a modern CPU architecture (refer to the recommended reading list available in the
module handbook and on the BB).

D. Simulator Details

This section includes some basic information on the simulator, which should enable
the students to use the simulator. The tutor(s) will be available to help anyone
experiencing difficulty in using the simulator. The simulator for this lab is an
application running on a PC running MS Windows operating system.

The main simulator window is composed of several views, which represent different
functional parts of the simulated processor. These are shown in Image 1 below and
are composed of

= CPU Instruction memory

= Special CPU registers

= CPU (general purpose) registers

= Program stack

* Program creation and running features
= Memory in which data is stored

* Input, output console

“ CPU Simulator: CPUO [V . CPU-0S Simulato 5
CPU INSTRUCTIONS IN MEMORY (RAM) o . SPECIAL CPU REGISTERS GENERAL PURPOSE CPU REGISTERS
= Cache - Fipeling ‘ Execution UnM
PAdd | LAdd [Instruction Ba: - g o o |zes val(D) [C |val(D)] -
i O roo 0
Pipeline o
@ Single pipeling Dual pipeline S 8096 0 O ro1 o
Select pipeling 4 O roz2 0
LSHOw Status Flags O ro3 =
H
ov [] z [N O[] O =moa 0
.
Cache 3 O ros 0
Select cache e IR 5 O roé o
SHOW : O ro7 0
CACHE... MAR « 0 O =ros A o
» -
MDR _: [0 mroo =0 L
H O rio T 0 3
H
'S PROGRAM LIST PROGRAM STACE [RAM) O ria T 0
K Nane [Base | start | Type | Pos val(p) [Addr | |0 Rr12 o
“‘ . O riz =0
. H O ria =0
. 5 O Ris =0
. . a]
. 0 rié H
. . O =ri7 Rl
H
K <[m]+ H O mris 0
S : H
% LOAD COMPRED SHOWCROGRAM [Q 0 ro :_0 L
2 CODE 1N MEMBR'Y DATARMEMORY. H » O Rr20 0
K 2 H 5 5 O mr21 0
K REMOVE PROGRAM R § . O Rz o
. H . .
. 3 H : 3 O =23 b
- CREATE PROGFRM || DELETEPROGRAM : K O roa L]
a7 . . D INSTAMCE % INSTANCE : e [0 R2s q =2
< H . . s -
Instructions } Opnmize-Assem“g\e I | cPU Vlew} [S=0] He\p} w New CPU 1 '-_] | Program ﬂtack} Watch}
. K B H . . . I
Nef P Fil . @ #yinstiuction » L} .
BRI = Progambist STEP | O ek : COMPILER.. 050 ki :
Frofiam Name Pages e . i 2 RESET ALL
: _ Fadl | RESET . P
Base Addeds RUN O S INPUECOUTRUT VIRTUAL O 5
s e Lo4D A T (G .F 'y B Show Reg Access Stats 3]
H) % g = - . .
‘: '-‘ S5TOP H sHU\':rpcg_ INTERRUFYS.. . Select Register Set Size 332 «
g) . Slow ¥ - H i 3 - H
. . 0y . 0 5 . -
o % : H H 3
0

":‘ CPU Instruction "-:SpeciaICPU"x\ CPU registers
% memoryview i tegisters view view
Add program o :I' - sk Vi
: instructions tab rogram |stV|§:aw rogr‘g"m stack view

.
.

.

-

Create program tab Click to view program Click to view

data memory 10 console

Image 1 — CPU Simulator window

The parts of the simulator relevant to this lab are described below. Please read this
information carefully and try to identify the different parts on the CPU Simulator
window BEFORE attempting the following exercises. Use the information in this
section in conjunction with the exercises that follow.

1. CPU instruction memory view

CPU INSTRUCTIONS IN MEMORY (RAM) Image2 - Instruction memory
PAdd LAdd | Instruction Ba: View

This view contains the program
instructions. The instructions
are displayed as sequences of
low-level instruction
mnemonics (assembler-level
format) and not as binary code.
This is done for clarity and
makes code more readable by
humans.

Each instruction is associated
with two addresses: the
physical address (PAdd) and the
logical address (LAdd). This
view also displays the base
address (Base) against each
instruction. The sequence of
instructions belonging to the
same program will have the
same base address.

2. Special CPU registers VieW 1y view shows the set of CPU registers,

which have pre-defined specialist functions:
PC: Program Counter contains the address
SPECIAL CPU REGISTERS of the next instruction to be executed.
IR: Instruction Register contains the

PC 0 SH 0 . . .
BR instruction currently being executed.
2k 3096 (} SR: Status Register contains information
pertaining to the result of the last executed
Status Flags . .
instruction.
ov Z N SP: Stack Pointer register points to the value
- maintained at the top of the program stack
. (see below).
MAR 0 BR: Base Register contains current base
MDR address. . ‘
MAR: Memory Address Register contains
the memory address currently being
Image 3 - Special CPU accessed.
registers view Status bits: OV: Overflow; Z: Zero; N:

Negative

3

3. CPU registers view

GEMERAL PURPOSE CPU REGISTERS

&
Q

ROO
RO1
RO2
RO3
RO4
RO5
RO6
RO7T
ROB
ROS

g 0O0O0O0O0O0000000O00O0000000000000
A
L

ReqValue

0

o0 o0 0000000000000 000 00000

‘ CHANGE ‘ ‘ RESET &LL ‘

‘U’all:]]}|(3 |"iJ’all:D} -

m

Image 4 — CPU Registers view

The register set view shows the
contents of all the general-purpose
registers, which are used to maintain
temporary values as the program's
instructions are executed. Registers are
very fast memories that hold
temporary values while the CPU
executes instructions.

This architecture supports from 8 to 64
registers. These registers are often
used to hold values of a program's
variables as defined in high-level
languages.

Not all architectures have this many
registers. Some have more (e.g. 128
register) and some others have less
(e.g. 8 registers). In all cases, these
registers serve similar purposes.

This view displays each register's name
(Reg), its current value (Val) and some
additional values, which are reserved
for program debugging. It can also be
used to reset the individual register
values manually which is often useful
for advanced debugging. To manually
change a register’s content, first select
the register then enter the new value
in the text box, Reg Value, and click on
the CHANGE button in the Registers
tab.

4. Program stack view

PROGRAM STACK [RAM)
| Pos | Val (D) | Addr |

Image 5 - Program stack view

The program stack is another area which
maintains temporary values as the
instructions are executed. The stack is a
LIFO (last-in-first-out) data structure. It is
often used for efficient interrupt
handling and sub-routine calls. Each
program has its own individual stack.

The CPU instructions PSH (push) and POP
are used to store values on top of stack
and pop values from top of stack
respectively.

5. Program list view

PROGRAM LIST
Name | Base | Start | Type Image 6 - Program List View

Use the REMOVE PROGRAM button to
remove the selected program from the

1 m t list; use the REMOVE ALL PROGRAMS
LOAD COMPILED CHOW PEOGEAM button to remove all the programs from
CODE IN MEMORY DATAMEMORY... the list. Note that when a program is

REMOVE ALL removed, its instructions are also

U3 R RO PROGRAMS removed from the Instruction Memory

View too.

CREATE PROGRAM DELETE PROGRAM
INSTAMCE INSTAMCE

6. Program creation

; : e Image 7 — Create program tab
Frograrm | Instru:tu:unal Dphmme—f-\ssemble] 8 prog

Mew Program Filez . .
Program List To create a new program enter its

Frogram Mame Pages
SAVE. | AL *| | name in the Program Name box

-1
- and its base address in the Base

Baze Address Base Addiess
ADD LOAD.. A Address box then click on the ADD

button. The new program’s name
will appear in the Program List view
(see Image 6).

Instructions

Frogram

ADD MNEW .. SHOW ... LHDO

Optimize-ﬁssemblel

Image 8 — Add program
instructions tab

Use ADD NEW... button to add a

IMSERT ABOWE. .. MOWE DOt M EDNT... new instruction; use EDIT...
button to edit the selected
INSERT BELOW... FOWE LIP DELETE instruction; use MOVE DOWN/

MOVE UP buttons to move the
selected instruction down or up;

7. Program data memory view

use INSERT ABOVE.../INSERT

BELOW... buttons to insert a new
instruction above or below the
selected instruction respectively.

DATA MEMORY
PAdd | Ladd |Bo|B1|B2|B3|Be|B5|B6|B7|Data B
CeacE o
D———— 0000 OO0 OO0 OO0 Q00 Q00 OO0 OO0 00 ..cewwns
D———— opog OO0 OO0 OO OO Q0O OO OO 00 @cee-.
D———— 00le OO0 OO OO <41 QO OO OO OO0 - =
D———— 0024 OO0 OO0 OO OO Q0O OO OO 00 @ ...ceaa.
D———— 0op22 OO0 OO0 OO OO QO 42 0O 00 B.
D———— op40 OO0 OO0 OO OO0 QO OO OO 00 @ ...cceaa.
D———— op4g OO0 OO OO OO QO OO OO 00-.. Tl
D———— g0se OO0 OO0 OO0 Q0 Q0 OO0 OO0 00 ..ceewns
D———— 00g4 OO0 OO0 OO0 Q00 Q0 OO OO 00 ..cewwns
D———— 0072 OO0 OO0 OO QO Q0O OO OO 00 @cca..
D———— gpgo OO0 OO0 OO OO Q0O OO OO 00 @ ...ceea.
D———— gpgg OO0 OO0 OO OO Q0O OO OO 00 ...ceaa.
D———— op%e OO0 OO0 OO OO Q0O OO OO 00 @ ...ceea.
D———— 0ig4 OO0 OO0 OO OO0 QO OO OO 00 @ceaa.
D———— 011> o0 OO OO OO QO OO OO 00-.. &7
Initialize Data Debug control
@ Integer Value: Shecll:la I:u:u:-:ilsdtcu suzpend wfﬁn snbrrespgnding
® Boclean Value [Falsomsr ata byte addreszes are modhed by code.
(7 String W alue: Doooooon
BO B1 B2 B3 B4 BR BE BT
f_f,':clda't?;rf e - 00 00 00 41 00 00 00 00
Stayontop [Status:
SHOW PAGE
Fages | 'I| Size | 255| ‘ RIARE ‘ ‘ LLLEE |

Image 9 - Program data memory view

The CPU instructions that access that part of the memory containing data can write
or read the data in addressed locations. This data can be seen in the memory pages
window shown in Image 9 above. You can display this window by clicking the SHOW
PROGRAM DATA MEMORY... button shown in Image 6 above. The Ladd (logical
address) column shows the starting address of each line in the display. Each line of
the display represents 8 bytes of data. Columns BO through to B7 represent bytes 0
to 7 on each line. The Data column shows the displayable characters corresponding
to the 8 bytes. Those bytes that correspond to non-displayable characters are shown
as dots. The data bytes are displayed in hex format only. For example, in Image 9,
there are non-zero data bytes in address locations 19 and 37. These data bytes
correspond to displayable characters capital A and B.

To change the values of any bytes, first select the line(s) containing the bytes. Then
use the information in the Initialize Data frame to modify the values of the bytes in

the selected line(s) as Integer, Boolean or String formats. You need to click the
UPDATE button to make the change.

8. 10 console view

OuUTPUT

.

] Colours

INFUT S Stay on top
| KEYED. . | Mo output display [Screen colour lE?EI SET. ‘ PRINT.. | | CLEAR ‘ CLOSE
Display CPU G [Test colaur [®)

Image 10 — Input, output console view

Image 10 above shows the console which is used by programs to write messages to
and read data from. It can be displayed by clicking on the INPUT OUTPUT... button
shown in Image 1 above. Click on the SHOW KEYBD... button to display a small
keyboard window which can be used to input data to programs requesting input.

E. Lab Exercises - Investigate and Explore

The lab exercises are a series of activities, which are carried out by the students
under basic guidelines. So, how is this tutorial conducted? The students are expected
to follow the instructions given in order to identify and locate the required
information, to act upon it, make notes of their observations and offer explanations
for these observations where this requested. In order to be able to do these
activities you should consult the information in Section D above and also frequently
refer to the Appendix for information on various CPU instructions you will be asked
to create and use. Remember, you need to carefully read and understand the
instructions before you attempt each activity.

Now, let us start. First you need to place some instructions in the Instruction
Memory View (see Image 2), representing the RAM in the real machine, before
executing any instructions. To do this, follow the steps below:

In the Program tab (see Image 7), first enter a Program Name, and then enter a Base
Address (this can be any number, but for this exercise use 100). Click on the ADD
button. A new program name will be entered in the Program List view (see Image 6).
You can use the SAVE... button to save instructions in a file. You can also use the
LOAD... button to load instructions from a file.

You are now ready to enter instructions into the CPU Simulator. You do this by
clicking on the ADD NEW... button in the Instructions tab (see Image 8). This will
display the Instructions: CPUO window. You use this window to select and enter the
CPU instructions. Appendix lists some of the instructions this simulator uses and also
gives examples of their usage.

Now, have a go at the following activities (enter your answers in the text boxes
provided). A word of caution: Regularly save your code in a file in case the simulator
crashes in which case you can restart the simulator and re-load your file.

1.

6.

In the Appendix at the end of this document, locate the instruction, which is
used to store one byte of data in a memory location. Use it to store number 65 in
address location 20 (all numbers are in decimal). This is an example of direct
addressing. Refer to Image 9 to see how to display the contents of data memory.
Make a note below of the instruction used:

Create an instruction to move decimal number 22 to register RO1 and make a
note of it below. Execute this instruction and verify the result in RO1.

Create an instruction to store decimal number 51 in memory location the
address of which is currently stored in register RO1. This is an example of indirect
addressing. Note the use of the “@” prefix next to RO1 in this case.

Make a note of what you see in data memory locations 20 and 22 (refer to Image
9 for help information on how to display the data memory).

Now, let’s create a loop. First, enter the following code. The # prefix is used to
denote a literal value thus distinguishing it from an address value which does not
use it. RO1 represents an arbitrary register; you can use any of the registers from
ROO to R31.

MOV #0, RO1
ADD #1, RO1
CMP #5, RO1
JNE O

HLT

The above code is not quite ready yet. The JNE instruction uses a numeric value
as the address to jump to. In this case it is 0. This may not always be the case so
in order to make the code more flexible we can use labels to represent
instruction addresses. The simulator allows you to do this. Follow the
instructions below for this:

Highlight the above MOV instruction (i.e. the one in the box above)
Click on the INSERT BELOW... button

Type label name LO in the box next to the ENTER LABEL button in the
window you use to enter instructions

Click the ENTER LABEL button

The new code should now look like this (modifications are in red colour):

MOV #0, RO1
LO:

ADD #1, RO1
CMP #5, RO1
JNE O

HLT

Next, highlight the JNE instruction

Click on the EDIT... button

Select LO in the drop-down list under the Source Operand section button
in the window you use to enter instructions

Click the EDIT button

The new code should now look like this:

MOV #0, RO1
LO:

ADD #1, RO1
CMP #5, RO1
JNE $LO

HLT

7. Asyou can see, the label LO represents the address of the instruction
immediately below it, i.e. the ADD instruction. So now the JNE instruction can
use LO as the address to jump to. As the label LO can represent any address this
code should work anywhere in memory making it very flexible. The S sign
indicates that LO is a label. The above code is now ready to run. To run this
program, follow the instructions below:

Click on the RESET PROGRAM button in the CPU Simulator window
Highlight the MOV instruction, i.e. the first instruction of the program
Adjust the speed slider to a value, say, nearest to the value 80

Click on the RUN button

After a short while the program should stop. If it appears to run too long
then click on the STOP button and check your code. Correct it if necessary
and repeat the above instructions once again.

When the program stops make a note of the value in RO1 below

8. Now you'll make a slight modification to the above program. Change the
program code so that the program loop is repeated as long as the value of RO1 is
less than or equal to 3 (you may wish to refer to the Appendix for this) and test

10

it. When you get it right make a note of the value in RO1 and copy the new code
below. Now, change the modified instructions back to the original instructions
(you can use the UNDO button for this — see Image 8 above).

10.

11.

Ok, let’s create a simple subroutine. Enter the following new code. You need to
create a new label L1 at the start of the subroutine. This label represents the
starting address of the subroutine. You must enter the label using the ENTER
LABEL button only as explained in (6). Also, make sure you select the Direct Mem
radio button when entering the first operand value 24 of the OUT instruction:
L1:

ouT 24, O
RET

The above subroutine code simply displays the text starting at data memory
location 24 and returns (see RET instruction in appendix). For it to work there
needs to be some text in data address location 24. You can do this manually by
following the steps below:

Click on the SHOW PROGRAM DATA MEMORY... button (see Image 6).
In the displayed window highlight the line 0024 under LAdd column
Under Initialise Data click on the String radio button

Enter some text in the text box labelled Value, e.g. My name is Besim
Click the UPDATE button

Now, a subroutine is of no use by itself. For it to be useful your program must call
it using the instructions MSF followed by CAL (refer to the Appendix). The MSF
(Mark Stack Frame) is needed to reserve a place for the return address on the
program stack. The CAL instruction needs to specify the starting address of the
called subroutine. Let’s modify our code so that when the above subroutine is
called it displays the text repeatedly in a loop. For example, using the code added
in (6) and (9) the modified program should look something like this:

MOV #0, RO1
LO:

ADD #1, RO1
MSF

CAL $L1

CMP #5, RO1
JNE $LO

HLT

L1:

OuT 24, O
RET

11

12.

13.

The above code is now ready to run. In order to see the displayed text you need
to show the console window. Click on the INPUT OUTPUT... button (see Image 1)
which will display the simulated console window. To run this program, follow the
instructions below:

Click on the RESET PROGRAM button

Highlight the MOV instruction, i.e. the first instruction of the program
Adjust the speed slider to a value nearest to the value 80

Click on the RUN button

We need to make a small change to our subroutine. Currently the OUT
instruction uses direct memory addressing, i.e. the memory address 24 is part of
the instruction. We now wish to make it use indirect addressing in a way similar
to thatin (3). So, you’ll need to place the memory address 24 in a register (any
spare register). Then you need to have the OUT instruction use this register
indirectly as the source of the address of the text to display. Run the code to test
your modification. Make a note of the modified part of the program code below.
Use the UNDO button to restore the instructions before this modification:

14.

Ok, let’s get a little bit more ambitious as a challenge. Let’s convert the loop into
another subroutine and then call it. So, now we will have two subroutines where
one calls the other. The following code represents this change. Notice that the
HLT instruction is changed to the RET instruction and the new instructions MSF,
CAL and HLT are added together with the new label L2 at the top of the code.
CAL SL2 calls the subroutine with the loop and CAL SL1 calls the subroutine that
displays the text.

MSF

CAL $L2

HLT

L2:

MOV #0, RO1
LO:

ADD #1, RO1
MSF

CAL $L1

CMP #5, RO1
JNE $LO

RET

L1:

OuT 24, O
RET

Now, first reset the program then highlight the first MSF instruction. Run the
program and verify the result in the console window as before.

12

15. Why stop here! Let’s make it a bit more interesting. The above code will do the
loop 5 times and this number is fixed. For flexibility we can pass the number of
loops as a parameter to the subroutine (starting at label L2). For this we will use
the PSH and POP instructions (see the Appendix). Modify your code to look like
the one below and run it observing the displays on the console:

MSF

PSH #8

CAL $L2

HLT

L2:

POP RO2

MOV #0, RO1
LO:

ADD #1, RO1
MSF

CAL $L1

CMP RO2, RO1
JNE $LO

RET

L1:

OuT 24, O
RET

16. Examine the above code and briefly explain how the parameter passing works:

17. Finally, as a real challenge, modify the above code so that a second parameter is
passed to the subroutine (starting at label L2) in the same way as the first
parameter is passed. The second parameter is used to initialise the register RO1
to the value of this second parameter. Copy the modified code only to the point
of the last modification in the box below:

13

Append

ix - Simulator Instruction Sub-set

Inst

Description

Data transfer instructions

MOV

Move data to register; move register to register

e.g.

MOV #2, R01 moves number 2 into register RO1

MOV R01, R0O3 moves contents of register RO1 into register RO3

LDB

Load a byte from memory to register

e.g.

LDB 1022, R0O3 loads a byte from memory address 1022 into RO3

LDB @R02, RO5 loads a byte from memory the address of which is in R02

LDW

Load a word (2 bytes) from memory to register
Same as in LDB but a word (i.e. 2 bytes) is loaded into a register

STB

Store a byte from register to memory

STB R07, 2146 stores a byte from RO7 into memory address 2146

STB R04, @R08 stores a byte from R04 into memory address of which is in
RO8

STW

Store a word (2 bytes) from register to memory
Same as in STB but a word (i.e. 2 bytes) is loaded stored in memory

PSH

Push data to top of hardware stack (TOS); push register to TOS
e.g.

PSH #6 pushes number 6 on top of the stack

PSH R0O3 pushes the contents of register RO3 on top of the stack

POP

Pop data from top of hardware stack to register

e.g.

POP RO5 pops contents of top of stack into register RO5

Note: If you try to POP from an empty stack you will get the error message
“Stack underflow”.

Arithmetic instructions

Add number to register; add register to register
e.g.

ADD ADD #3, R02 adds number 3 to contents of register R02 and stores the
result in register RO2.
ADD RO00, RO1 adds contents of register ROO to contents of register RO1
and stores the result in register RO1.

SUB Subtract number from register; subtract register from register

MUL Multiply number with register; multiply register with register

DIV Divide number with register; divide register with register

Control transfer instructions
Jump to instruction address unconditionally

JMP e.g.

JMP 100 unconditionally jumps to address location 100 where there is
another instruction

14

LT

Jump to instruction address if less than (after last comparison)

JIGT

Jump to instruction address if greater than (after last comparison)

JEQ

Jump to instruction address if equal (after last comparison instruction)
e.g.

JEQ 200 jumps to address location 200 if the previous comparison
instruction result indicates that the two numbers are equal, i.e. the Z
status flag is set (the Z box will be checked in this case).

JNE

Jump to instruction address if not equal (after last comparison)

MSF

Mark Stack Frame instruction is used in conjunction with the CAL
instruction.

e.g.

MSF reserve a space for the return address on program stack
CAL 1456 save the return address in the reserved space and jump to
subroutine in address location 1456

CAL

Jump to subroutine address (saves the return address on program stack)
This instruction is used in conjunction with the MSF instruction. You'll
need an MSF instruction before the CAL instruction. See the example
above

RET

Return from subroutine (uses the return address on stack)

SWi

Software interrupt (used to request OS help)

HLT

Halt simulation

Comparison instruction

CMP

Compare number with register; compare register with register

e.g.

CMP #5, R02 compare number 5 with the contents of register R02

CMP RO01, R03 compare the contents of registers RO1 and R03

Note:

If RO1 = R0O3 then the status flag Z will be set, i.e. the Z box is checked.

If RO3 > RO1 then non of the status flags will be set, i.e. none of the status
flag boxes are checked.

If RO1 > RO3 then the status flag N will be set, i.e. the N status box is
checked.

Input, output instructions

IN Get input data (if available) from an external 10 device
Output data to an external 10 device
ouT e.g.

OUT 16, 0 outputs contents of data in location 16 to the console (the
second parameter must always be a 0)

15

